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Double constructions of Frobenius algebras, Connes cocycles
and their duality
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Abstract. We construct an associative algebra with a decomposition into the direct sum of
the underlying vector spaces of another associative algebra and its dual space such that both
of them are subalgebras and the natural symmetric bilinear form is invariant or the natural
antisymmetric bilinear form is a Connes cocycle. The former is called a double construction of
a Frobenius algebra and the latter is called a double construction of the Connes cocycle, which is
interpreted in terms of dendriform algebras. Both of them are equivalent to a kind of bialgebras,
namely, antisymmetric infinitesimal bialgebras and dendriform D-bialgebras, respectively. In
the coboundary cases, our study leads to what we call associative Yang–Baxter equation in an
associative algebra andD-equation in a dendriform algebra, respectively, which are analogues
of the classicalYang–Baxter equation in a Lie algebra. We show that an antisymmetric solution
of the associative Yang–Baxter equation corresponds to the antisymmetric part of a certain
operator called O-operator which gives a double construction of a Frobenius algebra, whereas a
symmetric solution of theD-equation corresponds to the symmetric part of an O-operator which
gives a double construction of the Connes cocycle. By comparing antisymmetric infinitesimal
bialgebras and dendriform D-bialgebras, we observe that there is a clear analogy between them.
Due to the correspondences between certain symmetries and antisymmetries appearing in this
analogy, we regard it as a kind of duality.
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1. Introduction

Throughout this article, an associative algebra is a non-unital associative algebra.
There are two important (non-degenerate) bilinear forms on an associative algebra
given as follows.

Definition 1.0.1. A bilinear form B. ; / on an associative algebra A is invariant if

B.xy; z/ D B.x; yz/ for all x; y; z 2 A:
Definition 1.0.2. An antisymmetric bilinear form !. ; / on an associative algebra A
is a cyclic 1-cocycle in the sense of Connes if

!.xy; z/C !.yz; x/C !.zx; y/ D 0 for all x; y; z 2 A: (1)

We also call for abbreviation ! a Connes cocycle.

1.1. Frobenius algebras. A Frobenius algebra .A;B/ is an associative algebra A
with a non-degenerate invariant bilinear form B. ; /. It was first studied by Frobenius
([Fro]) in 1903 and then named by Brauer and Nesbitt ([BrN]). In fact, Frobenius
algebras appear in many fields in mathematics and mathematical physics, such as
(modular) representations of finite groups ([Kap]), Hopf algebras ([LS]), statistical
models over 2-dimensional graphs ([BFN]), Yang–Baxter equation ([St]), Poisson
brackets of hydrodynamic type ([BaN]) and so on. In particular, they play a key role
in the study of topological quantum field theory ([Ko], [RFFS], etc.). There are many
references concerning the study of Frobenius algebras (for example, see [Kap] or [Y]
and the references therein).

A Frobenius algebra .A;B/ is symmetric if B is symmetric. In this article,
we mainly consider a class of symmetric Frobenius algebras .A;B/ satisfying the
conditions

(1) A D A1 ˚ A�
1 as the direct sum of vector spaces;

(2) A1 and A�
1 are associative subalgebras of A;

(3) B is the natural symmetric bilinear form on A1 ˚ A�
1 given by

B.xCa�; yC b�/ D hx; b�i C ha�; yi for all x; y 2 A1, a�; b� 2 A�
1 , (2)

where h ; i is the natural pair between the vector space A1 and its dual space
A�

1 . We call it a double construction of a Frobenius algebra.

Such a double construction of a Frobenius algebra is quite different from the
“double extension construction” of a Lie algebra with a non-degenerate invariant
bilinear form ([Kac], [MR1]–[MR2], etc.) or the “T �-extension” of Frobenius algebra
given by Bordemann in [Bo].

Moreover, the above double constructions of Frobenius algebras were also con-
sidered by Zhelyabin in [Z] and Aguiar in [A3] (under the name of “balanced Drinfeld
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double Db.A/”) with different motivations and approaches respectively. They are
closely related to Lie bialgebras. Lie bialgebras were introduced by Drinfeld ([D]) and
play a crucial role in symplectic geometry and quantum groups. They are equivalent
to Manin triples (see [CP] and the references therein or Section 5.2).

It is easy to show that the commutator of a Frobenius algebra from the above
double construction gives a Manin triple (hence a Lie bialgebra). Furthermore, such
a double construction has many properties similar to a Lie bialgebra. It is equivalent
to an antisymmetric infinitesimal bialgebra (which also goes under the names of
“associative D-algebra” in [Z] and “balanced infinitesimal bialgebra” in the sense
of the opposite algebra in [A3]), and under a “coboundary” condition it leads to an
analogue of the classical Yang–Baxter equation ([Se]) in an associative algebra A1,

r12r13 C r13r23 � r23r12 D 0; (3)

where r D P
i xi ˝ yi 2 A1 ˝ A1 and

r12r13 D P

i;j

xixj ˝ yi ˝ yj ;

r13r23 D P

i;J

xi ˝ xj ˝ yiyj ;

r23r12 D P

i;j

xj ˝ xiyj ˝ yi :

(4)

In particular, an antisymmetric solution of the above equation in A1 gives a double
construction of a Frobenius algebra .A D A1 ˚ A�

1;B/.
On the other hand, we introduce the new notion of antisymmetric infinitesimal

bialgebra in order to express explicitly its relation with the known notion of infinitesi-
mal bialgebra, although there are certain notions for the same or similar structures. An
infinitesimal bialgebra is a triple .A;m;�/, where .A;m/ is an associative algebra,
.A;�/ is a coassociative algebra and

�.ab/ D P
ab1 ˝ b2 C P

a1 ˝ a2b for all a; b 2 A: (5)

It was introduced by Join and Rota ([JR]) in order to provide an algebraic framework
for the calculus of divided difference. Furthermore, Aguiar studied the cases of
principal derivations and introduced the associative Yang–Baxter equation ([A1])

r13r12 � r12r23 C r23r13 D 0: (6)

Note that eq. (3) is eq. (6) in the opposite algebra and, when r is antisymmetric, eq. (6)
is just eq. (3) under the operation �13.x ˝ y ˝ z/ D z ˝ y ˝ x.

We would like to point out that although many results on the double constructions
of Frobenius algebras have been obtained, a complete and explicit interpretation does
not yet exist. In fact, most of these results were given in a scattered way with different
motivations. For example, Zhelyabin in [Z] introduced the notion of associative D-
algebra as an important step to develop a bialgebra theory of Jordan algebras (an
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explicit study of coboundary cases for the associative algebras themselves is not
performed). In [A3], Aguiar introduced the notion of balanced infinitesimal bialgebra
and then studied the antisymmetric solutions of eq. (6) in order to compare them with
Lie bialgebras and the classical Yang–Baxter equation in a Lie algebra, respectively,
and the balanced Drinfeld double Db.A/ appears as an important consequence. We
will formulate the known results by a different and systematic approach (for example,
the “invariant” antisymmetry appears naturally). Moreover such an approach is useful
and convenient for the whole study in this article.

1.2. O-operators and dendriform algebras. When r is antisymmetric, besides the
standard tensor form (3) or (6), the associativeYang–Baxter equation has an equivalent
operator form, that is, a special case of a certain operator called O-operator. An O-
operator associated to a bimodule .l; r; V / of an associative algebraA is a linear map
T W V ! A satisfying

T .u/ � T .v/ D T .l.T .u//v C r.T .v/u// for all u; v 2 V:
In fact, an antisymmetric solution of the associative Yang–Baxter equation is an
O-operator associated to the bimodule .R�; L�/. The notion of O-operator was in-
troduced in [BGN1] (such a structure appeared independently in [U] under the name
of generalized Rota–Baxter operator), which is an analogue of the O-operator de-
fined by Kupershmidt as a natural generalization of the operator form of the classical
Yang–Baxter equation ([Ku3] and a further study in [Bai1]). Conversely, the anti-
symmetric part of an O-operator satisfies the associative Yang–Baxter equation in a
larger associative algebra.

From an O-operator, one can get a dendriform algebra. Dendriform algebras are
equipped with an associative product which can be written as a linear combination of
nonassociative compositions. They were introduced by Loday ([Lo1]) with motiva-
tion from algebraic K-theory and have been studied quite extensively with connections
to several areas in mathematics and physics, including operads ([Lo3]), homology
([Fra1]–[Fra2]), Hopf algebras ([Cha2], [H1]–[H2], [Ron], [LR2]), Lie and Leibniz
algebras ([Fra2]), combinatorics ([LR1]), arithmetic ([Lo2]) and quantum field theory
([F1]) and so on (see [EMP] and the references therein).

Furthermore, there is a compatible dendriform algebra structure on an associative
algebra A if and only if there exists an invertible O-operator of A, or equivalently,
there exists an invertible (usual) 1-cocycle (see eq. (34)) associated to certain suitable
bimodule ofA ([BGN2]). Thus a close relation between the associativeYang–Baxter
equation (hence the antisymmetric infinitesimal bialgebras and the double construc-
tion of Frobenius algebras) and dendriform algebras is obviously given (see also [A3],
[E1]–[E2]).

1.3. Connes cocycles. Note that a Connes cocycle given by eq. (1) is in fact a
Hochschild 2-cocycle which satisfies antisymmetry. It corresponds to the original
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definition of cyclic cohomology by Connes ([C]). Also note that in cyclic cohomology
a cyclic n-cocycle in the sense of Connes is an .nC1/-linear form, although a Connes
cocycle was called a cyclic 2-cocycle in some references (like [A3]) from some
different viewpoints. Moreover, although Connes used it in the unital framework and
in the non-unital framework cyclic homology has a very different behavior, we still
use the notion of “Connes cocycle” in this article.

We will see that, from a non-degenerate Connes cocycle on an associative algebra
A, one can get a compatible dendriform algebra structure on A. Moreover, the
dendriform algebra structures play a key role in the following constructions of non-
degenerate Connes cocycles, which is one of the main issues of this article. We call
.A; !/ a double construction of the Connes cocycle if it satisfies the conditions

(1) A D A1 ˚ A�
1 as the direct sum of vector spaces;

(2) A is an associative algebra and A1 and A�
1 are associative subalgebras of A;

(3) ! is the natural antisymmetric bilinear form on A1 ˚ A�
1 given by

!.xCa�; yCb�/ D �hx; b�iCha�; yi for all x; y 2 A1; a
�; b� 2 A�

1; (7)

and ! is a Connes cocycle on A.

In this article, the double construction of the Connes cocycle is interpreted in terms
of dendriform algebras. We find that such a structure is quite similar to a double con-
struction of a Frobenius algebra or a Lie bialgebra. Briefly speaking, a double con-
struction of the Connes cocycle is equivalent to a certain bialgebra structure, namely,
a dendriform D-bialgebra structure. Both antisymmetric infinitesimal bialgebras and
dendriform D-bialgebras have many similar properties as Lie bialgebras. In particu-
lar, there are the so-called coboundary dendriform D-bialgebras which lead to another
analogue (D-equation in a dendriform algebra) of the classical Yang–Baxter equa-
tion. A symmetric solution of theD-equation corresponds to the symmetric part of an
O-operator, which gives a double construction of the Connes cocycle.

1.4. Duality between bialgebras. By comparing antisymmetric infinitesimal bial-
gebras and dendriform D-bialgebras, we observe that there is a clear analogy between
them. Moreover, due to the correspondences between certain symmetries and anti-
symmetries appearing in the analogy, we regard it as a kind of duality.

There is a similar study in the version of Lie algebras ([CP], [Bai2]). In fact,
there is also a double construction of a Lie algebra with a non-degenerate invariant
bilinear form (Manin triple or Lie bialgebra) or with a non-degenerate 2-cocycle
of Lie algebra (para-Kähler Lie algebra or pre-Lie bialgebra). There are the O-
operators and a kind of algebras called pre-Lie algebras (Lie-admissible algebras
whose left multiplication operators form a Lie algebra) which play the same role as
the O-operators and dendriform algebras. And there is a similar duality between Lie
bialgebras and pre-Lie bialgebras.
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Moreover, due to Chapoton ([Cha1]), there is a close relationship among the Lie
algebras, associative algebras, pre-Lie algebras and dendriform algebras that can be
depicted by a commutative diagram of categories:

dendriform algebras

��

�� pre-Lie algebras

��
associative algebras �� Lie algebras.

We will extend the above relationship at the level of bialgebras with the dualities in
a commutative diagram. In particular, the relation between antisymmetric infinites-
imal bialgebras (the special case of infinitesimal Hopf algebras) and Lie bialgebras
was observed in [A3]. Furthermore, these types of bialgebras fit into the general
framework of “generalized bialgebras”, as introduced by Loday in [Lo4].

The article is organized as follows. In Section 2, we give an explicit and systematic
study on the double constructions of Frobenius algebras and then obtain the associa-
tive Yang–Baxter equation naturally. In Section 3, we introduce the close relations
between O-operators and dendriform algebras. In Section 4, we study the double
constructions of Connes cocycles in terms of dendriform algebras. In Section 5, we
give a clear analogy between antisymmetric infinitesimal bialgebras and dendriform
D-bialgebras, which we regard as a kind of duality. After recalling a similar duality
between Lie bialgebras and pre-Lie bialgebras, we express a close relationship among
associative algebras, Lie algebras, pre-Lie algebras and dendriform algebras at the
level of bialgebras.

Throughout this article, all algebras are finite-dimensional, although many results
still hold in the infinite-dimensional case.

2. Double constructions of Frobenius algebras and another approach to asso-
ciative Yang–Baxter equation

2.1. Bimodules and matched pairs of associative algebras

Definition 2.1.1. Let A be an associative algebra and let V be a vector space. Let
l; r W A ! gl.V / be two linear maps. V (or the pair .l; r/, or .l; r; V /) is called a
bimodule of A if

l.xy/v D l.x/l.y/v; r.xy/v D r.y/r.x/v; l.x/r.y/v D r.y/l.x/v

for all x; y 2 A, v 2 V .

In fact, according to [Sc], .l; r; V / is a bimodule of an associative algebraA if and
only if the direct sum A ˚ V of vector spaces is turned into an associative algebra
(the semidirect sum) by defining multiplication in A˚ V by

.x1 C v1/ � .x2 C v2/ D x1 � x2 C .l.x1/v2 C r.x2/v1/
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for all x1; x2 2 A, v1; v2 2 V . We denote it by A Ël;r V or simply A Ë V .
The following conclusion is obvious.

Lemma 2.1.2. Let .l; r; V / be a bimodule of an associative algebra A.
(1) Let l�; r� W A ! gl.V �/ be the linear maps given by

hl�.x/u�; vi D hl.x/v; u�i; hr�.x/u�; vi D hr.x/v; u�i (8)

for all x 2 A, u� 2 V �, v 2 V . Then .r�; l�; V �/ is a bimodule of A.
(2) .l; 0; V /, .0; r; V /, .r�; 0; V �/ and .0; l�; V �/ are bimodules of A.

Example 2.1.3. Let A be an associative algebra. Let L.x/ and R.x/ denote the left
and right multiplication operator, respectively, that is,L.x/.y/ D xy,R.x/.y/ D yx

for any x; y 2 A. Let L W A ! gl.A/ with x ! L.x/ and R W A ! gl.A/ with
x ! R.x/ (for every x 2 A) be two linear maps. Then .L; 0/, .0; R/ and .L;R/ are
bimodules of A. On the other hand, .R�; 0/, .0; L�/ and .R�; L�/ are bimodules of
A, too.

Theorem 2.1.4. Let .A; � / and .B; B / be two associative algebras. Suppose that
there are linear maps lA; rA W A ! gl.B/ and lB ; rB W B ! gl.A/ such that .lA; rA/
is a bimodule of A and .lB ; rB/ is a bimodule of B and they satisfy the following
conditions:

lA.x/.a B b/ D lA.rB.a/x/b C .lA.x/a/ B b; (9)

rA.x/.a B b/ D rA.lB.b/x/aC a B .rA.x/b/; (10)

lB.a/.x � y/ D lB.rA.x/a/y C .lB.a/x/ � y; (11)

rB.a/.x � y/ D rB.lA.y/a/x C x � .rB.a/y/; (12)

lA.lB.a/x/b C .rA.x/a/ B b � rA.rB.b/x/a � a B .lA.x/b/ D 0; (13)

lB.lA.x/a/y C .rB.a/x/ � y � rB.rA.y/a/x � x � .lB.a/y/ D 0 (14)

for any x; y 2 A, a; b 2 B . Then there is an associative algebra structure on the
direct sum A˚ B of the underlying vector spaces of A and B given by

.xC a/� .yC b/ D .x � yC lB.a/yC rB.b/x/C .a B bC lA.x/bC rA.y/a/ (15)

for all x; y 2 A, a; b 2 B . We denote this associative algebra by A ‰lA;rA

lB ;rB
B or

simply A ‰ B . On the other hand, every associative algebra with a decomposition
into the direct sumof the underlying vector spaces of two subalgebras canbe obtained
in this way.

Proof. This is straightforward.

Definition 2.1.5. Let .A; � / and .B; B / be two associative algebras. Suppose that
there are linear maps lA; rA W A ! gl.B/ and lB ; rB W B ! gl.A/ such that .lA; rA/
is a bimodule ofA and .lB ; rB/ is a bimodule ofB . If eqs. (9)–(14) are satisfied, then
.A;B; lA; rA; lB ; rB/ is called a matched pair of associative algebras.
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Remark 2.1.6. ObviouslyB is an ideal ofA ‰ B if and only if lB D rB D 0. IfB is
a trivial (that is, all the products ofB are zero) ideal, thenA ‰lA;rA

0;0 B Š AËlA;rA
B .

Moreover, some other special cases of Theorem 2.1.4 have already been studied.
For example, the case when A is a left B-module and B is a right A-module was
considered in [A1], that is, lA D 0 and rB D 0.

2.2. Double constructions of Frobenius algebras and antisymmetric infinitesi-
mal bialgebras. Recall that a (symmetric) Frobenius algebra is an associative al-
gebra A with a non-degenerate (symmetric) invariant bilinear form. Let .A; � / be
an associative algebra. Suppose that there is an associative algebra structure “B” on
its dual space A�. We construct an associative algebra structure on the direct sum
A˚A� of the underlying vector spaces ofA andA� such that .A; � / and .A�; B / are
subalgebras and the symmetric bilinear form on A˚A� given by eq. (2) is invariant.
That is, .A˚A�;B/ is a symmetric Frobenius algebra. Such a construction is called
a double construction of a Frobenius algebra associated to .A; � / and .A�; B / and
we denote it by .A ‰ A�;B/.

Theorem 2.2.1. Let .A; � / be an associative algebra. Suppose that there is an
associative algebra structure “B” on its dual space A�. Then there is a double
construction of a Frobenius algebra associated to .A; � / and .A�; B / if and only if
.A;A�; R�� ; L�� ; R�B ; L�B / is a matched pair of associative algebras.

Proof. If .A;A�; R�� ; L�� ; R�B ; L�B / is a matched pair of associative algebras, then it
is straightforward to show that the bilinear form (2) is invariant on the associative

algebra A ‰R�

�
;L�

�

R�

B ;L�

B

A� given by eq. (15). Conversely, set

x � a� D lA.x/a
� C rA�.a�/x; a� � x D lA�.a�/x C rA.x/a

�

for all x 2 A, a� 2 A�. Then .A;A�; lA; rA; lA� ; rA�/ is a matched pair of associative
algebras. Note that

hlA.x/a�; yi D hrA.y/a�; xi D hy � x; a�i;
hlA�.b�/x; a�i D hrA�.a�/x; b�i D ha� B b�; xi;

where x; y 2 A; a�; b� 2 A�. Hence, lA D R�� , rA D L�� , lA� D R�B , rA� D L�B .

Proposition 2.2.2. Let .A; � / be an associative algebra. Suppose that there is an as-
sociative algebra structure “B” on its dual space A�. Then .A;A�; R�� ; L�� ; R�B ; L�B /
is a matched pair of associative algebras if and only if for any x 2 A�, a�; b� 2 A�,

R�� .x/.a� B b�/ D R�� .L�B .a�/x/b� C .R�� .x/a�/ B b�; (16)

R�� .R�B .a�/x/b� C L�� .x/a� B b� D L�� .L�B .b�/x/a� C a� B .R�� .x/b�/: (17)
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Proof. Obviously, eq. (16) is just eq. (9) and eq. (17) is just eq. (13) in the case when
lA D R�� , rA D L�� , lB D lA� D R�B , rB D rA� D L�B . By eq. (8), it is easy to show
that in this situation

eq. (9) () eq. (10) () eq. (11) () eq. (12);

eq. (13) () eq. (14):

Therefore the conclusion holds.

Before the next study, we give some notations as follows. LetA be an associative
algebra. Let � W A˝ A ! A˝ A be the exchange operator defined as

�.x ˝ y/ D y ˝ x for all x; y 2 A:

There are several ways to make A˝A into a bimodule of A. For example, let id
be the identity map on A. Then .id ˝ L;R˝ id/ given by (for any x; a; b 2 A)

.id ˝ L/.x/.a˝ b/ D .id ˝ L.x//.a˝ b/ D a˝ xb;

.R˝ id/.x/.a˝ b/ D .R.x/˝ id/.a˝ b/ D ax ˝ b;

is a bimodule of A. Similarly, .L ˝ id; id ˝ R/ is also a bimodule of A. In fact,
eq. (5) given in the introduction can be rewritten as

�.ab/ D .L.a/˝ id/�.b/C .id ˝R.b//�.a/; (18)

which gives the notion of infinitesimal bialgebra ([JR]).
For a linear map � W V1 ! V2, we denote the dual (linear) map by �� W V �

2 ! V �
1

given by

hv; ��.u�/i D h�.v/; u�i for all v 2 V1; u
� 2 V2:

Theorem 2.2.3. Let .A; �/ be an associative algebra. Suppose there is an associative
algebra structure “B”on its dual spaceA� given by a linearmap�� W A�˝A� ! A�.
Then .A;A�; R�� ; L�� ; R�B ; L�B / is a matched pair of associative algebras if and only
if � W A ! A˝ A satisfies the following two conditions:

�.x � y/ D .id ˝ L�.x//�.y/C .R�.y/˝ id/�.x/; (19)

.L�.y/˝ id � id ˝R�.y//�.x/C �Œ.L�.x/˝ id � id ˝R�.x//�.y/� D 0 (20)

for all x; y 2 A.

Proof. Let fe1; : : : ; eng be a basis of A and let fe�
1 ; : : : ; e

�
ng be its dual basis. Set

ei � ej D Pn
kD1 c

k
ij ek and e�

i B e�
j D Pn

kD1 f
k

ij e
�
k

. Therefore, we have �.ek/ D
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Pn
i;j D1 f

k
ij ei ˝ ej and

R�� .ei /e
�
j D

nP

kD1

c
j

ki
e�

k
; L�� .ei /e

�
j D

nP

kD1

c
j

ik
e�

k
;

R�B .e�
i /ej D

nP

kD1

f
j

ki
ek; L�B .e�

i /ej D
nP

kD1

f
j

ik
ek :

Hence the coefficient of ej ˝ ek in

�.ei � em/ D .id ˝ L�.ei //�.em/C .R�.em/˝ id/�.ei /

gives the relation (for any i , j , k, m)

nP

lD1

cl
mif

l
jk

D
nP

lD1

.ck
ml
f i

jl
C c

j

li
f m

lk
/;

which is just the relation given by the coefficient of e�
m in

R�� .ei /.e
�
j B e�

k/ D R�� .L�B .e�
j /ei /e

�
k C .R�� .ei /e

�
j / B e�

k :

Similarly, eq. (20) corresponds to eq. (17).

Remark 2.2.4. From the symmetry of the associative algebras .A; � / and .A�; B /
appearing in the double construction, we also can consider the operation ˇ W A� !
A� ˝ A� such that ˇ� W A˝ A ! A gives an associative algebra structure on A. It
is easy to show that � satisfies eqs. (19) and (20) if and only if ˇ satisfies

ˇ.a� B b�/ D .id ˝ LB.a�//ˇ.b�/C .RB.b�/˝ id/ˇ.a�/;
.LB.b�/˝ id � id ˝RB.b�//ˇ.a�/C �Œ.LB.a�/˝ id � id ˝RB.a�//ˇ.b�/� D 0

for all a�; b� 2 A.

Definition 2.2.5. Let A be an associative algebra. An antisymmetric infinitesimal
bialgebra structure on A is a linear map � W A ! A˝ A such that

(a) �� W A� ˝ A� ! A� defines an associative algebra structure on A�;

(b) � satisfies eqs. (19) and (20).

We denote it by .A;�/ or .A;A�/.

Corollary 2.2.6. Let .A; � / and .A�; B / be two associative algebras. Then the
following conditions are equivalent.

(1) There is a double construction of a Frobenius algebra associated to .A; � / and
.A�; B /;
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(2) .A;A�; R�� ; L�� ; R�B ; L�B / is a matched pair of associative algebras;

(3) .A;A�/ is an antisymmetric infinitesimal bialgebra.

Proof. It follows from Theorems 2.2.1 and 2.2.3.

Remark2.2.7. As we have pointed out in the introduction, an antisymmetric infinites-
imal bialgebra is exactly an associative D-algebra in [Z] where the above equivalence
between (1) and (3) was given and a balanced infinitesimal bialgebra in the sense of
the opposite algebra in [A3] where the corresponding double construction of a Frobe-
nius algebra was called a balanced Drinfeld double as an important consequence. On
the other hand, the notion of antisymmetric infinitesimal bialgebra is due to the fact
that eq. (19) (in the sense of the opposite algebra) corresponds to eq. (18) which gives
the notion of infinitesimal bialgebra and eq. (20) expresses certain antisymmetry.

Definition 2.2.8. Let .A;�A/ and .B;�B/ be two antisymmetric infinitesimal bial-
gebras. A homomorphism of antisymmetric infinitesimal bialgebras ' W A ! B is a
homomorphism of associative algebras such that

.' ˝ '/�A.x/ D �B.'.x// for all x 2 A:
An isomorphism of antisymmetric infinitesimal bialgebras is an invertible homomor-
phism of antisymmetric infinitesimal bialgebras.

Definition 2.2.9. Let .A1 ‰ A�
1;B1/ and .A2 ‰ A�

2;B2/ be two double con-
structions of Frobenius algebras. They are isomorphic if and only if there exists an
isomorphism of associative algebras ' W A1 ‰ A�

1 ! A2 ‰ A�
2 such that

'.A1/ D A2; '.A�
1/ D A�

2; B1.x; y/ D '�B2.x; y/ D B2.'.x/; '.y//

for all x; y 2 A1 ‰ A�
1 .

Proposition 2.2.10. Two double constructions of Frobenius algebras are isomor-
phic if and only if their corresponding antisymmetric infinitesimal bialgebras are
isomorphic.

Proof. Let .A1 ‰ A�
1;B1/ and .A2 ‰ A�

2;B2/ be two double constructions of
Frobenius algebras. Let fe1; : : : ; eng be a basis of A1 and fe�

1 ; : : : ; e
�
ng its dual basis.

If ' W A1 ‰ A�
1 ! A2 ‰ A�

2 is an isomorphism of double constructions of Frobenius
algebras, then 'jA1

W A1 ! A2 and 'jA�

1
W A�

1 ! A�
2 are isomorphisms of associative

algebras. Moreover, 'jA�

1
D .'jA1

/��1 since

h'jA�

1
.e�

i /; '.ej /i D B2.'jA�

1
.e�

i /; '.ej //

D B1.e
�
i ; ej / D ıij D he�

i ; ej i
D h'�.'jA1

/��1
.e�

i /; ej i D h.'jA1
/��1

.e�
i /; '.ej /i:
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Hence .A1; A
�
1/ and .A2; A

�
2/ are isomorphic as antisymmetric infinitesimal bialge-

bras. Conversely, let '0 W A1 ! A2 be an isomorphism between two antisymmetric
infinitesimal bialgebras .A1; A

�
1/ and .A2; A

�
2/. Set ' W A1 ˚ A�

1 ! A2 ˚ A�
2 be a

linear map given by

'.x/ D '0.x/; '.a�/ D .'0�/�1.a�/ for all x 2 A1; a
� 2 A�

1 :

Then it is easy to show that ' is an isomorphism of double constructions of Frobenius
algebras between .A1 ‰ A�

1;B1/ and .A2 ‰ A�
2;B2/.

Example 2.2.11. Let .A;�/ be an antisymmetric infinitesimal bialgebra. Then its
dual .A�; ˇ/ given in Remark 2.2.4 is also an antisymmetric infinitesimal bialgebra.

Example 2.2.12. LetA be an associative algebra. If the associative algebra structure
on A� is trivial, then either .A; 0/ or .A;A�/ is an antisymmetric infinitesimal bial-
gebra. Moreover, its corresponding Frobenius algebra is given by the semidirect sum
AËR�;L� A� with the natural invariant bilinear form B given by eq. (2). Dually, ifA
is a trivial associative algebra, then the antisymmetric infinitesimal bialgebra struc-
tures on A are in one-to-one correspondence with the associative algebra structures
on A�.

Example 2.2.13. Let .A;A�/ be an antisymmetric infinitesimal bialgebra. In the next
subsection, we will prove that there exists a canonical antisymmetric infinitesimal
bialgebra structure on the direct sum A ˚ A� of the underlying vector spaces of A
and A�.

2.3. Coboundary (principal) antisymmetric infinitesimal bialgebras. In fact, for
an associative algebra A, � W A ! A ˝ A satisfying eq. (19) is a 1-cocycle or a
derivation of A associated to the bimodule .id ˝ L;R ˝ id/. So it is natural to
consider the special case that � is a 1-coboundary or a principal derivation.

Definition 2.3.1. An antisymmetric infinitesimal bialgebra .A;�/ is called cobound-
ary if there exists a r 2 A˝ A such that

�.x/ D .id ˝ L.x/ �R.x/˝ id/r for all x 2 A: (21)

Let A be an associative algebra and r 2 A ˝ A. If � W A ! A ˝ A is given
by eq. (21), then it is obvious that � satisfies eq. (19). Therefore, .A;�/ is an
antisymmetric infinitesimal bialgebra if and only if the following two conditions are
satisfied:

(1) �� W A� ˝ A� ! A� defines an associative algebra structure on A�.

(2) � satisfies eq. (20).
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Lemma2.3.2 ([A1], Proposition 5.1). LetA be an associative algebra and r 2 A˝A.
Define � W A ! A˝ A by

�.a/ D ŒL.x/˝ id � id ˝R.x/�r

for all x 2 A. Then �� W A� ˝ A� ! A� defines an associative algebra structure
on A� if and only if

.L.x/˝ id ˝ id � id ˝ id ˝R.x//.r13r12 C r23r13 � r12r23/ D 0

for all x 2 A, where the notations r13r12, r23r13, r12r23 are given similarly as in
eq. (4).

Therefore for (1), we use a similar discussion to get the following conclusion.

Proposition 2.3.3. LetA be an associative algebra and r 2 A˝A. Define� W A !
A˝A by eq. (21). Then�� W A� ˝A� ! A� defines an associative algebra structure
on A� if and only if

.id ˝ id ˝ L.x/ �R.x/˝ id ˝ id/.r12r13 C r13r23 � r23r12/ D 0 (22)

for all x 2 A.

Proposition 2.3.4. LetA be an associative algebra and r 2 A˝A. Define� W A !
A˝ A by eq. (21). Then � satisfies eq. (20) if and only if r satisfies

ŒL.x/˝ id � id ˝R.x/�Œid ˝ L.y/ �R.y/˝ id�.r C �.r// D 0 (23)

for all x; y 2 A.

Proof. This is straightforward.

Combining Proposition 2.3.3 and Proposition 2.3.4, we have the following con-
clusion.

Theorem 2.3.5. Let A be an associative algebra and r 2 A ˝ A. Then the linear
map � defined by eq. (21) induces an associative algebra structure on A� such that
.A;A�/ is an antisymmetric infinitesimal bialgebra if and only if eqs. (22) and (23)
are satisfied.

Theorem 2.3.6. Let .A;�A/ be an antisymmetric infinitesimal bialgebra. Then
there is a canonical antisymmetric infinitesimal bialgebra structure on the direct
sum A ˚ A� of the underlying vector spaces of A and A� such that both the in-
clusions i1 W A ! A ˚ A� and i2 W A� ! A ˚ A� into the two summands are
homomorphisms of antisymmetric infinitesimal bialgebras. Here the antisymmetric
infinitesimal bialgebra structure on A� is .A�;�ˇA�/, where ˇA� W A� ! A� ˝ A�
is given in Remark 2.2.4.
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Proof. Let r 2 A ˝ A� � .A ˚ A�/ ˝ .A ˚ A�/ correspond to the identity map
id W A ! A. Let fe1; : : : ; eng be a basis of A and fe�

1 ; : : : ; e
�
ng its dual basis. Then

r D Pn
iD1 ei ˝ e�

i . Suppose that the associative algebra structure “�” on A ˚ A�

is given by AD.A/ D A ‰R�

�
;L�

�

R�

B ;L�

B

A�. Then by Theorem 2.1.4, we have (for any
x; y 2 A, a�; b� 2 A�)

x � y D x � y; a� � b� D a� B b�;
x � a� D R�� .x/a� C L�B .a�/x; a� � x D RB.a�/x C L�� .x/a�:

If r satisfies eqs. (22) and (23), then

�AD.u/ D .id ˝ L.u/ �R.u/˝ id/r

for all u 2 AD.A/ induces an antisymmetric infinitesimal bialgebra structure on
AD.A/.

In fact, for eq. (23), we prove a little stronger conclusion (for any � 2 AD.A/):

.id ˝ L.�/ �R.�/˝ id/.r C �.r//

D P

i

.ei ˝ � � e�
i C ei ˝ � � ei � ei � �˝ e�

i � ei � �˝ ei / D 0: (24)

If � D ej , then
P

i

ei ˝ ej � e�
i D P

m

em � ej ˝ e�
m C P

i;m

he�
i B e�

m; ej iei ˝ em;

P

i

e�
i ˝ ej � ei D P

i

e�
i ˝ ej � ei ;

P

i

ei � ej ˝ e�
i D P

i

ei � ej ˝ e�
i ;

e�
i � ej ˝ ei D P

i;m

hej ; e�
m B e�

i iem ˝ ei C P

m

e�
m ˝ ej � em:

Hence eq. (24) holds for � D ej by exchanging some indices. Similarly, eq. (24)
holds for � D e�

j . Therefore eq. (23) holds. Furthermore,

r12r13 Cr13r23 �r23r12 D P

i;j

fej ˝ei �e�
j ˝e�

i �ej �ei ˝e�
j ˝e�

i �ei ˝ej ˝e�
i Be�

j g:

Since ei � e�
j D P

m.he�
j ; em � ei ie�

m C he�
j B e�

m; ei iem/; it follows that r12r13 C
r13r23 � r23r12 D 0. So AD.A/ is an antisymmetric infinitesimal bialgebra.

For ei 2 A, we have

�AD.ei /

D P

m;k

fhe�
m; ek � ei iem ˝ e�

k
C he�

m B e�
k
; ei iem ˝ ek � he�

m:ek � ei iem ˝ e�
k
g

D P

m;k

he�
m B e�

k
; ei iem ˝ ek D �A.ei /:
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Therefore the inclusion i1 W A ! A ˚ A� is a homomorphism of antisymmetric
infinitesimal bialgebras. Similarly, the inclusion i2 W A� ! A˚ A� is also a homo-
morphism of antisymmetric infinitesimal bialgebras since �AD.e

�
i / D �ˇA�.e�

i /,
where ˇA� is given in Remark 2.2.4.

Definition 2.3.7. Let .A;A�/ be an antisymmetric infinitesimal bialgebra. With the
antisymmetric infinitesimal bialgebra structure given in Theorem 2.3.6, A ˚ A� is
called an associative double of A. We denote it by AD.A/.

Remark 2.3.8. If we use the opposite algebra, then Theorem 2.3.6 and its proof
overlap [A3], Theorem 5.9 and Proposition 5.10 partly. Moreover, the associative
double AD.A/ is a balanced Drinfeld double which was denoted byDb.A/ in [A3].

Corollary 2.3.9. Let .A;A�/ be an antisymmetric infinitesimal bialgebra. Then the
associative double AD.A/ of A is an antisymmetric infinitesimal bialgebra and it is
a symmetric Frobenius algebra with the bilinear form given by eq. (2).

2.4. The associative Yang–Baxter equation and its properties

Corollary 2.4.1. Let A be an associative algebra and r 2 A˝A. Suppose that r is
antisymmetric. Then the map � defined by eq. (21) induces an associative algebra
structure on A� such that .A;A�/ is an antisymmetric infinitesimal bialgebra if

r12r13 C r13r23 � r23r12 D 0: (25)

Definition 2.4.2. Let A be an associative algebra and r 2 A˝ A. Eq. (25) is called
associative Yang–Baxter equation in A.

Remark 2.4.3. In [A1] and [A3], the associative Yang–Baxter equation is given as

r13r12 C r23r13 � r12r23 D 0: (26)

Note that eq. (25) is eq. (26) in the opposite algebra. Moreover, if r satisfies
.L.x/˝ id ˝ id � id ˝ id ˝R.x//.r12 C r21/ D 0, then ([A3], Lemma 3.4)

�13.r12r13 C r13r23 � r23r12/ D r13r12 C r23r13 � r12r23;

where the linear map �13 W A˝A˝A ! A˝A˝A is given by �13.x˝ y˝ z/ D
z˝ y˝ x for any x; y; z 2 A. In particular, when r is antisymmetric, the above two
associative Yang–Baxter equations are equivalent.

In order to be self-contained, in the following we give some properties of the asso-
ciative Yang–Baxter equation from the point of view of Frobenius algebras, although
some of them have already been given in [A3]. Let A be a vector space. For any
r 2 A˝ A, r can be regarded as a map from A� to A in the following way:

hu� ˝ v�; ri D hu�; r.v�/i for all u�; v� 2 A�:
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Proposition 2.4.4. Let .A; � / be an associative algebra and let r 2 A ˝ A be
an antisymmetric solution of the associative Yang–Baxter equation in A. Then the
associative algebra structure on the associative double AD.A/ is given from the
products in A as follows:

a� � b� D a� B b� D R�� .r.a�//b� C L�� .r.b�//a� for any a�; b� 2 A�; (27)

x � a� D x � r.a�/ � r.R�� .x/a�/CR�� .x/a� for any x 2 A; a� 2 A�; (28)

a� � x D r.a�/ � x � r.L�� .x/a�/C L�� .x/a� for any x 2 A; a� 2 A�: (29)

Proof. Let fe1; : : : ; eng be a basis of A and fe�
1 ; : : : ; e

�
ng its dual basis. Suppose that

ei � ej D P
k c

k
ij ek and r D P

i;j aij ei ˝ ej , where aij D �aj i . Then for any i , we
have

�.ei / D P

˛;ˇ;l

a˛ˇ .c
l
iˇ
e˛ ˝ el � cl

˛iel ˝ eˇ / D P

˛;ˇ

P

l

.a˛lc
ˇ

il
� alˇc

˛
li
/e˛ ˝ eˇ :

Therefore we have (for any i; j )

e�
i B e�

j D P

l;t

.ailc
j

tl
� alj c

i
lt
/e�

t

D P

l;t

.ailhet � el ; e
�
j i � alj hel � et ; e

�
i i/e�

t

D P

t

.het � r.e�
i /; e

�
j i C hr.e�

j / � et ; e
�
i i/e�

t

D R�� .r.e�
i //e

�
j C L�� .r.e�

j //e
�
i :

Similarly, eqs. (28) and (29) hold.

Theorem 2.4.5 ([A3], Proposition 2.1). Let A be an associative algebra and r 2
A˝A. Suppose that r is antisymmetric and non-degenerate. Then r is a solution of
the associativeYang–Baxter equation inA if and only if the inverse of the isomorphism
A� ! A induced by r , regarded as a bilinear form ! on A (that is, !.x; y/ D
hr�1x; yi for any x; y 2 A), is a Connes cocycle.

Corollary 2.4.6. Let .A; � / be an associative algebra and let r 2 A˝ A be a non-
degenerate antisymmetric solution of the associative Yang–Baxter equation in A.
Suppose the associative algebra structure “B” on A� is induced by r from eq. (27).
Then we have

a� B b� D r�1.r.a�/ � r.b�// for all a�; b� 2 A�: (30)

Therefore r W A� ! A is an isomorphism of associative algebras.
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Proof. Set !.x; y/ D hr�1.x/; yi for any x; y 2 A. Then ! is a Connes cocycle
of A. Hence

ha� B b�; xi D hr.b�/ � x; a�i C hx � r.a�/; b�i
D !.r.a�/; r.b�/ � x/C !.r.b�/; x � r.a�//
D �!.x; r.a�/ � r.b�//
D hr�1.r.a�/ � r.b�//; xi

for all a�; b� 2 A�, x 2 A. So eq. (30) holds. Therefore r is an isomorphism of
associative algebras.

Next we turn to the general antisymmetric solutions of associative Yang–Baxter
equation.

Theorem 2.4.7. Let .A; � / be an associative algebra and r 2 A˝A antisymmetric.
Then r is a solution of the associative Yang–Baxter equation in A if and only if r
satisfies

r.a�/ � r.b�/ D r.R�� .r.a�//b� C L�� .r.b�//a�/

for all a�; b� 2 A�.

Proof. Let fe1; : : : ; eng be a basis of A and fe�
1 ; : : : ; e

�
ng its dual basis. Suppose that

ei �ej D P
k c

k
ij ek and r D P

i;j aij ei ˝ej , aij D �aj i . Hence r.e�
i / D P

k akiek .
Then r is a solution of the associative Yang–Baxter equation in A if and only if (for
any i; j; k)

P

m;l

fcm
kl
aikajl � ci

lk
ajlakm � cj

lk
almaikg D 0:

The left-hand side of the above equation is just the coefficient of em in

r.e�
i / � r.e�

j / � r.R�� .r.e�
i //e

�
j C L�� .r.e�

j //e
�
i /:

Therefore the conclusion follows.

Combining Proposition 2.4.4 and Theorem 2.4.7, we have the following conclu-
sion which extends Corollary 2.4.6.

Corollary 2.4.8. Let .A; � / be an associative algebra and let r 2 A ˝ A be an
antisymmetric solution of the associative Yang–Baxter equation in A. Suppose the
associative algebra structure “B” on A� is induced by r from eq. (27). Then we have

r.a� B b�/ D r.a�/ � r.b�/ for all a�; b� 2 A�:

Therefore r W A� ! A is an homomorphism of associative algebras.
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Recall that two Frobenius algebras .A1;B1/ and .A2;B2/ are isomorphic if and
only if there exists an isomorphism of associative algebras ' W A1 ! A2 such that

B1.x; y/ D '�B2.x; y/ D B2.'.x/; '.y//

for all x; y 2 A1.

Theorem 2.4.9. Let .A; � / be an associative algebra. Then, as a Frobenius algebra,

the Frobenius algebra .A ‰R�

�
;L�

�

R�

B ;L�

B

A�;B/ given by an antisymmetric solution r of
the associative Yang–Baxter equation in A is isomorphic to the Frobenius algebra
.A ËR�

�
;L�

�
A�;B/, where B is given by eq. (2). However, in general, they are not

isomorphic as the double constructions of Frobenius algebras (or equivalently, as
antisymmetric infinitesimal bialgebras).

Proof. Let r be an antisymmetric solution of associative the Yang–Baxter equation

in A. Define a linear map ' W A ËR�;L� A� ! A ‰R�

�
;L�

�

R�

B ;L�

B

A� satisfying

'.x/ D x; '.a�/ D �r.a�/C a�

for all x 2 A, a� 2 A�. It is straightforward to show that ' is an isomorphism of
associative algebras. Moreover,

'�B.x C a�; y C b�/ D ha�;�r.b�/C yi C hx � r.a�/; b�i
D ha�; yi C hx; b�i
D B.x C a�; y C b�/:

Therefore ' is an isomorphism of Frobenius algebras. However in general, as an-
tisymmetric infinitesimal bialgebras, they are not isomorphic. In fact, if  is an
isomorphism of antisymmetric infinitesimal bialgebras between A ËR�;L� A� and

A ‰R�

�
;L�

�

R�

B ;L�

B

A�, then for any u�; v� 2 A� there exist a�; b� 2 A� such that
 .a�/ D u�,  .b�/ D v�. However,  .a� B b�/ D 0 and  .a�/ �  .b�/ D
u� � v� D R�.r.a�//b� CL�.r.b�//a� is not zero in general, which is a contradic-
tion.

Corollary 2.4.10. Let .A; � / be an associative algebra. Then as Frobenius algebras,

the Frobenius algebras .A ‰R�

�
;L�

�

R�

B ;L�

B

A�;B/ given by all antisymmetric solutions of
the associative Yang–Baxter equation in A are isomorphic to the Frobenius algebra
.A ËR�

�
;L�

�
A�;B/ given by the zero solution.

2.5. The associative Yang–Baxter equation and O-operators

Definition 2.5.1. Let .A; � / be an associative algebra and .l; r; V / a bimodule. A
linear map T W V ! A is called an O-operator associated to .l; r; V / if T satisfies

T .u/ � T .v/ D T .l.T .u//v C r.T .v/u// for all u; v 2 V:
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Example 2.5.2. Let .A; � / be an associative algebra. Then the identity map id is an
O-operator associated to the bimodule .L; 0/ or .0; R/.

Example 2.5.3. Let .A; � / be an associative algebra. A linear map R W A ! A is
called a Rota–Baxter operator on A of weight zero ([Bax], [Rot]) if R satisfies

R.x/ �R.y/ D R.R.x/ � y C x �R.y// for all x; y 2 A:
In fact, a Rota–Baxter operator onA is just an O-operator associated to the bimodule
.L;R/.

Example 2.5.4. Let .A; � / be an associative algebra and r 2 A˝A antisymmetric.
Then r is a solution of associative Yang–Baxter equation in A if and only if r is an
O-operator associated to the bimodule .R�; L�/.

Theorem 2.5.5 ([BGN1]). Let .A; � / be an associative algebra and .l; r; V / a bi-
module. Let .r�; l�; V �/ be the bimodule ofA given by Lemma 2.1.2. Let T W V ! A

be a linear map which is identified as an element in .AËr�;l� V �/˝ .AËr�;l� V �/.
Then r D T � �.T / is an antisymmetric solution of the associative Yang–Baxter
equation inAËr�;l� V � if and only if T is an O-operator associated to the bimodule
.l; r; V /.

Corollary 2.5.6 (Cf. Corollary 3.1.5). Let .A; � / be an associative algebra. Then

r D
nP

i

.ei ˝ e�
i � e�

i ˝ ei / (31)

is a solution of the associative Yang–Baxter equation in A ËR�;0 A
� or A Ë0;L� A�,

where fe1; : : : ; eng is a basis of A and fe�
1 ; : : : ; e

�
ng is its dual basis. Moreover there

is a natural Connes cocycle ! onAËR�;0A
� orAË0;L� induced by r�1 W A˚A� !

.A˚ A�/�, which is given by eq. (7).

Proof. Note that id is an O-operator associated to the bimodule .L; 0; A/ or .0; R;A/.
Then the conclusion follows from Theorems 2.5.5 and 2.4.5.

3. Dendriform algebras

3.1. O-operators and dendriform algebras. There are close relations between
O-operators and a class of algebras, namely, dendriform algebras, which are given in
[BGN2]. In order to be self-contained, we list them in this subsection.

Definition 3.1.1 ([Lo1]). Let A be a vector space over a field F with two bilinear
products denoted by � and �. Then .A;�;�/ is called a dendriform algebra if, for
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any x; y; z 2 A,

.x � y/ � z D x � .y � z/;

.x � y/ � z D x � .y � z/;

x � .y � z/ D .x � y/ � z;

where x � y D x � y C x � y.

Let .A;�;�/ be a dendriform algebra. For any x 2 A, let L�.x/; R�.x/ and
L�.x/; R�.x/ denote the left and right multiplication operators of .A;�/ and .A;�/,
respectively, that is,

L�.x/.y/ D x � y; R�.x/y D y � x; L�.x/y D x � y; R�.x/.y/ D y � x

for all x; y 2 A. Moreover, let L�; R�; L�; R� W A ! gl.A/ be four linear maps
with x ! L�.x/, x ! R�.x/, x ! L�.x/ and x ! R�.x/, respectively. It is
known that the product given by ([Lo1])

x � y D x � y C x � y; for all x; y 2 A; (32)

defines an associative algebra. We call .A;�/ the associated associative algebra of
.A;�;�/ and .A;�;�/ is called a compatible dendriform algebra structure on the
associative algebra .A;�/. Moreover, .L�; R�/ is a bimodule of the associated
associative algebra .A;�/.

Theorem 3.1.2 ([BGN2]). Let A be an associative algebra and .l; r; V / a bimod-
ule. Let T W V ! A be an O-operator associated to .l; r; V /. Then there exists a
dendriform algebra structure on V given by

u � v D l.T .u//v; u � v D r.T .v//u

for all u; v 2 V . So there is an associated associative algebra structure on V
given by eq. (32) and T is a homomorphism of associative algebras. Moreover,
T .V / D fT .v/ j v 2 V g � A is an associative subalgebra of A and there is an
induced dendriform algebra structure on T .V / given by

T .u/ � T .v/ D T .u � v/; T .u/ � T .v/ D T .u � v/ (33)

for all u; v 2 V . Its corresponding associated associative algebra structure on
T .V / given by eq. (32) is just the associative subalgebra structure of A and T is a
homomorphism of dendriform algebras.

Corollary 3.1.3 ([BGN2]). Let .A;�/ be an associative algebra. There is a com-
patible dendriform algebra structure on A if and only if there exists an invertible
O-operator of .A;�/.
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In fact, if T is an invertible O-operator associated to a bimodule .l; r; V /, then
the compatible dendriform algebra structure on A is given by

x � y D T .l.x/T �1.y//; x � y D T .r.y/T �1.x//

for all x; y 2 A. Conversely, let .A;�;�/ be a dendriform algebra and .A;�/ the
associated associative algebra. Then the identity map id is an O-operator associated
to the bimodule .L�; R�/ of .A;�/.

Remark 3.1.4. If T is an invertible O-operator associated to a bimodule .l; r; V /,
then the linear map f D T �1 W A ! V satisfies

f .x � y/ D l.x/f .y/C r.y/f .x/ for all x; y 2 A: (34)

Such a linear map is a 1-cocycle of .A;�/ associated to the bimodule .l; r; V /.

Corollary 3.1.5 ([BGN2]). Let .A;�;�/ be a dendriform algebra. Then

r D
nP

i

.ei ˝ e�
i � e�

i ˝ ei /

is a solution of the associative Yang–Baxter equation in A ËR�

�
;L�

�

A�, where
fe1; : : : ; eng is a basis of A and fe�

1 ; : : : ; e
�
ng is its dual basis. Moreover there is a

natural Connes cocycle ! on AËR�

�
;L�

�

A� induced by r�1 W A˚A� ! .A˚A�/�,
which is given by eq. (7).

Remark 3.1.6. It is easy to see that Corollary 2.5.6 is a special case of the above
conclusion, that is, the former corresponds to the trivial dendriform algebra structure
on an associative algebra .A; � / given by � D �, � D 0 or � D 0, � D �.

3.2. Bimodules and matched pairs of dendriform algebras

Definition 3.2.1 ([A4]). Let .A;�;�/ be a dendriform algebra and V a vector space.
Let l�; r�; l�; r� WA ! gl.V / be four linear maps. Then V (or .l�; r�; l�; r�/, or
.l�; r�; l�; r�; V /) is called a bimodule of A if the following equations hold for any
x; y 2 A:

l�.x � y/ D l�.x/l�.y/; r�.x/l�.y/ D l�.y/r�.x/; r�.x/r�.y/ D r�.y � x/;
l�.x � y/ D l�.x/l�.y/; r�.x/l�.y/ D l�.y/r�.x/; r�.x/r�.y/ D r�.y � x/;

l�.x � y/ D l�.x/l�.y/; r�.x/l�.y/ D l�.y/r�.x/; r�.x/r�.y/ D r�.y � x/;

where x � y D x � y C x � y, l� D l� C l�, r� D r� C r�.

By a direct computation or according to [Sc], .l�; r�; l�; r�; V / is a bimodule
of a dendriform algebra .A;�;�/ if and only if there exists a dendriform algebra
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structure on the direct sum A˚ V of the underlying vector spaces of A and V given
by

.x C u/ � .y C v/ D x � y C l�.x/v C r�.y/u;

.x C u/ � .y C v/ D x � y C l�.x/v C r�.y/u

for all x; y 2 A, u; v 2 V . We denote it by A Ël�;r�;l�;r�
V .

Proposition 3.2.2. Let .l�; r�; l�; r�; V / be a bimodule of a dendriform algebra
.A;�;�/. Let .A;�/ be the associated associative algebra. Then we have the
following results.

(1) Both .l�; r�; V / and .l� C l�; r� C r�; V / are bimodules of .A;�/.
(2) For any bimodule .l; r; V / of .A;�/, .l; 0; 0; r; V / is a bimodule of .A;�;�/.
(3) Both .l�Cl�; 0; 0; r�Cr�; V / and .l�; 0; 0; r�; V / are bimodules of .A;�;�/.
(4) The dendriform algebras A Ël�;r�;l�;r�

V and A Ël�Cl�;0;0;r�Cr�
V have the

same associated associative algebra A Ël�Cl�;r�Cr�
V .

(5) Let l��; r��; l��; r�� W A ! gl.V �/ be the linear maps given by

hl��.x/a�; yi D hl�.x/y; a�i; hr��.x/a�; yi D hr�.x/y; a�i;
hl��.x/a�; yi D hl�.x/y; a�i; hr��.x/a�; yi D hr�.x/y; a�i:

Then .r�� C r��;�l��;�r��; l�� C l��; V �/ is a bimodule of .A;�;�/.
(6) Both .r�� C r��; 0; 0; l�� C l��; V �/ and .r��; 0; 0; l��; V �/ are bimodules of

.A;�;�/.
(7) Both .r�� C r��; l�� C l��; V �/ and .r��; l��; V �/ are bimodules of .A;�/.
(8) The dendriform algebrasAËr�

�
Cr�

�
;�l�

�
;�r�

�
;l�

�
Cl�

�

V � andAËr�

�
;0;0;l�

�

V � have
the same associative algebra A Ër�

�
;l�

�

V �.

Proof. This is straightforward.

Example 3.2.3. Let .A;�;�/ be a dendriform algebra. Then

.L�; R�; L�; R�; A/; .L�; 0; 0; R�; A/; .L� C L�; 0; 0; R� CR�; A/

are bimodules of .A;�;�/. On the other hand,

.R�� CR��;�L��;�R��; L�� C L��; A�/; .R��; 0; 0; L��; A�/;
.R�� CR��; 0; 0; L�� C L��; A�/

are bimodules of .A;�;�/, too. There are two compatible dendriform algebra struc-
tures,

A ËR�

�
CR�

�
;�L�

�
;�R�

�
;L�

�
CL�

�

A� and A ËR�

�
;0;0;L�

�

A�;
on the same associative algebra A ËR�

�
;L�

�

A�.
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Theorem 3.2.4. Let .A;�A;�A/ and .B;�B ;�B/ be two dendriform algebras.
Suppose that there are linear maps l�A

, r�A
, l�A

, r�A
W A ! gl.B/ and l�B

,
r�B

, l�B
, r�B

W B ! gl.A/ such that .l�A
; r�A

; l�A
; r�A

/ is a bimodule of A and
.l�B

; r�B
; l�B

; r�B
/ is a bimodule of B and they satisfy the following 18 equations:

r�A
.x/.a �B b/ D a �B .rA.x/b/C r�A

.lB.b/x/a; (35)

l�A
.l�B

.a/x/b C .r�A
.x/a/ �B b D a �B .lA.x/b/C r�A

.rB.b/x/a; (36)

l�A
.x/.a �B b/ D .l�A

.x/a/ �B b C l�A
.r�B

.a/x/b; (37)

r�A
.x/.a �B b/ D r�A

.l�B
.b/x/aC a �B .r�A

.x/b/; (38)

l�A
.l�B

.a/x/b C .r�A
.x/a/ �B b D a �B .l�A

.x/b/C r�A
.r�B

.b/x/a; (39)

l�A
.x/.a �B b/ D .l�A

.x/a/ �B b C l�A
.r�B

.a/x/b; (40)

r�A
.x/.a �B b/ D a �B .r�A

.x/b/C r�A
.l�B

.b/x/a; (41)

a �B .l�A
.x/b/C r�A

.r�B
.b/x/a D l�A

.lB.a/x/b C .rA.x/a/ �B b; (42)

l�A
.x/.a �B b/ D .lA.x/a/ �B b C l�A

.rB.a/x/b; (43)

r�B
.a/.x �A y/ D x �A .rB.a/y/C r�B

.lA.y/a/x; (44)

l�B
.l�A

.x/a/y C .r�B
.a/x/ �A y D x �A .lB.a/y/C r�B

.rA.y/a/x; (45)

l�B
.a/.x �A y/ D .l�B

.a/x/ �A y C l�B
.r�A

.x/a/y; (46)

r�B
.a/.x �A y/ D r�B

.l�A
.y/a/x C x �A .r�B

.a/y/; (47)

l�B
.l�A

.x/a/y C .r�B
.a/x/ �A y D x �A .l�B

.a/y/C r�B
.r�A

.y/a/x; (48)

l�B
.a/.x �A y/ D .l�B

.a/x/ �A y C l�B
.r�A

.x/a/y; (49)

r�B
.a/.x �A y/ D x �A .r�B

.a/y/C r�B
.l�A

.y/a/x; (50)

x �A .l�B
.a/y/C r�B

.r�A
.y/a/x D l�B

.lA.x/a/y C .rB.a/x/ �A y; (51)

l�B
.a/.x �A y/ D .lB.a/x/ �A y C l�B

.rA.x/a/y (52)

for any x; y 2 A, a; b 2 B and lA D l�A
C l�A

, rA D r�A
C r�A

, lB D l�B
C l�B

,
rB D r�B

C r�B
. Then there is a dendriform algebra structure on the direct sum

A˚ B of the underlying vector spaces of A and B given by

.x C a/ � .y C b/ D .x �A y C r�B
.b/x C l�B

.a/y/

C .l�A
.x/b C r�A

.y/aC a �B b/;

.x C a/ � .y C b/ D .x �A y C r�B
.b/x C l�B

.a/y/

C .l�A
x/b C r�A

.y/aC a �B b/

for any x; y 2 A, a; b 2 B . Let A ‰l�A
;r�A

;l�A
;r�A

l�B
;r�B

;l�B
;r�B

B or simply A ‰ B denote

this dendriform algebra. On the other hand, every dendriform algebra which is the
direct sum of the underlying vector spaces of two subalgebras can be obtained in this
way.

Proof. This is straightforward.
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Definition 3.2.5. Let .A;�A;�A/ and .B;�B ;�B/ be two dendriform algebras.
Suppose that there are linear maps l�A

, r�A
, l�A

, r�A
W A ! gl.B/ and l�B

,
r�B

, l�B
, r�B

W B ! gl.A/ such that .l�A
; r�A

; l�A
; r�A

/ is a bimodule of A
and .l�B

; r�B
; l�B

; r�B
/ is a bimodule of B . If eqs. (35)–(52) are satisfied, then

.A;B; l�A
; r�A

; l�A
; r�A

; l�B
; r�B

; l�B
; r�B

/ is called a matched pair of dendriform
algebras.

Remark 3.2.6. ObviouslyB is an ideal ofA ‰ B if and only if l�B
D r�B

D l�B
D

r�B
D 0. IfB is a trivial ideal, thenA ‰l�A

;r�A
;l�A

;r�A

0;0;0;0 B Š AËl�A
;r�A

;l�A
;r�A

B:

Corollary 3.2.7. Let .A;B; l�A
; r�A

; l�A
; r�A

; l�B
; r�B

; l�B
; r�B

/ be a matched
pair of dendriformalgebras. Then .A;B; l�A

Cl�A
; r�A

Cr�A
; l�B

Cl�B
; r�B

Cr�B
/

is a matched pair of the associated associative algebras .A;�A/ and .B;�B/.

Proof. In fact, the associated associative algebra .A ‰ B;�/ is exactly the associative
algebra obtained from the matched pair .A;B; lA; rA; lB ; rB/ of associative algebras:

.x C a/ � .y C b/ D x �A y C lB.a/y C rB.b/x C a �B b C lA.x/b C rA.y/a

for all x; y 2 A, a; b 2 B , where lA D l�A
C l�A

, rA D r�A
C r�A

, lB D l�B
C l�B

,
rB D r�B

C r�B
.

4. Double constructions of Connes cocycles and an analogue of the classical
Yang–Baxter equation

4.1. Connes cocycles and dendriform algebras

Theorem 4.1.1. Let .A;�/ be an associative algebra and let ! be a non-degenerate
Connes cocycle. Then there exists a compatible dendriform algebra structure �, �
on A given by

!.x � y; z/ D !.y; z�x/; !.x � y; z/ D !.x; y�z/ for all x; y; z 2 A: (53)

Proof. Define a linear map T W A ! A� by hT .x/; yi D !.x; y/ for all x; y 2 A.
Then T is invertible and T �1 is an O-operator of the associative algebra .A;�/
associated to the bimodule .R��; L��/. By Corollary 3.1.3, there is a compatible
dendriform algebra structure �, � on .A;�/ given by

x � y D T �1R��.x/T .y/; x � y D T �1L��.y/T .x/

for all x; y 2 A, which gives exactly eq. (53).
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Next, we turn to the double construction of the Connes cocycles. Let .A;�A/ be an
associative algebra and suppose that there is a associative algebra structure �A� on its
dual spaceA�. We construct an associative algebra structure on the direct sumA˚A�
of the underlying vector spaces ofA andA� such that bothA andA� are subalgebras
and the antisymmetric bilinear form on A˚A� given by eq. (7) is a Connes cocycle
onA˚A�. Such a construction is called a double construction of the Connes cocycle
associated to .A;�A/ and .A�;�A�/ and we denote it by .T .A/ D A ‰ A�; !/.

Corollary 4.1.2. Let .T .A/ D A ‰ A�; !/ be a double construction of the Connes
cocycle. Then there exists a compatible dendriform algebra structure �, � on T .A/
defined by eq. (53). Moreover, A and A� are dendriform subalgebras with this
product.

Proof. The first half follows from Theorem 4.1.1. Let x; y 2 A. Set x � y D
a C b�, where a 2 A, b� 2 A�. Since A is an associative subalgebra of T .A/ and
!.A;A/ D !.A�; A�/ D 0, we have

!.b�; A�/ D !.b�; A/ D !.x � y;A/ D !.y;A � x/ D 0:

Therefore b� D 0 due to the nondependence of!. Hence x � y D a 2 A. Similarly,
x � y 2 A. Thus A is a dendriform subalgebra of T .A/ with the product �, �. By
symmetry of A and A�, A� is also a dendriform subalgebra.

Definition 4.1.3. Let .T .A1/ D A1 ‰ A�
1; !1/ and .T .A2/ D A2 ‰ A�

2; !2/ be
two double constructions of Connes cocycles. They are isomorphic if there exists an
isomorphism of associative algebras ' W T .A1/ ! T .A2/ satisfying the conditions

'.A1/ D A2; '.A�
1/ D A�

2; !1.x; y/ D '�!2.x; y/ D !2.'.x/; '.y// (54)

for all x; y 2 A1.

Proposition 4.1.4. Two double constructions of Connes cocycles .T .A1/ D A1 ‰
A�

1; !1/ and .T .A2/ D A2 ‰ A�
2; !2/ are isomorphic if and only if there exists a

dendriform algebra isomorphism ' W T .A1/ ! T .A2/ satisfying eq. (54), where the
dendriformalgebra structures onT .A1/andT .A2/are givenby eq. (53), respectively.

Proof. This is straightforward.

Theorem 4.1.5. Let .A;�A;�A/ be a dendriform algebra and .A;�A/ the associated
associative algebra. Suppose that there is a dendriform algebra structure “�A� ,
�A�” on its dual spaceA� and .A�;�A�/ is the associated associative algebra. Then
there exists a double construction of the Connes cocycle associated to .A;�A/ and
.A;�A�/ if and only if .A;A�; R��A

; L��A
; R��A�

; L��A�
/ is a matched pair of the

associative algebras. Moreover, every double construction of the Connes cocycle
can be obtained in this way.
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Proof. The conclusion can be obtained by a similar proof as of Theorem 2.2.1.

Corollary 4.1.6. Let .A;�;�/ be a dendriform algebra and .R��; L��/ the bimodule
of the associated associative algebra .A;�/. Then .T .A/ D A ËR�

�
;L�

�

A�; !/ is a
double construction of the Connes cocycle. Conversely, let .T .A/ D A ‰ A�; !/
be a double construction of the Connes cocycle. If A� is an ideal of T .A/, then
A� is a trivial associative algebra and hence T .A/ is isomorphic to the semidirect
A ËLT .A/;RT .A/

A�. Furthermore, this double construction of the Connes cocycle is
isomorphic to the double construction of the Connes cocycle .T .A/ D A ËR�

�
;L�

�

A�; !/ and the dendriform algebra structure on A is given by ! from eq. (53).

Proof. By Remark 2.1.6, .A;A�; R��; L��; 0; 0/with the associative algebra structure
on A� being trivial is always a matched pair of associative algebras, the first half
follows immediately. Conversely, if A� is an ideal, then, for any a�; b� 2 A�, it
follows that if T .A/ � a�; b� � T .A/ 2 A� then !.a� � b�; T .A// D �!.T .A/ �
a�; b�/ � !.b� � T .A/; a�/ D 0. Thus a� � b� D 0. Hence T .A/ is isomorphic
to A ËLT .A/;RT .A/

A�. By Remark 2.1.6, it follows that that .T .A/ D A ‰ A�; !/
is isomorphic to the double construction of the Connes cocycle .T .A/ D A ËR�

�
;L�

�

A�; !/.

Theorem 4.1.7. Let .A;�A;�A/ be a dendriform algebra and .A;�A/ the associated
associative algebra. Suppose that there is a dendriform algebra structure “�A� ,
�A�” on its dual spaceA� and .A�;�A�/ is the associated associative algebra. Then
.A;A�; R��A

; L��A
, R��A�

; L��A�
/ is a matched pair of associative algebras if and

only if

.A;A�; R��A
CR��A

; � L��A
;�R��A

; L��A
C L��A

;

R��A�
CR��A�

;�L��A�
;�R��A�

; L��A�
C L��A�

/

is a matched pair of dendriform algebras.

Proof. The “if” part follows from Corollary 3.2.7. We need to prove the “only if”
part. If .A;A�; R��A

; L��A
; R��A�

; L��A�
/ is a matched pair of associative algebras,

then .A ‰R�

�A
;L�

�A

R�

�A�
;L�

�A�

A�; !/ is a double construction of the Connes cocycle. Hence

there exists a compatible dendriform algebra structure on A ‰R�

�A
;L�

�A

R�

�A�
;L�

�A�

A� given

by eq. (53). By a simple and direct computation, we show that A and A� are its
subalgebras and the other products are given by

x � a� D .R��A
CR��A

/.x/a� � L��A�
.a�/x;

x � a� D �R��A
.x/a� C .L��A�

C L��A�
/.a�/x;

a� � x D .R��A�
CR��A�

/.a�/x � L��A
.x/a�;

a� � x D �R��A�
.a�/x C .L��A

C L��A
/.x/a�;
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for any x 2 A; a� 2 A�. Therefore

.A;A�; R��A
CR��A

; � L��A
;�R��A

; L��A
C L��A

;

R��A�
CR��A�

;�L��A�
;�R��A�

; L��A�
C L��A�

/

is a matched pair of dendriform algebras.

4.2. Dendriform D-bialgebras

Theorem 4.2.1. Let .A;�A;�A/ be a dendriform algebra whose products are given
by two linear maps ˇ��, ˇ�� W A ˝ A ! A. Further suppose that there is a dendri-
form algebra structure “�A� , �A�” on its dual space A� given by two linear maps
���; ��� W A� ˝A� ! A�. Then .A;A�; R��A

; L��A
; R��A�

; L��A�
/ is a matched pair

of associative algebras if and only if the following equations hold for any x; y 2 A

and a�; b� 2 A�:

��.x �A y/ D .id ˝ L�A
.x//��.y/C .RA.y/˝ id/��.x/; (55)

��.x �A y/ D .id ˝ LA.x//��.y/C .R�A
.y/˝ id/��.x/; (56)

ˇ�.a� �A� b�/ D .id ˝ L�A�
.a�//ˇ�.b�/C .RA�.b�/˝ id/ˇ�.a�/; (57)

ˇ�.a� �A� b�/ D .id ˝ LA�.a�//ˇ�.b�/C .R�A�
.b�/˝ id/ˇ�.a�/; (58)

.LA.x/˝ id � id ˝R�A
.x//��.y/

C �Œ.L�A
.y/˝ �id ˝RA.y//��.x/� D 0;

(59)

.LA�.a�/˝ id � id ˝R�A�
.a�//ˇ�.b�/

C �Œ.L�A�
.b�/˝ �id ˝RA�.b�//ˇ�.a�/� D 0;

(60)

where LA D L�A
C L�A

, RA D R�A
C R�A

, LA� D L�A�
C L�A�

, RA� D
R�A�

CR�A�
.

Proof. Let fe1; : : : ; eng be a basis of A and fe�
1 ; : : : ; e

�
ng its dual basis. Set

ei �A ej D
nP

kD1

ak
ij ek; ei �A ej D

nP

kD1

bk
ij ek;

e�
i �A� e�

j D
nP

kD1

ck
ij e

�
k
; e�

i �A� e�
j D

nP

kD1

dk
ij e

�
k
:

Therefore the coefficient of e�
l

in

R��A
.ei /.e

�
j �A� e�

k/ D R��A
.L��A�

.e�
j /ei /e

�
k CR��A

.ei /e
�
j �A� e�

k

gives the following relation (for any i; j; k; l)

nP

mD1

bm
li
.cm

jk
C dm

jk
/ D

nP

mD1

Œci
jmb

k
lm

C b
j
mi .c

l
mk

C d l
mk
/�;
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which is precisely the relation given by the coefficient of e�
l

˝ e�
i in

ˇ�.e�
j �A� e�

k/ D .RA�.e�
k/˝ id/ˇ�.e�

j /C .id ˝ L�A�
.e�

j //ˇ�.e�
k/:

So eq. (9) in the case lA D R��A
, rA D L��A

, lB D lA� D R��A�
, rB D rA� D L��A�

is eq. (57). Similarly, in this situation, we have the following correspondences:

eq. (10) () eq. (58); eq. (11) () eq. (55); eq. (12) () eq. (56);

eq. (13) () eq. (60); eq. (14) () eq. (59):

Therefore the conclusion holds due to Theorem 2.1.4.

Definition 4.2.2. Let A be a vector space. A dendriform D-bialgebra structure
on A is a set of linear maps .��; ��; ˇ�; ˇ�/ such that ��; �� W A ! A ˝ A,
ˇ�; ˇ� W A� ! A� ˝ A� and

(a) .���; ���/ W A� ˝A� ! A� defines a dendriform algebra structure .�A� ;�A�/

on A�;

(b) .ˇ��; ˇ��/ W A˝ A ! A defines a dendriform algebra structure .�A;�A/ on A;

(c) eqs. (55)–(60) are satisfied.

We also denote it by .A;A�; ��; ��; ˇ�; ˇ�/ or simply .A;A�/.

Remark 4.2.3. In fact, the notions of dendriform bialgebra ([LR1]–[LR2], [Ron],
[A4]) and bidendriform bialgebra ([F2]), which are the special dendriform bialgebras,
were already introduced. We use the terminology “D-bialgebra” in order to express its
relation with the double construction. All of these bialgebras are dendriform algebras
equipped with coassociative cooperations satisfying some (different) compatibility
relations. We would like to point out that the dendriform D-bialgebras are quite
different from the other types of bialgebras. For example, one of the differences is
that the term a ˝ b appears in both ��.a � b/ and ��.a � b/ in a bidendriform
bialgebra, whereas it does not appear in a dendriform D-bialgebra.

Theorem 4.2.4. Let .A;�A;�A/ and .A�;�A� ;�A�/ be two dendriform algebras.
Let .A;�A/ and .A�;�A�/ be the associated associative algebras respectively. Then
the following conditions are equivalent.

(1) There is a double construction of the Connes cocycle associated to .A;�A/ and
.A;�A�/.

(2) .A;A�; R��A
; L��A

; R��A�
; L��A�

/ is a matched pair of the associative algebras.

(3) .A;A�; R��A
C R��A

;�L��A
;�R��A

; L��A
C L��A

; R��A�
C R��A�

;�L��A�
;

�R��A�
; L��A�

C L��A�
/ is a matched pair of dendriform algebras.

(4) .A;A�/ is a dendriform D-bialgebra.

Proof. This follows from Theorems 4.1.5, 4.1.7 and 4.2.1.
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Definition 4.2.5. Let .A;A�; ��; ��; ˇ�; ˇ�/ and .B;B�; ��; ��; ˇ�; ˇ�/ be two
dendriform D-bialgebras. A homomorphism of dendriform D-bialgebras ' W A !
B is a homomorphism of dendriform algebras such that '� W B� ! A� is also a
homomorphism of dendriform algebras, that is, ' satisfies

.' ˝ '/��.x/ D ��.'.x//; .' ˝ '/��.x/ D ��.'.x//;
.'� ˝ '�/ˇ�.a�/ D ˇ�.'�.a�//; .'� ˝ '�/ˇ�.a�/ D ˇ�.'�.a�//;

for any x 2 A; a� 2 B�. An isomorphism of dendriform D-bialgebras is an invertible
homomorphism of dendriform D-bialgebras.

Proposition 4.2.6. Two double constructions of Connes cocycles are isomorphic if
and only if their corresponding dendriform D-bialgebras are isomorphic.

Proof. It follows from a similar proof as of Proposition 2.2.10.

Example 4.2.7. Let .A;A�; ��; ��; ˇ�; ˇ�/ be a dendriform D-bialgebra. Then
its dual .A�; A; ˇ�; ˇ�; ��; ��/ is also a dendriform D-bialgebra.

Example 4.2.8. Let .A;�A;�A/ be a dendriform algebra. If the dendriform algebra
structure onA� is trivial, then .A;A�; 0; 0; ˇ�; ˇ�/ is a dendriform D-bialgebra. And
its corresponding dendriform algebra isAËR�

�
CR�

�
;�L�

�
;�R�

�
;L�

�
CL�

�

A�. Moreover,
its corresponding double construction of the Connes cocycle is just the semidirect
sum A ËR�

�A
;L�

�A
A� with the bilinear form ! given by eq. (7). Dually, if A is a

trivial dendriform algebra, then the dendriform D-bialgebra structures on A are in
one-to-one correspondence with the dendriform algebra structures on A�.

Example 4.2.9. Let .A;A�/ be a dendriform D-bialgebra. In the next subsection,
we will prove that there exists a canonical dendriform D-bialgebra structure on the
direct sum A˚ A� of the underlying vector spaces of A and A�.

4.3. Coboundary dendriform D-bialgebras. In Theorem 4.2.1 we showed that
both �� and �� (ˇ� and ˇ�, respectively) are the 1-cocycles of the associated
associative algebra .A;�A/ (resp. .A�;�A�/). So it is natural to consider the special
case that they are 1-coboundaries or principal derivations, as we did in Section 2.3.

Let .A;�;�/ be a dendriform algebra and r�; r� 2 A˝ A. Set

��.x/ D .id ˝ L.x/ �R�.x/˝ id/r�; (61)

��.x/ D .id ˝ L�.x/ �R.x/˝ id/r� (62)

for any x 2 A. It is obvious that �� satisfies eq. (55) and �� satisfies eq. (56).
Moreover, by eq. (59), it follows that

.L.x/˝ id � id ˝R�.x//.id ˝ L�.y/ �R.y/˝ id/.r� C �.r�// D 0 (63)

for all x; y 2 A. Therefore .A;��; ��; ˇ�; ˇ�/ is a dendriform D-bialgebra if and
only if the following conditions are satisfied:
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(1) ���; ��� W A� ˝ A� ! A� defines a dendriform algebra structure on A�.

(2) ˇ�, ˇ� satisfy eqs. (57), (58) and (60), where the dendriform algebra structure
on A� is given by (1).

Proposition 4.3.1. Let .A;�;�/ be a dendriform algebra whose products are given
by two linear maps ˇ��; ˇ�� W A˝A ! A and r�; r� 2 A˝A. Suppose there exists a
dendriform algebra structure “�A� , �A�” onA� given by���; ��� W A� ˝A� ! A�,
where�� and�� are two linear maps given by eqs. (61) and (62), respectively. Then

(1) Eq. (57) holds if and only if r�; r� satisfy

ŒR�.x/˝L�.y/� id ˝L�.y � x/�R�.y � x/˝ id�.r� C r�/ D 0 (64)

for all x; y 2 A.

(2) Eq. (58) holds if and only if r�, r� satisfy eq. (64).

(3) Eq. (60) holds if and only if r�, r� satisfy

ŒL�.x/˝ id � id ˝R�.x/�Œ�id ˝ L�.y/CR�.y/˝ id�.r� C r�/
C ŒL�.x/˝ id � id ˝R�.x/�ŒR�.y/˝ id.r� C �.r�//
� id ˝ L�.y/.�.r�/C r�/� D 0

(65)

for any x; y 2 A.

Proof. Let fe1; : : : ; eng be a basis of A and fe�
1 ; : : : ; e

�
ng its dual basis. Set

r� D P

i;j

aij ei ˝ ej ; r� D P

i;j

bij ei ˝ ej ;

ei � ej D
nP

kD1

ak
ij ek; ei � ej D

nP

kD1

bk
ij ek;

e�
i � e�

j D
nP

kD1

ck
ij e

�
k
; e�

i � e�
j D

nP

kD1

dk
ij e

�
k
:

By eqs. (61) and (62), we have (for any i; k; l)

ci
kl D

nP

mD1

Œbkm.a
l
im C bl

im/ � bmlb
k
mi �;

d i
kl D

nP

mD1

Œakma
l
im � aml.a

k
mi C bk

mi /�:

(66)

(1) Eq. (57) holds (taking a� D e�
i , b� D e�

j ) if and only if (for any i , j , m, t )

nP

kD1

.ck
ij C dk

ij /b
k
mt D

nP

kD1

Œb
j

mk
ct

ik
C bi

kt
.cm

kj
C dm

kj
/�:
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Substituting eq. (66) into the above equation and after rearranging the terms suitably,
we have

.F1/C .F2/C .F3/C .F4/C .F5/C .F6/ D 0;

where

.F1/ D P

k;l

.akl C bkl/.a
j

ml
bi

kt
/; .F2/ D P

k;l

.bklb
i
kt
b

j

ml
� blkb

i
ln
b

j

mk
/I

.F3/ D P

k;l

.ail C bil/.�aj

kl
bk

mt /; .F4/ D P

k;l

bil Œb
j

mk
.ak

tl
C bk

tl
/ � bk

mtb
j

kl
�I

.F5/ D P

k;l

.alj C blj /.b
k
mtb

i
lk

� bi
kt
bk

lm
/; .F6/ D P

k;l

alj .a
i
lk
bk

mt � ak
lm
bi

kt
/:

Here (F1) is the coefficient of ei ˝ ej in ŒR�.et /˝ L�.em/�.r� C r�/;
.F2/ D 0 by interchanging the indices k and l ;
(F3) is the coefficient of ei ˝ ej in �Œid ˝ L�.em � et /�.r� C r�/;
.F4/ D 0 since the term in the bracket is the coefficient of ej in

em � .et � el C et � el/ � .em � en/ � el D 0I
(F5) is the coefficient of ei ˝ ej in �ŒR�.em � et /˝ id�.r� C r�/.
.F6/ D 0 since the term in the bracket is the coefficient of ei in

el � .em � et / � .el � em/ � et D 0:

Therefore we have

ŒR�.et /˝ L�.em/ � id ˝ L�.em � et / �R�.em � et /˝ id�.r� C r�/ D 0:

(2) Similarly, eq. (58) holds if and only if r�, r� satisfy eq. (64). In fact, comparing
with the proof in (1), the difference appears in .F2/0, .F4/0 and .F6/0, where

.F2/0 D P
k;l.a

j

mk
ai

lt
� ai

kt
a

j

ml
/ D 0 by interchanging the indices k and l ;

.F4/0 D P
k;l bil.a

k
mtb

j

kl
� a

j

mk
bk

tl
/ D 0 since the term in the bracket is the

coefficient of ej in

.em � et / � el � em � .et � el/ D 0I
.F6/0 D P

k;l alj Œa
i
kt
.ak

lm
C bk

lm
/� ak

mta
i
lk
� D 0 since the term in the bracket is

the coefficient of ei in �el � .em � et /C .el � em C el � em/ � et D 0.
(3) Eq. (60) holds (taking a� D e�

i , b� D e�
j ) if and only if (for any i , j , m, t )

nP

lD1

Œ.cm
il

C dm
il
/b

j

lt
� bj

ml
d t

li
C ai

lm
ct
jl

� ai
tl
.cm

lj
C dm

lj
/� D 0:

Substituting eq. (66) into the above equation and after rearranging the terms suitably,
we have

.F1/C .F2/C .F3/C .F4/C .F5/C .F6/C .F7/C .F8/C .F9/C .F10/ D 0;
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where

.F1/ D P

k;l

.akl C bkl/.�bj

lt
bi

km
/ H) �R�.em/˝R�.et /.r� C r�/;

.F2/ D P

k;l

.alk C blk/.�aj

mk
ai

tl
/ H) �L�.et /˝ L�.em/.r� C r�/;

.F3/ D P

k;l

.akl C blk/.�ai
km
b

j

lt
/ H) �R�.em/˝R�.et /.�.r�/C r�/;

.F4/ D P

k;l

.alk C bkl/.�aj

mk
b

j

tl
/ H) �L�.et /˝ L�.em/.r� C �.r�//;

.F5/ D P

k;l

.aik C bik/a
l
mk
b

j

lt
H) id ˝R�.et /L�.em/.r� C r�/;

.F6/ D P

k;l

aki .a
l
kt

C bl
kt
/b

j

ml
H) id ˝R�.et /L�.em/.�.r�//;

.F7/ D P

k;l

bikb
j

lt
bl

mk
H) id ˝R�.et /L�.em/.r�/;

.F8/ D P

k;l

.akj C bkj /a
i
tl
bl

km
H) L�.et /R�.em/˝ id.r� C r�/;

.F9/ D P

k;l

akja
l
km
ai

tl
H) L�.et /R�.em/˝ id.r�/;

.F10/ D P

k;l

bjka
i
lm
.al

tk
C bl

tk
/ H) L�.et /R�.em/˝ id.�.r�//:

Therefore eq. (65) holds.

By the definition of a dendriform algebra, we have the following conclusion (cf.
[F2]).

Lemma 4.3.2. Let A be a vector space and let ��; �� W A˝ A ! A be two linear
maps. Then ���; ��� W A� ˝ A� ! A� define a dendriform algebra structure on A�
if and only if the following conditions are satisfied:

.�� ˝ id/�� D .id ˝ .�� C��//��; (67)

.id ˝��/�� D .�� ˝ id/��; (68)

.id ˝��/�� D ..�� C��/˝ id/��: (69)

Proposition 4.3.3. Let .A;�;�/ be a dendriform algebra and r�; r� 2 A ˝ A.
Define��; �� W A ! A˝A by eqs. (61) and (62). Then���; ��� W A� ˝A� ! A�
define a dendriform algebra structure on A� if and only if the following equations
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are satisfied (for any x 2 A)

.R.x/˝ id ˝ id/Œ.r�;12 � r�;13 C r�;13 � r�;23 � r�;23 � r�;12/

C r�;13 � .r�;23 C r�;23/ � .r�;23 C r�;23/ � r�;12�

C .r�;23 C r�;23/ � Œ.id ˝ L�.x/˝ id/r�;12�

C .id ˝ id ˝ L�.x//.�r�;12 � r�;13 � r�;13 � r�;23 C r�;23 � r�;12/

� Œ.id ˝ id ˝ L�.x//r13� � .r�;23 C r�;23/ D 0I

(70)

.R�.x/˝ id ˝ id/.r�;23 � r�;12 � r�;12 � r�;13 � r�;13 � r�;23/

� .id ˝ id ˝ L�.x//.r�;23 � r�;12 � r�;12 � r�;13 � r�;13 � r�;23/ D 0I
(71)

.R�.x/˝ id ˝ id/.�r�;13 � r�;23 C r�;23 � r�;12 � r�;12 � r�;13/

� .r�;12 C r�;12/ � Œ.R�.x/˝ id ˝ 1/r�;13�

C Œ.id ˝R�.x/˝ id/r�;23� � .r�;12 C r�;12/

C .id ˝ id ˝ L.x//Œr�;13 � r�;23 � r�;23 � r�;12 C r�;12 � r�;13

C .r�;12 C r�;12/ � r�;13 � r�;23 � .r�;12 C r�;12/� D 0:

(72)

The operation between two rs is given in an obvious and similar way as eq. (4).

Proof. We need to prove that eqs. (67)–(69) are equivalent to eqs. (70)–(72), re-
spectively. Here we only give an explicit proof that eq. (70) holds if and only if
eq. (67) holds since the proof of the other two equations is similar. Let x 2 A. After
rearranging the terms suitably, we divide eq. (67) into three parts:

.�� ˝ id/��.x/ � .id ˝ .�� C��//��.x/ D .F1/C .F2/C .F3/;

where

.F1/ D P

i;j

f.ai � x C ai � x/˝ Œaj ˝ bi � bj � .aj � bi C aj � bi /˝ bj

C cj ˝ .bi � dj C bi � dj / � cj � bi ˝ dj �C Œaj � .ai � x C ai � x/

C aj � .ai � x C ai � x/�˝ bj ˝ big;
.F2/ D P

i;j

fai ˝ Œaj � .x � bi /C aj � .x � bi /�˝ bj

C ai ˝ cj � .x � bi /˝ dj � aj ˝ .ai � x C ai � x/ � bj ˝ big;
.F3/ D P

i;j

fŒai ˝ .ai � bj / � .aj � ai C aj � ai /˝ bj �˝ .x � bi / � ai ˝ aj

˝ Œ.x � bi / � bj � � ai ˝ cj ˝ Œ.x � bi / � dj C .x � bi / � dj �g:
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On the other hand,

.F1a/ D .R.x/˝ id ˝ id/.r�;12 � r�;13/

D P

i;j

Œ.ai � aj / � x ˝ bi ˝ bj �

D P

i;j

Œaj � .ai � x C ai � x/C aj � .ai � x C ai � x/�˝ bj ˝ bi �;

.F1b/ D .R.x/˝ id ˝ id/.r�;13 � r�;23/

D P

i;j

Œ.ai � x/˝ cj ˝ .bi � dj /�

D P

i;j

Œ.ai � x C ai � x/˝ cj ˝ .bi � dj /�;

.F1c/ D .R.x/˝ id ˝ id/.�r�;23 � r�;12/

D P

i;j

Œ�.ai � x/˝ .aj � bi /˝ bj �

D P

i;j

Œ�.ai � x C ai � x/˝ .aj � bi /˝ bj �;

.F1d/ D .R.x/˝ id ˝ id/Œr�;13 � .r�;23 C r�;23/�

D P

i;j

f.ai � x C ai � x/˝ Œaj ˝ .bi � bj /C cj ˝ .bi � dj /�g;

.F1e/ D .R.x/˝ id ˝ id/Œ�.r�;23 C r�;23/ � r�;12�

D � P

i;j

f.ai � x C ai � x/˝ Œ.aj � bi /˝ bj C .cj � bi /˝ dj �g;

.F20/ D .r�;23 C r�;23/ � Œ.id ˝ L�.x/˝ id/r�;12�

D P

i;j

ai ˝ Œaj � .x � bi /˝ bj C cj � .x � bi /�˝ dj �;

.F3a/ D .id ˝ id ˝ L�.x//.�r�;12 � r�;13/ D P

i;j

�ai � aj ˝ bi ˝ .x � bj /

D P

i;j

�Œ.ai � aj C ai � aj /˝ bi ˝ .x � bj /;

.F3b/ D .id ˝ id ˝ L�.x//.�r�;13 � r�;23/ D P

i;j

�Œai ˝ cj ˝ x � .bi � dj /�;

.F3c/ D .id ˝ id ˝ L�.x//.r�;23 � r�;12/ D P

i;j

Œai ˝ .aj � bi /˝ .x � bj /�;

.F3d/ D �Œ.id ˝ id ˝ L�.x//r13� � .r�;23 C r�;23/

D � P

i;j

ai ˝ Œaj ˝ .x � bi / � bj C cj ˝ .x � bi / � dj �:

It is obvious that

.F1/ D .F1a/C .F1b/C .F1c/C .F1d/C .F1e/;

.F2/ D .F2/0;
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.F3/ D .F3a/C .F3b/C .F3c/C .F3d/:

Therefore eq. (70) holds if only if eq. (67) holds.

Combining Propositions 4.3.1 and 4.3.3, we obtain the following conclusion.

Theorem 4.3.4. Let .A;�;�/ be a dendriform algebra and r�; r� 2 A˝ A. Then
the linear maps ��, �� defined by eqs. (61) and (62) induce a dendriform algebra
structure on A� such that .A;A�/ is a dendriform D-bialgebra if and only if r� and
r� satisfy eqs. (63)–(65) and (70)–(72).

Definition 4.3.5. A dendriform D-bialgebra .A;A�/ is called coboundary if its struc-
ture is given by r�; r� 2 A˝ A through Theorem 4.3.4.

Theorem 4.3.6. Let .A;A�; ��; ��; ˇ�; ˇ�/ be a dendriform D-bialgebra. Then
there is a canonical dendriform bialgebra structure on the direct sum A ˚ A� of
the underlying vector spaces of A and A� such that both the inclusions i1 W A !
A ˚ A� and i2 W A� ! A ˚ A� into the two summands are homomorphisms of
dendriform D-bialgebras, where the dendriform D-bialgebra structure onA� is given
in Example 4.2.7.

Proof. Let r D P
i ei ˝ e�

i 2 A˝A� � .A˚A�/˝ .A˚A�/ which corresponds
to the identity map id W A ! A, where fe1; : : : ; eng is a basis ofA and fe�

1 ; : : : ; e
�
ng is

its dual basis. Suppose that the dendriform D-bialgebra structure “�;�” on A˚A�
is given by

DD.A/ D A ‰R�

�A
CR�

�A
;�L�

�A
;�R�

�A
;L�

�A
CL�

�A

R�

�A�
CR�

�A�
;�L�

�A�
;�R�

�A�
;L�

�A�
CL�

�A�

A�:

Then we have, for any x; y 2 A, a; b 2 A�,

x � y D x �A y; x � y D x �A y; x � a D R�
A.x/a � L��A�

.a/x;

x � a D �R��A
.x/aC L�

A�.a/x; a � x D R�
A�.a/x � L��A

.x/a;

a � x D �R��A�
.a/x C L�

A.x/a; a � b D a�A�b; a � b D a�A�b:

If r� D r and r� D �r satisfies eqs. (63)–(65) and (70)–(72), then

�DD;�.u/ D .id ˝ L.u/ �R�.u/˝ id/.r�/;
�DD;�.u/ D .id ˝ L�.u/ �R.x/˝ id/.r�/;

for all u 2 DD.A/, can induce a dendriform D-bialgebra structure on DD.A/.
In fact, we have

r� C r� D 0; r� C �.r�/ D P

i

.�ei ˝ e�
i C e�

i ˝ ei /:
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Therefore eq. (64) holds automatically. By a similar proof as of Theorem 2.3.6, it
follows that eqs. (63) and (65) hold and

r12 � r13 � r13 � r23 � r23 � r12 D �r23 � r12 C r12 � r13 C r13 � r23

D �r13 � r23 C r23 � r12 C r12 � r13

D 0:

So eqs. (70)–(72) are satisfied. Hence DD.A/ is a dendriform D-bialgebra. Further-
more, for ek 2 A, we have

�DD;�.ek/ D P

i

Œei ˝ ek � e�
i � .ei � ek/˝ e�

i �

D P

i;j

hek; e
�
i � e�

j iei ˝ ej

D ��.ek/;

�DD;�.ek/ D P

i

Œ�ei ˝ ek � e�
i C .ei � ek/˝ e�

i �

D P

i;j

hek; e
�
i � e�

j iei ˝ ej

D ��.ek/:

Therefore the inclusion i1 W A ! A ˚ A� is a homomorphism of dendriform D-
bialgebras. Similarly, the inclusion i2 W A� ! A ˚ A� is also a homomorphism of
dendriform D-bialgebras, where the dendriform D-bialgebra structure onA� is given
in Example 4.2.7.

Definition 4.3.7. Let .A;A�/ be a dendriform D-bialgebra. With the dendriform
D-bialgebra structure given in Theorem 4.3.6, A˚A� is called a dendriform double
of A. We denote it by DD.A/.

Corollary 4.3.8. Let .A;A�/ be a dendriform D-bialgebra. Then the dendriform
double DD.A/ of A is a dendriform D-bialgebra and the bilinear form ! given by
eq. (7) is a Connes cocycle.

We would like to point out here that, unlike the symmetry of 1-cocycles of A
and A� appearing in the definition of a dendriform D-bialgebra .A;A�/, it is not
necessary that ˇ is also a 1-coboundary of A� for a coboundary dendriform D-
bialgebra .A;A�; ��; ��; ˇ�; ˇ�/, where ��, �� are given by eqs. (61) and (62).

4.4. The D-equation and its properties. In this subsection, we consider some
simple and special cases to satisfy the eqs. (63)–(65) and (70)–(72).

At first, due to eq. (63), we consider the condition

r� D r; r� D ��.r/; r 2 A˝ A: (73)
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Corollary 4.4.1. Let .A;�;�/ be a dendriformalgebra and r D P
i ai ˝bi 2 A˝A.

Then the maps ��, �� defined by eqs. (61) and (62) with r�, r� satisfying eq. (73)
induce a dendriform algebra structure on A� such that .A;A�/ is a dendriform
D-bialgebra if and only if r satisfies the following equations.

ŒP.x � y/ � .id ˝ L�.x//P.y/�.r � �.r// D 0; (74)

�.P.x//P.y/.r � �.r// D 0; (75)

.R.x/˝ id ˝ id � id ˝ id ˝ L�.x//Œ.r12 � r13 � r13 � r32 � r23 � r12/

C P

i

.ai � x/˝ P.bi /.r � �.r// � ai ˝ ŒP.x � bi /.r � �.r//� D 0; (76)

.R�.x/˝id˝id�id˝id˝L�.x//.�r23 �r21 Cr21 � r13 Cr31 � r23/ D 0; (77)

.R�.u/˝ id ˝ id � id ˝ id ˝ L.u//.�r31 � r32 C r32 � r21 C r12 � r31/

C P

i

ŒP.bi /.r � �.r//˝ x � ai � P.bi � x/.r � �.r//˝ ai � D 0; (78)

where x; y 2 A, P.x/ D id ˝ L�.x/ �R�.x/˝ id.

Remark 4.4.2. Let �123, �132 W A˝A˝A ! A˝A˝A be two linear maps given
by

�123.x ˝ y ˝ z/ D z ˝ x ˝ y; �132.x ˝ y ˝ z/ D y ˝ z ˝ x

for all x; y; z 2 A. Then we have

.r23 � r21 � r21 � r13 � r31 � r23/ D �123.r12 � r13 � r13 � r32 � r23 � r12/;

.r31 � r32 � r32 � r21 � r12 � r31/ D �132.r12 � r13 � r13 � r32 � r23 � r12/:

Remark 4.4.3. We can also consider the case r� C r� D 0, as we did in the proof
of Theorem 4.3.6. Obviously, if in addition, r� D r is symmetric, then we are in the
case satisfying eq. (73).

The simplest way to satisfy eqs. (74)–(78) is to assume that r is symmetric and

r12 � r13 D r13 � r23 C r23 � r12: (79)

Corollary 4.4.4. Let .A;�;�/ be a dendriform algebra and r 2 A˝A. Suppose that
r is symmetric and r satisfies eq. (79). Then the maps ��, �� defined by eqs. (61)
and (62) with r� D �r , r� D r induce a dendriform algebra structure on A� such
that .A;A�/ is a dendriform D-bialgebra.

Definition 4.4.5. Let .A;�;�/ be a dendriform algebra and r 2 A˝A. Eq. (79) is
called D-equation in A.
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By Remark 4.4.2, when r is symmetric, the equivalent forms of the D-equation
are given as

r23 � r12 D r12 � r13 C r13 � r23 or r13 � r23 D r23 � r12 C r12 � r13:

By a similar proof as of Proposition 2.4.4, we have the following conclusion.

Proposition 4.4.6. Let .A;�;�/ be a dendriform algebra and let r 2 A ˝ A be a
symmetric solution of the D-equation in A. Then the dendriform algebra structure
and its associated associative algebra structure on the dendriform double DD.A/ is
given from the products in A as follows:

a� � b� D �R��.r.a�//b� C L�.r.b�//a�;
a� � b� D R�.r.a�//b� � L��.r.b�//a�;
a� � b� D a� � b� C a� � b� D R��.r.a�//b� C L��.r.b�//a�; (80)

x � a� D x � r.a�/ � r.R�.x/a�/CR�.x/a�;
x � a� D x � r.a�/C r.R��.x/a�/ �R��.x/a�;
x � a� D x � r.a�/ � r.R��.x/a�/CR��.x/a�I
a� � x D r.a�/ � x C r.L��.x/a�/ � L��.x/a�;
a� � x D r.a�/ � x � r.L�.x/a�/C L�.x/a�;
a� � x D r.a�/ � x � r.L��.x/a�/C L��.x/a�

for any x 2 A, a�; b� 2 A�.

Theorem 4.4.7. Let .A;�;�/ be a dendriform algebra and r 2 A ˝ A. Suppose
that r is symmetric and non-degenerate. Then r is a solution of theD-equation in A
if and only if the inverse of the isomorphism A� ! A induced by r , regarded as a
bilinear form B on A (that is, B.x; y/ D hr�1x; yi for any x; y 2 A) satisfies

B.x � y; z/ D B.y; z � x/C B.x; y � z/ for all x; y; z 2 A: (81)

Proof. Let r D P
i ai ˝ bi . Since r is symmetric, r.v�/ D P

i hv�; ai ibi DP
i hv�; bi iai for any v� 2 A�. Since r is non-degenerate for any x; y; z 2 A, there

exist u�; v�; w� 2 A� such that x D r.u�/; y D r.v�/; z D r.w�/. Therefore

B.x � y; z/ D hr.u�/ � r.v�/; w�i
D P

i;j

hu�; bi ihv�; bj ihw�; ai � aj i D hw� ˝ u� ˝ v�; r12 � r13i;

B.y; z � x/ D hv�; r.w�/ � r.u�/i
D P

i;j

hu�; bi ihw�; bi ihv�; ai � aj i D hw� ˝ u� ˝ v�; r13 � r23i;

B.x; y � z/ D hr.v�/ � r.w�/; u�i
D P

i;j

hv�; bi ihw�; bj ihu�; ai � aj i D hw� ˝ u� ˝ v�; r23 � r12i:
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Therefore B satisfies eq. (81) if and only if r is a solution of theD-equation inA.

Definition 4.4.8. Let .A;�;�/ be a dendriform algebra. A bilinear form B on A is
called a 2-cocycle if B satisfies eq. (81).

Remark 4.4.9. Let B be 2-cocycle on a dendriform algebra .A;�;�/. Then it is
easy to show that !.x; y/ D B.x; y/ � B.y; x/ (for any x; y 2 A) is a Connes
cocycle of the associated associative algebra .A;�/. On the other hand, B satisfies

B.x � y; z/ � B.x; y � z/ D B.y � x; z/ � B.y; x � z/ (82)

for all x; y; z 2 A, where x � y D x � y � y � x for any x; y 2 A. Furthermore,
.A; � / is a pre-Lie algebra (see Sections 5.2 and 5.3) and a bilinear form on a pre-Lie
algebra A satisfying eq. (82) is called a 2-cocycle on A ([Ku2]). Moreover, a pre-Lie
algebraA over the real number field R is called Hessian if there exists a symmetric and
positive definite 2-cocycle on A. In geometry, a Hessian manifold M is a flat affine
manifold provided with a Hessian metric g, that is, g is a Remanning metric such that
for any each point p 2 M there exists a C1-function ' defined on a neighborhood

of p such that gij D @2'

@xi @xj . A Hessian pre-Lie algebra corresponds to an affine
Lie group G with a G-invariant Hessian metric ([Sh]). Therefore a symmetric and
positive definite 2-cocycle on a real dendriform algebra can give a Hessian structure.

Corollary 4.4.10. Let .A;�A;�A/ be a dendriform algebra and let r 2 A˝A be a
non-degenerate symmetric solution of theD-equation in A. Suppose the dendriform
algebra structure “�A� , �A�” on A� is induced by r via Proposition 4.4.6. Then we
have

a� �A� b� D r�1.r.a�/ �A r.b
�//; a� �A� b� D r�1.r.a�/ �A r.b

�//

for all a�; b� 2 A�. Therefore, r W A� ! A is an isomorphism of dendriform
algebras.

Proof. The conclusion can be obtained by a similar proof as of Corollary 2.4.6.

Theorem 4.4.11. Let .A;�;�/ be a dendriform algebra and r 2 A˝A symmetric.
Then r is a solution of theD-equation in A if and only if r satisfies

r.a�/ � r.b�/ D r.R��.r.a�//b� C L��.r.b�//a�/ for all a�; b� 2 A�:

Proof. The conclusion can be obtained by a similar proof as of Theorem 2.4.7.

Combining Theorem 4.4.11 and Theorem 3.1.2, we have the following conclusion.

Corollary 4.4.12. Let .A;�;�/ be a dendriform algebra and r 2 A˝A symmetric.
Then r is a solution of the D-equation in A if and only if r is an O-operator of the
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associated associative algebra .A;�/ associated to .R��; L��/. Therefore there is a
dendriform algebra structure on A� given by

a� � b� D R��.r.a�//b�; a� � b� D L��.r.b�//a�

for all a�; b� 2 A�. It has the same associated associative algebra as the dendriform
algebra on A� given by eq. (80), which is induced by r in the sense of coboundary
dendriform D-bialgebras. If r is non-degenerate, then there is a new compatible
dendriform algebra structure on A given by

x �0 y D r.R��.x/r�1y/; x �0 y D r.L��.y/r�1x/ for all x; y 2 A;
which is just the dendriform algebra structure given by

B.x �0 y; z/ D B.y; z � x/; B.x �0 y; z/ D B.x; y � z/ for all x; y; z 2 A;
where B is the symmetric 2-cocycle on A induced by r�1.

Theorem 4.4.13. Let .A;�/ be an associative algebra and .l; r; V / a bimodule. Let
.r�; l�; V �/ be the bimodule ofA given by Lemma 2.1.2. Suppose that T W V ! A is
an O-operator associated to .l; r; V /. Then r D T C �.T / is a symmetric solution
of theD-equation in T .V / Ër�;0;0;l� V �, where T .V / � A is a dendriform algebra
given by eq. (33) and .r�; 0; 0; l�/ is a bimodule since its associated associative
algebra T .V / is an associative subalgebra of A, and T can be identified with an
element in T .V /˝ V � � .T .V / Ër�;0;0;l� V �/˝ .T .V / Ër�;0;0;l� V �/.

Proof. Let fe1; : : : ; eng be a basis of A. Let fv1; : : : ; vmg be a basis of V and
fv�

1 ; : : : ; v
�
mg its dual basis. Set T .vi / D Pn

kD1 aikek; i D 1; : : : ; m. Then

T D
mP

iD1

T .vi /˝ v�
i

D
mP

iD1

nP

kD1

aikek ˝ v�
i 2 T .V /˝ V �

� .T .V / Ër�;0;0;l� V �/˝ .T .V / Ër�;0;0;l� V �/:

Therefore we have

r12 � r13 D
mP

i;j D1

fT .vi / � T .vj /˝ v�
i ˝ v�

j C r�.T .vi //v
�
j ˝ v�

i ˝ T .vj /

C l�.T .vj //v
�
i ˝ T .vi /˝ v�

j g;
r13 � r23 D

mP

i;j D1

fv�
i ˝ v�

j ˝ T .vi / � T .vj /C T .vi /˝ v�
j ˝ l�.T .vj //v

�
i g;

r23 � r12 D
mP

i;j D1

fT .vj /˝ r�.T .vi //v
�
j ˝ v�

i C v�
j ˝ T .vi / � T .vj /˝ v�

i g:
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On the other hand, we have
P

i;j D1

r�.T .vi //v
�
j ˝ v�

i ˝ T .vj / D P

i;j D1

v�
j ˝ v�

i ˝ T .r.T .vi //vj /;

P

i;j D1

l�.T .vj //v
�
i ˝ T .vi /˝ v�

j D P

i;j D1

v�
i ˝ T .l.T .vj //vi /˝ v�

j ;

P

i;j D1

T .vi /˝ v�
j ˝ l�.T .vj //v

�
i D P

i;j D1

T .l.T .vj //vi /˝ v�
j ˝ v�

i ;

P

i;j D1

T .vj /˝ r�.T .vi //v
�
j ˝ v�

i D P

i;j D1

T .r.T .vi //vj /˝ v�
j ˝ v�

i :

Since T is an O-operator of A associated to .l; r; V / and

T .u/ � T .v/ D T .l.T .u//v/; T .u/ � T .v/ D T .r.T .v//u/

for all u; v 2 V , it follows that r is a symmetric solution of the D-equation in
T .V / Ër�;0;0;l� V �.

Remark 4.4.14. Roughly speaking, a symmetric solution of the D-equation corre-
sponds to the symmetric part of an O-operator, whereas an antisymmetric solution
of associative Yang–Baxter equation corresponds to the antisymmetric part of an
O-operator.

Corollary 4.4.15. Let .A;�;�/ be a dendriform algebra. Then

r D
nP

iD1

.ei ˝ e�
i C e�

i ˝ ei / (83)

is a symmetric solution of the D-equation in A ËR�

�
;0;0;L�

�

A�, where fe1; : : : ; eng
is a basis of A and fe�

1 ; : : : ; e
�
ng is its dual basis. Moreover, r is non-degenerate and

the induced 2-cocycle B on A ËR�

�
;0;0;L�

�

A� is given by eq. (2).

Proof. Let V D A, l D L�, r D R� and T D id in Theorem 4.4.13. Then the
conclusion follows immediately.

Remark 4.4.16. A comparison with Theorem 4.3.6 shows that (the non-symmetric)
T D Pn

iD1 ei ˝ e�
i induces a dendriform D-bialgebra structure on

A ËR�;�L�

�
;�R�

�
;L� A�;

whereas the above (symmetric) r D T C �.T / induces a dendriform D-bialgebra
structure on A ËR�

�
;0;0;L�

�

A�.

Recall that two Connes cocycles .A1; !1/ and .A2; !2/ are isomorphic if and
only if there exists an isomorphism of associative algebras ' W A1 ! A2 such that

!1.x; y/ D '�!2.x; y/ D !2.'.x/; '.y// for all x; y 2 A1:

By a similar proof as of Theorem 2.4.9, we have the following conclusion.
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Theorem4.4.17. Let .A;�;�/ be a dendriformalgebra. Then, asConnes cocycles of
associative algebras, the double construction ofConnes cocycle (or the dendriformD-
bialgebra) .T .A/ D A ‰ A�; !/ given by a symmetric solution r of theD-equation
in A and the double construction of Connes cocycle (or the dendriform D-bialgebra)
.T .A/ D A ËR�

�
;L�

�

A�; !/ are isomorphic, where ! is given by eq. (7). However,
in general, they are not isomorphic as double constructions of Connes cocycles (or
dendriform D-bialgebras).

Corollary 4.4.18. Let .A;�;�/ be a dendriform algebra. Then as Connes cocycles
of associative algebras, the double constructions of Connes cocycles given by all
symmetric solutions of theD-equation inA are isomorphic to the double construction
of the Connes cocycle .T .A/ D A ËR�

�
;L�

�

A�; !/ given by the zero solution.

5. Comparison (duality) between bialgebra structures

5.1. Comparison (duality) between antisymmetric infinitesimal bialgebras and
dendriform D-bialgebras. The results in the previous sections allow us to compare
antisymmetric infinitesimal bialgebras and dendriform D-bialgebras in terms of the
following properties: 1-cocycles of associative algebras, matched pairs of associative
algebras, associative algebra structures on the direct sum of the associative algebras
in the matched pairs, bilinear forms on the direct sum of the associative algebras in the
matched pairs, double structures on the direct sum of the associative algebras in the
matched pairs, algebraic equations associated to coboundary cases, non-degenerate
solutions, O-operators of associative algebras and constructions from dendriform
algebras. We list them in Table 1. From this table, we observe that there is a clear
analogy between them and in particular, double constructions of Frobenius algebras
correspond to double constructions of Connes cocycles in this sense. Moreover, due
to the correspondences between certain symmetries and antisymmetries appearing in
the Table 1, we regard it as a kind of duality.

Next we consider the case that a dendriform D-bialgebra is also an antisymmetric
infinitesimal bialgebra.

Theorem 5.1.1. Let .A;A�; ��; ��; ˇ�; ˇ�/ be a dendriform D-bialgebra. Then
.A;A�/ is an antisymmetric infinitesimal bialgebra if and only if the following two
equations hold:

hL��A�
.b�/y; L��A

.x/a�i D hR��A�
.a�/x;R��A

.y/b�i; (84)

hL��A�
.b�/y;R��A

.x/a�i C hL��A�
.a�/x;R��A

.y/b�i
D hR��A�

.b�/x; L��A
.y/a�i C hR��A�

.a�/y; L��A
.x/b�i (85)

for any x; y 2 A�, a�; b� 2 A�.
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Table 1. Comparison between antisymmetric infinitesimal bialgebras and dendriform D-bial-
gebras.

Algebras
Antisymmetric

infinitesimal bialgebras
Dendriform D-bialgebras

1-cocycles of
associative algebras

.id ˝ L;R˝ id/
.id ˝ L�; R˝ id/,
.id ˝ L;R� ˝ id/

Matched pairs of
associative algebras

.A;A�; R�

A
; L�

A
; R�

A� ; L
�

A�/ .A;A�; R�

�A
; L�

�A
; R�

�A�
; L�

�A�
/

Associative algebra
structures on the
direct sum of the
associative algebras in
the matched pairs

double constructions of
Frobenius algebras

double constructions of Connes
cocycles

Bilinear forms on the
direct sum of the
associative algebras in
the matched pairs

symmetric antisymmetric
hx C a�; y C b�i D

hx; b�i C ha�; yi
hx C a�; y C b�i D
�hx; b�i C ha�; yi

invariant Connes cocycles
Double structures on
the direct sum of the
associative algebras in
the matched pairs

associative doubles dendriform doubles

Algebraic equations
associated to
coboundary cases

antisymmetric solutions symmetric solutions
associative Yang–Baxter

equations
D-equations in dendriform

algebras
Non-degenerate
solutions

Connes cocycles of
associative algebras

2-cocycles of dendriform
algebras

O-operators of
associative algebras

associated to .R�; L�/ associated to .R�

�
; L�

�
/

antisymmetric parts symmetric parts

Constructions from
dendriform algebras

r DPn
iD1.ei ˝ e�

i
� e�

i
˝ ei /

r D Pn
iD1.ei ˝ e�

i
C e�

i
˝ ei /

induced bilinear forms
hx C a�; y C b�i D
�hx; b�i C ha�; yi

induced bilinear forms
hx C a�; y C b�i D

hx; b�i C ha�; yi

Proof. The conclusion can be obtained by a similar proof as of Proposition 2.2.2.

Corollary 5.1.2. Let .A;�;�/ be a dendriform algebra and let r 2 A ˝ A be a
symmetric solution of theD-equation inA. Suppose the dendriform algebra structure
on A� is induced by r from eq. (80). Then .A;A�/ is an antisymmetric infinitesimal
bialgebra if and only if the following two equations hold:

hy �A .x �A r.a
�// � y �A r.R

��A
.x/a�/; b�i

D hr.L��A
.y/b�/ �A x � .r.b�/ �A y/ � x; a�iI
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hy �A .r.a
�/ �A x/ � .y �A r.a

�// �A x

C r.R��A
.y/a�/ �A x � y �A r.L

��A
.x/a�/; b�i

D h�x �A .r.b
�/ �A y/C .x �A r.b

�// �A y � r.R��A
.x/a�/ �A y

C x �A r.L
��A
.y/a�/; a�i;

for any x; y 2 A and a� 2 A�.

Corollary 5.1.3. Let .A;A�; ��; ��; ˇ�; ˇ�/ be a dendriform D-bialgebra. If
eqs. (84) and (85) are satisfied, then there are two associative algebra structures

A ‰R�

�A
;L�

�A

R�

�A�
;L�

�A�

A� and A ‰R�

A
;L�

A

R�

A�
;L�

A�

A� on the direct sum A˚ A� of the underly-

ing vector spaces of A and A� such that both A and A� are associative subalgebras

and the bilinear form given by eq. (7) is a Connes cocycle on A ‰R�

�A
;L�

�A

R�

�A�
;L�

�A�

A�

and the bilinear form given by eq. (2) is invariant on A ‰R�

A
;L�

A

R�

A�
;L�

A�

A�. Moreover,

these two associative algebras are not isomorphic in general.

Example 5.1.4. Let .A;�A/ be an associative algebra and let ! be a Connes cocycle
on .A;�A/. Then there is an antisymmetric infinitesimal bialgebra whose associative
algebra structure on A� is given by a non-degenerate solution r of the associative
Yang–Baxter equation as follows:

�.x/ D .id ˝ L.x/ �R.x/˝ id/r

for all x 2 A, where r W A� ! A is given by !.x; y/ D hr�1.x/; yi. On the other
hand, there exists a compatible dendriform algebra structure “�A, �A” on A given
by eq. (53), that is,

!.x �A y; z/ D !.y; z �A x/; !.x �A y; z/ D !.x; y �A z/ (86)

for all x; y; z 2 A. Moreover, there exists a compatible dendriform algebra structure
on the associative algebra A� given by

a� �A� b� D r�1.r.a�/ �A r.b
�//; a� �A� b� D r�1.r.a�/ �A r.b

�//;
for all a�; b� 2 A. Furthermore, it is easy to show that

L��A
.x/a� D r�1.r.a�/ �A x/;

R��A
.x/a� D �r�1.x �A r.a

�//;
L��A

.x/a� D �r�1.r.a�/ �A x/;

R��A
.x/a� D r�1.x � r.a�//;

L��A�
.a�/x D x �A r.a

�/;
R��A�

.a�/x D �r.a�/ �A x;

L��A�
.a�/x D �x �A r.a

�/;
R��A�

.a�/x D r.a�/ �A x
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for all x 2 A, a� 2 A�. Therefore, by Theorem 4.2.4, .A;A�/ (as dendriform
algebras) is a dendriform D-bialgebra if and only if .A;A�; R��A

; L��A
; R��A�

; L��A�
/

is a matched pair of associative algebras, which is the case if and only if A is 2-step
nilpotent, that is, x �A y �A z D 0 for any x; y; z 2 A. In this case, by eq. (86), it is
equivalent to

x �A .y �A z/ D x �A .y �A z/ D x �A .y �A z/ D 0

for allx; y; z 2 A. Therefore, under such conditions, eqs. (84) and (85) hold naturally.

5.2. Duality in the version of Lie algebras: Lie bialgebras and pre-Lie bialge-
bras. There is a similar duality for Lie algebras, which was presented in [Bai2].
In order to be self-contained, we give a brief introduction in this subsection. We
would like to point out that, although we give the Lie bialgebras and pre-Lie bialge-
bras as structures similar to antisymmetric infinitesimal bialgebras and dendriform
D-bialgebras, here, in fact, it is the Manin triples (Lie bialgebras) that have been first
studied and then motivate us to study the other structures.

There are two kinds of important (non-degenerate) bilinear forms on Lie algebras.
A bilinear form B. ; / on a Lie algebra A is invariant if

B.Œx; y�; z/ D B.x; Œy; z�/ for all x; y 2 A:
A 2-cocycle (symplectic form) on a Lie algebra A is an antisymmetric bilinear from
! satisfying

!.Œx; y�; z/C !.Œy; z�; x/C !.Œz; x�; y/ D 0 for all x; y; z 2 A:
Moreover, the algebras that play a role similar to dendriform algebras in the double

constructions of Frobenius algebras and Connes cocycles are pre-Lie algebras. In fact,
pre-Lie algebras (or under other names like left-symmetric algebras, quasi-associative
algebras, Vinery algebras and so on) are a class of natural algebraic systems appearing
in many fields in mathematics and mathematical physics (see the survey article [Bu]
and the references therein).

Definition 5.2.1. Let A be a vector space over a field F with a bilinear product
.x; y/ ! xy. A is called a pre-Lie algebra if

.xy/z � x.yz/ D .yx/z � y.xz/ for all x; y; z 2 A:

LetA be a pre-Lie algebra. For anyx; y 2 A, letL.x/ andR.x/ denote the left and
right multiplication operator, respectively, that is, L.x/.y/ D xy; R.x/.y/ D yx.
Let L W A ! gl.A/ with x ! L.x/ and R W A ! gl.A/ with x ! R.x/ (for every
x 2 A) be two linear maps. For a Lie algebra G , we let ad.x/ denote the adjoint
operator, that is, ad.x/y D Œx; y�, and ad W G ! gl.G / with x ! ad.x/ is a linear
map.
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Proposition 5.2.2. Let A be a pre-Lie algebra.
(1) The commutator

Œx; y� D xy � yx for all x; y 2 A (87)

defines a Lie algebra G .A/, which is called the sub-adjacent Lie algebra of A and A
is also called a compatible pre-Lie algebra structure on the Lie algebra G .A/.

(2) The map L W A ! gl.A/ gives a representation of the Lie algebra G .A/.

Proposition 5.2.3 ([Chu]). Let G be a Lie algebra and let ! be a non-degenerate
2-cocycle on G (such a Lie algebra called a symplectic Lie algebra). Then there
exists a compatible pre-Lie algebra structure on G defined by

!.x � y; z/ D �!.y; Œx; z�/ for all x; y; z 2 G :

Next we give the “double constructions” of Lie algebras with non-degenerate
invariant bilinear forms or non-degenerate 2-cocycles. In fact, both of them have
their own (independent) interest in many fields.

At first, recall that .G ;H ; �; �/ is a matched pair of Lie algebras if G and H are
Lie algebras and � W G ! gl.H / and � W H ! gl.G / are representations satisfying

�.x/Œa; b� � Œ�.x/a; b� � Œa; �.x/b�C �.�.a/x/b � �.�.b/x/a D 0;

�.a/Œx; y� � Œ�.a/x; y� � Œx; �.a/y�C �.�.x/a/y � �.�.y/a/x D 0;

for any x; y 2 G and a; b 2 H . In this case, there exists a Lie algebra structure on
the direct sum G ˚ H of the underlying vector spaces of G and H given by

Œx C a; y C b� D Œx; y�C �.a/y � �.b/x C Œa; b�C �.x/b � �.y/a
for all x; y 2 G , a; b 2 H . We denote it by G ‰�

� H or simply G ‰ H . Moreover,
every Lie algebra which is the direct sum of the underlying vector spaces of two
subalgebras can be obtained from a matched pair of Lie algebras as above.

Definition 5.2.4. Let G be a Lie algebra. Suppose that there is a Lie algebra structure
on the direct sum of the underlying vector spaces of G and its dual space G � such
that G and G � are Lie subalgebras.

(a) If the natural symmetric bilinear form on G ˚ G � given by eq. (2) is invariant,
then .G ‰ G �;G ;G �/ is called a (standard) Manin triple.

(b) If the natural antisymmetric bilinear form on G ˚ G � given by eq. (7) is a 2-
cocycle, then it is called a phase space of the Lie algebra G ([Ku1]). .G ‰ G �;G ;G �/
is also called a para-Kähler structure on the Lie algebra G ‰ G � ([Kan]).

For a Lie algebra G and a representation .�; V / of G , recall that a 1-cocycle T
associated to � (and denoted by .�; T /) is a linear map from G to V satisfying

T .Œx; y�/ D �.x/T .y/ � �.y/T .x/ for all x; y 2 G :
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Definition 5.2.5. (a) Let G be a Lie algebra. A Lie bialgebra structure on G is an
antisymmetric linear map ı W G ! G ˝ G such that ı� W G � ˝ G � ! G � is a Lie
bracket on G � and ı is a 1-cocycle of G associated to ad ˝ id C id ˝ ad with values
in G ˝ G . We denote it by .G ;G �/ or .G ; ı/.

(b) Let A be a vector space. A pre-Lie bialgebra structure on A is a pair of linear
maps .�; ˇ/ such that � W A ! A˝ A, ˇ W A� ! A� ˝ A� and

(1) �� W A� ˝ A� ! A� defines a pre-Lie algebra structure on A�,

(2) ˇ� W A˝ A ! A defines a pre-Lie algebra structure on A,

(3) � is a 1-cocycle of G .A/ associated to L˝ id C id ˝ ad with values in A˝A,

(4) ˇ is a 1-cocycle of G .A�/ associated toL˝ idC id˝ad with values inA� ˝A�.

We denote it by .A;A�; �; ˇ/ or simply .A;A�/.

Theorem 5.2.6. (a) Let .G ; Œ ; �G / and .G �; Œ ; �G �/ be two Lie algebras. Then the
following conditions are equivalent:

(1) .G ‰ G �;G ;G �/ is a standard Manin triple with the bilinear form (2).

(2) .G ;G �; ad�
G ; ad�

G �/ is a matched pair of Lie algebras.

(3) .G ;G �/ is a Lie bialgebra.

(b) Let .A; � / and .A�; B / be two pre-Lie algebras. Then the following conditions
are equivalent:

(1) .G .A/ ‰ G .A/�;G .A/;G .A�// is a para-Kähler Lie algebra with the bilinear
form (7).

(2) .G .A/;G .A�/; L�� ; L�B / is a matched pair of Lie algebras.

(3) .A;A�/ is a pre-Lie bialgebra.

In fact, a Lie bialgebra is the Lie algebra G of a Poisson-Lie group G equipped
with additional structures induced from the Poisson structure onG, and a Poisson-Lie
group is a Lie group with a Poisson structure compatible with the group operation in
a certain sense. Poisson-Lie groups play an important role in symplectic geometry
and quantum group theory (cf. [D] and the references therein). On the other hand, in
geometry, a para-Kähler manifold is a symplectic manifold with a pair of transversal
Lagrangian foliations ([Li]). A para-Kähler Lie algebra G is the Lie algebra of a Lie
group G with a G-invariant para-Kähler structure ([Kan]).

We have already obtained many properties of Lie bialgebras and pre-Lie algebras
which are similar to our study in the previous sections. We collect them in the
Appendix and we compare pre-Lie bialgebras and Lie bialgebras in terms of their
certain properties in Table 2. From Table 2, we observe that there is also a clear
analogy between them and in particular, due to the correspondences between certain
symmetries and antisymmetries appearing in the analogy, we can regard it as a kind
of duality again which is similar to the duality appearing in the Table 1.
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Table 2. Comparison between Lie bialgebras and pre-Lie bialgebras.

Algebras Lie bialgebras Pre-Lie bialgebras
Corresponding Lie
groups

Poisson-Lie groups para-Kähler Lie groups

1-cocycles of Lie
algebras

id ˝ ad C ad ˝ id L˝ id C id ˝ ad

Matched pairs of Lie
algebras

.G ;G �; ad�

G ; ad�

G �/ .G .A/;G .A�/; L�

A
; L�

A�/

Lie algebra structures
on the direct sum of the
Lie algebras in the
matched pairs

Manin triples phase spaces

Bilinear forms on the
direct sum of the Lie
algebras in the matched
pairs

symmetric antisymmetric
hx C a�; y C b�i D

hx; b�i C ha�; yi
hx C a�; y C b�i D
�hx; b�i C ha�; yi

invariant 2-cocycles
Double structures on
the direct sum of the
Lie algebras in the
matched pairs

Drinfeld doubles symplectic doubles

Algebraic equations
associated to coboundary
cases

antisymmetric solutions symmetric solutions
classical Yang–Baxter

equations in Lie algebras
S -equations in pre-Lie algebras

Non-degenerate solutions
2-cocycles of Lie algebras 2-cocycles of pre-Lie algebras

symplectic structures Hessian structures
O-operators of Lie
algebras

associated to ad� associated to L�

antisymmetric parts symmetric parts

Constructions from
pre-Lie algebras

r DPn
iD1.ei ˝ e�

i
� e�

i
˝ ei /

r D Pn
iD1.ei ˝ e�

i
C e�

i
˝ ei /

induced bilinear forms
hx C a�; y C b�i D
�hx; b�i C ha�; yi

induced bilinear forms
hx C a�; y C b�i D

hx; b�i C ha�; yi

5.3. Relationships among four bialgebras

Proposition 5.3.1 ([Cha1], [A2]). Let .A;�;�/ be a dendriform algebra. Then there
is a pre-Lie algebra structure on .A; � / given by

x � y D x � y � y � x for all x; y 2 A: (88)

Corollary 5.3.2. Let .A;�;�/ be a dendriform algebra. Then the sub-adjacent Lie
algebra of the pre-Lie algebra .A; � / given by eq. (88) is the same as the commutator
Lie algebra of the associated associative algebra .A;�/, that is,

Œx; y� D x � y � y � x D x � y � y � x D x � y C x � y � y � x � y � x



Double constructions of Frobenius algebras, Connes cocycles and their duality 523

for all x; y 2 A.

Therefore, as Chapoton pointed out in [Cha1] (also see [A2], [A4], [EMP]), there
is the following commutative diagram of categories:

dendriform algebras

��

�� pre-Lie algebras

��
associative algebras �� Lie algebras.

In this diagram, the left vertical arrow is given by eq. (32), the top horizontal arrow is
given by eq. (88), the bottom arrow is given by eq. (87) since an associative algebra
is a special pre-Lie algebra, and the right vertical arrow is given by eq. (87).

Obviously, if a symmetric or antisymmetric bilinear form on an associative algebra
is invariant or a Connes cocycle respectively, then it is also invariant or a 2-cocycle
on the commutator Lie algebra respectively,.

Theorem 5.3.3. (1) A double construction of a Frobenius algebra gives a standard
Manin triple (on the commutator Lie algebra) naturally.

(2) A double construction of Connes cocycles gives a para-Kähler Lie algebra
(on the commutator Lie algebra) naturally.

Corollary 5.3.4. (1) Any antisymmetric infinitesimal bialgebra is a Lie bialgebra (in
the sense of its commutator Lie algebra).

(2) Any dendriform D-bialgebra is a pre-Lie bialgebra (in the sense of eq. (88)).

Corollary 5.3.5. We have the following relationship among the antisymmetric in-
finitesimal bialgebras, dendriform algebras, Lie bialgebras and pre-Lie bialgebras:

dendriform D-bialgebras��

dual
��

� � �� pre-Lie bialgebras��

dual
��

antisymmetric infinitesimal bialgebras � � �� Lie bialgebras.

Here l means the duality given in Sections 5.1 and 5.2, and ,! means the inclusion
in the sense of Corollary 5.3.4.

Remark 5.3.6. Part (1) of Corollary 5.3.4 and the relation given by the bottom ,!
in the above diagram were also pointed out in [A3].

Corollary 5.3.7. Let .A;A�; ��; ��; ˇ�; ˇ�/ be a dendriform D-bialgebra. If
eqs. (84) and (85) hold, then .A;A�/ is an antisymmetric infinitesimal bialgebra.
.A;A�/ is also a pre-Lie bialgebra in the sense of eq. (88). Furthermore, as the
commutator Lie algebras, .G .A/;G .A/�/ is a Lie bialgebra. Therefore, there is an
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associative algebra structure and a Lie algebra structure on the direct sumA˚A� of
the underlying space ofA andA� such that the natural symmetric bilinear form given
by eq. (2) is invariant on both of them and the natural antisymmetric bilinear form
given by eq. (7) is a Connes cocycle on the associative algebra and a 2-cocycle on the
Lie algebra. Moreover, under such a condition, we have the following commutative
diagram:

dendriform D-bialgebras

��

� � �� pre-Lie bialgebras

��
antisymmetric infinitesimal bialgebras � � �� Lie bialgebras.
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Appendix: Some properties of Lie bialgebras and pre-Lie bialgebras

In this appendix, we list some properties of Lie bialgebras and pre-Lie bialgebras.
Most of the results can be found in [Bai2] and the references therein.

Proposition A.1. (a) Let .G ;G �/ be a Lie bialgebra. Then there is a canonical
Lie bialgebra structure on G ˚ G � such that the inclusions i1 W G ! G ˚ G � and
i2 W G � ! G ˚ G � into the two summands are homomorphisms of Lie bialgebras,
where the Lie bialgebra structure on G � is given by �ıG � . Such a structure is called
a classical (Drinfeld) double of G .

(b) Let .A;A�; �; ˇ/ be a pre-Lie bialgebra. Then there is a canonical pre-Lie
bialgebra structure on A˚ A� such that both the inclusions i1 W A ! A˚ A� and
i2 W A� ! A˚A� into the two summands are homomorphisms of pre-Lie bialgebras.
Such a structure is called a symplectic double of A.

DefinitionA.2. (a) A Lie bialgebra .G ; ı/ is called coboundary if ı is a 1-coboundary
of G associated to ad ˝ id C id ˝ ad, that is, there exists an r 2 G ˝ G such that

ı.x/ D .ad.x/˝ id C id ˝ ad.x//r for all x 2 G : (A.1)

(b) A pre-Lie bialgebra .A;A�; �; ˇ/ is called coboundary if� is a 1-coboundary
of G .A/ associated to L˝ id C id ˝ ad, that is, there exists an r 2 A˝A such that

�.x/ D .L.x/˝ id C id ˝ ad.x//r for all x 2 A: (A.2)

Theorem A.3. (a) Let G be a Lie algebra and let r 2 G ˝ G . Then the map
ı W G ! G ˝ G defined by eq. (A.1) induces a Lie bialgebra structure on G if and
only if the following two conditions are satisfied for any x 2 G :
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(1) .ad.x/˝ id C id ˝ ad.x//.r C �.r// D 0,

(2) .ad.x/˝ id ˝ id C id ˝ ad.x/˝ id C id ˝ id ˝ ad.x//.Œr12; r13�C Œr12; r23�C
Œr13; r23�/ D 0.

(b) Let A be a pre-Lie algebra and let r 2 A˝ A. Then the map � defined by
eq. (A.2) induces a pre-Lie algebra structure on A� such that .A;A�/ is a pre-Lie
bialgebra if and only if the following two conditions are satisfied for any x; y 2 A:

(1) ŒP.x � y/ � P.x/P.y/�.r � �.r// D 0,

(2) Q.x/ŒŒr; r�� D 0,

where Q.x/ D L.x/ ˝ id ˝ id C id ˝ L.x/ ˝ id C id ˝ id ˝ ad.x/, P.x/ D
L.x/˝ id C id ˝ L.x/ and

ŒŒr; r�� D r13 � r12 � r23 � r21 C Œr23; r12� � Œr13; r21� � Œr13; r23�:

Corollary A.4. (a) Let G be a Lie algebra and r 2 G ˝ G . If r is antisymmetric and
r satisfies

Œr12; r13�C Œr12; r23�C Œr13; r23� D 0; (A.3)

then the map ı W G ! G ˝ G defined by eq. (A.1) induces a Lie bialgebra structure
on G .

(b) LetA be a pre-Lie algebra and r 2 A˝A. Suppose that r is symmetric. Then
the map � defined by eq. (A.2) induces a pre-Lie algebra structure on A� such that
.A;A�/ is a pre-Lie bialgebra if

� r12 � r13 C r12 � r23 C Œr13; r23� D 0: (A.4)

Definition A.5. (a) Let G be a Lie algebra and r 2 G ˝ G . Eq. (A.3) is called the
classical Yang–Baxter equation in G .

(b) Let A be a pre-Lie algebra and r 2 A ˝ A. Eq. (A.4) is called S -equation
in A.

Let G be a Lie algebra and let � W G ! gl.V / be a representation. Recall that a
linear map T W V ! G is called an O-operator of G associated to � if T satisfies

ŒT .u/; T .v/� D T .�.T .u//v � �.T .v//u/ for all u; v 2 V:

Proposition A.6. (a) Let G be a Lie algebra and r 2 G ˝ G .
(1) Suppose that r is antisymmetric and non-degenerate. Then r is a solution

of the classical Yang–Baxter equation in G if and only if the isomorphism G � ! G

induced by r , regarded as a bilinear form on G , is a 2-cocycle on G .
(2) Suppose that r is antisymmetric. Then r is a solution of the classical Yang–

Baxter equation in G if and only if r is an O-operator of G associated to ad�, that
is, r satisfies

Œr.a�/; r.b�/� D r.ad�.r.a�//b� � ad�.r.b�//a�/ for all a�; b� 2 G �:
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(b) Let A be a pre-Lie algebra and r 2 A˝ A.
(1) Suppose that r is symmetric and non-degenerate. Then r is a solution of S -

equation in A if and only if the inverse of the isomorphism A� ! A induced by r ,
regarded as a bilinear form B on A, is a 2-cocycle on A (see eq. (82)).

(2) Suppose that r is symmetric. Then r is a solution of S -equation in A if and
only if r is an O-operator of G .A/ associated to L�, that is, r satisfies

Œr.a�/; r.b�/� D r.L�� .r.a�//b� � L�� .r.b�//a�/ for all a�; b� 2 A�:

Lemma A.7. Let G be a Lie algebra and let � W G ! gl.V / be a representation. Let
T W V ! G be an O-operator associated to �. Then the product

u B v D �.T .u//v for all u; v 2 V
defines a pre-Lie algebra structure on V . Therefore V is a Lie algebra as the sub-
adjacent Lie algebra of this pre-Lie algebra and T is a homomorphism of Lie al-
gebras. Furthermore, T .V / D fT .v/ j v 2 V g � G is a Lie subalgebra of G and
there is an induced pre-Lie algebra structure on T .V / given by

T .u/ � T .v/ D T .u B v/ D T .�.T .u//v/ for all u; v 2 V: (A.5)

Moreover, its sub-adjacent Lie algebra structure is just the Lie subalgebra structure
of G and T is a homomorphism of pre-Lie algebras.

Proposition A.8. Let G be a Lie algebra and let � W G ! gl.V / be a representation.
Let �� W G ! gl.V �/ be the dual representation of �.

(a) A linear map T W V ! G is an O-operator of G associated to � if and only if
r D T � �.T / is an antisymmetric solution of the classical Yang–Baxter equation in
G Ë�� V �.

(b) Let T W V ! G be an O-operator associated to �. Then r D T C �.T / is
a symmetric solution of the S -equation in T .V / Ë��;0 V

�, where T .V / � G is a
pre-Lie algebra given by eq. (A.5) and .��; 0/ is a bimodule since its sub-adjacent Lie
algebra G .T .V // is a Lie subalgebra of G , and T can be identified with an element
in T .V /˝ V � � .T .V / Ë��;0 V

�/˝ .T .V / Ë��;0 V
�/.

Proposition A.9. Let .A; � / be a pre-Lie algebra. Let fe1; : : : ; eng be a basis of A
and fe�

1 ; : : : ; e
�
ng its dual basis.

(a) r given by eq. (31) is an antisymmetric solution of the classical Yang–Baxter
equation in G .A/ ËL� G .A/�. Moreover, r is non-degenerate and the induced 2-
cocycle B of G .A/ ËL� G .A/� is given by eq. (7).

(b) r given by eq. (83) is a symmetric solution of the S -equation in A ËL�;0 A
�.

Moreover, r is non-degenerate and the induced 2-cocycle B of A ËL�;0 A
� is given

by eq. (2).
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Theorem A.10. Let .A;A�; �; ˇ/ be a pre-Lie bialgebra. Then .G .A/;G .A�// is a
Lie bialgebra if and only if

hR�� .x/a�; R�B .b�/yi C hR�� .x/b�; R�B .a�/yi
D hR�� .y/b�; R�B .a�/xi C hR�� .y/a�; R�B .b�/xi;

for any x; y 2 A�, a�; b� 2 A�.

References

[A1] M. Aguiar, Infinitesimal Hopf algebras. In New trends in Hopf algebra theory (La
Falda, 1999), Contemp. Math. 267, Amer. Math. Soc., Providence, RI, 2000, 1–29.
Zbl 0982.16028 MR 1800704

[A2] M. Aguiar, Pre-Poisson algebras. Lett. Math. Phys. 54 (2000), 263–277.
Zbl 1032.17038 MR 1846958

[A3] M. Aguiar, On the associative analog of Lie bialgebras. J. Algebra 244 (2001),
492–532. Zbl 0991.16033 MR 1859038

[A4] M. Aguiar, Infinitesimal bialgebras, pre-Lie and dendriform algebras. In Hopf alge-
bras, Lecture Notes in Pure and Appl. Math. 237, Marcel Dekker, New York 2004,
1–33. Zbl 1059.16027 MR 2051728

[Bai1] C. Bai, A unified algebraic approach to the classical Yang–Baxter equation. J. Phys.
A 40 (2007), 11073–11082. Zbl 1118.17008 MR 2396216

[Bai2] C. Bai, Left-symmetric bialgebras and an analogue of the classicalYang–Baxter equa-
tion. Commun. Contemp. Math. 10 (2008), 221–260. Zbl 1173.17025 MR 2409367

[BGN1] C. Bai, L. Guo, and X. Ni, O-operators on associative algebras and associativeYang-
Baxter equations. Preprint 2009; arXiv:0910.3261 [math.RA].

[BGN2] C. Bai, L. Guo, and X. Ni, O-operators on associative algebras and dendriform
algebras. Preprint 2010; arXiv:1003.2432 [math.RA].

[BaN] A. A. Balinskiı̆ and S. P. Novikov, Poisson brackets of hydrodynamic type, Frobenius
algebras and Lie algebras. Dokl. Akad. Nauk SSSR 283 (1985), 1036–1039; English
transl. Soviet Math. Dokl. 32 (1985), 228–231. Zbl 0606.58018 MR 802121

[Bax] G. Baxter, An analytic problem whose solution follows from a simple algebraic
identity. Pacific J. Math. 10 (1960), 731–742. Zbl 0095.12705 MR 0119224

[Bo] M. Bordemann, Nondegenerate invariant bilinear forms on nonassociative alge-
bras. Acta Math. Univ. Comenian. (N.S.) 66 (1997), 151–201. Zbl 1014.17003
MR 1620480

[BFN] M. Bordemann, T. Filk, and C. Nowak, Algebraic classification of actions invariant
under generalized flip moves of two-dimensional graphs. J. Math. Phys. 35 (1994),
4964–4988. Zbl 0822.05026 MR 1290913

[BrN] R. Brauer and C. Nesbitt, On the regular representations of algebras. Proc. Nat. Acad.
Sci. U.S.A. 23 (1937), 236–240. Zbl 0016.34102

http://www.emis.de/MATH-item?0982.16028
http://www.ams.org/mathscinet-getitem?mr=1800704
http://www.emis.de/MATH-item?1032.17038
http://www.ams.org/mathscinet-getitem?mr=1846958
http://www.emis.de/MATH-item?0991.16033
http://www.ams.org/mathscinet-getitem?mr=1859038
http://www.emis.de/MATH-item?1059.16027
http://www.ams.org/mathscinet-getitem?mr=2051728
http://www.emis.de/MATH-item?1118.17008
http://www.ams.org/mathscinet-getitem?mr=2396216
http://www.emis.de/MATH-item?1173.17025
http://www.ams.org/mathscinet-getitem?mr=2409367
http://arxiv.org/abs/0910.3261
http://arxiv.org/abs/1003.2432
http://www.emis.de/MATH-item?0606.58018
http://www.ams.org/mathscinet-getitem?mr=802121
http://www.emis.de/MATH-item?0095.12705
http://www.ams.org/mathscinet-getitem?mr=0119224
http://www.emis.de/MATH-item?1014.17003
http://www.ams.org/mathscinet-getitem?mr=1620480
http://www.emis.de/MATH-item?0822.05026
http://www.ams.org/mathscinet-getitem?mr=1290913
http://www.emis.de/MATH-item?0016.34102


528 C. Bai

[Bu] D. Burde, Left-symmetric algebras, or pre-Lie algebras in geometry and physics.
Cent. Eur. J. Math. 4 (2006), 323–357. Zbl 1151.17301 MR 2233854

[Cha1] F. Chapoton, Un endofoncteur de la catégorie des opérades. In Dialgebras and
related operads, Lecture Notes in Math. 1763, Springer, Berlin 2001, 105–110.
Zbl 0999.17004 MR 1860996

[Cha2] F. Chapoton, Un théorème de Cartier-Milnor-Moore-Quillen pour les bigèbres dendri-
formes et les algèbres braces. J. PureAppl.Algebra 168 (2002), 1–18. Zbl 0994.18006
MR 1879927

[CP] V. Chari and A. Pressley, A guide to quantum groups. Cambridge University Press,
Cambridge 1994. Zbl 0839.17010 MR 1300632

[Chu] B. Y. Chu, Symplectic homogeneous spaces. Trans. Amer. Math. Soc. 197 (1974),
145–159. Zbl 0261.53039 MR 0342642

[C] A. Connes, Non-commutative differential geometry. Inst. Hautes Études Sci. Publ.
Math. 62 (1985), 41–144. Zbl 0592.46056 MR 0823176

[D] V. Drinfeld, Hamiltonian structures on Lie groups, Lie bialgebras and the geometric
meaning of the classicalYang-Baxter equations. Dokl. Akad. Nauk SSSR 268 (1983),
285–287; English transl. Soviet Math. Dokl. 27 (1983), 68–71. Zbl 0526.58017
MR 0688240

[E1] K. K. Ebrahimi-Fard, Loday-type algebras and the Rota–Baxter relation. Lett. Math.
Phys. 61 (2002), 139–147. Zbl 1035.17001 MR 1936573

[E2] K. Ebrahimi-Fard, On the associative Nijenhuis relation. Electron. J. Combin. 11
(2004), no. 1, Research Paper R38. Zbl 1074.17001 MR 2097304

[EMP] K. Ebrahimi-Fard, D. Manchon, and F. Patras, New identities in dendriform algebras.
J. Algebra 320 (2008), 708–727. Zbl 1153.17003 MR 2422313

[F1] L. Foissy, Les algèbres de Hopf des arbres enracinés décorés, II. Bull. Sci. Math. 126
(2002), 249–288. Zbl 1013.16027 MR 1909461

[F2] L. Foissy, Bidendriform bialgebras, trees, and free quasi-symmetric functions. J. Pure
Appl. Algebra 209 (2007), 439–459. Zbl 1123.16030 MR 2293319

[Fra1] A. Frabetti, Dialgebra homology of associative algebras. C. R. Acad. Sci. Paris Sér.
I Math. 325 (1997), 135–140. Zbl 0883.16005 MR 1467065

[Fra2] A. Frabetti, Leibniz homology of dialgebras of matrices. J. Pure Appl. Algebra 129
(1998), 123–141. Zbl 0936.17003 MR 1624446

[Fro] G. Frobenius, Theorie der hyperkomplexen Größen. Sitzber. Königlich Preuss. Akad.
Wiss. Berlin 1903 (1903), 504–537; Theorie der hyperkomplexen Größen. II; ibid.
1903 (1903), 634–645. JFM 34.0238.02

[H1] R. Holtkamp, Comparison of Hopf algebras on trees. Arch. Math. (Basel) 80 (2003),
368–383. Zbl 1056.16030 MR 1982837

[H2] R. Holtkamp, On Hopf algebra structures over free operads. Adv. Math. 207 (2006),
544–565. Zbl 1117.16027 MR 2271016

[JR] S. A. Joni and G.-C. Rota, Coalgebras and bialgebras in combinatorics. Stud. Appl.
Math. 61 (1979), 93–139. Zbl 0471.05020 MR 544721

http://www.emis.de/MATH-item?1151.17301
http://www.ams.org/mathscinet-getitem?mr=2233854
http://www.emis.de/MATH-item?0999.17004
http://www.ams.org/mathscinet-getitem?mr=1860996
http://www.emis.de/MATH-item?0994.18006
http://www.ams.org/mathscinet-getitem?mr=1879927
http://www.emis.de/MATH-item?0839.17010
http://www.ams.org/mathscinet-getitem?mr=1300632
http://www.emis.de/MATH-item?0261.53039
http://www.ams.org/mathscinet-getitem?mr=0342642
http://www.emis.de/MATH-item?0592.46056
http://www.ams.org/mathscinet-getitem?mr=0823176
http://www.emis.de/MATH-item?0526.58017
http://www.ams.org/mathscinet-getitem?mr=0688240
http://www.emis.de/MATH-item?1035.17001
http://www.ams.org/mathscinet-getitem?mr=1936573
http://www.emis.de/MATH-item?1074.17001
http://www.ams.org/mathscinet-getitem?mr=2097304
http://www.emis.de/MATH-item?1153.17003
http://www.ams.org/mathscinet-getitem?mr=2422313
http://www.emis.de/MATH-item?1013.16027
http://www.ams.org/mathscinet-getitem?mr=1909461
http://www.emis.de/MATH-item?1123.16030
http://www.ams.org/mathscinet-getitem?mr=2293319
http://www.emis.de/MATH-item?0883.16005
http://www.ams.org/mathscinet-getitem?mr=1467065
http://www.emis.de/MATH-item?0936.17003
http://www.ams.org/mathscinet-getitem?mr=1624446
http://www.emis.de/MATH-item?34.0238.02
http://www.emis.de/MATH-item?1056.16030
http://www.ams.org/mathscinet-getitem?mr=1982837
http://www.emis.de/MATH-item?1117.16027
http://www.ams.org/mathscinet-getitem?mr=2271016
http://www.emis.de/MATH-item?0471.05020
http://www.ams.org/mathscinet-getitem?mr=544721


Double constructions of Frobenius algebras, Connes cocycles and their duality 529

[Kac] V. G. Kac, Infinite dimensional Lie algebras. Progr. Math. 44, Birkhäuser, Boston
1983. Zbl 0537.17001 MR 0739850

[Kan] S. Kaneyuki, Homogeneous symplectic manifolds and dipolarizations in Lie algebras.
Tokyo J. Math. 15 (1992), 313–325. Zbl 0781.53027 MR 1197100

[Kap] G. Karpilovsky, Symmetric andG-algebras. Math. Appl. 60, Kluwer Academic Pub-
lishers, Dordrecht 1990. Zbl 0705.16001 MR 1065394

[Ko] J. Kock, Frobenius algebras and 2D topological quantum field theories. Lon-
don Math. Soc. Stud. Texts 59, Cambridge University Press, Cambridge 2004.
Zbl 1046.57001 MR 2037238

[Ku1] B. A. Kupershmidt, Non-abelian phase spaces. J. Phys. A 27 (1994), 2801–2809.
Zbl 0842.58030 MR 1280835

[Ku2] B. A. Kupershmidt, On the nature of the Virasoro algebra. J. Nonlinear Math. Phys.
6 (1999), 222–245. Zbl 1015.17027 MR 1686317

[Ku3] B. A. Kupershmidt, What a classical r-matrix really is. J. Nonlinear Math. Phys. 6
(1999), 448–488. Zbl 1015.17015 MR 1722068

[LS] R. G. Larson and M. E. Sweedler, An associative orthogonal bilinear form for Hopf
algebras. Amer. J. Math. 91 (1969), 75–94. Zbl 0179.05803 MR 0240169

[Li] P. Libermann, Sur le problème d’équivalence de certaines structures infinitésimales.
Ann. Mat. Pura Appl. (4) 36 (1954), 27–120. Zbl 0056.15401 MR 0066020

[Lo1] J.-L. Loday, Dialgebras. In Dialgebras and related operads, Lecture Notes in Math.
1763, Springer, Berlin 2001, 7–66. Zbl 0999.17002 MR 1860994

[Lo2] J.-L. Loday, Arithmetree. J. Algebra 258 (2002), 275–309. Zbl 1063.16044
MR 1958907

[Lo3] J.-L. Loday, Scindement d’associativité et algèbres de Hopf. In Actes des Journées
Mathématiques à la Mémoire de Jean Leray, Sémin. Congr. 9, Soc. Math. France,
Paris 2004, 155–172. Zbl 1073.16032 MR 2145941

[Lo4] J.-L. Loday, Generalized bialgebras and triples of operads. Astérisque 320 (2008).
Zbl 1178.18001 MR 2504663

[LR1] J.-L. Loday and M. O. Ronco, Hopf algebra of the planar binary trees. Adv. Math.
139 (1998), 293–309. Zbl 0926.16032 MR 1654173

[LR2] J.-L. Loday and M. O. Ronco, Order structure on the algebra of permutations and
of planar binary trees. J. Algebraic Combin. 15 (2002), 253–270. Zbl 0998.05013
MR 1900627

[MR1] A. Medina and P. Revoy, Caractérisation des groupes de Lie ayant une pseudométrique
bi-invariante. Applications. In Seminaire Sud-Rhodanien en Géométrie III: Journees
lyonnaises de la Societe Mathematique de France (Lyon, 1983), Hermann, Paris,
Paris 1984, 149—166. Zbl 0539.53039 MR 0753868

[MR2] A. Medina and P. Revoy, Algèbres de Lie et produit scalaire invariant. Ann. Sci. École
Norm. Sup. (4) 18 (1985), 553–561. Zbl 0592.17006 MR 826103

[Ron] M. Ronco, Eulerian idempotents and Milnor-Moore theorem for certain non-
cocommutative Hopf algebras. J. Algebra 254 (2002), 152–172. Zbl 1017.16033
MR 1927436

http://www.emis.de/MATH-item?0537.17001
http://www.ams.org/mathscinet-getitem?mr=0739850
http://www.emis.de/MATH-item?0781.53027
http://www.ams.org/mathscinet-getitem?mr=1197100
http://www.emis.de/MATH-item?0705.16001
http://www.ams.org/mathscinet-getitem?mr=1065394
http://www.emis.de/MATH-item?1046.57001
http://www.ams.org/mathscinet-getitem?mr=2037238
http://www.emis.de/MATH-item?0842.58030
http://www.ams.org/mathscinet-getitem?mr=1280835
http://www.emis.de/MATH-item?1015.17027
http://www.ams.org/mathscinet-getitem?mr=1686317
http://www.emis.de/MATH-item?1015.17015
http://www.ams.org/mathscinet-getitem?mr=1722068
http://www.emis.de/MATH-item?0179.05803
http://www.ams.org/mathscinet-getitem?mr=0240169
http://www.emis.de/MATH-item?0056.15401
http://www.ams.org/mathscinet-getitem?mr=0066020
http://www.emis.de/MATH-item?0999.17002
http://www.ams.org/mathscinet-getitem?mr=1860994
http://www.emis.de/MATH-item?1063.16044
http://www.ams.org/mathscinet-getitem?mr=1958907
http://www.emis.de/MATH-item?1073.16032
http://www.ams.org/mathscinet-getitem?mr=2145941
http://www.emis.de/MATH-item?1178.18001
http://www.ams.org/mathscinet-getitem?mr=2504663
http://www.emis.de/MATH-item?0926.16032
http://www.ams.org/mathscinet-getitem?mr=1654173
http://www.emis.de/MATH-item?0998.05013
http://www.ams.org/mathscinet-getitem?mr=1900627
http://www.emis.de/MATH-item?0539.53039
http://www.ams.org/mathscinet-getitem?mr=0753868
http://www.emis.de/MATH-item?0592.17006
http://www.ams.org/mathscinet-getitem?mr=826103
http://www.emis.de/MATH-item?1017.16033
http://www.ams.org/mathscinet-getitem?mr=1927436


530 C. Bai

[Rot] G.-C. Rota, Baxter operators, an introduction. In Gian-Carlo Rota on combinatorics,
Introductory papers and commentaries, Birkhäuser, Boston 1995. Zbl 0841.01031
MR 1392961

[RFFS] I. Runkel, J. Fjelstad, J. Fuchs, and C. Schweigert, Topological and conformal field
theory as Frobenius algebras. In Categories in algebra, geometry and mathematical
physics, Contemp. Math. 431, Amer. Math. Soc., Providence, RI, 2007, 225–247.
Zbl 1154.18006 MR 2342831

[Sc] R. D. Schafer, An introduction to nonassociative algebras. Corrected reprint of the
1966 original, Dover Publications, New York 1995. Zbl 0145.25601 MR 1375235

[Se] M. A. Semenov-Tyan-Shanskii, What is a classical r-matrix? Funktsional. Anal.
i Prilozh. 17 (1983), no.4, 17–33; English transl. Funct. Anal. Appl. 17 (1983),
259–272. Zbl 0535.58031 MR 0725413

[Sh] H. Shima, Homogeneous Hessian manifolds.Ann. Inst. Fourier (Grenoble) 30 (1980),
91–128. Zbl 0424.53023 MR 597019

[St] A. Stolin, Frobenius algebras and the Yang-Baxter equation. In New symmetries in
the theories of fundamental interactions (Karpacz, 1996), Wydawnictwo Naukowe
PWN, Warsaw 1997, 93–97. MR 1634712

[U] K. Uchino, Quantum analogy of Poisson geometry, related dendriform algebras
and Rota-Baxter operators. Lett. Math. Phys. 85 (2008), 91–109. Zbl 05544981
MR 2443932

[Y] K. Yamagata, Frobenius algebras. In Handbook of algebra, Vol. 1, North-Holland,
Amsterdam 1996, 841–887. Zbl 0879.16008 MR 1421820

[Z] V. N. Zhelyabin, Jordan bialgebras and their connection with Lie bialgebras. Al-
gebra i Logika 36 (1997), 3–25; English transl. Algebra Logic 36 (1997), 1–16.
Zbl 0935.17014 MR 1454688

Received March 10, 2009

C. Bai, Chern Institute of Mathematics & LPMC, Nankai University, Tianjin 300071,
P.R. China

E-mail: baicm@nankai.edu.cn

http://www.emis.de/MATH-item?0841.01031
http://www.ams.org/mathscinet-getitem?mr=1392961
http://www.emis.de/MATH-item?1154.18006
http://www.ams.org/mathscinet-getitem?mr=2342831
http://www.emis.de/MATH-item?0145.25601
http://www.ams.org/mathscinet-getitem?mr=1375235
http://www.emis.de/MATH-item?0535.58031
http://www.ams.org/mathscinet-getitem?mr=0725413
http://www.emis.de/MATH-item?0424.53023
http://www.ams.org/mathscinet-getitem?mr=597019
http://www.ams.org/mathscinet-getitem?mr=1634712
http://www.emis.de/MATH-item?05544981
http://www.ams.org/mathscinet-getitem?mr=2443932
http://www.emis.de/MATH-item?0879.16008
http://www.ams.org/mathscinet-getitem?mr=1421820
http://www.emis.de/MATH-item?0935.17014
http://www.ams.org/mathscinet-getitem?mr=1454688

	Introduction
	Double constructions of Frobenius algebras and another approach to associative Yang–Baxter equation
	Dendriform algebras
	Double constructions of Connes cocycles and an analogue of the classical Yang–Baxter equation
	Comparison (duality) between bialgebra structures
	Appendix: Some properties of Lie bialgebras and pre-Lie bialgebras
	References

