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1. Introduction

By a noncommutative stochastic matrix we mean a square matrix S D .aij /1�i;j �n

over a skew field, satisfying
Pn

j D1 aij D 1 for any i ; in other words, the row-sums
are all equal to 1. Equivalently the vector t.1; : : : ; 1/ is fixed by S . We are answering
here the following problem: find a row vector fixed by S .

In the commutative case, formulas are known. They occur in probability theory,
where this problem is relevant. Indeed, it amounts to finding the stationary distribution
of the finite Markov chain whose transition matrix is S . See Appendix 1 for details.

But this problem may also be considered as a problem of noncommutative linear
algebra: given a square matrix over some skew field, which has a given column as
eigenvector for some eigenvalue, find a corresponding row vector. It is easy to reduce
this general problem to the previous one, where the eigenvector is t.1; : : : ; 1/ and the
eigenvalue is 1.

In order to give formulas, which necessarily involve inverses of elements of the
skew field and thus may be undefined, we take a generic noncommutative stochastic
matrix: this is the matrix .aij / of noncommuting variables aij subject only to the
condition that this matrix fixes t.1; : : : ; 1/.

We seek now a row vector fixed by the matrix. We work in the free field generated
by these variables (in the sense of Paul Cohn), which we call the stochastic free field.
The formula giving the row eigenvector uses the theory of variable-length codes.
Considering the complete digraph on the set f1; : : : ; ng, let Mi be the set of paths
from i to i . This is a free monoid and its basis Ci is a prefix code. Let Pi be the set
of proper prefixes of Ci , that is, the paths starting from i and not passing through i



532 S. Lavallée, D. Perrin, V. Retakh, and C. Reutenauer

again. We identify Pi with the noncommutative power series which is equal to the
sum of all the words in Pi and we still denote this series by Pi . Then we show that
the elements P �1

i can be evaluated in the stochastic free field and that the vector
.P �1

1 ; : : : ; P �1
n / is fixed by our matrix; moreover, the P �1

i sum to 1, hence they
form a kind of noncommutative limiting probability. See Theorem 1 and Example 1
to have a flavor of the result.

The second part of the article deals with general variable-length codes, not nec-
essarily prefix. One motivation is the fact that the proofs are quite similar. The other
motivation is that we obtain noncommutative generalization of well-known proba-
bilistic results in the theory of codes, mostly due to Schützenberger (see [4] and [5]),
who generalized the recurrent events of Feller.

In Appendix 1, we review the commutative case. In Appendix 2, we show how
the theory of quasideterminants may be used to obtain our results on noncommutative
stochastic matrices.

Acknowledgments. Thanks are due to Persi Diaconis and George Bergman for useful
references; the article was improved by many suggestions of the latter. We also thank
the referee for suggesting improvements of the article and Ira Gessel for indicating
us reference [9].

2. Basics

2.1. Languages and codes. A language is a subset of a free monoid A�; the latter
is generated by the alphabet A. A language is rational if it is obtained from finite
languages by the operations (called rational) union, product (concatenation) and star.
The product of two languages L1L2 is fw1w2 j w1 2 L1; w2 2 L2g, and the star of
L is L� D fw1 : : : wn j wi 2 L; n � 0g D S

n�0 Ln.
It is well known that rational languages may be obtained by using only unambigu-

ous rational operations; these are: disjoint union, unambiguous product (meaning
that if w 2 L1L2, then w has a unique factorization w D w1w2, wi 2 Li / and
the star L� restricted to languages which are codes, or equivalently bases of free
submonoids of A�.

2.2. Series. By a series we mean an element of the Q-algebra of noncommuta-
tive series QhhAii, where A is a set of noncommuting variables. A rational series
is an element of the least subalgebra of QhhAii, which contains the Q-algebra of
noncommutative polynomials QhAi, and which is closed under the operation

S 7! S� D
1P

nD0

Sn D .1 � S/�1;

which is defined if S has zero constant term. We denote by QhhAiirat the Q-algebra
of rational series. Each such series has a �-rational expression: this is a well-formed
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expression involving scalars, letters (elements of A), products and star operations,
the latter restricted to series with 0 constant term. We say that a �-rational expression
is positive if the scalars involved are all � 0.

Let L be a rational language. Since L may be obtained by unambiguous rational
expressions, it follows that its characteristic series

P
w2L w 2 QhhAii is rational.

We shall identify a language and its characteristic series. For all this, see [6] or [7].

2.3. Free fields. The ring QhhAiirat contains QhAi; it is not a skew field. There exist
skew fields containing QhAi. Among them is the so called free field. We denote it F .
It is generated by QhAi and has the following universal property (which characterizes
it): for each Q-algebra homomorphism � W QhAi ! D, where D is a skew field,
there exists a Q-subalgebra O� of F and a homomorphism N� W O� ! D extending
� and such that

f 2 O�; N�f ¤ 0 H) f �1 2 O�:

The free field F is also characterized by the following property: say that a square
matrix M 2 QhAin�n is full if there exists no factorization M D PQ, P 2 QhAin�r ,
Q 2 QhAir�n, with r < n. Then the square matrices over QhAi which are invertible
in F are exactly the full matrices. See [10].

By a rational expression over QhAi we mean a well-formed expression involving
elements of QhAi and the operations sum, product and inversion. Such an expression
can be naturally evaluated in the free field F , provided one never inverts 0. For
example, .aCb�1/�1 can be evaluated in the free field whereas .ab�.b�1a�1/�1/�1

cannot. If a rational expression can be evaluated in the free field, we say it is evaluable
in F .

We shall consider also rational expressions over any skew field D and say that
such an expression is evaluable in D if it can be evaluated without inversion of 0. If
the elements of D appearing in the rational expression are actually in a subring R of
D, we say that the expression is over R.

There is a canonical embedding of QhhAiirat into F , which can be seen as follows:
let S be any rational series; it has a �-rational expression; replace in it the operation
T � by .1 � T /�1; then one obtains a rational expression in F , which is evaluable in
F and represents the image of S under the embedding QhhAiirat ,! F . Thus, each
rational language and each rational series is naturally an element of the free field. In
this way, each �-rational expression is equivalent to an evaluable rational expression
over QhAi. See [13].

In the sequel, we use the notation x� for .1 � x/�1, when x is in a ring and 1 � x

is invertible.

2.4. The derivation � of the free field. There is a unique derivation � of QhAi
such that �.a/ D a for any a 2 A. It maps each word w 2 A� onto jwjw, where jwj
is the length of w. It has a unique extension to the free field F , which we still denote
�. Indeed, this follows from Theorem 7.5.17, p. 451 in [12]; see also [11].
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2.5. DŒt� and other rings. Let D be a skew field and t be a central variable. It
is well known that the ring of polynomials in t over D is a left and right Euclidean
ring, and thus an Ore ring. It has a field of fractions D.t/, each element of which is
of the form PQ�1 and R�1S for suitable P , Q, R, S in DŒt�. The ring of series in
t over D is denoted DŒŒt ��. It is contained in the skew field of Laurent series D..t//.
The latter also contains canonically D.t/, and we may identify D.t/ with a subset of
D..t//. A series S 2 DŒŒt �� is called rational if S is in D.t/. The ring of rational
series is denoted by DŒŒt ��rat. Thus DŒŒt ��rat D DŒŒt �� \ D.t/.

Each polynomial P 2 DŒt� may uniquely be written P D .1� t /nQ, with n 2 N,
Q 2 DŒt� and Q.1/ ¤ 0. Thus if S 2 D.t/, one has S D .1 � t /nQR�1, with
n 2 Z, Q; R 2 DŒt� and Q.1/; R.1/ ¤ 0. We say that S is evaluable at t D 1 if
n � 0, and in this case, its value at t D 1 is Q.1/R.1/�1 if n D 0, and 0 if n � 1.
This value is a well-defined element of D, which does not depend on the fraction
chosen to represent S .

We extend this to matrices: a matrix over D.t/ is said to be evaluable at t D 1 if
all his entries are, and then its value at t D 1 is defined correspondingly.

Consider a rational expression E.t/ over the skew field D.t/. We obtain a rational
expression over the skew field D by putting t D 1 in E.t/. Suppose that the rational
expression E.1/ obtained in this way is evaluable in D and evaluates to ˛ 2 D; then
the rational expression E.t/ is evaluable in D.t/, evaluates to an element P.t/Q.t/�1

in D.t/, with P; Q 2 DŒt�, and PQ�1 is evaluable at t D 1 with value ˛ 2 D. The
standard details are left to the reader.

2.6. Central eigenvalues of matrices over a skew field. Let M be a square matrix
over D. Then 1 � Mt is invertible over DŒŒt ��, hence over D..t//. Since D.t/

is a skew field, contained in D..t//, and containing the coefficients of 1 � Mt , the
coefficients of its inverse .tM/� D .1� tM/�1 lie also in D.t/ and finally in DŒŒt ��rat.
Recall that a square matrix over a skew field is left singular (that is, has a nontrivial
kernel when acting at the left on column vectors) is and only if it is right singular.
Thus M has an eigenvector for the eigenvalue 1 at the left if and only if it holds on
the right.

By the multiplicity of the eigenvalue 1 of M we mean the maximum of the nullity
(that is, dimension of kernel) of the positive powers of 1 � M . Observe that this
coincides with the usual multiplicity (of 1 in the characteristic polynomial) if D is
commutative. Note that the same properties hold for any nonzero central eigenvalue
� by considering 1 � ��1M ; we treat only the case � D 1 for the future application.

Lemma 1. Let M be a square matrix over the skew-field D and t be a central
variable.

(i) M has the eigenvalue 1 if and only if .1 � tM/�1 is not evaluable at t D 1.

(ii) If M has the eigenvalue 1 with multiplicity 1, then .1�t /.1�tM/�1 is evaluable
at t D 1, is non-null and its rows span the eigenspace for the eigenvalue 1.
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Proof. (i) Suppose that M has the eigenvalue 1. Then M is conjugate over D to
a matrix of the form N D �

1 0
P Q

�
, where Q is square. Then, computing in DŒŒt ��,

we have .1 � tN /�1 D �
.1�t/�1 0� �

�
. This is clearly not evaluable for t D 1, and

therefore .1 � tM/�1 is also not evaluable for t D 1.
Conversely, suppose .1 � tM/�1 is not evaluable for t D 1. Then, we have

.1 � tM/�1 D ..1 � t /nij Pij =Qij /i;j , with Pij ; Qij 2 DŒt�, Pij .1/; Qij .1/ ¤ 0,
nij 2 Z and some nij < 0. Let �n be the minimum of the nij . Then n > 0 and
.1 � t /n.1 � tM /�1 is evaluable at t D 1 and its value P at t D 1 is non-null. Now,
we have

.1 � tM/�1 D 1 C .1 � tM/�1tM;

thus

.1 � t /n.1 � tM/�1 D .1 � t /n C .1 � t /n.1 � tM/�1tM:

Since n > 0, we obtain for t D 1 that

P D PM;

which shows that M has the eigenvalue 1, since each row of P is fixed by M and
P ¤ 0.

(ii) We write as before N D �
1 0
P Q

�
, where N is conjugate to M over D. Then

.1 � tN /�1 D .tN /� D
�

t� 0

.tQ/�tP t� .tQ/�
�

:

This formula is easily verified by checking that the right-hand side is the inverse of
1 � tN .

We claim that .tQ/� is evaluable at t D 1. Indeed, otherwise, by (i), Q has the
eigenvalue 1 and is conjugate to a matrix N D �

1 0
R S

�
, S square. Then M is conjugate

to N D
h

1 0 0� 1 0� R S

i
and the square of 1 � M has nullity � 2, contradiction.

Now we see that

.1 � t /.tN /� D
�

1 0

.tQ/�tP .1 � t /.tQ/�
�

is evaluable at t D 1 and that its value at t D 1 is non-null. Thus, by the first part of
the proof, its rows span the eigenspace for the eigenvalue 1.

2.7. Rational series in one variable. Let R be a ring and t a central variable. In
the ring of formal power series RŒŒt ��, we consider the subring RŒŒt ��rat, which is the
smallest subring containing RŒt� and closed under inversion. If R is a skew field,
then RŒŒt ��rat canonically embeds into the skew field R.t/. If R ! S is a ring
homomorphism, then it induces a ring homomorphism RŒŒt ��rat ! SŒŒt ��rat fixing t .
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3. Generic noncommutative stochastic matrices

3.1. Generic matrices. Let M D .aij /1�i;j �n be a generic noncommutative ma-
trix; in other words, the aij are noncommuting variables. We denote by F the
corresponding free field. Associated to M is the matrix S : it is the same matrix, but
this time we assume that the aij are noncommuting variables subject to the stochastic
identities

nP
j D1

aij D 1 for all i D 1; : : : ; n: (1)

In other words, the row sums of S are equal to 1; equivalently, S has t.1; : : : ; 1/

as column eigenvector with the eigenvalue 1. We call S a generic noncommutative
stochastic matrix. The algebra over Q generated by its coefficients (hence subject to
the relations (1)) is a free associative algebra, since it is isomorphic with Qhaij ,
i ¤ j i. Indeed, we may eliminate ai i using (1). We denote this algebra by
Qhaij =(1)i, referring to the relations (1). Hence there is a corresponding free field,
which we call the stochastic free field, denoted � .

3.2. Existence of elements and identities in the stochastic free field. We want to
verify that certain rational expressions make sense in the stochastic free field � . For
example, taking a 2 by 2 matrix M D �

a b
c d

�
, we want to show that .1 C bd �/�1 D

.1Cb.1�d/�1/�1 makes sense in � (hence under the hypothesis aCb D cCd D 1/.
It is necessary to take care of this existence problem, since otherwise, one could invert
0 (and our proved identities will be meaningless). The idea is to prove the existence of
certain specializations of the variables, compatible with the identities in � (identities
(1) above), such that the specialized rational expression makes sense. In our example,
we could take b D 0: then bd � specializes to 0 and 1Cbd � to 1, hence .1Cbd �/�1

is evaluable under the specialization. A fortiori, since � is a free field, .1 C bd �/�1

is evaluable in � .
By a Bernouilli morphism we mean a Q-algebra morphism � of the free associa-

tive algebra Qhaij i into R such that

(i)
Pn

j D1 �.aij / D 1 for any i D 1; : : : ; n;

(ii) �.aij / > 0 for any i; j D 1; : : : ; n.

Clearly, such a morphism induces naturally a Q-algebra morphism form Qhaij =.1/i
into R.

Lemma 2. There exists a subring �� of the stochastic free field � such that

(i) �� contains Qhaij =.1/i;
(ii) there is an extension of � to �� (we still denote it by �);

(iii) if f 2 �� and �.f / ¤ 0, then f �1 2 �� .
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Proof. This is a consequence of the fact that � is a free field, corresponding to the free
associative algebra Qhaij =.1/i, hence is the universal field of fractions of Qhaij =.1/i.
This implies that there exists a specialization � ! R extending � W Qhaij =(1)i ! R,
and the lemma follows from [10], 7.2 and Cor. 7.5.11.

Corollary 1. Suppose that � is a Bernouilli morphism and that S D P
w2L w, where

L is a rational subset of the free monoid faij g�, generated by the noncommuting
variables aij , such that

P
w2L �.w/ < 1. Then any positive �-rational expression

for S is evaluable in the stochastic free field � .

Proof. This is proved inductively on the size of the rational expression for S . Note
that for each subexpression and corresponding series S 0, �.S 0/ converges and is > 0.
Hence, we apply inductively the lemma and see that for each subexpression, the
corresponding element is in �� .

Lemma 3. Let S be a �-rational series in Qhhaij ii having a �-rational expression
which is evaluable in � . Then it is evaluable in the free field F . If moreover S D 0

in F , then S D 0 in � .

Proof. There exists a specialization F ! � , since F is the universal field of fractions
of Qhaij i; see [10], Chapter 7. Hence there is a subring H of F and a surjective
Q-algebra morphism � W H ! � such that: 8f 2 H , �f ¤ 0 H) f �1 2 H , and
such that H contains Qhaij i.

We may therefore prove, by induction on the size of the rational expression, that
S exists in H and that �.S/ is the element of � defined by the rational expression. It
follows that if S D 0 in F , then S D 0 in � .

3.3. Paths. Each path in the complete directed graph with set of vertices f1; : : : ; ng
defines naturally an element of the free associative algebra Qhaij i, hence of the free
field F . This is true also for each rational series in Qhhaij ii.

We define now several such series. First, consider the set of nonempty paths
i ! i which do not pass through i ; we denote by Ci the sum in Qhhaij ii of all the
corresponding words. It is classically a rational series, and thus defines an element
of the free field F . Now let Pi be the sum of the paths (that is, the corresponding
words) from i to any vertex j , which do not pass again through i ; this set of words
is the set of proper prefixes of the words appearing in Ci . Likewise, Pi defines an
element of F .

Example 1. M D �
a b
c d

�
. The graph is

1 2

c

b

a d .
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Then

C1 D a C bd �c; C2 D d C ca�b;

P1 D 1 C bd �; P2 D 1 C ca�:

3.4. Results

Theorem 1. The elements Pi can be evaluated in the stochastic free field � and
.P �1

1 ; : : : ; P �1
n / is a left eigenvector of the noncommutative generic stochastic ma-

trix S . Moreover, in � ,

(i)
Pn

iD1 P �1
i D 1;

(ii) Ci can be evaluated in � and is equal to 1;

(iii) �.Ci / can be evaluated in � and is equal to Pi .

Recall that � is the unique derivation of the free field F which extends the identity
on the set faij g.

Example 1 (continued). We verify that .P �1
1 ; P �1

2 /
�

a b
c d

� D .P �1
1 ; P �1

2 /. It is
enough to show that P �1

1 a C P �1
2 c D P �1

1 . This is equivalent to

P �1
2 c D P �1

1 .1 � a/ () c�1P2 D a�P1 () c�1 C a� D a� C a�bd �:

Now we use the stochastic identities:

a C b D 1 H) 1 � a D b H) a� D b�1 H) a�b D 1;

c C d D 1 H) d � D c�1:

Thus, we may conclude.

(i) Similarly,

P �1
1 C P �1

2 D 1 () P2 C P1 D P1P2

() 2 C bd � C ca� D 1 C bd � C ca� C bd �ca�;

and we conclude since d �c D ba� D 1.

(ii) In � , C1 D a C bd �c D a C b D 1:

(iii) In F , �.C1/ D a C bd �c C b�.d �/c C bd �c since � is a derivation such that
�.a/ D a, �.b/ D b and �.c/ D c. Now

�.d �/ D �..1 � d//�1 D �.1 � d/�1�.1 � d/.1 � d/�1 D d �dd �:

Thus, this time in � ,

�.C1/ D a C 2bd �c C bd �dd �c

D a C 2b C bd �d

D a C b C b.1 C d �d/

D 1 C bd � D P1:
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3.5. Proof of the theorem

Lemma 4. Consider the matrix .tS/� in �.t/. Then .1 � t /.tS/� can be evaluated
for t D 1 and is nonzero.

Proof. By Lemma 1 (ii), it is enough to show that S has the eigenvalue 1 with mul-
tiplicity 1. Now, by a change of basis over Q (replace the canonical basis of column
vectors e1; : : : ; en by e1; : : : ; en�1; e1 C � � � C en), we bring S to the form

T D
�
N 0

� 1

�
;

where nij D aij � anj for 1 � i; j � n � 1 and �j D anj for j D 1; : : : ; n � 1. We
claim that N � 1 is invertible in � . It is enough to show that it is full in Qhaij =(1)i.
Suppose that N � 1 is not full: then N � 1 D PQ, with P , Q over Qhaij =(1)i of
size n � .n � 1/ and .n � 1/ � n. By replacing anj by 0 and ai i by ai i C 1, we find
that the matrix .aij /1�i;j �n�1 is nonfull over Qhaij ; 1 � i; j � n � 1i, which is
absurd, since it is a generic matrix. Thus N � 1 is invertible and no power of it has
a nontrivial kernel. Consequently, the positive powers of T � 1 have all rank n � 1.
Therefore the multiplicity of 1 as eigenvalue of T , hence of S , is 1.

Proof of Theorem 1. We identify paths in the complete directed graph on f1; : : : ; ng,
and corresponding words in the free monoid faij g�. Let us also identify an infinite sum
of paths with the corresponding series in Qhhaij ii. Let Pij denote the set of paths from
i to j that do no pass through i again. We therefore have Pi D P

j Pij . Denote by
D.u1; : : : ; un/ the diagonal matrix whose diagonal elements are u1; : : : ; un. Observe
that each path from i to j may be decomposed as the concatenation of a path from i

to i (thus, an element of C �
i ) and a path from i to j that does not pass again through

i (thus, an element of Pij ). Since .M �/ij is the sum of all paths from i to j , we
obtain the identity in Qhhaij ii: .M �/ij D C �

i Pij . Thus we have the matrix identity:
M � D D.C �

1 ; : : : ; C �
n /.Pij /. Now Pi i D 1 and Pij has no constant term. Hence

.Pij / is invertible over Qhhaij ii.
Inverting, we obtain D.C1 � 1; : : : ; Cn � 1/ D .Pij /.M � 1/ since M � D

.1 � M /�1 and similarly C �
i D .1 � Ci /

�1. If we multiply by the column vector
� D t.1; : : : ; 1/, we obtain t.C1 � 1; : : : ; Cn � 1/ D .Pij /.M � 1/� .

This equality holds in Qhhaij ii, and actually, in its subalgebra of rational series
since Ci , Pij are rational series. Hence it holds in the free field F .

Applying the derivation � of F we also obtain

t.�.C1/; : : : ; �.Cn// D .�.Pij //.M � 1/� C .Pij /M�:

Now we claim that Ci ; Pij and �.Ci / can be evaluated in the stochastic free field � .
Thus, since M� D � in � , we obtain that in �

t.C1 � 1; : : : ; Cn � 1/ D 0;
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and
t.�.C1/; : : : ; �.Cn// D .Pij /� D t.P1; : : : ; Pn/;

which proves parts (ii) and (iii) of the theorem.
In order to prove the claim, we take a Bernouilli morphism � . Let i be some

element of f1; : : : ; ng and consider the set E of paths not passing through i . Then
�.E/ < 1; indeed, the matrix N , which is obtained from M by removing row and
column i , satisfies: �.N / has row sums < 1; therefore, �.N /� D P

k�0 �.N /k

converges (as is well known) and by graph theory, �.E/ D �.N �/ D �.N /�.
It follows that �.Ci /, �.Pij / are finite. For �.Ci /, it is easy to see inductively on

the size of a rational expression of Ci that since Ci can be evaluated in � , so is �.Ci /;
one has simply to use the identity �.H �/ D H ��.H/H �. Note also that �.Pi / > 0,
hence Pi is nonzero in � , and P �1

i is an element in � , by Corollary 1.
We now prove (i). Let Qi denote the set of paths from 1 to some vertex, that do

not pass by i ; in particular, Q1 D 0. Then, for any i , j , we have

.M �/1iPi C Qi D .M �/1j Pj C Qj

since both sides represent all the paths departing from 1. Let t be a central variable.
Replacing each path w by t jwjw and writing correspondingly P1.t/; : : : ; Pn.t/, we
obtain

.tM/�
1iPi .t/ C Qi .t/ D .tM/�

1j Pj .t/ C Qj .t/:

This holds in QhAiŒŒt �� and actually in its subalgebra of rational elements QhAiŒŒt ��rat.
Now we have canonical homomorphisms (see 2.5 and 2.7)

QhAiŒŒt ��rat ! QhA=.1/iŒŒt ��rat ! � ŒŒt ��rat ! �.t/:

The composition maps the matrix M onto S . Hence, we have in �.t/

.tS/�
1iPi .t/ C Qi .t/ D .tS/�

1j Pj .t/ C Qj .t/;

where we keep the notation Pi .t/ 2 �.t/ for the image under the composition.
Observe that Pi , by Corollary 1, has a rational expression which can be evaluated in
� . Hence Pi .t/ can be evaluated for t D 1 and is equal to Pi . Similarly, Qi .t/ can
be evaluated for t D 1 and evaluates to Qi .

Multiply the last equality by 1 � t . By Lemma 4, .1 � t /.tS/�
1i can be evaluated

for t D 1 and is equal to ˛i say. Thus, we obtain

˛iPi D j̨ Pj :

Now .tS/� D 1 C .tS/�tS so that, multiplying by 1 � t and putting t D 1, we obtain
that each row of .1 � t /.tS/�|

¯tD1
is fixed by S . In particular, so is .˛1; : : : ; ˛n/.

Since, by Lemma 4, .1 � t /.tS/�|
¯tD1

is nonzero, some row of it is nonzero, and
by symmetry, each row is nonzero. Hence, since we already know that each Pi is
nonzero in � , we see that each ˛i is ¤ 0. Thus, since P �1

i ˛�1
i D P �1

1 ˛�1
1 ,

.P �1
1 ; : : : ; P �1

n / D P �1
1 ˛�1

1 .˛1; : : : ; ˛n/;
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which shows that .P �1
1 ; : : : ; P �1

n / is fixed by S .
Now

Pn
iD1.M �/1i D M �

11P1, since both sides represent the paths departing
from 1. Thus we deduce that

Pn
iD1 ˛i D ˛1P1 in � by the same technique as above.

Thus,
nP

iD1

P �1
i D

nP
iD1

P �1
1 ˛�1

1 ˛i D 1:

4. Unambiguous automata

4.1. Unambiguous automata. An unambiguous automaton is equivalent to a multi-
plicative homomorphism � from the free monoid A� into Qn�n such that each matrix
�w, w 2 A�, has entries in f0; 1g. This may be expressed by associating to � the

directed graph with edges labelled in A with vertices 1; : : : ; n, and edges i
a�! j if

and only if .�a/ij D 1. Then the non-ambiguity means that for any vertices i , j and
any word w, there is at most one path from i to j labelled w (the label of a path is
the product of the label of the edges). The matrix of the automaton is by definition
M D P

a2A a�a.
We say that the unambiguous automaton is complete if the zero matrix does not

belong to the monoid �A�. Equivalently, for each word w there is some path labelled
w. We say that the automaton is transitive if the underlying graph is strongly con-
nected. This means that for any vertices i , j , there is some path i ! j ; equivalently,
.�w/ij ¤ 0 for some word w.

The monoid �A� is finite. Hence it has a unique minimal ideal I . There is a rank
function on �A�, and the elements of minimum rank are precisely the elements of I .
Since �A� � f0; 1gn�n, the rows of an element in �A� are ordered by inclusion (by
identifying a subset of f1; 2; : : : ; ng and its characteristic row vector). It is shown that
the nonzero rows of elements of the minimal ideal are precisely the maximal rows
of elements of �A�. Similarly for columns. The ideal I is the disjoint union of the
minimal right (resp. left) ideals of �A�, and the intersection of a minimal left and
a minimal right ideal is a group. For this, see [4], Chapter VI, and [5], Chapter VI,
especially Exercise 3.4 and also [3].

We shall use the following result.

Proposition 1. Let c be a maximal column and R be the sum of the distinct rows of
some element in the minimal ideal. Then Rc D 1.

Proof. There exist x; y in I such that c is a column of x and R is the sum of the
distinct rows of y. The element xy is in I and belongs therefore to a group with
neutral element e, say. Then e has a column-row decomposition e D st , where s

(resp. t ) is a n � r (resp. r � n) matrix with entries in f0; 1g, with r the minimal rank
of �A�, where ts D Ir (the identity matrix), and where the set of nonzero rows of
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e is the set of rows of t , which has distinct rows, and similarly for the columns of s

(see [4] Prop. IV.3.3 or [5], Prop. VI.2.3).
Now xM is a minimal right ideal of �A�, containing e, hence xM D eM and

therefore x D em D stm. Hence c is a sum of columns of s, and since c is a maximal
column, c is a column of s. Similarly, y D nst and each nonzero row of y is a row of
t . We have also e D n0y, hence each nonzero row of t , being a row of e, is a row of y.
Thus R is the sum of the rows of t : R D �t , with � D .1; : : : ; 1/. Finally Rc D �tc

and since ts D Ir and c is a column of s, tc is a column of Ir and �tc D 1:

Example 2. The unambiguous automaton is as follows:

1 2

3

a

c

b a, b, c 

a, b, c 

b, c 

The associated representation � is defined by

�a D
2
40 1 0

1 0 1

0 0 0

3
5 ; �b D

2
40 0 1

1 0 1

1 0 0

3
5 ; �c D

2
41 0 1

1 0 1

0 0 0

3
5 :

The matrix of the automaton is

M D
2
4 c a b C c

a C b C c 0 a C b C c

b 0 0

3
5 :

Idempotents in the minimal ideal are for example �c and �ba D
h

0 0 0
0 1 0
0 1 0

i
. The

maximal rows are .1; 0; 1/ and .0; 1; 0/ and the maximal columns are t.1; 1; 0/ and
t.0; 1; 1/.

4.2. Codes. Recall that a code is the basis of some free submonoid of the free
monoid. Given an unambiguous automaton with associated representation �, and
some vertex i , the language fw 2 A� j .�w/i i D 1g is a free submonoid of A�; we
denote by Ci its unique basis, which is therefore a code. Explicitly, Ci is the set of
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labels of paths i ! i which do not contain i as internal vertex. Note that Ci is a
rational code and that each rational code is obtained in this way. We shall use also
the set Pi of labels of paths starting at i and not passing again through i . See [4].

Example 2 (continued). Write A D a C b C c. Then

C1 D c C aA.1 C b/ C .b C c/b;

C2 D A.c C b2 C cb/�a C Ab.c C b2 C cb/�a;

C3 D b.c C aA/�.b C c C aA/;

P1 D 1 C a C aA C b C c;

P2 D 1 C A.c C b2 C cb/�.1 C b C c/

C A.1 C b.c C b2 C cb/�.b C c// C Ab.c C b2 C cb/�;

P3 D 1 C b.c C aA/�.1 C a/:

We shall use the following property of rational maximal codes: let C be such a
code; then there exists rational languages P , S , F , whose elements are factors of
words of C , such that in QhhAii

A� D SC �P C F:

Moreover 1 62 F , 1 2 S , 1 2 P . This property is proved in [5], Lemma XII.4.3, for
finite codes. The proof is easily extended to rational codes.

4.3. Bernouilli morphisms. A Bernouilli morphism is a multiplicative morphism
� W A� ! RC such that �jA is a probability on A such that �.a/ > 0 for any a in A.

It is known that if L is a language having the property that it does not intersect
some ideal in A�, then �.L/ D P

w2L �.w/ < 1. This property is true if L is a
rational code. See [4], Propositions I.5.6 and I.5.12.

From this, we deduce that �.L/ < 1 for each language L D Ci , Pi , S , P , F

considered in Section 4.2.

4.4. Probabilistic free field. We know that QhAi is embedded in the corresponding
free field denoted F . Consider now the Q-algebra QhAi=.A � 1/, which is the
quotient of QhAi by its two-sided ideal generated by A � 1 D P

a2A a � 1. This
Q-algebra is a free associative algebra, since the relation A D 1 allows to eliminate
one variable. We denote it QhA=.A � 1/i Hence, there is a corresponding free field,
denoted P and which we call the probabilistic free field.

Theorem 2. Let � W A� ! Qn�n be the homomorphism corresponding to a complete
and transitive unambiguous automaton. Let M D P

a2A a�a be its matrix, P the
image of M in the probabilistic free field P , Ci the code generating the fixpoints
of vertex i , Pi the sum of the labels of all paths starting at i and not passing again
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through i . Then Pi , Ci and P �1
i can be evaluated in P . Moreover, the following

equalities hold in P :

(i) Ci D 1;

(ii) .1 � t /.tP /� 2 P .t/ can be evaluated at t D 1 and its diagonal elements are
�.Ci /

�1, i D 1; : : : ; n;

(iii) .P �1
1 ; : : : ; P �1

n /P D .P �1
1 ; : : : ; P �1

n /;

(iv)
Pn

iD1 P �1
i D 1;

(v) for any maximal columns `; `0, .P �1
1 ; : : : ; P �1

n /` D .P �1
1 ; : : : ; P �1

n /`0.

Example 2 (continued). C1 D 1 holds in P since one has even in QhAi: C1 � 1 D
.1 C a/.a C b C c � 1/.1 C b/. Moreover, in P we have

C2 D .c C b2 C cb/�a C b.c C b2 C cb/�a D .1 C b/.c C b2 C cb/�a:

Now, in Qhhb; cii, one has .1 C b/.c C b2 C cb/� D .b C c/�, since fc; b2; cbg is a
complete suffix code with set of suffixes f1; bg (see [4]). Thus C2 D .b C c/�a D 1

since a D 1 � b � c. Also,

C3 D b.c C a/�.b C c C a/ D b.c C a/� D 1:

In P , we have S D
h

c a bCc
1 0 1
b 0 0

i
. We show that P2 D a�1P1; indeed

P2 D 1 C .c C b2 C cb/�.1 C b C c/ C 1

C b.c C b2 C cb/�.b C c/ C b.c C b2 C cb/�

D 2 C .1 C b/.c C b2 C cb/�.1 C b C c/

D 2 C .b C c/�.1 C b C c/

D 2 C .b C c/� C .b C c/�.b C c/

D 1 C 2.b C c/� D 1 C 2a�1 D a�1P1

since P1 D 2 C a. We deduce that P �1
1 a D P �1

2 . Moreover,

P3 D 1 C b.c C a/�.1 C a/ D 2 C a D P1

since b.c C a/� D 1. Thus

P �1
1 .b C c/ C P �1

2 D P �1
1 .a C b C c/ D P �1

1 D P �1
3 ;

P �1
1 c C P �1

2 C P �1
3 b D P �1

1 .c C a C b/ D P �1
1 :

This shows that .P �1
1 ; P �1

2 ; P �1
3 /S D .P �1

1 ; P �1
2 ; P �1

3 /. Furthermore, P �1
1 C

P �1
2 C P �1

3 D P �1
1 .1 C a C 1/ D 1. Now the only two maximal columns are

t.1; 1; 0/ and t.0; 1; 1/. We have .P �1
1 ; P �1

2 ; P �1
3 /

h
1
1
0

i
D .P �1

1 ; P �1
2 ; P �1

3 /
h

0
1
1

i
since P1 D P3.
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4.5. Proof of theorem. We need the following lemma.

Lemma 5. Let P D P
a2A a�a 2 P n�n be the image in P n�n of the matrix M of

some complete and transitive unambiguous automaton, with associated homomor-
phism � W A� ! Qn�n. Then P has the eigenvalue 1 with associated eigenspace of
dimension 1. Moreover, if t is a central variable, then in P .t/, .1 � t /.tP /� can be
evaluated for t D 1 and its rows span the eigenspace above.

Proof. Consider the (left) P -subspace E of P 1�n spanned by the maximal rows. It
has as subspace the subspace E 0 spanned by the differences of such rows. Let C be
the sum of the distinct columns of some element of the minimal ideal of �A�. Then
rC D 1 if r is a maximal row (dual statement of Proposition 1). Thus E 0 is strictly
included in E.

By Section 4.1, for each maximal row r and each a 2 A, r�a is a maximal row,
denoted ra. Then

rP D P
a2A

r.�a/a D P
a2A

raa D r C P
a2A

.ra � r/a;

since
P

a2A a D 1 in P . Thus r is fixed by P modulo the subspace E 0. Hence P

has 1 as eigenvalue.
We show that its multiplicity is 1. Indeed the multiplicity does not decrease

under specialization. For the latter, we take a positive Bernouilli morphism � ; then
�.P / is an irreducible matrix because the automaton is transitive; it has nonnegative
coefficients. We claim that its eigenvalues are of modulus � 1. Thus, we may apply
the Perron–Frobenius theorem ([19], Section 15.3, Theorem 1), and since 1 is an
eigenvalue of �.P / by the previous calculations, it is a root of multiplicity 1 of the
characteristic polynomial. But we know that 1 is an eigenvalue of P , hence it has
multiplicity 1. We conclude by using Lemma 1.

It remains to prove the claim. Since the automaton is unambiguous, the matrix
M n D .

P
a2A a�a/n D P

w2An w�w has the property that each entry is a subsum
of

P
w2An w. Hence each entry of �.M n/ D �.P n/ is bounded by 1. Hence each

eigenvalue of �.P / has modulus � 1.

Proof of Theorem 2. The set Ci is a rational maximal code. So we may use the result
at the end of Section 4.2: A� D SC �

i P C F , where S , P , F are rational languages
contained in the set of factors of Ci . Then, by Section 4.3, �.S/; �.P / and �.F / are
< 1 for any Bernouilli morphism. This implies that S , P , F can be evaluated in P

(cf. the proof of Corollary 1). The same holds for Ci and Pi . Now the equality in
QhhAii above may be rewritten:

A� � F D SC �
i P

H) 1 � .1 � A/F D .1 � A/SC �
i P

H) .1 � .1 � A/F /�1 D P �1.1 � Ci /S
�1A�

H) 1 � Ci D P.1 � .1 � A/F /�1.1 � A/S:
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This holds in QhhAiirat and all these rational expressions can be evaluated in P . Thus,
in P , we obtain 1 � Ci D 0.

Let Qi be the set of paths from 1 to any vertex, that do not pass again through i .
Then we have, as in the proof of Theorem 1, for any i , j ,

.M �/1iPi C Qi D .M �/1j Pj C Qj :

Arguing as in the latter proof, we find that, denoting ˛i the value of .1 � t /.tP /�
1i

at t D 1 (which exists by Lemma 5), we obtain ˛iPi D j̨ Pj . Note that .tP /�
11 D

C1.t/�, where C1.t/� denotes the canonical image of
P

w2C �

1
t jwjw 2 QhAiŒŒt ��rat

under the composition of homomorphisms

QhAiŒŒt ��rat ! QhA=.A � 1/iŒŒt ��rat ! P ŒŒt ��rat ! P .t/:

Thus ˛1 is the value at t D 1 of .1�t /C1.t/�. Now taking the previous notations with
i D 1, we have in P .t/: .tA/� D S.t/C1.t/�P.t/ C F.t/. Multiplying by .1 � t /

and putting t D 1, we obtain, since S , P , F can be evaluated in P : 1 D S˛1P .
Thus ˛1 D S�1P �1.

Now we have also C1 � 1 D P.1 � .1 � A/F /�1.A � 1/S . Thus, in F , letting
P 0 D P.1 � .1 � A/F /�1,

�.C1/ D �.P 0/.A � 1/S C P 0�.A/S C P 0.A � 1/�.S/:

We deduce that, in P , �.C1/ D P 0�.A/S D PS . This shows that ˛1 D �.C1/�1.
This proves .i i/ and in particular, ˛1 ¤ 0. Thus, since P1 ¤ 0 in P , all ˛i and Pi

are ¤ 0 in P . Then (iii) and (iv) are proved as in the proof of Theorem 1.
In order to prove (v), we observe that the elements of the minimal ideal I of �A�

are those of this monoid which have a minimal number of distinct non-null rows
(see [5], Exercise VI.3.5, or [3], Proposition 1). This implies that if r1; : : : ; rk are the
distinct non-null rows of some element �w of I , then for any letter a, r1�a; : : : ; rk�a

are the distinct non-null rows of �.wa/. We deduce that the span of the elements
r1 C � � � C rk is invariant under the matrices �a; indeed, .r1 C � � � C rk/�a D
r 0

1 C� � �Cr 0
k

, where r 0
1; : : : ; r 0

k
are the distinct non-null rows of �.wa/. Let F denote

this subspace, and F 0 the subspace spanned by the difference of such elements. By
Proposition 1, we have that F 0 is strictly included in F . Hence, there is a vector in F

fixed by each �a. This implies that the eigenvector for eigenvalue 1 of the matrix P

is in F and is therefore orthogonal to each difference of maximal columns of �A�.
This proves (v).

1. Appendix 1: the commutative case

The following result in an exercise on determinants, which is left to the reader (see
also Remark 2 in Appendix 2).
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Lemma 6. If the column eigenvector t.1; : : : ; 1/ is in the right kernel of a square
matrix over a commutative ring, then the row vector .M1; : : : ; Mn/ is in its left
kernel, where Mi is the i -th principal minor of the matrix.

From this, one may deduce the so-called Markov chain tree theorem, by using,
as suggested in [20], p. 4, the matrix-tree theorem. This may be done as follows: let
aij for i ¤ j , i; j D 1; : : : ; n be commuting variables and M D .mij / be the n by
n matrix with mij D �aij if i ¤ j and with diagonal elements mi i D � P

j ¤i mij ,
so that M has the column vector t.1; : : : ; 1/ in its right kernel. Then by [9] (where a
generalization of the classical matrix-tree theorem is proved), the principal i -th minor
Mi of M is equal to the sum of the weights of all spanning trees of the complete digraph
on f1; : : : ; ng, rooted at i (the edges of the tree all pointing toward i ). Here the weight
of a subgraph is the product of the aij for all edges .i; j / in the subgraph. Note that
for a subtree, its weight involves only aij with i ¤ j .

From this, we may deduce the Markov chain tree theorem: let .aij / be a stochastic
matrix (that is, fixing t.1; : : : ; 1/). Then the row vector .b1; : : : ; bn/ is fixed by this
matrix, where bi is the sum of the weights of all spanning trees of the complete
digraph on f1; : : : ; ng, rooted at i . As before, the weight of a subgraph is the product
of the aij for all edges .i; j / in the subgraph. We deduce it from the argument above
since the diagonal entries depend only on the others and since the spanning trees do
not involve loops.

The Markov chain tree theorem gives a formula for the stationary distribution of
a finite Markov chain. Equivalently, this formula gives a row vector fixed by a matrix
fixing t.1; : : : ; 1/. This theorem is attributed to Kirchoff by Persi Diaconis, who gives
a probabilistic proof of it (see [8] p. 443–444). See also [2], [1].

Using our Theorem 1, one may deduce that, if M D .aij / is a generic commutative
matrix, then B D Pn

iD1 bi , the sum of the weights of all rooted trees, is equal to the
derivative of � det.1 � .aij //, with respect to the derivation fixing each aij , and then
substituting in it each ai i by 1�P

j ¤i aij . Indeed, letting the variables in Theorem 1
commute, we know that Pi D �.Ci / and that C �

i is the i -th element in .1 � M/�1,
hence .1 � Ci /

�1 D Ni=D, where D D det.1 � .aij // and where Ni is the i -th
principal minor of 1 � M . Thus Ci � 1 D �D=Ni . By Theorem 1, this element is
mapped onto 0 if we apply the above substitution, since the latter implies the relations
(1). Now apply derivation � to the last equation. We find �.Ci / D .��.D/Ni C
D�.bi //=N 2

i . Applying the substitution, we find that �.Ci / D ��.D/=Ni . Thus,
by Theorem 1 again, 1 D P

P �1
i D P

�.Ci /
�1 D � P

Ni=�.D/ and therefore
��.D/ D P

Ni . Finally we note that, with the above notation, bi D Ni after the
substitution.
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2. Appendix 2: Quasideterminants of stochastic matrices

2.1. Theory of quasideterminants. The theory of quasideterminants was devel-
oped as a tool for linear algebra over noncommutative rings replacing the theory of
determinants over commutative rings. Quasideterminants were introduced in [14]
and developed in [15], [16], [17] and [18]. Let R be an associative unital ring and
let A D .aij /, i; j D 1; 2; : : : ; n be a matrix over R. Denote by Aij the sub-
matrix of A obtained from A by deleting its i -th row and its j -th column. Set
ri D .ai1; ai2; : : : ; Oaij ; : : : ; ain/ and cj D .a1j ; a2j ; : : : ; Oaij ; : : : ; anj /. Recall, that
for any matrix C we denote by tC the transposed matrix.

Definition. Suppose that the matrix Aij is invertible. Then the quasideterminant
jAjij is defined as

jAjij D aij � ri .A
ij /�1cj :

Example. If n D 2, then jAj12 D a12 � a11a�1
21 a22.

Let matrix A be invertible and A�1 D .bpq/. If the quasideterminant jAjij is
invertible then bj i D jAj�1

ij :

In the commutative case, jAjij D .�1/iCj det A=det Aij .
It is sometimes convenient to use another notation for quasideterminants jAjij by

boxing the leading entry, i.e.,

jAjij D
ˇ̌ˇ̌ˇ̌
: : : : : : : : :

: : : aij : : :

: : : : : : : : :

ˇ̌ˇ̌ˇ̌ :

We now recall the basic properties of quasideterminants (see [14]). An equality
jAjpq D jBjrs means that the first quasideterminant is defined if and only if the
second quasideterminant is defined and that both quasideterminants are equal. The
properties are:

(i) Permutations of rows and columns. Let �; � be permutations of f1; 2; : : : ; ng.
Set B D .a�.i/;�.j //. Then jAjpq D jBj�.p/;�.q/.

(ii) Multiplication of row and columns.

Let the matrix B D .bij / be obtained from matrix A by multiplying the i -th
row by � 2 R from the left, i.e., bij D �aij and bkj D akj for all j and k ¤ i .
Then jBjkj D �jAjkj if k D i , and jBjkj D jAjkj if k ¤ i and � is invertible.

Let the matrix C D .cij / be obtained from matrix A by multiplying the j -th
column by � 2 R from the right, i.e., cij D aij � and cil D ail for all i and
l ¤ j . Then jC jil D jAjil� if l D j , and jC jil D Ajil if l ¤ j and � is
invertible.
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(iii) Addition of rows and columns.

Let the matrix B be obtained from A by replacing the k-th row of A with the
sum of k-th and l-th row, i.e., bkj D akj C alj , bij D aij for i ¤ k. Then

jAjij D jBjij , i D 1; 2; : : : ; Ok; : : : ; n, j D 1; 2; : : : ; n.

Let the matrix C be obtained from A by replacing the k-th column of A with
the sum of k-th and l-th column, i.e., cik D aik C ail , bij D aij , cij D aij for
j ¤ k. Then jAjij D jC jij , i D 1; 2; : : : ; n, j D 1; 2; : : : ; Ol ; : : : n.

In [14] a noncommutative analogue of the Cramer’s rule for systems of left linear
equations, i.e., the systems when coefficients are at the left of the unknowns, was
formulated. The analogue for systems of right linear equations can be formulated as
follows.

Let B D .bij / an n � n-matrix over R, 	 D .	i / be a row-matrix over R and
x D .xi / be a row-matrix of unknowns. Here i; j D 1; 2; : : : ; n. For 1 � k � n

denote by B.	; k/ the matrix obtained from B by replacing the k-th row of B by 	 .

Proposition 2. If xB D 	 then

xkjBjkq D jB.	; k/jkq

for any k provided that the both quasideterminants are defined.

Example. For n D 2 one has

x1.b12 � b11b�1
21 b22/ D 	2 � 	1b�1

21 b22

and also

x1.b11 � b12b�1
22 b21/ D 	1 � 	1b�1

22 b21:

2.2. Results

Lemma 7. LetA D .aij /, i; j D 1; 2; : : : ; n, be a stochasticmatrix overR. Consider
the system of n C 1 equations

nP
iD1

xiaij D xj ; j D 1; 2; : : : ; n; (2)

together with the equation
nP

iD1

xi D 1:

Then any of the n first equations of the system is a corollary of the other n equations.
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Proof. Take any 1 � k � n and add all equations (2) for j ¤ k. The right hand
side of the sum can be written as 1 � xk and the left hand side can be written asPn

iD1 xi .1 � aik/. As a result we have

nP
iD1

xi .1 � aik/ D 1 � xk;

which implies
nP

iD1

xiaik D xk :

The lemma is proved.

Theorem 3. Let A D .aij /, i; j D 1; 2; : : : ; n, be a stochastic matrix. The system

nP
iD1

xiaij D xj ; j D 1; 2; : : : ; n;

nP
iD1

xi D 1

has a unique solution over the algebra of series in variables aij satisfying the relationsPn
j D1 aij D 1. The solutions are given by the formula

x�1
k D 1 C P

aki1ai1i2ai2i3 : : : ais�1is ;

where the sum is taken over all sets of naturals i1; i2; : : : ; is , with s � 1 and ip ¤ k,
p D 1; 2; : : : ; s.

Proof. Lemma 7 implies that x1; : : : ; xn are solutions of the system

nP
iD1

xi D 1;

nP
iD1

xi .aij � ıij / D 0; j ¤ k:

Write the system in the form xB D 	, where x D .x1; : : : ; xn/ and 	 D
.1; 0; : : : ; 0/, and apply Proposition 2. Note that jB.	; k/jk1 D 1: indeed, the k-th row
of B.	; k/ is 	 and therefore, by the definition of quasideterminants, rk D .0; : : : ; 0/

and jB.	; k/jk1 D B.	; k/k1 D 1. Therefore,

xkjBjk1 D 1:

Recall that Akk is the submatrix of A obtained from A by omitting its k-th row
and k-th column. Set C D Akk . Let I be the unit matrix of order n � 1 and
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a.k/ D .ak1; ak2; : : : ; Oakk; : : : ; akn/. Note that the first column of matrix B is
� D t .1; 1; : : : ; 1/. By the definition of quasideterminants

jBjk1 D 1�a.k/.C �I /�1� D 1Ca.k/
1P

pD0

C p� D 1CP
aki1ai1i2ai2i3 : : : ais�1is :

This proves the theorem.

Remark 1. Note that monomials aki1ai1i2 : : : ais�1is can be interpreted as paths in
the complete graph with vertices 1; 2; : : : ; n.

2.3. Stochastic matrices and main quasiminors. Observe that a matrix M is
stochastic if and only if t.1; 1; : : : ; 1/ is in the kernel of M � I . This justifies the
next results.

Lemma 8. Let A D .aij /, i; j D 1; 2; : : : ; n, over an associative unital ring annihi-
late the column vector t.1; 1; : : : ; 1/. For p ¤ q one has

jApqjqp D �jAppjqq

if the right-hand side is defined.

Proof. Without loss of generality one can assume that p D 1 and q D n. Then

jA1njn1 D

ˇ̌ˇ̌ˇ̌ˇ̌
a21 a22 : : : a2n�1

a31 a32 : : : a3n�1

: : :

an1 an2 : : : ann�1

ˇ̌ˇ̌ˇ̌ˇ̌ :

Since A is stochastic by hypothesis, we can rewrite the elements ak1, k D
2; 3; : : : ; n, as ak1 D �ak2 � ak3 � � � � � akn. By adding the columns in the last
quasideterminant to the first one and using property (iii), property (ii) for the first
column and � D �1 and property (i) we get the expression

�

ˇ̌ˇ̌ˇ̌ˇ̌
a2n a22 : : : a2n�1

a3n a32 : : : a3n�1

: : :

ann an2 : : : ann�1

ˇ̌ˇ̌ˇ̌ˇ̌ D �

ˇ̌ˇ̌ˇ̌ˇ̌
a22 a23 : : : a2n

a32 a33 : : : a3n

: : :

an2 an3 : : : ann

ˇ̌ˇ̌ˇ̌ˇ̌
which is �jA11jnn: Our computations also show the existence of jA1njn1. The lemma
is proved.

Theorem 4. Let A D .aij /, i; j D 1; 2; : : : ; n, annihilate the column vector
t.1; 1; : : : ; 1/. Assume that all quasideterminants jAi i jjj are defined for i ¤ j .
Then xA D 0 where x D .x1; x2; : : : ; xn/ if and only if

xi jAjj ji i D xj jAi i jjj ; i ¤ j:
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Remark 2. In the commutative case jAii jjj D det Ai i=det Aij;ij provided that the
denominator is defined. Here Aij;ij is the submatrix of A obtained from A by remov-
ing its rows and columns with the indices i and j . Thus the theorem implies

xiMj D xj Mi ;

where the Mi ’s are the main minors of the matrix and we may choose xi D Mi ,
i D 1; 2; : : : ; n, as a solution of the equation xA D 0 obtaining Lemma 6.

Proof of Theorem 4. We will prove the “if” part. The “only if” part can be proved
by reversing the arguments. Without loss of generality, we assume that i D 1 and
j D n. Note that xi ’s satisfy the system of linear equations

n�1X
pD1

xpapq D �xnanq; q D 1; 2; : : : ; n � 1:

Cramer’s rule give us the equality

x1jAnnj11 D

ˇ̌ˇ̌ˇ̌ˇ̌
�xnan1 �xnan2 : : : �xnann�1

a21 a22 : : : a2n�1

: : :

an�11 an�12 : : : an�1n�1

ˇ̌ˇ̌ˇ̌ˇ̌ :

By properties (i) and (ii), the right-hand side is equal to �xnjA1njn1.
The theorem now follows from Lemma 8.

By using the results from [15] and [16] we can show that Theorem 4 implies
Theorem 3 provided the corresponding quasideterminants are invertible.
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