J. Noncommut. Geom. 4 (2010), 555-576 Journal of Noncommutative Geometry
DOI 10.4171/INCG/66 © European Mathematical Society

Quantum field theory on the degenerate Moyal space
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Abstract. We prove that the self-interacting scalar field on the four-dimensional degenerate
Moyal plane is renormalisable to all orders when adding a suitable counterterm to the La-
grangian. Despite the apparent simplicity of the model, it raises several non-trivial questions.
Our result is a first step towards the definition of renormalisable quantum field theories on a
non-commutative Minkowski space.
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1. Motivations

For the last five years much has been done in order to determine renormalisable
quantum field theories [10], [17], [12], [18], [6], [7], [8], [13], [14], [15], [11].
Nevertheless all the known models are more or less of the type of a self-interacting
scalar field on a Euclidean Moyal space. So it is quite important to extend the list of
renormalisable non-commutative models.

The first solution to the uv/ir mixing problem consisted in adding a harmonic
potential term to the quadratic part of the Lagrangian [10]. We propose here to
test such a method on a ¢*-like model on a degenerate four-dimensional Moyal
space. By degenerate we mean that the skew-symmetric matrix ® responsible for the
non-commutativity of the space will be degenerate, which implies that some of the
coordinates will commute.

To understand why we are not addressing a trivial question, let us remind the
reader with a precise statement of the problem. We consider scalar quantum field
theories on a (degenerate) Moyal space R @D). The algebra of functions on such a space
is generated by the coordinates {x*}, u € [0, D — 1], satisfying the commutation
relation

[x#, x"] = 1©%V1,

where ©® is a D x D skew-symmetric constant matrix. This algebra is realized as
the linear space of Schwartz-class functions S (R?) equipped with the Moyal-Weyl
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product:

D

k D 1 1k-y
R (Zn)Dd yf(x+30-k)gx+ ye

(f x0 §)(x) = /{R

for all f.g € S(RP). In the following we will consider degenerate ® matrices,
which means that d out of the D coordinates will be commutative. In [19] the
non-commutative orientable (® » ®)*3 model on [R?a has been considered:

Seld. 9] = / Bx (10, x 3¢ + L (T,8) * (9) + Lm*P » ¢
FAL(P % 9)*? + 22(p * 9)*?)(x).

Being skew-symmetric © is necessarily degenerate in odd dimensions such as three.
The main result of [19] is that the complex orientable (® * ®)*3 model is renormal-
isable to all orders. What about its real counterpart? It is indeed a natural question
because the graphs responsible for the uv/ir mixing cannot be generated by such
a complex interaction. In an appendix, Z. Wang and S. Wan [19] exhibited a first
problem concerning the real model. The ®%° model on [Rf9 leads both to orientable
and non-orientable graphs [12], [18]. The upper bound these two authors were able
to prove (the power counting) was not sufficient to discard non-orientable graphs.
If that bound is optimal, it would remain logarithmically divergent planar two-point
graphs with two broken faces. These graphs are non-local and responsible for the
now famous uv/ir mixing.

In Section 3 we give a strong argument which tends to prove that the power
counting given in [19] is actually optimal with respect to the behaviour of the planar
two-broken face graphs. We also compute the power counting of our model. Section 2
is devoted to definitions and the statement of our main result. In Section 4 we
perform the renormalisation and identify the missing counterterm. Our conclusions
are presented in Section 5.

(1.1)

2. Definition of the model

Motivated by the remarks made in Section 1, we want to address the question of the
renormalisability of the real ®;* and ®%° models with degenerate ® matrix. Whereas
we will mainly focus on the ®;* model, our results apply to the ®3° case as well.

2.1. Mainresult. We consider a real scalar field theory on the Moyal space IR% with
a degenerate matrix
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This means that two out of the four coordinates commute with all the other ones. We
are going to prove the following

Theorem 2.1. The quantum field theory defined by the action

S = [ | dPxa? o)A+ B 4 md)p(ny)

~ . 2.1)

15 | dxa@zgepen + § [ dxaiygti),
02 R6 4 R4

where y represents the non-commutative coordinates, is renormalisable to all orders
of perturbation.

To this aim, we will treat the new counterterm (the coupling constant of which
is k2) as a perturbation. Such a counterterm linking two propagators will be called
k-insertion or simply insertion. Note that the four-valent vertex in (2.1) has the same
form as on the non-degenerate Moyal space except that its oscillation only involves
the non-commutative directions.

In the following we use the momentum space representation. Our new counterterm
is then given by

K2

(27 6)2

K 232 12 i .
ﬁ/mﬁd xd“yd”z ¢(x,y)p(x,z) = /[de Po(p.0)p(—p,0). (2.2)

The interaction term reads

4

. 1 4 d4 A 16
/ua4 d>xd?y ¢**(x,y) = m/ Hlﬁﬂpj)(s( Y pi)e?, (23)
J:

i=1

with @ := Y7 piApj.piAp; = 3piOpjand Y7 =0l Yo
From (2.3) one reads that by convention all the momenta are considered incoming.
Note once more that the oscillations only involve the non-commutative directions so
that the interaction is local in the commutative directions.
Let p, g (resp. p,q) denote (two-dimensional) momenta in the commutative
(resp. non-commutative) directions. Let Q :=20"1Q. The propagator correspond-
ing to the quadratic part of (2.1) is given by (for k = 0)

C(p.p:q.9)
_ Q= d“~ 8(p+q)e—a(p2+m2)e—%coth(ﬁa)(p+q)2—%tanh(ﬁa)(p—q)z.
76 Jo sinh(2Qa)
2.4)



558

H. Grosse and F. Vignes-Tourneret

2.2. Feynman graphs. Let G be a Feynman graph of the model (2.1). There are
two ways of considering the x-insertions in it. Either we think of them as vertices. In
this case, G is made of four- and two-valent vertices linked to each other by the edges
of G. These ones correspond to the propagator (p? + Q22y2)~!. Or we consider
that the vertices of G are the only Moyal ones. In this case the insertions belong
to generalised lines. These lines are composed of a series of edges related by «-
insertions. When not explicitly stated, we will always consider a generalised line as a
single line, whereas it is composed of several edges. In this picture the edges linking
two Moyal vertices are called simple lines. Note also that some “external” insertions
may well appear; see Figure 1 for an example.

Figure 1. Example of graph with insertions.

We now fix the notations we use throughout this article:

Definition 2.1 (Graphical notations). Let G be a Feynman graph corresponding to
the model (2.1). We define:

E(G) (resp. Ex(G)) to be the set of internal (resp. external) edges of G. E
is the disjoint union of the sets E of internal simple lines and E, of internal
generalised lines. The respective cardinalities of £, E( and E, are denoted by
e, ep and e

The number of external lines of G is N(G) =: card E x.

The number of external insertions is N,.

Let V(G) bet the set of vertices of G. We note v := card V.

The number of connected components' of G is called k(G).

Given a spanning tree 7 (G), let L(G) := E(G) \ T be the set of loop lines in

G. Its cardinality is card L = e — v + k =: n(G). By analogy, we write ng
(resp. ny) for the cardinality of L N Eq (resp. L N E,).

IPlease note that “connected components” will also be used to denote the quasi-local subgraphs of G
in the framework of the multiscale analysis.
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2.3. Multiscale analysis. We use the multiscale analysis techniques [16]. This
means that we first slice the propagator in the following way:

o0
C(p.p;g.9) =2y C,
i=0
éo(p p:q,q)

/ (p +q)e—a(p 24+ m?2) ——coth(Qoz)(p-l—q)2 tanh(Qa)(p q)2
7-[9 smh(ZQa)

Ci(p.q)
o M—2(i—1)

_ ne a(p?+m?) ——coth(flw)(pﬂx)2 2 anh(Qa) (p— q)2
T 0 M2 smh(ZQa) 8(p +q)€

where M > 1. Each propagator C' bears both uv and ir cut-offs. A graph expressed
in terms of these sliced propagators is then convergent. The divergences are recovered
as one performs the sum over the so-called scale indices (the i in C 7). Now we only
study graphs with sliced propagators. Each line of the graph bears an index indicating
the slice of the corresponding propagator. A map from the set of lines of a graph G
to the natural numbers is called a scale attribution and is denoted by 1 (G).

Certain subgraphs of G are of particular importance. These are the ones for which
the smallest index of the internal lines of G is strictly higher than the biggest index
of the external lines. These subgraphs are called connected components or quasi-
local subgraphs: let G? be the subgraph of G composed of lines with indices greater
or equal to i. G' is generally disconnected. Its connected components (the quasi-
local subgraphs) are denoted by G,"c. By construction they are necessarily disjoint
or included into each other. This means that we can represent them by a tree, the
nodes of which are connected components and the lines of which represent inclusion
relations. This tree is called Gallavotti—Nicolo tree.

2.4. Topology and oscillations. Let G be a graph with v vertices and e internal
lines. Interactions of quantum field theories on the Moyal space are only invariant
under cyclic permutation of the incoming/outcoming fields. This restricted invariance
replaces the permutation invariance which was present in the case of local interactions.

A good way to keep track of such a reduced invariance is to draw Feynman graphs
as ribbon graphs. Moreover there exists a basis for the Schwartz class functions where
the Moyal product becomes an ordinary matrix product [9], [5]. This further justifies
the ribbon representation.

Let us consider the example of Figure 2. Propagators in a ribbon graph are made
of double lines. Let us call f the number of faces (loops made of single lines) of
a ribbon graph. The graph of Figure 2b has v = 3, e = 3, f = 2. Each ribbon
graph can be drawn on a manifold of genus g. The genus is computed from the Euler
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4
(a) p-space representation (b) Ribbon representation

Figure 2. A graph with two broken faces.

characteristic y = v — e + f = 2 — 2g (for an orientable surface). If g = 0 one
has a planar graph, otherwise one has a non-planar graph. For example, the graph
of Figure 2b may be drawn on a manifold of genus 0. Note that some of the f faces
of a graph may be “broken” by external legs. In our example, both faces are broken.
We denote the number of broken faces by b. A graph with only one broken face is
called regular.

2.5. Momentum space representation. The expression for the oscillation of a gen-
eral graph that Filk obtained in [3] was based on the assumption that the propagator
conserves momentum. When one adds an x? term to the action, the corresponding
new propagator breaks translation invariance and so does not conserve momentum. In
[18], one of us computed the expression for the vertex oscillations of a general graph
for any propagator. That was done in x-space. Here we redo it but in momentum
space. Whereas the proof follow the same line we give it for completeness.

Definition 2.2 (Line variables). Let G be a graph and fix a rooted spanning tree 7 .
Let £ € E(G) be a line which links a momentum py, to another one py,. When
turning around the tree 7 counterclockwise, one meets py, first, say. One defines

Pt = p¢;, — Pu, and 8pg i= py, + po,.

Definition 2.3 (Arches and crossings). Let £ = (pg,, pe,), ¢ = (pg/1 , pg/2) and py
an external momentum. One says that £ arches over py if, when turning around the
tree counterclockwise, one meets successively py,, pr and pg,. One then writes
D¢ D Pk

Considering the two lines £ and ¢’, if one meets successively Peys Pes Py and
pe,,» one says that £ crosses ¢’ by the left and writes £ x £'.

Given a graph G, each of its vertices bears a delta function ensuring momentum
conservation. If the propagators were translation-invariant, these delta functions
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would ensure the overall conservation of the external momenta:

1_[ 81} = S(ZkEEx(G) pk) HUEV(G)\{UO} 8”
veV(G)

for any vgp € V(G). In our case, we can extract an overall delta function, which
ensures the conservation of external momenta up to §p variables. This delta function
is denoted by 8. In the following we call rosette factor of a graph G the complete
vertex oscillations of G plus the delta function 8.

Lemma 2.1 (Tree reduction). Let G be a graph with v(G) = v. The rosette factor
after a complete tree reduction is

2042

Sa( X pi+ X 8pi1)exp(—1g),
i=1 leT
2042
= > piApit Z 3PIASpL+ Y pi ASpi
i<j=1 i<T (25)
+ Z 5]7[ N pi + Z 5p[ /\Spl/.

i>T7 T<T

Proof. We prove this by induction on the number of vertices. Let us assume that we
have contracted k — 1 tree lines, k < v. These lines form a partial tree 7. We now
want to reduce the tree line between our rosette V; and a usual Moyal vertex V7:

2k+2

Vi =8c( X pi+ X 8pi)exp(—ier),
i=1 €T
2k+2
gk= Y. piADi+ X sPiASpI+ Y. piAdp
i<j=1 €Ty i<Tj
+ > SprApi+ Y 8pi Aépr,
i>7k Tk<Tk

and

4
Vi =368(q1+ g2+ g3 +qa)exp(— Y qi Agqj).
i<j=1

Let [y be the line joining a momentum p;,, 1 < ip < 2k + 2 to a momentum of V;.
By cyclicity of this one, one can assume that [o = (p;,,q1). We need to prove

4 2k+2
Vivi=8(X ¢:)é( X pi+ Z qi + Y 8pi + 8piy) exp(—i@r41), (2.6)

i=1 i=1,i#ig j=2 €T
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2k+2 4 4
Grr1= 2 PiADFH( X Pi— iy P)A 4+ X qiNg
i<j=1 i<ig j=2 i<j=2
i.J#ig
+ X AP N8P+ 3pig ASpi,+ Y. pi AP+ Y. Spi A pi
€Ty i<Ty i>Ty
iig iig 2.7
4
+ X A+ (X pi— X g5 — X pi) Adpi,
Tk+l<7k+l l<l() j=2 l>lO
4
(X dpi— X Sp) A a4y
€Ty LETY
I<ig I>ig

with 711 = T U {lo}. This would reproduce (2.5).
The statement concerning the delta function in (2.6) is easily obtained. It only
consists in the following distributional equality:

2k+2 4 4 4
(Y pi+ Y 6p)8( X q) =8( 2 pi+ X g+ X $pi+8p1,)8( Y 45)-
i=1 1eT; j=1 i#ig j=2 1eTy j=1

Let us now rewrite the oscillations. First of all note that thanks to the delta function in
V1, the oscillation of the Moyal vertex can be rewritten as exp(—: Z? <j=29i Nqj)-
The complete oscillation in ViV is

2k+2

k1= Y. PiAPi+ X sPiASpi+ Y piASpi+ Y 8pi A pi
i.<1¥=.1 €T i<Tx i>Ty
L, ]JFl0

+ 2 7 <7, 8p1 A Sprr + Z?<j=2 qi Nqj + 8,
8¢ = 3 pi Apig+Pig A X i = (2 pi— X pi) A(=q1+8py).

i<ig J>io i<ig Jj>io
where we used p;, = —q1 + 0p;,. But —q1 = g2 + g3 + qa so that
4
Sp=(X pi— X p)A X ai+ (X pi— X pj) ASpiy
i<ig i>ig j=2 i<ig J>io

We can now write

2k+2
4 4
Pkr1 = 2 PP (Xicio Pi = Doimig Pi) N Xjma i + Xicjma i Ndj
l<]=
i, #i0
+ Y SPiASpI+ Y piASpI+ YT Spi Api + Y. 8pi Adpr
1Tk i<Tj iF#ig Tie<Ti
i i
+ (X pi— X pj) ASpiy + Pig A Y ier Spr+ Y. 8pi A pi-
i<ig j>io io<! I,G‘ng
10>

(2.8)
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Comparing (2.8) and (2.7) we see that it remains to prove
4
Pio A X Spi+ X Spiapio=(2 S~ > Spi) A@pi,+ X q5)
j=2

1€T 1€T) 1eTk 1€T%, 1>ig
ig</ ig>1 I<ig

1 4
+ 5P A 8pip — 2_ qj N piy-
j=2

We use pi, = —q1 + 8p1, = g2 + q3 + q4 + 8pi, and get the equality provided that
%Plo A8ply — Z;Lz qj N 8pi, = 0, which is true due to g; = %(SpLO — Di,)- This
proves the lemma. O

Lemma 2.2 (Rosette factor). The rosette factor of a graph G with N(G) = N is
given by

N
5(kZ P+ Y Spi)exp(—ip) withe = Qg + ¢m + ¢n + ox + @,
=1

leTUL
N
$E = ). DpiADj
i<j=1
om=32 Y peASpe+ X puASpi+ i Y (penSpy + pu Adpe).
(eTUL (TUL)CL InL
Y= Y. PLAPk. $x=3% 2 PLADpy.
LDk LxL
wr= > OpiApr+ D prASpg
(TUL)<k (TUL)>k
+ Z 8pe A Spyr + % Z Spe N Spy.
(TUL)<(TUL) LxL

Proof. Let us first fix an external momentum py. From Lemma 2.1 the linear term
in pg is:

k—1 2n+2
(X pi— X pi)Apk+ (X 8pe— Y 8pe) A pr.
i=1 i=k+1 T <k T >k

Letaline £ = (pg,, pe,) € L such that £ < k. Its contribution to this linear term is
(pe;, + Pey) A pk = 8pe A pi. I € > k we get pr A dpg. Let now £ D k, we have
(pe, — Pey) N Pk = pe A pi- Then the linear term in the external momenta is

> PkASpe+ Y. SpeApe+ Y poA pr (2.9)
(TUL)>k (TUL)<k Lok
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Let us consider a line £ = (py,, pe,) € L. The terms containing p¢, and py, are

Y DiNpe + Yope, ADpj+ P, AP, + Y Pi AP+ Y Pe, ADj

i<ty j>{ i<l j>4>

(2.10)
+ > pe, Abpe+ X 8pe Ape, + Y pe, ASpe + Y Spe A pe,
€1<f7' €1>T 62<7 €2>T
= 2. PiNSpe+ Y SpgApi+ 3 peApi+ Y 8py Adpe
i<l j>l li<i<ts T <t (2 11)
+ Y Spendpr+ Y peAdpe.
T>lr 1 <T <4t

Lett" = (py;., py,) € Lsuchthat{ < {. From (2.10) onereads (py; + py,) Adpe =
Spe A Spg. If € C £, one has p; A (pe, + pe,) = pe A Spy. Finally if ¢ x £, one

get py ASpe+ po A pyy, = 5(pe +8pe) ASpe + pe A 5(8pe — per). We can now
rewrite (2.11) as

> Spendpr+ Y pu ASpe+3 Y (peASpe
L<L LCL LxL

1
+pe Adpo) + 5 > peApe+g X 8peASpr+ X SpeAdpr (212
LxL LxL T <L

+ Y Spu ASpe+ Y prASpe+3 Y pendpe

T>L JucCL LeL

Using Lemma 2.1 together with equations (2.9) and (2.12), one proves the lemma.
O

3. Power counting

3.1. The case k= 0. As explained in the introduction, we give here a strong argu-
ment for the need of a new counterterm. Note also that the bound we obtain seems to
be optimal in the sense that exact computations exhibit the same degree of divergence.

Remember also that one of our motivations is that it was noticed in [19] that a
harmonic oscillator term is not sufficient to make a scalar theory renormalisable on a
degenerate Moyal space. In this article the authors studied a ¢*° model on [R3® (see
equation (1.1)) with the x-space representation. They used the vertex delta functions
to improve the usual commutative power counting w = %(N — 6 + 2v4), where
N is the number of external points and v4 the number of four-valent vertices in the
graph under consideration. For non-orientable graphs they got w = %(N —242vy).
This upper bound exhibits a logarithmic divergence for the (planar) non-orientable
two-point graphs. The authors suggested that a possible solution to this problem may
come from the use of the vertex oscillations. We now explain why we think that the
solution should be looked for elsewhere.
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To take the oscillations into account, a very powerful technique consists in using
the matrix basis. On a degenerate Moyal space part of the coordinates commute,
and we must use a mixed representation. In the commutative directions, we choose
the usual x- (or p-)space representation, whereas we prefer the matrix basis in the
non-commutative directions. On [R?é, let us choose [xo, xi] =0,i = 1,2. Each field
is expanded as

px)= > ¢m,n(x0)fm,n(xl’x2)’
m,neN
where the functions f, , form a basis for the Schwartz-class functions. Then we
get a representation of the model which is partly commutative and local (in the x°-
direction) and partly in the matrix basis. We can now apply the method developed in
[17] to get an improved power counting, namely

1
a)=§(N—6+8g+4(b—l)+2v4),

where g is the genus of the graph and b its number of broken faces.

The conclusion is that, whereas we took the oscillations into account, there still
remain potentially logarithmically divergent two-point graphs with two broken faces.
Hence the addition of a harmonic potential in the non-commutative directions does
not imply renormalisability on a degenerate Moyal space.

Back to our model (2.1), it is clear that we can easily apply the same kind of mixed
representation and get

Lemma 3.1. Let G be a Feynman graph corresponding to the model (2.1) at k = 0.
Its degree of convergence obeys the bound

w(G) = N —4+4g +2(b—1). 3.1)

Proof. The quadratic parts corresponding to the commutative and non-commutative
directions commute with each other. Therefore the Schwinger representation of the
corresponding propagators factorize. Then to prove the lemma it is enough to apply
the standard bounds in the commutative directions and the method developed in [17]
in the non-commutative directions. 0

Recall that on [R4® (with ® of rank 4) the power countingisw = N — 4 + 8g +
4(b —1). The N — 4 part is the usual power counting of the commutative ¢* model,
whereas the rest has a purely non-commutative origin. On the degenerate four-
dimensional Moyal space, only half of the directions are non-commutative so that we
gain only half of 8¢ + 4(b — 1) and get (3.1). The consequence is that the planar
two-point graphs with two broken faces (N = b = 2, g = 0) diverge logarithmically.
They must be renormalised.

Remark. One could ask if the addition of a harmonic potential also in the commu-
tative directions could solve the problem. Unfortunately one can easily convince
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oneself (for example in p-space) that such an infrared modification of a commutative
and local model does not change anything with respect to the power counting.

3.2. The case k¥ # 0. In this section we are going to compare the power counting
of graphs with and without insertions. To this aim, we recall briefly how to get the
bound @w(Gy) = N(Gy) — 4 on the degree of convergence of a graph G without
k-insertions in momentum space. We first have to perform the so-called momentum
routing. This is the optimal way of using the delta functions attached to each Moyal
vertex. For this we must choose a spanning rooted tree in Gy. Then we associate to
this tree a set of branch? delta functions which allow to solve v(Gy) — 1 momenta
both in the commutative and non-commutative directions [18].
In a slice i, a propagator is bounded by

Cl(p.p:p.q) < K e M2 p? =M (p+a)>~M 2 (p—q)* (3.2)

For each line / of Gy, the integration over p; + q; gives a factor M ~2% . We recover

the power counting factor of - in four dimensions. Then if / is a loop line, the

p? .
integrations over p; and p; — q; together deliver M*. If [ is a tree line, these
integrations are made with a delta function and bring @ (1). We get the bound

Aol < K" T[] M™% [] M* <K"[[M~°CY, ©=N-4
1€eE(G) leL(G) ik

We now turn to the computation of an upper bound on the amplitude of a graph
G with «-insertions. The graph G is equipped with a scale attribution @« (G) which
assigns an integer to each edge in £(G). To get the power counting of such a graph
we need to perform the momentum routing and pick up a tree 7. Note that each
generalised line is considered as one single line so that the tree g is composed of
both simple and generalised lines.

Let us focus on a generalised line £ between two Moyal vertices. It is made of
n () insertions and so n + 1 edges €k, k € [[1,n + 1]. The corresponding analytical
expression is

Ag =" C (p,p; p, 0)( TT C' (. 0: p.0))C nt1(p,0; p, q).
k=2

Due to the bound (3.2), we have
2n et 1~ M2 p2 M 2 a7 et g2
Ay S k"K' e k=1 Poe Lt e,
Let iy 1= minge[1,n+1]igy, i1 = max{igl,ignH} and ip := min{igl,ign+l}. Then
exchanging p and q if necessary, Ay is bounded by
Ap(p;p, ) < k2Kl (DM TN (= M p2=M212g7, (3.3)

2Given a spanning rooted tree 7 (G) and a line [ € T, the branch b(/) is the set of vertices v such
that / is on the unique path in the tree between v and the root of 7.
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In the following, we consider that a generalised line £ is a line of scale iy := i\, ({).
This will be important in the choice of an optimised tree.

Remark (No Moyal vertex). The bound (3.3) does not depend on the scales iy, , .. .,
ig,. This reflects the fact that the corresponding subgraphs are logarithmically diver-
gent. These graphs are made of propagators linked together by k-insertions but do
not contain any Moyal vertex. Let G be such a subgraph with n propagators. The
corresponding analytical expression is

n n noo_..
A= /m d?pg(p.0)d(=p.0) [ €' (p.0: p.0).
k=2
To renormalise such a graph, we expand the propagators around p = 0:
1
C*(p,0; p,0) = C"(0,0;0,0) —i—/ dsp-VC'"(sp,0;sp,0)
0

The graph G being only logarithmically divergent, only the zeroth order term is
divergent. It contributes to the renormalisation of «2.

In the following we do not make any reference to these particular subgraphs,
keeping nevertheless in mind that they are logarithmically divergent and can be renor-
malised by a change of k2.

Before we state the power counting lemma, we need to give a few definitions.

Definition 3.1 (Bridge). Let G be a graph and [ € E(G). The line / is a bridge if
deleting / increases the number of connected components of G.

Definition 3.2 (Admissible generalised line). Let G* be a graph with scale attribution
uand! € E(G). There exists a unique k() € N such that/ € E (G,l(’). The line /

is said admissible if it is a bridge in G,il.

The admissibility of a generalised line depends both on the location of the line in
the graph and on the scale attribution as shown in Figure 3.

Definition 3.3 (Tree-like graph). Let G be a graph. It is said tree-like if [ is a bridge
(independently of the scale attribution) for all [ € E,(G). By convention, a graph
without insertion is tree-like.

A tree-like graph is then a tree of generalised lines the nodes of which are graphs
with only simple lines and Moyal vertices.

Lemma 3.2 (Power counting). Let G be a Feynman graph of the model (2.1). Let
W(G) be a scale attribution. Then we have:
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\ﬁ/
(a) Admissible line (b) Non-admissible line
Figure 3. Scale attribution and admissibility, i > j > k.
* if G is not tree-like, the amplitude A‘é is bounded by
AL < K*OTI M@, = N +4n,, (3.4a)

ik

for the connected components which are not tree-like.
o If G is tree-like, for all connected components G, its degree of convergence
obeys the following conditions:

-if G]i is non planar, then
w=N; (3.4b)

- if g(GL) =0, b(GL) = 2, then

w=N-2 (3.4¢)
- if G,’; is planar regular and E\ (G]i) # 0, then

w=N-2 (3.4d)

-if G,i is planar regular and E, (G,’;) = (, then

= ; (3.4e)
N—442(Ne—1) if Ne =N.

>{N—4—|—2NK if Ne <N,

This lemma proves that the only graphs (and subgraphs) that need to be renor-
malised are tree-like. Moreover they are either planar and regular: in that case, if
they have four external points, they do not have any insertion. If they are two-point
graphs, they have zero, one or two external insertions and possibly internal ones, too.
Or they are planar with two broken faces.

3.3. Proof (1/2): truncated diagrams. In this section we prove all the bounds of
Lemma 3.2 except the improvement related to the number of external insertions N,.
This is postponed to Section 3.4.
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Let G be a Feynman graph. Its amplitude is given by

Ag(®1,. .. oN) = [ [T d*pnd*pi, C'(pry pr) T1 Sve™?.

R8¢ [eE(G) veV(G)
To get the bound (3.4a), we start by bounding the oscillations by one. Then we perform
a momentum routing. To this aim we choose an optimised spanning rooted tree’® and
trade the vertex delta functions for an equivalent set of branch delta functions. This
allows to solve one momentum per tree line: at each vertex (except the root) the delta
function solves the unique momentum hooked to this vertex which is on the path in
the tree between the vertex and the root. For a simple line, let us call the combination
p + g a short variable. The momentum routing replaces the solved tree momenta by
PL + Pex + 8p where pp (resp. pgy, p) is a linear combination of loop momenta
of simple line (resp. external momenta, short variables or momenta of generalised
lines). As a result we have to integrate,

* in the commutative directions, over one momentum per loop line (thanks to the
conservation of momentum along the lines)

* and, in the non-commutative directions, over one momentum per tree line and
two momenta per loop line.

Moreover there remains a global delta function which ensures the exact conservation
of the external momenta in the commutative directions and an approximate conser-
vation in the non-commutative directions (see [18] for details about an equivalent
position routing).

Let/ € T N Ep. In the commutative directions, its corresponding momentum
has been solved thanks to the delta function 8 ;). In the non-commutative directions,
this delta function allows to solve p; — q; (see eq. (3.2)). We still have to integrate
over p; + q; which delivers a factor bounded by M ~2/,

Let{ € T N E,. We use the delta function corresponding to the branch b({) to
integrate over p and either p or g. The result is bounded by

/[RG d?pd*pd*q Ag(p:p, Q)8pey < KM 2027m) p=2in,

Let/ € LN Ey. We integrate over p, p and g. Thanks to the bound (3.2), the
result is bounded by M ~2i M4,

Let{ € L N E,. We have to integrate A,y over p, p and q. The result is bounded
by

[ d?pd?®pd?q A¢(p;p,q) < KM ~201712) pp=4Ga=in) pr—2in (3.5)
RO

As a consequence, we have

|AICL;| < KU(G) 1—[ M—2i1 l—[ M4i1 1_[ M—Z(iz—im) 1_[ M_2(il_i2). (36)
l€eE leLNEg l€Ey leLNE

3Here “optimised” means that the tree is a subtree in each connected component.
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The last two products are clearly related to the external insertions and contribute
to the improvement of the power counting by the factor 2N,. In Section 3.4, we
will explain how to improve these factors to reproduce completely the bounds of
Lemma 3.2. Until there we just bound these products by one. Then we have

Al < KV IHE M—zill LnE M*i < K”(G)]_][CM_“’(GIQ), (3.7)
€ eLNEy i,

with w = N — 4 + 4n,. This proves that if a subgraph G,i is divergent, nK(G,i) =0
and all its generalised lines are in the tree. This means that forall/ € E, (G,i) and for
any choice of an optimised tree in G}'C, [ is in the tree. This implies that [ is a bridge

ina G,’cl/. In other words, if a connected component is divergent, all its generalised
lines are admissible. Nevertheless this does not prove yet the bound (3.4a) because
an admissible line / is only a bridge in a G,’(l but not necessarily in the full graph G,
as shown in the Figure 3a. We have to improve our bound.

Let us consider a connected component G,"c and an admissible generalised line
[ € Ey (G,i) which is not a bridge in G]i. This line belongs to the tree T(G,i) so that
we use the delta function 85y to integrate over p; or q;. In the propagator Ci, P
(say) is replaced by pr. + pex + 8p. Usually, we bound C¥ by M 21, butif p; # 0,
we can use it to integrate over a loop momentum to get M ~24 < M=% = M M4,
The gain is M ~*' and makes G,i convergent. Thus for any connected component G,ic
and any line [ € E (G,i) withi; =i, Glic divergent implies that / is a bridge in G,i.
All the generalised lines have to be bridges in G = G° and so G has to be tree-like
to be divergent. If not, the improvement factor M* plus the bound (3.7) give the
equation (3.4a).

We have proven that if a graph is divergent, all its connected components are
tree-like, which is equivalent to G itself being tree-like. So let us consider such a
graph and prove the bounds (3.4b)—(3.4d).

We start with the bound (3.7) with n, = 0 (because G is tree-like). We are
going to improve it thanks to the oscillations of Ag. In [12], one of us contributed
to proving, in x-space, that non-planar graphs are convergent. We just use here the
same method but in momentum space: if two lines / and [’ cross each other, there
exists an oscillation of the type p; A p; (see Lemma 2.2). Note that the presence of
generalised lines does not alter that result because they are tree lines and only loop
lines may cross each other. We use such an oscillation to integrate over p; say. The
gain with respect to the bound (3.7) is M2+ < pp—4minliniv} It Jeads to the
bound (3.4b).

Let us now consider a planar connected component but with at least two broken
faces. Then there exists an oscillation of the type p; A p. where p,. is an external
momentum of the subgraph. Once more this oscillation allows to integrate over p,.
The gain is M ~27 and gives the bound (3.4c).

Let G be a planar regular tree-like graph. The bound (3.7) for n, = 0 gives
already @ = N —4. To improve it and get (3.4d), we must prove the following: given
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a tree-like graph G and a generalised line /, / is necessarily on the path in the tree
between two external points.

The graph being tree-like, / is a bridge. G can consequently be depicted as in
Figure 4 where the two blobs represent any tree-like graphs. To each of these graphs,
an odd number of external points are hooked. In particular each of them contains at
least one external point.

Figure 4. A tree-like graph.

Due to the momentum routing, the momentum g, say, equals minus the sum of
the momenta entering the right blob. Then we can use the propagator of the line /
to integrate over one of these external momenta, in the non-commutative directions.
From the bound (3.3), the result is bounded by M ~27. This makes the improvement
from (3.7) to (3.4d).

Now it remains to prove how the factors N, in (3.4e) show up. This is the subject
of the next section.

3.4. Proof (2/2): external insertions. The basic mechanism, which implies an
improvement of the power counting thanks to the external insertions, is the following.

Let us consider a graph G with N, external insertions and the lowest scale of
which is j. It has thus N, external legs which correspond to Ci (p,p; p,0). Due to
the equation (3.3), the integration over p gives a factor M=% < M~/ If N, < N,
the graph has N — N, external momenta and N, external insertions. We use the
global delta function of G to solve one external momentum in function of the others.
Then each external insertion delivers a factor M ~2*. If N, = N, the global delta
function solves the momentum of one of these insertions. This gives the degree of
convergence in (3.4e).

Nevertheless we still have to prove that the procedure which leads to the bound
(3.7) reproduces this improvement in all the connected components. Of course this
is related to the last two products in equation (3.6).

Let us consider a connected component G,i with N, external insertions. These
insertions correspond to generalised lines at lower scales. If these lines are loop lines,
the bound (3.5) gives a factor M ~2(1772) py=4(2=in) \which is precisely the gain of
two powers per external insertion. But for the generalised lines which are in the
tree the argument is subtler. Each such line bears two momenta, one of them being
solved by the momentum routing. This is the “highest” of the two in the tree. The
momentum routing solves then at most one such momentum among the momenta
corresponding to the external insertions. If N, = N, this corresponds to the fact that
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the global delta function § Gi solves this momentum and that we cannot get a better

improvement than 2(N — 1). If N, < N, it could very well happen that an external
insertion is on the unique path between G,i and the root of 7(G). In this case, we
would not get a gain of 2/N,.. But we can use the propagator of that external insertion
to integrate over an external momentum (which is not another external insertion).
The result is M2 = M ~20=im) pf=2in  This reproduces the bound (3.4e) and is
also compatible with (3.4d)). This ends the proof of Lemma 3.2.

4. Renormalisation

Due to the power counting Lemma 3.2 we know which types of graphs are divergent.
In this section we prove that the divergent parts of these graphs reproduce the five
terms of the Lagrangian (2.1).

4.1. The four-point function. The only divergent four-point graphs are planar reg-
ular and contain no «-insertion (neither internal nor external). The “Moyality” of the
corresponding Feynman amplitudes has already been proven in [12] in the case of a
non-degenerate Moyal space using the x-space representation. The only difference
here is that we use the momentum space representation and that our non-commutative
space is half commutative. Nevertheless, our proof would be so close to the one in
[12] that we do not feel the need to reproduce it here.

4.2. The two-point function

4.2.1. The planar regular case. Let G be a planar regular two-point graph. We
distinguish mainly three different cases:

(1) E¢(G) =0 and N (G) =0,
(2) Ec(G) # @ and N (G) =0,
(3) Ne(G) #0.
No insertion at all. As in the case of the four-point function, there is no major

difference between our degenerate model and the case treated in [12]. The two-point
graphs contribute to the flow of the mass, wave-functions* and oscillator frequency 2.

With internal insertions. Let G be a connected planar regular tree-like graph with
Ei # @and N, = 0. Let i be the lowest of its scales. We now prove that its divergent
part renormalises 2.

For all lines [ € E(G), let plL be a linear combination of loop momenta in the
commutative directions. Let pi (resp. §p;) be a linear combination of loop momenta
(resp. short variables and momenta of generalised lines) in the non-commutative

4The coefficients in front of the Laplacian in the commutative and non-commutative directions renor-
malise separately.
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directions. Finally let §p be the sum of all the short variables of G plus the sum of all
the momenta of the generalised lines. The amplitude of G integrated over external
fields and after a momentum routing is given by

Al = /U;G d*pd*pd*a $(p.p)p(=p.a)A(p. p.a)

- /|R4+2(vl)+6n, d2p dzp é(p’ p)d,;(_p’ -p— 8]3) el(ﬁ

[T d?pid®pid?a; C' (pr.vi: pr o) @.1)
1eL(G)
d? éil l / Sp;° I
[1 q:C(p+ pr.ar+p+p, +8piip+ pr.ar)
leTNEy
[T d%q Cl(p,p+8pis p,ar).
leTNE,

The oscillation is of the type ¢ = p A §p.

Note that after the momentum routing there is no loop momenta in the generalised
lines since all such lines are bridges. This allows to bound the external momentum
p by [p| < M~*. We then perform a Taylor expansion of the external fields around
p = 0. In the commutative directions, as usual, we expand the tree propagators
around p = 0. Due to the power counting lemma, we know that such an amplitude
is only logarithmically divergent. As a consequence, only the zeroth order term of
these expansions is divergent.

Al = / p $(p.0)B(=p.0) 02y ot
R2 R2+2(w—1)+6n

[T d2pid?p;d?a; C(pr,vi; proar)
leL(G)

[T d2q:Ci(ph.qr+v+ph +8pis+ph.ar)
leTNEy

[T 4w Ci (0,p 4+ 8p;;0,q;7) + convergent contributions.
leTNE,

The planar regular tree-like graphs with internal insertions contribute to the renor-
malisation of «2.

With external insertions. Let G be a connected planar regular tree-like graph with
N, # 0. Leti be the lowest of its scales. We now prove that its divergent part
renormalises k2. Let us first consider that G has only one external insertion. In this
case its amplitude is

Ag = /;6 d?pd*pd*a $(p,0)C(p,0; p, ))AP, p, ))P(—p, @),

where # is defined by the equation (4.1). In contrast with the previous case, even if
E, = 0, the external momentum p (and consequently q) is bounded by M ~*. This
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is due to the external insertion. Then we can safely expand the external field around
a = 0, and A and the external propagator around p = 0. This leads to

Ag = /[dezp ¢(p.0)p(—p.0) /[R4d2p d*q C(0.0;0.p)A4(0.p.q)
+ convergent terms.

If Ne(G) = 2, the amplitude is

Ag = /[Rﬁ d*pd®pd*a $(p.0)C(p,0; p, p)A(p.p.a)C (—p, a;—p. 0)p(—p.0).

We expand # and the external propagators around p = 0. The divergent part of this
expansion renormalises k2 too.

4.2.2. The planarirregular case. Let G be a planar irregular (b(G) = 2) two-point
graph. Let us first treat the case of a graph without any insertion. Its amplitude would
be

AG =A; d*p d*p §(p, p)p(—p,—p — 8p) €'¢

44-2(v—1)+6n

[T d?pid®p;d?a; Ct(pr, o1 i ar)
1€L(G)

I 2% Ci'(p + pp. a1+ v+ v +8pi:p + pp.ar),

€

where the oscillation is of the type § = p A (6p + pr) (see Lemma 2.2). The
oscillation between the external momentum p and some loop momenta py allows
to prove that p is actually bounded by M~ (see [18] for the details). We can then
perform the same types of expansions as before to get a renormalisation of k2.

If G contains internal or external insertions, it should now be clear that its am-
plitude contributes also to the flow of k2. Indeed, whatever the reason, if one can
control the size of the (non-commutative) external momentum, one can expand the
external fields around 0, as was done in the preceding cases.

5. Conclusion

Motivated by the work of S. Wan and Z. Wang [19] and by the possibility of defining a
renormalisable model on non-commutative Minkowski space, we addressed here the
problem of the renormalisability of a self-interacting quantum field on a degenerate
Moyal space. On such a space, part of the coordinates are commutative. Contrary to
the non-commutative CDZ“ model [10], the harmonic oscillator term is not sufficient
to make the model renormalisable. We proved that the model contains indeed addi-
tional divergencies of the type (Tr ¢)2. By adding such a counterterm, we defined a
renormalisable model (see (2.1)).
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The interest for such a study is twofold. On one side, the appearance of such
counterterms (of the type “product of traces™) is quite natural on non-commutative
spaces and has already been noticed in different works; see [4] for an example. It is
often mentioned that the studied models are renormalisable at one-loop order provided
one adds such a term. Our work is the first study to all orders of such a quantum field
theory.

On the other side, a (non-commutative) model on a degenerate space could open
a way towards non-commutative Minkowski space. There already exist lots of works
about quantum field theory on non-commutative Minkowski space concerning mainly
causality, unitarity, definition of the appropriate Feynman rules, etc. But no renormal-
isable model is known. On commutative spaces, using a regularization a la Feynman,
one can prove the perturbative renormalisability of a Minkowskian model from the
corresponding Euclidean version. This results in the perturbative definition of the
time-ordered Green functions. Could we do an equivalent on a non-commutative
space? It turns out that with a proper (i.e., preserving unitarity) definition of a time-
ordered product on Minkowski space [2], [1], one is lead to the conclusion that such
a product is not equivalent to the use of a Feynman propagator. Therefore the usual
techniques employed on commutative spaces may not apply. However one could ad-
dress a simpler question, namely the perturbative renormalisability of a field theory
on a non-commutative Minkowski space with a commuting time>. This is where our
present proposition could enter into the game.
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