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Abstract. In this paper we state and prove a higher index theorem for an odd-dimensional
connected spin Riemannian manifold .M; g/ which is partitioned by an oriented closed hy-
persurface N . This index theorem generalizes a theorem due to N. Higson in the context of
Hilbert modules. Then we apply this theorem to prove that ifN is area-enlargeable and if there
is a smooth map from M into N such that its restriction to N has non-zero degree, then the
scalar curvature of g cannot be uniformly positive.
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1. Introduction

Given a compact manifoldM , it is certainly an interesting problem to decide whether
it carries a Riemannian metric with everywhere positive scalar curvature or not.
This problem is revealed to be also very difficult. For constructing a metric with
positive scalar curvature the most powerful technique is the Gromov–Lawson and
Schoen–Yau surgery theorem asserting that if M has a metric with positive scalar
curvature and if M 0 is obtained from M by performing surgeries in co-dimension
greater than or equal to 3, thenM 0 carries a metric with positive scalar curvature, too
(see [3] and [18]). In the other direction, i.e., to find obstruction for the existence
of such metrics, the Atiyah–Singer index theorem and all its variants come into play
through the Lichnerowicz formula (see e.g. [10]). Even, it has been believed that
all obstruction for the existence of metrics with positive scalar curvature on a spin
manifold M can be encapsulated in a sophisticated index ˛R

max.M/ which takes its
value in KOn.C �

max;R.G//, where G is the fundamental group of M (see e.g. [15]).
This assertion is known as the Gromov–Lawson–Rosenberg conjecture and is shown,
by T. Schick in [16], not to be true in this general form. Nevertheless, this index
might subsume all index theoretic obstructions for the existence of metrics with
positive scalar curvature on spin manifolds. One obstruction for the existence of
metrics with positive scalar curvature is the enlargeability, which was introduced by
Gromov and Lawson (see [4], [5]). Enlargeability is a homotopy invariance of smooth
manifolds, and the category of enlargeable manifolds forms a rich and interesting
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family containing, for example, all hyperbolic manifolds and all sufficiently large
3-dimensional manifolds.

Definition. LetN be a closed oriented manifold of dimension nwith a fixed Rieman-
nian metric g. The manifold N is enlargeable if for each real number " > 0 there is
a Riemannian spin cover . zN; Qg/, with lifted metric, and a smooth map f W zN ! Sn

such that the function f is constant outside a compact subset K of zN , the degree of
f is non-zero, and the map f W . zN; Qg/ ! .Sn; g0/ is "-contracting, where g0 is the
standard metric on Sn. Being "-contracting means that kTxf k � " for each x 2 zN ,
where Txf W Tx zN ! Tf .x/S

n. The manifold N is said to be area-enlargeable if
there exists a function f as above which is "-area contracting. This means that
k V2

Txf k � " for each x 2 zN , where
V2

Txf W V2
Tx zN ! V2

Tf .x/S
n.

It turns out that a closed area-enlargeable manifold cannot carry a positive scalar
curvature, and the basic tool to prove this theorem is a relative version of the Atiyah–
Singer index theorem, cf. [5], Theorem 4.18. So one may expect that the enlargeability
obstruction be recovered by the index theoretic obstruction ˛R

max. In fact T. Schick
and B. Hanke in [6, 7] proved that ˛R

max.N / ¤ 0 if N is enlargeable.
Given a complete Riemannian manifold .M; g/ it is interesting to decide whether

the scalar curvature of g is uniformly positive. Besides its interest in itself, this
question has clearly applications to the compact case too. The following theorem is
the main result of this paper (see Theorem 3.1 is Section 3):

Theorem 3.1. Let .M; g/ be a complete Riemannian spin manifold, and let N be a
closed area-enlargeable submanifold ofM with co-dimension 1. If there is a smooth
map � W M ! N such that its restriction to N is of non-zero degree then the scalar
curvature of g cannot be uniformly positive.

To prove this assertion, we have put together some basic results and methods
introduced by N. Higson, J. Roe, B. Hanke and T. Schick concerning index theory
in the context of operator algebras. This result seems not to be obtained easily by
means of the geometric methods of [5]. So it shows also the efficiency of operator
algebraic index theory to prove results on the non-existence of metrics with positive
scalar curvature.

With the above notation, let E be a Clifford bundle over M and put H D
L2.M;E/. This a Hilbert space which is assumed to be acted upon by a Dirac-
type operator D. The operator U D .D C i/.D � i/�1 is bounded on H . Let N
be a closed oriented hypersurface which partitions M into two submanifolds M�
and MC with common boundary N . The restriction of D to N defines a Dirac-type
operator DN with Fredholm index indDN . Let �C denote a smooth function on M
which coincides with the characteristic function of MC outside a compact set and
put �� D 1� �C. It turns out (see [8]) that the bounded operator UC D �� C �CU
is Fredholm and its index is denoted by ind.D;N /. With an appropriate choice of
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orientations the following relation holds between this index and the Fredholm index
of DN ; see [8], Theorem 1.5, and [13], Theorem 3.3:

ind.D;N / D indDN : (1)

This formula has two immediate applications. The first one is to provide a proof
for the cobordism invariance of the analytical index of a Dirac-type operator, while
the second one is the following: if OA.M/ ¤ 0, then the scalar curvature of g cannot
be uniformly positive. We generalize the above theorem in the context of Hilbert
Modules overC �-algebras, i.e., instead ofE we consider a Clifford HilbertA-module
bundleW , for example,W D S.M/˝ V , where S.M/ is the spin bundle ofM and
V is a Hilbert A-module bundle over M . In this case the twisted Dirac operator is
denoted by DV and its restriction to N by DV

N . The indices ind.DV ; N / and DV
N

are elements of the K-group K0.A/, and we show in Theorem 2.6 of Section 2 that

ind.DV ; N / D indDV
N :

As above this relation can be used to prove the cobordism invariance of indDV
N ,

cf. Corollary 2.7. We have already mentioned Theorem 3.1 in Section 3. This theorem
should be considered as a counterpart of the second application of the relation (1).

Acknowledgment. The author would like to thank Georges Skandalis and Thomas
Schick for helpful discussions and John Roe for bringing the paper [8] to his attention.

2. Index theory on odd dimensional partitioned complete manifolds

Let A be a unital C �-algebra and let .M; g/ be an oriented complete non-compact
manifold and let W be a (locally trivial, smooth) Clifford bundle whose fiber is en-
dowed with a compatible structure of a Hilbert A-module, that is as an A-module
finitely generated and projective. We assume that this bundle is equipped with a
connection which is compatible with the Clifford action of TM and denote the cor-
responding A-linear Dirac type operator by D. Because of the Clifford structure
W0 D S0 ˝ V0, where S0 is the irreducible spin representation space in dimension
dimM and V0 is a finitely generated projective A-module, endowed with a com-
patible Hilbert A-module structure. For � and � two compactly supported smooth
sections of W put

h�; �i D
Z
M

h�.x/; �.x/i d�g.x/ 2 A:

It is easy to show that j� j D kh�; �ik1=2 is a norm on the space C1
c .M;W / of com-

pactly supported smooth sections of the bundle W . The completion of C1
c .M;W /

with respect to this norm is the Hilbert A-module H D L2.M;W /. The operator D
is a formally self adjoint densely defined operator so it is closable. From now on we
replace D by its closure and denote it by the same letter D.
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Lemma 2.1. The operatorD is regular and self adjoint.

Proof. Recall that a closed formally self adjoint operator T on a Hilbert module is
regular and self adjoint if and only if T ˙ i is surjective. Note also that T ˙ i is
injective and has closed range: for all � 2 Dom T we have h.T ˙ i/�; .T ˙ i/�i D
h�; �i C hD�;D�i. Let then f�ng be a sequence in Dom T such that .T � i/�n
converges to �. Just because k.T � i/�k � k�k the sequence �n is Cauchy, thus
converges also, say to � 2 H . Since T � i is closed .�; �/ is in the graph of D,
whence � is in the range of T � i , i.e this operator has closed range. The same is true
for T C i .

We therefore have just to prove thatD˙ i has dense range. We prove thatD � i
has dense range; the same proof holds forDC i . Let � 2 H be compactly supported
and n 2 N. Let Mn be a compact smooth manifold which coincides with M up
to distance n from the support of �, endowed a A-module bundle Wn and a Dirac
operator Dn that coincide with corresponding structures on M . This data can be
constructed, e.g. by doubling a sufficiently big compact part of M .

We claim that the operator Dn has the finite propagation speed property: for a
section �, the section eisDn� is supported within distance s of the support of �. We
first notice that this condition does not depend on the connection used to construct
Dn. Indeed, assumeD0

n has finite propagation speed and writeDn D D0
nCT where

T is a section of the bundle EndA.W / (a 0-th order differential operator). In the
Trotter formula

eisDn D lim
n!1

�
ei

s
nD

0

nei
s
nT

�n

the operator ei
s
nT does not change the supports because it is a pointwise element of

End.V0/. The wave operator ei
s
nD

0

n moves away the supports at most by the distance
s
n

by the finite propagation speed property. This proves the finite propagation speed
property for eisDn .

Next if Wn is of the form S ˝ V0 where S is an ordinary spin bundle and V0 a
fixed Hilbert-A module, one can take D0

n D D0 ˝ 1 where D0 is the ordinary Dirac
operator on S . We then apply finite propagation for D0. The general case follows
since Wn is a direct summand of such a bundle.

Define the function fn on R by putting

fn.x/ D �i
Z n

0

e�te�itx dt D .x � i/�1.1 � e�n.1Cix//:

The section � considered as a section ofWn ! M is denoted by �n. Consider the
section fn.Dn/.�n/ of Wn. Using the following formula

fn.Dn/.�n/ D
Z n

0

e�se�isDn�n ds

and the finite propagation property of the wave operator eisDn , this section is sup-
ported in the region onMn that coincides with a region inM . Therefore fn.Dn/.�n/
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can be considered as a compactly supported section �n ofW ! M and the following
relation holds

k� � .D � i/�nk D k�n � Œ.Dn � i/fn.D/��nk :
Now .Dn�i/fn.Dn/�Id D gn.D/, where gn.x/ D .x�i/fn.x/�1 D e�n.1Cix/.
It follows that k.Dn � i/fn.Dn/ � Idk � kgnk1 D e�n. So the right hand side of
the above relations converges to 0 when n ! 1. Therefore the range of D � i is
dense.

For bounded operators P and Q in EndA.H/ by P � Q we mean that the
difference P �Q is compact in the sense of [11]. The following simple lemma is a
key tool in what follows.

Lemma 2.2. (1) The operator .D C i/�1 is a bounded operator on H . Moreover,
�.D C i/�1 � 0, where � is a compactly supported function onM .

(2) If � is a smooth function of M which is locally constant outside a compact
subset, then

Œ.D ˙ i/�1; �� � 0:

Proof. For � a smooth element of H we have

h.D C i/�; .D C i/�i D h.D2 C 1/�; �i � h�; �i;
therefore k.D C i/�1k � 1, i.e., .D C i/�1 is bounded.

The operator .DC i/ is an elliptic differential A-operator in the sense of [11], so
there is pseudodifferential A-operators Q and S of negative order such that

Q.D C i/ � id D S;

which gives rise to the relation

�Q � �.D C i/�1 D �S.D C i/�1:

This shows that it is enough to prove the compactness of the operators �Q and �S .
Moreover for each positive number ı we may assume Q and S be of ı-propagation
speed. This can be done by multiplying the kernels of this operator with smooth
functions which are supported around the diagonal of M � M . Given a bounded
sequence f	j g in H we show that the sequence .Q	j /jsupp � contains a convergent
subsequence and similarly for the sequence .S	j /jsupp � . For this purpose letM 0 be an
open submanifold ofM with compact closure such that it contains 2ı-neighborhood
of supp.�/. Deform all geometric structures in the ı neighborhood of @M 0 to product
structures and consider the double compact manifold .M 0 t@M 0 M 0�/ with Clifford
Hilbert A-module bundle induced from W . Corresponding to the sequence f	j g in



464 M. E. Zadeh

H consider the sequence f	 0
j g in .M 0 t@M 0 M 0�/ such that 	 0

j jM 0
D 	j jM 0 . SinceQ

has propagation speed ı, we have

.Q	j /jsupp � D .Q0	 0
j /jsupp � : (2)

HereQ0 is any pseudodifferentialA-operator of negative order on double space whose
kernel is equal to the kernel of Q on M 0. Being of negative order, Q0 is a compact
operator on H (cf. [11], p. 109), so fQ0	j g has a L2-convergent subsequence. The
restriction of this subsequence to supp � is convergent too, which proves what we
wanted in view of the relation (2). The compactness of �S can be shown similarly.

To prove the second part notice that

Œ.D ˙ i/�1; �� D .D ˙ i/�1Œ�;D�.D ˙ i/�1:

On the other hand, ŒD; ��� D grad.�/�� , where “�” denotes the Clifford action. Since
the gradient vector field grad.�/ vanishes outside a compact set, for an appropriate
compactly supported function � on M one has ŒD; �� D ŒD; ��� , so the first part of
the lemma can be used to deduce the compactness of Œ�;D�.D˙ i/�1 and hence the
compactness of Œ.D ˙ i/�1; ��.

Suppose now that M is partitioned by an oriented compact hypersurface N into
two parts MC and M�. We assume that the positive direction of the unit normal
vector En to N � M points from M� toward MC. Let �C be a smooth function on
M which is equal to the characteristic function of MC outside a compact subset of
M , and put �� D 1��C. To state the next theorem we recall from [11], p. 96, that a
bounded operatorP 2 EndA.H/ is a FredholmA-operator if there is a decomposition
H D H0˚H1 of the source space and a decompositionH D H 0

0˚H 0
1 of the target

space such that H0 and H 0
0 are finitely generated A-modules and if the matrix form

of P , with respect to these decompositions, is given by
�
P0 0

0 P1

�
;

where P1 W H1 ! H 0
1 is an isomorphism with bounded inverse. The Fomenko–

Mishchenko index of the Fredholm A-operator P is given by

indP D ŒH0� � ŒH 0
0� 2 K0.A/

and turns out to be independent of the choices made in its definition. This index
is a homotopy invariant and is invariant with respect to perturbations by compact
A-operators, cf. Lemmas 1.5 and 2.3 in [11]. Moreover, if Q is another Fredholm
A-operator then

ind.PQ/ D indP C indQ 2 K0.A/I
see [11], Lemma 2.3.
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Theorem 2.3. Let U D .D � i/.D C i/�1 be the Cayley transform of D. The
following holds:

(1) The operatorsUC D �� C�CU andU� D �C C��U are Fredholm operators
in EndA.H/.

(2) ind.UC/ D � ind.U�/.
(3) The value of ind.UC/ does not depend on �C but on the cobordism class of the

partitioning manifold N .

Proof. Clearly both U˙ are A-linear and bounded. Since U D 1� 2i.DC i/�1, the
second part of the above lemma implies that

�CU D �C � 2i�C.D C i/�1 � �C � 2i.D C i/�1�C D U�C

and similarly ��U � U��. Since the support of �C�� is compact, it follows from
the first part of the previous lemma that

�C��U D �C�� � 2i�C��.D C i/�1 � �C��:

Using these relation one has U˙U �̇ � id and U �̇U˙ � id, so both UC and U� are
Fredholm A-operator according to [11], Theorem 2.4. Since UCU� D id, we get the
relation

indUC C indU� D indU D 0 2 K0.A/:
A different choice for �C is of the form �C C �, where � is a compactly supported
smooth function. The corresponding operator differs from UC by

�� C �U D �� C �.1 � 2i.D C i/�1/ � 0;

where the equivalence is coming from first part of the previous lemma. Consequently
the index of UC does not depend on the choice of �C. The third part of the theorem
is a direct consequence of the second part.

The Fomenko–Mishchenko index of the operator UC is denoted by ind.D;N / 2
K0.A/. The following property of this index is crucial for our purposes.

Theorem 2.4. If D is an isomorphism, that is, has the bounded inverse, then
ind.D;N / D 0. In particular, if DV is the spin Dirac operator on M twisted
by the Hilbert A-module bundle V and if the scalar curvature 
 of g is uniformly
positive and the curvature of V is sufficiently small, then ind.DV ; N / D 0 2 K0.A/.
Proof. If D has bounded inverse, then for 0 � s � 1 the families .D � si/ and
.D C si/�1 of bounded operator are continuous. So U.s/ ´ .D � si/.D C si/�1
is a homotopy of bounded operators and UC.s/ D �� C �CU.s/ is a homotopy
of Fredholm A-operators between UC and id. By the homotopy invariance of the
Fomenko–Mishchenko index we get ind.D;N / D 0.
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To prove the second part, assume that there exists 
0 > such that everywhere

 � 
0. By the Lichnerowicz formula

.DV /2 D r�r C 1

4

 CR;

where R 2 EndA.V /. Assume R is sufficiently small, say kRk � 1
8

0. Thus we

obtain the following inequality in A, where � is a smooth L2-section of S.M/˝ V ,

hDV .�/;DV .�/i � 1

8

0h�; �i;

which implies the boundedness of .DV /�1. The assertion follows now from the first
part.

Remark. The proof of the above theorem may be slightly modified to show that
ind.D;N / D 0 if there is a gap in the L2-spectrum of D.

The following lemma shows that the index ind.D;N / is invariant with respect to
modifications of data at each partition MC or M�.

Lemma 2.5. For j D 1; 2 let Mj be a complete manifold partitioned by compact
hypersurface Nj � Mj and letWj be a Clifford Hilbert A-module bundle onMj . If
there is an isometry 	 W M2C ! M1C which is lifted to an isomorphism of Clifford
and Hilbert module structures, then

ind.D1; N1/ D ind.D2; N2/:

A similar assertion is true forMj�.

Proof. Let �1 be a smooth function on M1 that vanishes in a neighborhood of M1�
and is equal to 1 outside a compact subset ofM1C. Notice that �2 D �1 B	 is defined
only on M2C but can be extended by zero to whole M2. As in Theorem 2.3 we have

U1C D 1C 2i�1.D1 C i/�1;
U2C D 1C 2i�2.D2 C i/�1 � 1C 2i.D2 C i/�1�2:

The map 	 provides a unitary isomorphism � W L2.M1C; W / ! L2.M2C; W /. By
taking an arbitrary isomorphism L2.M1�; W / ! L2.M2�; W / and using the direct
decompositionL2.Mj ; W / D L2.Mj�; W /˚L2.MjC; W /we get an isomorphism

T W L2.M1; W / ! L2.M2; W /:

One has .D2 C i/��1 D �.D1 C i/�1 and �2�.D1 C i/ D ��1.D1 C i/, so

T U1C � U2CT � T .1C 2i�1.D1 C i/�1/ � .1C 2i.D2 C i/�1�2/T
D 2i.��1.D1 C i/�1 � .D2 C i/�1�2�/
D 2i.D2 C i/�1�ŒD1; �1�.D1 C i/�1:
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Now one can proceed as in the proof of the second part of the Lemma 2.2 to deduce
that the last expression is a compact operator. Consequently T U1CT �1 � U2C,
which implies

indU1C D indU2C 2 K0.A/:
The Clifford action of i En provides a Z2-grading for W jN . Let DN denote the

Dirac-type operator acting on smooth sections of W jN ! N . This is a A-linear
elliptic operator and has an index indDN 2 K0.A/.

The following theorem, as well as its proof, is a generalization of Theorem 1.5 of
[8] to the context of the Hilbert module bundles (see also [13]).

Theorem 2.6. In the K-group K0.A/ the equality

indDN D ind.D;N /:

holds.

Proof. As a first step we show that it is enough to prove the theorem for the cylindrical
manifold R � N with product metric .dx/2 C gN and pull-back bundle p�.V jN /,
where p is the projection of R �N onto the second factor. Consider a collar neigh-
borhood .�1; 1/ � N in M . Using Lemma 2.5 we may change M� to the product
form .�1; 1=2/ �N without changing the index ind.M;N /. By applying the third
part of Theorem 2.3 we may assume that the partitioning manifold is f1=2g � N ,
then Lemma 2.5 can be used again to replace M with the cylinder R � N without
changing neither ind.M;N / nor indDN . Consequently, to prove the theorem it suf-
fices to prove it in the special case of a cylinder. At first we prove the theorem for
the very special case of the Euclidean Dirac operator �id=dx twisted by the finitely
projective A-module V0. We denote this twisted Dirac operator by DV0

R and prove
the relation

ind.˙DV0

R / D ˙ŒV0� 2 K0.A/: (3)

For this purpose, let �C be a smooth function on R satisfying the conditions of
Theorem 2.3 and put  D 2�C � 1. One has

UC D .D
V0

R � i /.D C i/�1:

Thus the L2-kernels of UC and U �C, as A-modules, are isomorphic to ker.D � i /

and to ker.DC i /, respectively. The space ofL2-solutions ofU �C D �id=dxC i 
is null, while the space ofL2-solutions ofUC D �id=dx�i consists of the smooth
functions

f .x/ D exp.�
Z x

0

 .t/ dt/v; v 2 V0:

Consequently the L2-kernels of UC and U �C are isomorphic to the finitely generated
projectiveA-modules V0 and 0, so ind.UC/ D ŒV0��0, which is the desired relation.
The case of �DV0

R is similar.
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Now we are going to prove the theorem for the cylinder .R � N; .dx/2 C gN /,
which completes the proof as is explained above. The operator DV has the form

DV D
�

i@x .DV
N /

�
.DV

N /
C �i@x

�
:

Consider the Dirac-type operator DV
N as an unbounded operator on L2.N;W jN /.

As it has been pointed out just before Theorem 2.3, there is a decomposition of
L2.N;W jN / D W0 ˚ W1 into a direct sum of invariant A-modules such that W0

is finitely generated and projective. Moreover, the restriction of DW
N to W1 has a

bounded inverse. The operator R ´ .DV
N /jW0

˚ 0 is a compact A-operator on
L2.N;W jN /, so the operator

zDN ´
�
0 0

0 .DV
N /jW1

�

is a compact perturbation of DV
N , consequently

indDV
N D ind zDN D ŒWC

0 � � ŒW�
0 � 2 K0.A/: (4)

The Cayley transform of the family of operators

Ds D �i
d

dx
C

�
sR 0

0 .DV
N /jW1

�

is a continuous family of bounded operators to which the Lemma 2.2 is applicable.
Here � stands for the grading operator. Therefore we have the homotopy UC.Ds/ of
Fredholm operators with the same index in K0.A/. Therefore

ind.DV ; N / D ind. xD;N/; (5)

where

xD D �i
d

dx
C

�
0 0

0 .DV
N /jW1

�
:

Remark. Notice that xD is not a twisted Dirac operator acting on sections of a
Hilbert module bundle. Nevertheless since the Lemma 2.2 is applicable to this op-
erator UC. xD/ is a Fredholm A-operator on L2.M;W1/ and we can define the index
ind. xD;N/ D indUC. xD/ as an element in K0.A/.

With respect to the direct sum L2.R �N;W / D L2.R;W0/˚L2.R;W1/ we put
xD D xD0 ˚ xD1. In the view of the above remark it is clear that

ind. xD;N/ D ind. xD0; N /C ind. xD1; N / 2 K0.A/:
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Notice that xD0 is the Euclidean Dirac operator (up to sign) twisted by a finitely gener-
ated module, so ind. xD0; N / is well defined. If � is a smooth element of L2.R;W1/,
then

k. xD1 ˙ i /�k2 D h. xD1 	 i /. xD1 ˙ i /�; �/i
D h.DV

N /
�DV

N� C ..id=dx ˙ i /�.id=dx ˙ i //�/i
� kDV

N�k2
� ık�k2 for ı > 0;

where the last inequality results from the fact that .DV
N /jW1

has a continuous in-
verse. Now the argument in the proof of the theorem can be applied to deduce that
ind. xD1; N / D 0 2 K0.A/. On the other hand, the operator xD0 has the form

D
W0

R ˚ �DW1

R ;

acting on L2.R;WC
0 /˚ L2.R;W�

0 /. Therefore the equality

ind. xD0; N / D ŒWC
0 � � ŒW�

0 � 2 K0.A/
follows by applying the relations (3). This relation together with (4) and (5) prove
the theorem for the cylindrical case and so completes the proof of the theorem.

The following theorem is an immediate application of the previous theorem.

Corollary 2.7. Let N be a closed even-dimensional manifold and W be a Clifford
HilbertA-module bundle onN . LetD be a Dirac-type operator acting on sections of
W . If there is a compact manifold M with N D @M and if all geometric structures
extend toM , then indD D 0 2 K0.A/.

3. Partitioning by enlargeable manifolds

In this section we apply Theorem 2.6 to prove the following theorem concerning the
existence of complete metrics on non-compact manifolds with uniformly positive
scalar curvature.

Theorem 3.1. Let .M; g/ be a non-compact orientable complete Riemannian spin
n-dimensional manifold where n � 2. Let N be an .n � 1/-dimensional area-
enlargeable closed submanifold ofM which partitionsM . If there is a map � W M !
N such that its restriction to N has non-zero degree, then the scalar curvature of g
cannot be uniformly positive.

Proof. At first notice that M , hence N , may be assumed to be spin. If not, we
consider the finite spin Riemannian covering . zM; Qg/ where Qg is the lifting of g. Let
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zN � zM be the induced covering forN which is area-enlargeable. Its normal bundle
is trivial, so zN is spin, too. The function � has a lifting to a function Q� W zM ! zN
such that its restriction to zN is of non-zero degree. Moreover, the scalar curvature of
g is uniformly positive if and only if the scalar curvature of Qg is uniformly positive.
This shows that if we prove the assertion of the theorem for zM , then it follows forM
as well.

We can also assume n to be an odd integer. If not, consider the complete manifold
.M � S1; g ˚ g0/ where g0 is any Riemannian metric on S1. If M has a finite
spin covering zM , then zM � S1 is a finite spin covering for M � S1. The restriction
of the map � � id W M � S1 ! N � S1 has non-zero degree and N � S1 is area-
enlargeable. Moreover, if the scalar curvature of g is uniformly positive, then the
scalar curvature of g ˚ g0 is uniformly positive, so it suffices to prove the theorem
for the odd-dimensional complete manifold .M � S1; g ˚ g0/.

To prove this theorem, we use some methods and constructions introduced by
B. Hanke and T. Schick in [6] and [7]. Following [7], Proposition 1.5, since N is
area-enlargeable, for each positive natural number k there exists a C*-algebraAk and
a HilbertAk-module bundle Vk ! N with connection rk with following properties:
The curvature k of Vk satisfies

kkk � 1

k
;

and there exists a split extension

0 ! K ! Ak ! �k ! 0;

where K denotes the algebra of compact operators on an infinite-dimensional and
separable Hilbert space, and �k is a certain C �-algebra. In particular, each K0.Ak/
canonically splits off a Z D K0.K/-summand. Denote byWk the spin bundle twisted
by Vk , and by DVk

N the associated twisted Dirac operator. If ak 2 K0.Ak/ denotes

the index of DVk

N , then the Z D K0.K/-component zk of ak is non-zero. Moreover,
there is a dense subalgebra Ak of Ak which is closed under holomorphic calculus
and there is a continuous trace ˛k W Ak ! C such that zk D ind˛k

D
Vk

N . Here we

use the fact that indDVk

N 2 K0.Ak/ D K0.Ak/, so the expression ind˛k
D
Vk

N makes
sense. This index can be calculated in terms of the geometry of .M; g/ and of the
bundle .Vk;rVk /. Theorem 9.2 of [17] gives the explicit formula

zk D ind˛k
D
Vk

N D
Z
N

A.TM/ ^ ŒCh˛k
.Vk;rVk /�C (6)

for that index. Here Œ!� denotes the positive degree part of the differential form
! 2 �.N /, and Ch˛k

.Vk;rVk / is defined in terms of the curvature k by the
relation

Ch˛k
.Vk;rVk / ´ ˛k

�
str

1P
jD0

�k^���^�k

j Š

�
; (7)
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which provides a closed differential form on N . The class of Ch˛k
.Vk;rVk / in the

de Rham cohomology ofN is independent of the connection rVk , so it is determined
by the class of Vk in K0.Ak/. Since K0.Ak/ ' K0.Ak/, one can assume that the
value of the expression between the parentheses on the right-hand side of (7) belongs
to the space Aab (quotient of A by additive commutators), so is in the domain of ˛k .
This justifies the definition of the Chern character.

It is clear from the definition that for a smooth function  W N ! N one has

Ch˛k
. �Vk;r �Vk / D  � Ch˛k

.Vk;rVk /:

The main feature of the virtual bundle Vk , coming from area-enlargeability of N , is
that the Chern character Ch� .Vk;rVk / is, in fact, a closed differential .n� 1/-form.
So given a smooth map  W N ! N , the explicit formula (6) implies the relation

ind˛k
D
 �Vk

N D deg. / � ind˛k
D
Vk

N : (8)

To use Theorem 2.6, we need to work with flat bundles on N . For this purpose
we use another fundamental construction introduced in [6]. This construction con-
sists of assembling the algebras Ak , the almost flat sequence of bundles Vk and the
connections rVk to construct a C*-algebra A, a Hilbert A-module bundle V and a
flat connection rV such that the index of the twisted Dirac operator DV

N , acting on
smooth sections ofW D S ˝ V and taking its value inK0.A/, keeps track of the in-
dex theoretic information ofDVk

N when k goes toward infinity. Denote by
Qb

Ak the
C*-algebra consisting of all uniformly bounded sequences .a1; a2; : : : /with ak 2 Ak
and by

Q0
Ak the C �-algebra consisting of all sequences .a1; a2; : : : / such that the

sequence fkakkgk converges to 0. The C*-algebra A is defined by the quotient

A ´
Qb

AkQ0
Ak
:

The C*-algebras � and K are constructed from f�kgk and from fKgk by similar
quotients. Clearly one has the split exact sequence

0 ! K ! A ! � ! 0; (9)

which gives rise to the following split exact sequence

0 ! K0.K/ ! K0.A/ ! K0.�/ ! 0: (10)

It turns out that

K0.K/ '
Q
K0.K/L
K0.K/

'
Q

ZL
Z
:

Proposition 1.5 of [6] and the subsequent discussion show that the component of
indDV

N is K0.K/ can be represented, with respect to the above isomorphism, by
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z D Œ.z1; z2; : : : /�, where zk D ˛k.indDVk

N / ¤ 0 for all k 2 N. This implies the
non-vanishing result indDV

N ¤ 0 2 K0.K/.
For  a smooth function on N it turns out from the construction of the bundle

V that the pull-back bundle  �.V / may be constructed by assembling the bundles
 �.Vk/. Using (8) and the above description of theK0.K/-component of the higher
index ind.D �V

N / 2 K0.A/, we conclude that the K0.K/-component of indD �V
N

is equal to deg. /-times of the K0.K/-component of indDV
N . Since this last com-

ponent in non-vanishing, we conclude that

indD �V
N ¤ 0 2 K0.A/; (11)

provided that deg. / ¤ 0. Now we are able to apply Theorem 2.6. Using the map
� W M ! N we construct the pull-back bundle ��V and the pull-back connection
��r which is flat. Let D��V be the spin Dirac operator of M twisted by the flat
Hilbert A-module bundle.��V; ��r/. The restriction of this bundle to N is  �V ,
where  ´ �jN is of non-zero degree. By Theorem 2.6 we have

ind.D��V ; N / D indD �V
N ;

which, by relation (11), gives the non-vanishing result

ind.D��V ; N / ¤ 0 2 K0.A/: (12)

On the other hand, by Lemma 2.4, if the scalar curvature ofg is uniformly positive,
then odd-indD��V vanishes. This is in contradiction with the above non-vanishing
result and completes the proof of the theorem.
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