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The Heisenberg–Lorentz quantum group

Paweł Kasprzak�

Abstract. In this article we present a new C�-algebraic deformation of the Lorentz group.
It is obtained by means of the Rieffel deformation applied to SL.2; C/. We give a detailed
description of the resulting quantum group G D .A; �/ in terms of generators Ǫ ; Ǒ; O�; Oı 2 A� –
the quantum counterparts of the matrix coefficients ˛, ˇ, � , ı of the fundamental representation
of SL.2; C/. In order to construct Ǒ – the most involved of the four generators – we first define
it on the quantum Borel subgroup G0 � G, then on the quantum complement of the Borel
subgroup and finally we perform the gluing procedure. In order to classify representations of
the C�-algebra A and to analyze the action of the comultiplication � on the generators Ǫ , Ǒ,
O� , Oı we employ the duality in the theory of locally compact quantum groups.
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1. Introduction

A complete classification of deformations of SL.2; C/ on the Hopf �-algebra level
was presented in [14]. So far three of the cases contained there have been realized
on a deeper, C*-algebraic level (see [2], [6], [13]). This article is devoted to the
C*-algebraic realization of another case. The method of deformation that we use
is the Rieffel deformation which is the same as in the example considered in [2].
Nevertheless, the resulting quantum group G D .A; �/ – the Heisenberg–Lorentz
quantum group – is much more complex. One of the difficulties lies in the fact that
among the four generators Ǫ , Ǒ, O� , Oı of the C*-algebra A only O� is normal. Also the
analysis of the comultiplication � is not as straightforward as in the case of [2]. To
perform it we use the one-to-one correspondence between representations of the C*-
algebra A and corepresentations of the dual quantum group yG. This correspondence
was also used to describe all representations of A on Hilbert spaces.

Let us briefly describe the contents of the article. In the next section we present
the Hopf �-algebraic version of the Heisenberg–Lorentz quantum group. We begin
with a description of commutation relations satisfied by generators Ǫ , Ǒ, O� , Oı – the
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quantum counterparts of the matrix coefficients ˛, ˇ, � , ı of the fundamental rep-
resentation of SL.2; C/. Formulas for the comultiplication, coinverse and counit on
generators are the same as in the classical case. In Section 3 we define Hilbert space
representations of the Heisenberg–Lorentz commutation relations. We show that the
tensor product of two such representations can be defined. Section 4 is devoted to
the construction of the C*-algebraic version G D .A; �/ of the Heisenberg–Lorentz
quantum group. In particular we introduce four affiliated elements Ǫ ; Ǒ; O�; Oı 2 A� . In
order to construct Ǒ, we first define it on the quantum Borel subgroup G0 � G, then
on the quantum complement of the Borel subgroup and finally we perform the gluing
procedure. Having constructed affiliated elements Ǫ , Ǒ, O� , Oı, we show that they gen-
erate A. Moreover, we note that for any representation � 2 Rep.AI H / the quadruple
.�. Ǫ /; �. Ǒ/; �. O�/; �. Oı// is a Hilbert space representation of the Heisenberg–Lorentz
commutation relations. The converse is also true: for any representation . Q̨ ; Q̌; Q�; Qı/

of the Heisenberg–Lorentz commutation relations on a Hilbert space H there exists
a unique representation � 2 Rep.AI H / such that

�. Ǫ / D Q̨ ; �. Ǒ/ D Q̌; �. O�/ D Q�; �. Oı/ D Qı:

At the end of Section 4 we show that the action of � on generators has the same form
as in the classical case. Appendices collect useful facts concerning the quantization
map and the counit in the Rieffel deformation, the complex infinitesimal generator
of the Heisenberg group and the product of strongly commuting affiliated elements.

Throughout the article we will freely use the language of C*-algebras and the
theory of locally compact quantum groups. For a locally compact space X , C0.X/

and Cb.X/ shall respectively denote the algebra of continuous functions vanishing
at infinity and the algebra of continuous bounded functions. If X is also a manifold,
then C1.X/ denotes the algebra of smooth functions on X and C1

c .X/ denotes
the algebra of smooth functions of compact supports. For the notion of multipliers,
affiliated elements and algebras generated by a family of affiliated elements we refer
the reader to [10], [11] and [12]. The set of elements affiliated with a C*-algebra A will
be denoted by A� and the affiliation relation will be denoted by �, i.e., T � A means
that T 2 A� . The z-transform of T 2 A� will be denoted by zT . For the precise
definition of zT we refer to [12]. For the theory of locally compact quantum groups
we refer to [3] and [4]. For the theory of quantum groups given by a multiplicative
unitary we refer to [1] and [9]. For the notion of �-product we refer to [5]. All
Hilbert spaces appearing in the article are assumed to be separable. Given a pair
of densely defined operators X and Y acting on a Hilbert space H , the dotted sum
X u Y is the closure of the usual sum X C Y . To define X u Y one has to prove
that the intersection of domains D.X/ \ D.Y / is dense in H and X C Y defined on
D.X/ \ D.Y / is closable.

I would like to express my gratitude to S. L. Woronowicz for many stimulating
discussions, which greatly influenced the final form of this paper.
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2. Hopf *-algebra level

We fix a deformation parameter s 2 R. Let A be a unital �-algebra generated by four
elements Ǫ , Ǒ, O� , Oı satisfying the following commutation relations:

Ǫ Ǒ D Ǒ Ǫ ; Ǫ O� D O� Ǫ ; Ǫ Oı D Oı Ǫ ;

Ǒ O� D O� Ǒ; Ǒ Oı D Oı Ǒ;
O� Oı D Oı O�;

Ǫ Oı � Ǒ O� D 1I

Ǫ Ǫ� � Ǫ � Ǫ D �s O�� O�; Ǫ Ǒ� � Ǒ� Ǫ D �s O� Oı�;

Ǫ O�� D O�� Ǫ ; Ǫ Oı� D Oı� Ǫ ;
(1)

Ǒ Ǒ� � Ǒ� Ǒ D s. Ǫ� Ǫ � Oı Oı�/;

Ǒ O�� D O�� Ǒ; Ǒ Oı� � Oı� Ǒ D s O�� Ǫ ;

O� O�� D O�� O�; O� Oı� D Oı� O�;

Oı Oı� � Oı� Oı D s O� O��:

The �-algebra A was introduced in [14] where it was also proven that it admits the
structure of a Hopf �-algebra. The action of the comultiplication � W A ! A ˝ A

on the generators is given by

�. Ǫ / D Ǫ ˝ Ǫ C Ǒ ˝ O�; �. Ǒ/ D Ǫ ˝ Ǒ C Ǒ ˝ Oı;

�. O�/ D O� ˝ Ǫ C Oı ˝ O�; �. Oı/ D O� ˝ Ǒ C Oı ˝ Oı:

The coinverse � W A ! A is an involutive �-antihomomorphism and its action on the
generators is given by

�. Ǫ / D Oı; �. Ǒ/ D � Ǒ; �. O�/ D � O�; �. Oı/ D Ǫ :

Finally, the action of the counit " W A ! C on the generators is given by

". Ǫ / D 1; ". Ǒ/ D 0; ". O�/ D 0; ". Oı/ D 1:

Note that the formulas defining co-operations on A coincide with the corresponding
formulas for the Hopf �-algebra of polynomial functions on SL.2; C/.

3. Hilbert space level

In this section we distinguish a class of representations of commutation relations (1)
on a Hilbert space which will be proven to correspond to representations of the C*-
algebra A of the Heisenberg–Lorentz quantum group (see Theorem 4.5). Note first
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that the pair . Ǫ ; �s O�� O�/ satisfies the commutation relation defining the Heisenberg
Lie algebra (see Appendix C). The same is true of the pair . Oı; s O�� O�/. Furthermore,
in the case when O� is represented by an invertible operator, the equation Ǫ Oı � Ǒ O� D 1

determines Ǒ. This gives a motivation for the following definition.

Definition 3.1. Let Q̨ , Q� , Qı be closed operators acting on a Hilbert space H . We say
that the triple . Q̨ ; Q�; Qı/ satisfies the Heisenberg–Lorentz commutation relations if

1. Q� is normal and ker Q� D f0g;

2. . Q̨ ; �s Q�� Q�/ and . Qı; s Q�� Q�/ are infinitesimal representations of the Heisenberg
group H;

3. Q̨ , Q� and Qı mutually strongly commute.

For the notion of infinitesimal representation of H we refer to Definition C.1 and
for the notion of strong commutativity we refer to Definition D.1.

Definition 3.1 describes representations of commutation relations (1) in which
O� is represented by an invertible operator Q� . The next definition deals with the
representations for which Q� D 0. Note that in this case it is the pair . Q̌; s. Q̨ � Q̨ �
1= Q̨ � Q̨ // that satisfies the Heisenberg Lie algebra relation.

Definition 3.2. Let Q̨ , Q̌ be closed operators acting on a Hilbert space H . We say
that the pair . Q̨ ; Q̌/ satisfies the Heisenberg–Lorentz commutation relations if

1. Q̨ is normal and ker Q̨ D f0g;

2. . Q̌; s. Q̨� Q̨ � 1= Q̨ � Q̨ // is an infinitesimal representation of the Heisenberg
group H;

3. Q̨ and Q̌ strongly commute.

To deal with the general case of representations of Heisenberg–Lorentz commuta-
tion relations note that O� commutes with all of the generators and their adjoints. This
fact leads to the idea that any representation of the Heisenberg–Lorentz commutation
relations splits into a direct sum of two representations: one with an invertible Q� and
one with Q� being zero. More precisely we have:

Definition 3.3. Let Q̨ , Q̌, Q� , Qı be closed operators acting on a Hilbert space H ,
Q� being normal. By H0, H1 and Q�1 we denote the kernel of Q� , its orthogonal
complement and the restriction of Q� to H1. We say that the quadruple . Q̨ ; Q̌; Q�; Qı/ is a
representation of the Heisenberg–Lorentz commutation relations if Q̨ , Q̌ and Qı respect
the decomposition H D H0 ˚ H1, i.e., there exist closed operators Q̨0; Q̌

0; Qı0 acting
on H0 and Q̨1, Q̌

1, Qı1 acting on H1 such that

Q̨ D Q̨0 ˚ Q̨1; Q̌ D Q̌
0 ˚ Q̌

1; Qı D Qı0 ˚ Qı1;

and we have
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1. the pair . Q̨0; Q̌
0/ satisfies the Heisenberg–Lorentz commutation relations;

2. Q̨0 and Qı0 are mutual inverses: Qı0 D Q̨ �1
0 ;

3. the triple . Q̨1; Q�1; Qı1/ satisfies the Heisenberg–Lorentz commutation relations;

4. Q̌
1 D Q��1

1 . Q̨1
Qı1 � 1/.

Remark 3.4. The product of operators in point 4 above is taken in the sense of
Theorem D.2. It is a well-known fact that a representation of the Heisenberg group
H can be decomposed into a direct integral of irreducible representations. In the
case of irreducible representations the operator Q� appearing in Definition 3.1 and Q̨
appearing in Definition 3.2 are multiples of identity. This fact will be used in the
proof of the next theorem.

As has already been mentioned, the class of representations defined above corre-
sponds to representations of the C*-algebra A of the Heisenberg–Lorentz quantum
group (see Theorem 4.5). Let us recall that for two representations �1 2 Rep.A; H /

and �2 2 Rep.A; H 0/ their tensor product is defined by � D .�1 ˝ �2/ B � 2
Rep.AI H ˝ H 0/. The next theorem gives a description of the tensor product con-
struction in terms of the Heisenberg–Lorentz commutation relations. This construc-
tion will be crucial in the analysis of the comultiplication of � on the C*-algebra
level (see Theorem 4.9).

Theorem 3.5. Let Q̨ , Q̌, Q� , Qı be closed operators acting on a Hilbert space H and
let Q̨ 0, Q̌0, Q� 0, Qı0 be closed operators acting on a Hilbert space H 0. Assume that
. Q̨ ; Q̌; Q�; Qı/, . Q̨ 0; Q̌0; Q� 0; Qı0/ are representations of the Heisenberg–Lorentz commuta-
tion relations. Then the quadruple of operators . Q̨ 00; Q̌00; Q� 00; Qı00/ acting on H ˝ H 0
and defined by

Q̨ 00 D Q̨ ˝ Q̨ 0 u Q̌ ˝ Q� 0;
Q̌00 D Q̨ ˝ Q̌0 u Q̌ ˝ Qı0;
Q� 00 D Q� ˝ Q̨ 0 u Qı ˝ Q� 0;
Qı00 D Q� ˝ Q̌0 u Qı ˝ Qı0

is a representation of the Heisenberg–Lorentz commutation relations on H ˝ H 0.

Proof. First, let us introduce some notation. For any " > 0, z 2 C we set

f".z/ D 1

�"
exp.�"�1jzj2/ 2 RC:

Note that for any " 2 RC, f" 2 L1.C/ and the family f" is a Dirac delta approxima-
tion:

lim
"!0

Z
d 2z f".z/g.z/ D g.0/;
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where d 2z is a Haar measure on C. Let V a be an irreducible unitary representation
of the Heisenberg group H on a Hilbert space H (for an explanation of the notation
V a we refer to Appendix C). Smearing the family V a

z;0 with a function f" we get the
family

I a
" D

Z
d 2z f".z/V a

z;0 (2)

of bounded operators acting on H . The following properties of I a
" will be used in

the course of the proof:

s- lim
"!0

I a
" D 1;

Ran.I"/ � D.an/ for any n 2 N;

lim
"!0

anI"h D anh for any h 2 D.an/;

(3)

where s- lim denotes the limit in the strong topology on B.H /.

Let us move on to the main part of the proof. Let c; c0 2 C n f0g. By Remark 3.4
it is enough to prove our theorem in the following three cases:

H0 D H 0
0 D f0g; Q� D c1 and Q� 0 D c01;

H0 D H 0
1 D f0g; Q� D c1 and Q̨ 0

0 D c01;

H1 D H 0
1 D f0g; Q̨0 D c1 and Q̨ 0

0 D c01:

The notation used above coincides with the notation of Definition 3.3. In what follows
we shall treat the first case, leaving the second and third cases to the reader.

Note that the pairs .1 ˝ c Q̨ 0; �sjcc0j2/ and .c0 Qı ˝ 1; sjcc0j2/ are infinitesimal
representations of H. For any z 2 C we define a unitary operator

Uz D U 1˝c Q̨ 0

z;0 U c0 Qı˝1
z;0 2 B.H1 ˝ H 0

1/:

It is easy to check that the map

C 3 z 7! Uz 2 B.H1 ˝ H 0
1/

is a strongly continuous representation of the group .C; C/. Let T be the correspond-
ing infinitesimal generator. By definition T is a normal operator with the domain

D.T / D fh 2 H1 ˝H 0
1 j the map C 3 z 7! Uzh 2 H1 ˝H 0

1 is once differentiableg
and the action of T on h 2 D.T / is given by

T h D 2 @
@z

Uzh
ˇ̌
zD0

: (4)

With this definition of T , we have Uz D ei Im.zT /, which explains the factor 2 on the
right-hand side of (4). Comparing formulas (4) and (75) we see that Q� 00 � T . In
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order to prove the equality Q� 00 D T , it is enough to show that D.1˝ Q̨ 0/\D. Qı ˝1/ �
H1 ˝ H 0

1, which is a core of Q� 00, is also a core of T . For this we use the family of

operators I
Qı

" ˝ I Q̨ 0

" 2 B.H1 ˝ H 0
1/. It has the following properties:

s- lim
"!0

.I
Qı

" ˝ I Q̨ 0

" / D 1;

Ran.I
Qı

" ˝ I Q̨ 0

" / � D. Qı ˝ 1/ \ D.1 ˝ Q̨ 0/;

lim
"!0

T .I
Qı

" ˝ I Q̨ 0

" /h D T h for any h 2 D.T /:

The first and second properties are direct consequences of (3), while the third property
requires a separate proof which is based on formulas (2) and (4). The fact that
D.1 ˝ Q̨ 0/ \ D. Qı ˝ 1/ is a core of T is now an immediate consequence of all three
properties, hence we have T D Q� 00.

In the analysis of Q̌00 we shall use the fact that Q� 00 defined above is invertible:
ker Q� 00 D f0g. Assume on the contrary that ker Q� 00 ¤ f0g. Using the identity

.U
Qı
z
c0 ;0

˝ U Q̨ 0

� z
c ;0

/ Q� 00.U Qı
� z

c0 ;0
˝ U Q̨ 0

z
c ;0

/ D Q� 00 C Nz;

we see that Q� 00 has an eigenvector for any complex number. This fact and the nor-
mality of Q� 00 (eigenvectors of different eigenvalues are perpendicular) contradicts the
separability of H1 ˝ H 0

1, hence ker Q� 00 D f0g.
Let us move on to the analysis of the operator Q̨ 00 D Q̨ ˝ Q̨ 0 u Q̌ ˝ Q� 0. Our

objective is to show that Q̨ 00 is an infinitesimal complex generator of a representation
of the Heisenberg group H (cf. Definition 3.1). In order to do that we define an
auxiliary operator

T 0 D Q� 00.c�1 Q̨ ˝ 1/ � c�1c0: (5)

Note that Q� 00 and Q̨ ˝ 1 strongly commute, and T 0 is well defined by Theorem D.2.
It is easy to see that .T 0; �s Q� 00� Q� 00/ is an infinitesimal representation of H. Hence,
to prove that . Q̨ 00; �s Q� 00� Q� 00/ is also an infinitesimal representation of H, it is enough
to show that Q̨ 00 D T 0. For this purpose we use the family of operators

I" D I Q̨
" I

Qı
" ˝ I Q̨ 0

" 2 B.H1 ˝ H 0
1/:

It has the following properties:

s- lim
"!0

I" D 1;

Ran.I"/ � D. Q̨ 00/ \ D.T 0/;
T 0jRan.I"/ D Q̨ 00jRan.I"/;

lim
"!0

T 0I"h D T 0h for any h 2 D.T 0/;

lim
"!0

Q̨ 00I"h D Q̨ 00h for any h 2 D. Q̨ 00/:
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The third, fourth and fifth properties show that T 0 and Q̨ 00 coincide on a join core,
hence T 0 D Q̨ 00. Similarly we prove that the operator Qı00 D Q� ˝ Q̌0 u Qı ˝ Qı0 gives rise
to the infinitesimal representation . Qı00; �s Q� 00� Q� 00/ of the Heisenberg group H.

To complete the proof we have to show that the operator Q̌00 D Q̨ ˝ Q̌0 u Q̌ ˝ Qı0
is equal to Q� 00�1. Q̨ 00 Qı00 � 1/ (see point 4 of Definition 3.3). In order to do that we use
the family of operators

J" D I Q̨
" I

Qı
" ˝ I Q̨ 0

" I
Qı0

" 2 B.H1 ˝ H 0
1/:

It has the following properties:

s � lim
"!0

J" D 1;

Ran.J"/ � D. Q� 00�1. Q̨ 00 Qı00 � 1// \ D. Q̌00/;
Q̌00jRan.J"/ D Q� 00�1. Q̨ 00 Qı00 � 1/jRan.J"/;

lim
"!0

Q̌00J"h D Q̌00h for any h 2 D. Q̌00/;

lim
"!0

Q� 00�1. Q̨ 00 Qı00 � 1/J"h D Q� 00�1. Q̨ 00 Qı00 � 1/h for any h 2 D. Q� 00�1. Q̨ 00 Qı00 � 1//:

The third, fourth and fifth properties show that Q̌00 and Q� 00�1. Q̨ 00 Qı00 � 1/ coincide on
a join core, therefore Q̌00 D Q� 00�1. Q̨ 00 Qı00 � 1/.

4. C*-algebra level

In this section we shall describe the Heisenberg–Lorentz quantum group on the
C*-algebra level. It is obtained by applying the Rieffel deformation to SL.2; C/

(which from now on will be denoted by G). Let us fix an abelian subgroup � � G,
which will be used in the deformation procedure. Set

� D
²�

1 z

0 1

� ˇ̌
z 2 C

³
:

Note that � is isomorphic to the additive group of complex numbers. In particular
� and its Pontryiagin dual O� are isomorphic. The isomorphism that we shall use is
given by the non-degenerate pairing on C � C:

hz; z0i D exp.i Im.zz0//:

Let ‰ be the skew bicharacter on O� ' C given by

‰.z; z0/ D exp.i s
4

Im.z Nz0//: (6)

Using the results of Rieffel (see [8]) we know that the abelian subgroup � � G and
the bicharacter ‰ on O� give rise to a quantum group G D .A; �/. In this article
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we shall use a formulation of the Rieffel deformation based on the theory of crossed
products which was given in [2]. In this framework the deformation procedure goes
as follows. Let � W �2 ! Aut.C0.G// be the action of �2 given by the left and right
shifts of functions on G along � ,

��1;�2
.f /.g/ D f .��1

1 g�2/;

where �1; �2 2 � , f 2 C0.G/ and g 2 G. We construct the crossed product
C*-algebra B D C0.G/ Ì� �2. Let B D .B; 	; O�/ be the standard �2-product
structure on B , i.e., O� is the dual action of O�2 on B and 	 is the representation of �2

on B which implements � on C0.G/ � M.B/:

��1;�2
.f / D 	�1;�2

f 	�
�1;�2

:

Let O‰ W O� ! � be the homomorphism given by O‰. O�/ D s
4

NO� for any O� 2 O� (note that

we used the identifiaction � Š O� Š C). Using O‰ we twist O� getting the dual action
O�‰ W O�2 ! Aut.B/ (in [2] it was denoted by O� Q‰˝‰):

O�‰
O�; O� 0.b/ D 	� O‰. O�/; O‰. O� 0/

O� O�; O� 0.b/ 	�
� O‰. O�/; O‰. O� 0/

: (7)

As was shown in [2], the triple B‰ D .B; 	; O�‰/ is also a �2-product. The C*-algebra
A of the Heisenberg–Lorentz quantum group G is defined as the Landstad algebra
of B‰; A � M.B/ is the subalgebra of elements satisfying the Landstad conditions:

O�‰
O�; O� 0.b/ D b for all O�; O� 0 2 O�;

the map �2 3 .�; � 0/ 7! 	�;� 0b	�
�;� 0 2 M.B/ is norm continuous,

xbx0 2 B for all x; x0 2 C�.�/ � M.B/:

(8)

The three conditions defining A � M.B/ will be refereed to as the Landstad condi-
tions.

The C*-algebra A carries the structure of a quantum group. All structure maps can
be described in terms of the �2-product B, but in this article we shall rather use the fact
that they are related to a multiplicative unitary W of G, whose construction goes as
follows. Let dg be a right invariant Haar measure on G and let L2.G/ be the Hilbert
space of square-integrable functions with respect to dg. Let Lg ; Rg 2 B.L2.G// be
the left and right regular representation of G. Restricting them to � � G we get two
representations of � on L2.G/. The related representations of C�.�/ will be denoted
by �L; �R 2 Rep.C�.�/I L2.G//, respectively. Obviously ‰ 2 M.C�.�/˝C�.�//

is unitary, hence operators X; Y 2 B.L2.G/ ˝ L2.G// given by

X D .�R ˝ �R/.‰/; Y D .�R ˝ �L/.‰/

are unitary, too. Finally, the multiplicative unitary W 2 B.L2.G/ ˝ L2.G// of G
has the the form

W D Y VX;
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where V is the standard Kac–Takesaki operator of the group G. The C*-algebra A

is isomorphic to the C*-algebra of slices of the first leg of W :

A ' f.! ˝ id/W j ! 2 B.L2.G//�gk�k-closure: (9)

Note that A treated as the algebra of slices of W is naturally represented on L2.G/.

4.1. Affiliated element O� . The idea of the construction of O� 2 A� is based on the
observation that the normal operator � 2 B� is a central element, which by definition
means that z� 2 M.B/ is a central element. This together with the invariance of �

under O� implies the invariance of � under the twisted dual action O�‰:

O�‰
O�; O� 0.�/ D 	� O‰. O�/; O‰. O� 0/

O� O�; O� 0.�/ 	�
� O‰. O�/; O‰. O� 0/

D 	� O‰. O�/; O‰. O� 0/
� 	�

� O‰. O�/; O‰. O� 0/
D �:

Hence the first Landstad condition defining elements of A is satisfied for � . We are
not dwelling upon the other Landstad conditions but give the following construction
of O� 2 A� . Let id W C ! C be the identity function: id.z/ D z for any z 2 C.
This function generates C0.C/ in the sense of Woronowicz (see Definition 3.1 of
[11]). Let � 2 Mor.C0.C/I C0.G// be the morphism that sends id 2 C0.C/� to
the coordinate function � 2 C0.G/� . From the invariance of � under the action
� W �2 ! Aut.C0.G// it follows that � satisfies the assumptions of Theorem 3.18
of [2] for the trivial action of �2 on C0.C/. Therefore it gives rise to the twisted
morphism �‰ 2 Mor.C0.C/I A/. We define O� 2 A� as the image of id 2 C0.C/�

under �‰: O� D �‰.id/. Obviously, the z-transform z O� belongs to the center of M.A/

and O� treated as an operator acting on L2.G/ (cf. (9)) coincides with the operator of
multiplication by the coordinate � .

4.2. The affiliated elements Ǫ and Oı. As has already been mentioned, the cou-
ples . Ǫ ; �s O�� O�/ and . Oı; s O�� O�/ satisfy the Heisenberg Lie algebra relation (see Ap-
pendix C). This observation motivates the idea of prescribing Ǫ and Oı as complex

infinitesimal generators of appropriately defined representations U Ǫ and U
Oı of the

Heisenberg group H on A. In what follows, we show that this approach is justified,
but first we need to introduce some notation.

Let T be a normal element affiliated with a C*-algebra C and let

	.zI T / D exp.i Im.zT // 2 M.C /:

Note that the map
C 3 z 7! 	.zI T / 2 M.C /

is a representation of the additive group C. This representation will be denoted
by 	. � I T /. Let B D .B; 	; O�/ be the �2-product introduced at the beginning of
Section 4. Let Tl ; Tr 2 B� be infinitesimal generators of representation 	 W C2 !
M.B/:

	z1;z2
D 	.z1; Tl/	.z2; Tr/: (10)
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The coordinate function � 2 C0.G/� � B� – being central – commutes with 	z1;z2
:

	z1;z2
�	�

z1;z2
D �:

This implies that Tl , Tr and � strongly commute in the sense of Definition D.1, hence
using Theorem D.2 we may construct a pair of normal elements �T �

l
; �T �

r 2 B� .

We define the aforementioned representations U Ǫ and U
Oı of H in B by the formulas

U Ǫ
z;t D 	.zI ˛/	.zI � s

4
�T �

l /	.t I � s
4
���/;

U
Oı

z;t D 	.zI ı/	.zI � s
4
�T �

r /	.t I s
4
���/;

(11)

where we used the embedding C0.G/� � B� to treat ˛, ı and ��� as normal elements

affiliated with B . The analysis of U Ǫ and U
Oı will be performed in the proof of the

next theorem, but before we formulate it, we have to introduce some auxiliary objects.
Let @l and @r denote the vector fields whose actions on a function f 2 C1.G/ are
given by

@lf .g/ D 2
@

@z
Lz.f /.g/

ˇ̌
zD0

; @rf .g/ D 2
@

@z
Rz.f /.g/

ˇ̌
zD0

: (12)

(Here Lz and Rz denote the operators of the left and right shift by an element z 2 � .)
Using @l and @r we define differential operators Op.˛/ and Op.ı/ acting on C1

c .G/:

Op.˛/ D ˛ � s

4
�@�

l ; Op.ı/ D ı � s

4
�@�

r : (13)

The quantization map Q used in the next theorem is described in Appendix A.

Theorem 4.1. Let U Ǫ
z;t ; U

Oı
z;t 2 M.B/ be the unitary elements given by (11). Let

Op.˛/ and Op.ı/ be the differential operators given by (13) and let A be the Landstad
algebra of B‰ (see (8)). Then:

(1) U Ǫ
z;t , U

Oı
z;t are elements of M.A/ � M.B/.

(2) The maps

H 3 .z; t/ 7! U Ǫ
z;t 2 M.A/; H 3 .z; t/ 7! U

Oı
z;t 2 M.A/

are strictly continuous, commuting representations of the Heisenberg group.

(3) Let Ǫ ; Oı 2 A� be complex generators of U Ǫ and U
Oı (see Appendix C). The set

fQ.f / j f 2 C1
c .G/g � A is a common core of Ǫ ; Oı 2 A� and we have

ǪQ.f / D Q.Op.˛/f /; OıQ.f / D Q.Op.ı/f / (14)

for any f 2 C1
c .G/.
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Proof. Let us begin by proving that U Ǫ
z;t ; U

Oı
z;t 2 M.A/. Let O�‰ be the twisted dual

action given by (7). It is easy to check that

O�‰
z1;z2

.	.zI ˛// D 	.z; s
4

Nz1�/	.zI ˛/;

O�‰
z1;z2

.	.zI � s
4
�T �

l // D 	.zI � s
4

Nz1�/	.zI � s
4
�T �

l /;

O�‰
z1;z2

.	.zI ı// D 	.zI s
4

Nz2�/	.zI ı/;

O�‰
z1;z2

.	.zI � s
4
�T �

r // D 	.zI � s
4

Nz2�/	.zI � s
4
�T �

r /:

Using these equalities and (11) we see that U Ǫ
z;t and U

Oı
z;t satisfy the first Landstad

condition (see (8)). Let us move on to the second Landstad condition. One can check
that

	z1;z2
U Ǫ

z;t	
�
z1;z2

D 	.z; �z1�/U Ǫ
z;t ; 	z1;z2

U
Oı

z;t	
�
z1;z2

D 	.z; z2�/U Ǫ
z;t : (15)

In Section 4.1 we constructed the affiliated element O� 2 A� . Its image in B� coincides
with the coordinate function � 2 C0.G/� � B� , hence using (15) we see that the
two maps

C2 3 .z1; z2/ 7! 	z1;z2
U Ǫ

z;t	
�
z1;z2

a 2 M.B/;

C2 3 .z1; z2/ 7! 	z1;z2
U

Oı
z;t	

�
z1;z2

a 2 M.B/

are norm continuous for any a 2 A. This norm-continuity together with the O�‰-in-

variance of U Ǫ
z;t ; U

Oı
z;t 2 M.B/ implies that U Ǫ

z;t , U
Oı

z;t are indeed elements of M.A/.

The proof that U Ǫ and U
Oı are commuting representations of the Heisenberg group

H is left to the reader.
Let us now prove the strict continuity of these representations. For this purpose

we shall treat U Ǫ
z;t and U

Oı
z;t as operators acting on L2.G/. It can be checked that the

action of U Ǫ and U
Oı on L2.G/ expressed in the coordinates ˛, ı, and � is given by

U Ǫ
z;tf .˛; �; ı/ D exp.�i st

4
N��/ exp.i Im.z˛//f .˛ � s

4
Nz N��; �; ı/;

U
Oı

z;tf .˛; �; ı/ D exp.i st
4

N��/ exp.i Im.zı//f .˛; �; ı C s
4

Nz N��/
(16)

for any f 2 L2.G/. Using Theorem 4.14 of [2] we obtain

U Ǫ
z;tQ.f / D Q.U Ǫ

z;tf / (17)

for any f 2 C1
c .G/. This together with Theorem A.1 leads to the estimation

kU Ǫ
z;tQ.f / � Q.f /k � c max

k;k0;l;l 0�5

sup
g2G

j@k�
l @k0

l @�m
r @m0

r .U Ǫ
z;tf � f /j:

Using (16) we may see that the right hand side of the above inequality is convergent
to zero when .z; t/ ! .0; 0/, which shows that

lim
.z;t/!.0;0/

kU Ǫ
z;tQ.f / � Q.f /k D 0:
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The density of the set fQ.f / j f 2 C1
c .G/g in A ensures that U Ǫ is continuous in

the sense of strict topology of M.A/. The strict continuity of the representation U
Oı

is shown similarly.
Let us move on to the proof of the third point of our theorem. Using equation

(16) one can check that

2
@

@z
U Ǫ

z;0f
ˇ̌
zD0

D Op.˛/f

for any f 2 C1
c .G/. This together with (17) and (76) proves the first equation of

(14). The second formula of (14) is proved similarly. To show that Q.C1
c .G// is a

core of either Ǫ or Oı, it is enough to check that the sets

f.1 C Ǫ � Ǫ /Q.f / j f 2 C1
c .G/g; f.1 C Oı� Oı/Q.f / j f 2 C1

c .G/g (18)

are dense in A (see Lemma D.3). In what follows we shall sketch the proof of the
density for the first of these sets. Let us first note that the set

.1 C Ǫ � Ǫ /�1Q.C1
c .G// D f.1 C Ǫ � Ǫ /�1Q.f / j f 2 C1

c .G/g � A

is dense in A. This follows from the density of Q.C1
c .G// in A and the fact that

Ǫ 2 A� . Let f be an arbitrary element of C1
c .G/ and g 2 L2.G/ the function given

by
g D .1 C Ǫ� Ǫ /�1f:

Using (74) we see that

g D
Z

RC

dt exp.�t /

Z
C

d 2z ht .z; �s 1
2

O�� O�/U Ǫ
z;0f: (19)

One can check that g is quantizable in the sense of Theorem A.1, Q.g/ 2 D. Ǫ � Ǫ /

and Q.f / D .1 C Ǫ� Ǫ /Q.g/. Using formula (19) we can prove the existence of a
sequence fn 2 C1

c .G/ such that

lim
n!1 @k

l @�k0

l @m
r @�m0

r fn D @k
l @�k0

l @m
r @�m0

r g;

lim
n!1 @k

l @�k0

l @m
r @�m0

r .1 C Op.˛/� Op.˛//fn D @k
l @�k0

l @m
r @�m0

r .1 C Op.˛/� Op.˛//g

(20)

for any k; k0; m; m0 � 5. By equations (14), (20), Theorem (A.1) and the closedness
of Ǫ we get

Q.f / D lim
n!1.1 C Ǫ � Ǫ /Q.fn/:

Using the fact that f is an arbitrary smooth function of compact support and that
Q.C1

c .G// is a dense subset of A we get

.1 C Ǫ � Ǫ /Q.C1
c .G//

k�k D A:

This ends the proof of (18) for Ǫ .
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4.3. Quantum Borel subgroup G0. This section is a preparation for the construc-
tion of the affiliated element Ǒ 2 A� . For this purpose we have to split A into
appropriately defined quantum subspaces. This splitting corresponds to the split-
ting of the classical group G into its Borel subgroup G0 � G and the set theoretic
complement of G0, where by G0 � G we understand

G0 D
²�

˛0 ˇ0

0 ˛�1
0

� ˇ̌
˛0 2 C�; ˇ0 2 C

³
:

Let us be more precise. Let �0 2 Mor.C0.G/I C0.G0// be the restriction morphism

�0.f /.g0/ D f .g0/

for any f 2 C0.G/ and g0 2 G0. Applying the Rieffel deformation to .C0.G0/; �/,
based on the subgroup � � G we construct a quantum group G0 D .A0; �/. Let
B0 be the respective �2-product. In this section Tl and Tr denote the infinitesimal
generators of the representation 	 W C2 ! M.B0/ (see (10)) and @l ; @r denote the
vector fields on G0 defined like in (12). By Theorem 3.18 of [2] the restriction
morphism �0 2 Mor.C0.G/I C0.G0// induces the twisted morphism of C*-algebras
�‰

0 W A ! A0 and the surjectivity of �0 implies the surjectivity of �‰
0 . Let A O� � A

be the two-sided ideal generated by z O� . Invoking the centrality of z O� in M.A/ we have
A O� D z O�Ak�k. It is easy to see that �‰

0 .z O� / D 0, which implies that A O� � ker �‰
0 .

It can also be proven that ker �‰
0 � A O� , hence we have the exact sequence of C*-

algebras

0 ! A O� ! A
�‰

0��! A0 ! 0: (21)

In what follows we shall construct an affiliated element Ǒ
0 2 A

�
0 , which is farther

used in the construction of Ǒ 2 A� . Let us first mention that following the construction
of O� 2 A� of Section 4.1, we may introduce an affiliated element Ǫ0 2 A

�
0 . It is

normal and invertible, and its action on L2.G0/ is given by the multiplication operator
by the coordinate ˛0. Remembering that C0.G0/� � B

�
0 we shall consider ˛0 and

ˇ0 affiliated with B0. The elements ˛0; Tl ; Tr 2 B
�
0 strongly commute, hence using

Theorem D.2 we construct ˛0T �
r ; ˛�1

0 T �
l

2 B
�
0 . For any .z; t/ 2 H we define the

unitary element

U
Ǒ
0

z;t D 	.zI ˇ0/	.zI � s
4
˛�1

0 T �
l /	.zI � s

4
˛0T �

r /	.t I � s
4
.j˛0j�2 � j˛0j2// 2 M.B0/:

(22)
Let us also define the differential operator

Op.ˇ0/ D ˇ0 � s

4
˛�1

0 @�
l � s

4
˛0@�

r : (23)

The proof of the next theorem is similar to the proof of Theorem 4.1. The quantization
map related to the quantum group G0 is denoted by Q0.
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Theorem 4.2. Let U
Ǒ
0

z;t 2 M.B0/ be the unitary element given by formula (22). Then:

(1) U
Ǒ
0

z;t is an element of M.A0/ � M.B0/ for any .z; t/ 2 H.

(2) The map

H 3 .z; t/ 7! U
Ǒ
0

z;t 2 M.A0/

is a strongly continuous representation of the Heisenberg group.

(3) The set fQ0.f / j f 2 C1
c .G0/g � A0 is a core of the generator Ǒ

0 2 A
�
0 of

the representation U
Ǒ
0 and we have

Ǒ
0Q0.f / D Q0.Op.ˇ0/f /

for any f 2 C1
c .G0/. Moreover the set

fQ0..1 C Op.ˇ0/� Op.ˇ0//f / j f 2 C1
c .G0/g (24)

is dense in A0.

4.4. The affiliated element Ǒ. After constructing the affiliated element Ǒ
0 2 A0

we shall now move on to the construction of Ǒ. In order to do that we first have to
introduce Ǒ O� 2 A

�

O� , which may be treated as a restriction of Ǒ to A O� . The embedding
of A O� into A leads to a morphism � O� 2 Mor.A; A O� /, which is defined by the formula
� O� .a/a O� D aa O� with a 2 A and a O� 2 A O� . This morphism is injective, which enables

us to treat Ǫ ; O�; Oı 2 A� as elements affiliated with A O� . The injectivity of � O� follows
from the implication .az O� D 0/ H) .a D 0/, which is true for any a 2 A. Note
that O� treated as an element of A O� is invertible, i.e., there exists a unique element
O��1 2 A

�

O� strongly commuting with O� and such that O� O��1 D O��1 O� D 1. Moreover,

the elements Ǫ ; Oı; O��1 2 A
�

O� mutually strongly commute, so using Theorem D.2 we

may define Ǒ O� by the formula

Ǒ O� D O��1. Ǫ Oı � 1/ 2 A
�

O� : (25)

In order to give a more direct description of Ǒ O� , let us introduce the differential
operator

Op.ˇ/ D ˇ � s

4
ı@�

l � s

4
˛@�

r C s2

16
�@�

l @�
r : (26)

It is easy to check that the determinant relation is satisfied

Op.˛/ Op.ı/ � Op.�/ Op.ˇ/ D 1;

where Op.�/ denotes the operator of multiplication by � . The following lemma
describes Ǒ O� in terms of Op.ˇ/.
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Lemma 4.3. Let Ǒ O� 2 A
�

O� be the affiliated element defined above. The set

fQ.f /z O� j f 2 C1
c .G/g

is a core of Ǒ O� and for any f 2 C1
c .G/ we have

Ǒ O�Q.f /z O� D Q.Op.ˇ/f /z O� : (27)

Moreover, the set
f.1 C Ǒ�

O� Ǒ O� /Q.f /z O� W f 2 C1
c .G/g (28)

is dense in A O� .

Proof. Formula (27) follows from equation (25) and point 3 of Theorem 4.1. In order
to prove (28) we introduce the affiliated element T D Ǫ Oı � 1 2 A

�

O� . Obviously, we

have Ǒ O� D O��1T , so we will base the analysis of Ǒ O� on the analysis of T . Let us

check that T and Ǫ� Ǫ C Oı� Oı strongly commute:

exp.i t. Ǫ � Ǫ C Oı� Oı//T exp.i t. Ǫ � Ǫ C Oı� Oı//

D exp.i t Ǫ � Ǫ / Ǫ exp.�i t Ǫ� Ǫ / exp.i t Oı� Oı/ Oı exp.�i t Oı� Oı/ � 1

D exp.i ts O�� O�/ Ǫ exp.�i ts O�� O�/ Oı � 1 D T:

Using Theorem D.1 we define

T 0 D .1 C T �T / exp.� Ǫ � Ǫ � Oı� Oı/ 2 A
�

O� :

The equality exp.� Ǫ� Ǫ � Oı� Oı/ D exp.� Ǫ Ǫ � � Oı Oı�/ implies that

T 0 D 2 exp.� Ǫ � Ǫ � Oı� Oı/ C Ǫ � Ǫ exp.� Ǫ� Ǫ / Oı� Oı exp.�Oı� Oı/

� Ǫ exp.� Ǫ� Ǫ / Oı exp.�Oı� Oı/ � Ǫ � exp.� Ǫ Ǫ �/ Oı� exp.�Oı� Oı/:

All factors of the above sum belong to M.A O� /, hence the resulting operator T 0 also
belongs to M.A O� /. Note that

T 0 D.T �T / D exp.� Ǫ � Ǫ � Oı� Oı/.1CT �T / D.T �T / D exp.� Ǫ � Ǫ � Oı� Oı/A O� : (29)

The right-hand side of (29) is dense in A O� . Using the boundedness of T 0 and the
density of D.T �T / in A O� we conclude that the set T 0Q.C1

c .G//z O� is also dense:

T 0Q.C1
c .G//z O�

k�k D A O� : (30)

We shall now prove that the density (30) implies the density (28). Let

a D exp.� Ǫ � Ǫ � Oı� Oı/Q.f /z O� (31)
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for some f 2 C1
c .G/. Using formula (74) one can check that there exists a sequence

fn 2 C1
c .G/ such that

lim
n!1 @k

l @�k0

l @m
r @�m0

r fnz� D @k
l @�k0

l @m
r @�m0

r exp.� Ǫ � Ǫ � Oı� Oı/f z�

lim
n!1 @k

l @�k0

l @m
r @�m0

r .1 C T �T /fnz� D @k
l @�k0

l @m
r @�m0

r .1 C T �T /

� exp.� Ǫ� Ǫ � Oı� Oı/f z�

(32)

for any k; k0; m; m0 � 5, where in the above formulas we treat T D Ǫ Oı � 1 as an
operator acting on L2.G/. It may be shown that the convergence in (32) is in the
uniform topology on C0.G/. Using Theorem A.1 and the closedness of 1 C T �T we
see that

.1 C T �T /a D lim
n!1.1 C T �T /Q.fn/z O� : (33)

Combining (30), (31) and (33) we get

.1 C T �T /Q.C1
c .G//z O� k�k D A O� :

Using the above equality, the fact that Ǒ O� D O��1T and Lemma D.5, we get

.1 C Ǒ�
O� Ǒ O� /.1 C j O� j�2/�1Q.C1

c .G//z O�
k�k D A O� : (34)

The inclusion
.1 C j O� j�2/�1Q.C1

c .G//z O� � Q.C1
c .G//z O�

and equation (34) show that

.1 C Ǒ�
O� Ǒ O� /Q.C1

c .G//z O�
k�k D A O� :

This proves (28). Now from Lemma D.3 it follows that Q.C1
c .G//z O� is a core of

Ǒ O� , which ends the proof of our lemma.

Using Ǒ O� 2 A
�

O� defined above and Ǒ
0 2 A

�
0 defined in the previous section, we

construct the affiliated element Ǒ 2 A� . Heuristically speaking, it is a gluing of Ǒ O�
and Ǒ

0.

Theorem 4.4. Let Op.ˇ/ be the differential operator (26). There exists an affiliated
element Ǒ 2 A� such that the set fQ.f / j f 2 C1

c .G/g is a core of Ǒ and

ǑQ.f / D Q.Op.ˇ/f /

for any f 2 C1
c .G/.
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Proof. Let Graph Ǒ O� be the graph of the affiliated element Ǒ O� . It is easy to check that
the set ²�

b

b0
� ˇ̌ �b a O�

b0a O�

�
2 Graph. Ǒ O� / for any a O� 2 A O�

�
� A ˚ A

is a graph of a closed operator acting on A. This operator will be denoted by Ǒ. Let
us list some properties of Graph Ǒ:

1. Graph Ǒ � A ˚ A is a submodule of a Hilbert A-module A ˚ A.

2. For any f 2 C1
c .G/ we have

�
Q.f /

Q.Op.ˇ/f /

� 2 Graph Ǒ.

3. Let

.Graph Ǒ/? D f� c
c0

� j c�a C c0�a0 D 0 for any
�

a
a0

� 2 Graph Ǒg
be the submodule perpendicular to Graph Ǒ. For any f 2 C1

c .G/ we have��Q.Op.ˇ/�f /

Q.f /

� 2 .Graph Ǒ/?.

4. fQ..1 C Op.ˇ/� Op.ˇ//f / j f 2 C1
c .G/gk�k D A.

Properties 1, 2 and 3 are consequences of the definition of Ǒ and Lemma 4.3. In
what follows we shall prove property 4:

fQ..1 C Op.ˇ/� Op.ˇ//f / j f 2 C1
c .G/gk�k D A:

Let a 2 A and �‰
0 2 Mor.A; A0/ be the morphism entering the exact sequence (21).

Using (24) we can see that there exists a sequence Qfn 2 C1
c .G0/ such that

�‰
0 .a/ D lim

n!1 Q0..1 C Op.ˇ0/� Op.ˇ0// Qfn/: (35)

Let fn 2 C1
c .G/ be an extension of Qfn to the whole group G and let �0 2

Mor.C0.G/I C0.G0// be the morphism introduced in Section 4.3. It is not difficult
to check that

�‰
0 .Q.f // D Q0.�0.f //; �0.Op.ˇ/f / D Op.ˇ0/�0.f /:

Using these equalities and (35) we see that

lim
n!1 �‰

0 .a � Q..1 C Op.ˇ/� Op.ˇ//fn// D 0:

The exactness of the sequence (21) ensures that for any " > 0 there exists n 2 N and
a O� 2 A O� such that

ka � Q..1 C Op.ˇ/� Op.ˇ//fn/ � a O�k � ": (36)

Equality (28) implies that there exists a function f 2 C1
c .G/ such that

ka O� � Q..1 C Op.ˇ/� Op.ˇ//f /z O�k � ": (37)
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Combining (36) and (37) we get

ka � Q..1 C Op.ˇ/� Op.ˇ//.fn C f z� //k � 2":

This ends the proof of property 4 above.
Using the properties of Graph Ǒ one can check that it satisfies all assumptions of

Proposition 2.2 of [10]. This proposition guaranties that Ǒ 2 A� . It is easy to check
that Ǒ satisfies all the requirements of our theorem.

4.5. Representation theory of the C*-algebra A. The results of Appendix B ap-
plied to the C*-algebra A of the Heisenberg–Lorentz quantum group G show that
the representation theory of A can be equivalently described by the corepresentation
theory of the dual quantum group yG. As was shown in [2], the C�-algebra of yG is the
reduced group C�-algebra C�

r .G/. The comultiplication � yG is the 2-cocycle twist of

the standard comultiplication O� on C�
r .G/

� yG.a/ D X O�.a/X� (38)

for any a 2 C�
r .G/. The unitary X 2 M.C�

r .G/ ˝ C�
r .G// is the image of ‰ 2

M.C�.�/ ˝ C�.�// (see equation (6)) under a morphism which sends the generator
u� 2 M.C�.�// to the right shift R� 2 M.C�

r .G//.
Let �U 2 Rep.AI H / be a representation of A on a Hilbert space H . The

corresponding corepresentation U� 2 M.K.H/ ˝ OA/ is given by

U� D .�U ˝ id/ yW ; (39)

where yW 2 M.A ˝ OA/ is the multiplicative unitary of yG. On the other hand, giving
a motivation for Definition 3.3 we claimed that representations of the Heisenberg–
Lorentz commutation relations correspond to representations of A on Hilbert spaces.
To prove this fact we will show that for any representation . Q̨ ; Q̌; Q�; Qı/ on a Hilbert
space H we can construct a corepresentation U of yG on H , which in turn corresponds
via (39) to a representation � 2 Rep.AI H /. This construction of � is performed in
the proof of the next theorem, where we also give a more direct characterization of
� in terms of Ǫ ; Ǒ; O�; Oı 2 A� .

Theorem 4.5. Let . Q̨ ; Q̌; Q�; Qı/ be a representation of the Heisenberg–Lorentz com-
mutation relations on a Hilbert space H (cf. Definition 3.3). There exists a unique
representation � 2 Rep.AI H / such that

�. Ǫ / D Q̨ ; �. Ǒ/ D Q̌; �. O�/ D Q�; �. Oı/ D Qı: (40)

Moreover, for any � 2 Rep.AI H /, the quadruple .�. Ǫ /; �. Ǒ/; �. O�/; �. Oı// is a
representation of the Heisenberg–Lorentz commutation relations.
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Proof. We shall start by fixing some notation. Given any w 2 C n f0g, gw denotes
an element of G of the form

gw D
�

0 w�1

�w 0

�
:

Let T be a normal, invertible element acting on a Hilbert space H . We define the
unitary operator

S.T / D
Z

dET .w/ ˝ Rgw
2 B.H ˝ L2.G//;

where ET is the spectral measure of T and Rgw
2 B.L2.G// is the right shift

by gw . Let ER be the spectral measure that corresponds to the representation � 3
� 7! R� 2 B.L2.G// via the Stone–Naimark–Ambrose–Godement theorem. For
an infinitesimal representation . Qa; Q	/ of H on a Hilbert space H we introduce the
unitary operator

R. Qa/ D
Z

U Qa�z;0 ˝ dER.z/ 2 B.H ˝ L2.G//: (41)

Let us come to the main part of the proof. An immediate consequence of Defini-
tion 3.3 is that it is enough to consider two cases of representations:

(1) Q� D 0;

(2) ker Q� D f0g.

We give the proof for (2), leaving the first case to the reader. Using Theorem D.2
we define two closed operators Q̨ Q��1 and Qı Q��1 acting on H . Note that . Q̨ Q��1; �s/

and . Qı Q��1; s/ are infinitesimal representations of the Heisenberg group H. Using the
notation introduced above we define the unitary operator

U D R. Qı Q��1/S. Q�/R. Q̨ Q��1/ 2 B.H ˝ L2.G//:

Let us prove that U is a corepresentation of yG. Let O� 2 Mor.C�
r .G/I C�

r .G/˝C�
r .G//

be the canonical comultiplication on C�
r .G/. Note that

.id ˝ O�/R. Qı Q��1/ D
Z

U
Qı Q��1

�.zCz0/;0
˝ dER.z/ ˝ dER.z0/

D
Z

exp.�i s
4

Im.z Nz0//U Qı Q��1

�z;0 U
Qı Q��1

�z0;0 ˝ dER.z/ ˝ dER.z0/

D X�
23R. Qı Q��1/12R. Qı Q��1/13: (42)

The unitary element

X D
Z

exp.i s
4

Im.z Nz0//dER.z/ ˝ dER.z0/ 2 M.C�
r .G/ ˝ C�

r .G//
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used above is the one that twists O�, giving the comultiplication � yG (see (38)). Sim-
ilarly, we check that

.id ˝ O�/R. Q̨ Q��1/ D R. Q̨ Q��1/12R. Q̨ Q��1/13X23: (43)

Moreover, the formula O�.Zw/ D Zw ˝ Zw implies that

.id ˝ O�/S. Q�/ D S. Q�/12S. Q�/13: (44)

Using equations (42), (43), (44), the fact that the first legs of R. Q̨ Q��1/, R. Qı Q��1/ and
S. Q�/ commute, and formula (38) we get

.id ˝ � yG/U D X23.id ˝ O�/.R. Qı Q��1/S. Q�/R. Q̨ Q��1//X�
23

D X23X�
23R. Qı Q��1/12R. Qı Q��1/13S. Q�/12S. Q�/13

� R. Q̨ Q��1/12R. Q̨ Q��1/13X23X�
23

D R. Qı Q��1/12S. Q�/12R. Q̨ Q��1/12R. Qı Q��1/13S. Q�/13R. Q̨ Q��1/13

D U12U13;

which shows that U is a corepresentation of yG. Let �U 2 Rep.AI H / be the corre-
sponding representation of A. The next step is to prove that �U is the representation
� of our theorem:

�U . Ǫ / D Q̨ ; �U . Ǒ/ D Q̌; �U . O�/ D Q�; �U . Oı/ D Qı:

Treating Ǫ ; O�; Oı 2 A� as closed operators acting on L2.G/ (in particular O� is an
invertible operator of multiplication by the coordinate � ) one can prove that the
multiplicative unitary yW is given by

yW D R. Oı O��1/S. O�/R. Ǫ O��1/: (45)

It can also be shown that

yW �.1 ˝ exp.i Im.z O�// yW D U
Ǫ˝ O�

z;0 U
O�˝ Oı

z;0 ;

U �.1 ˝ exp.i Im.z O�//U D U
Q̨˝ O�

z;0 U
Q�˝ Oı

z;0 ;

which implies that

yW �.1 ˝ O�/ yW D Ǫ ˝ O� u O� ˝ Oı; U �.1 ˝ O�/U D Q̨ ˝ O� u Q� ˝ Oı:

Applying �U ˝ id to both sides of the left of these equations and using (39) we get

�U . Ǫ / ˝ O� u �U . O�/ ˝ Oı D Q̨ ˝ O� u Q� ˝ Oı: (46)
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Let �‰
0 2 Mor.AI A0/ be the morphism introduced in Section 4.3. It sends O� to 0

and Oı to the normal element Oı0 D Ǫ �1
0 2 A

�
0 . Applying id ˝ �‰

0 to both sides of (46)
we get

�U . O�/ ˝ Oı0 D Q� ˝ Oı0:

This immediately implies that �U . O�/ D Q� . From this equality and (46) we see that
�U . Ǫ / D Q̨ . Now using (39) and (45) we obtain

R.�U . Oı/ Q��1/ D R. Qı Q��1/:

Equation (41) together with the fact that the support of the measure dER is the
whole complex plain implies that �U . Oı/ Q��1 D Qı Q��1, hence �U . Oı/ D Qı. Finally,
�U . Ǒ/ D Q̌, which is a consequence of the related equalities for Ǫ , O� and Oı.

That the quadruple .�. Ǫ /; �. Ǒ/; �. O�/; �. Oı// is a representation of the Heisen-
berg–Lorentz commutation relations for any representation � 2 Rep.AI H / follows
directly from the definition of the affiliated elements Ǫ ; Ǒ; O�; Oı 2 A� .

The above theorem implies the following result.

Corollary 4.6. Let A be the C*-algebra of the Heisenberg–Lorentz quantum group.
Then the generators Ǫ ; Ǒ; O�; Oı 2 A� separate representations of A. That is, if �1 and
�2 2 Rep.AI H / coincide on Ǫ , Ǒ, O� , Oı, i.e.,

�1. Ǫ / D �2. Ǫ / �1. Ǒ/ D �2. Ǒ/ �1. O�/ D �2. O�/ �1. Oı/ D �2. Oı/;

then �1 D �2.

4.6. Ǫ ; Ǒ; O�; Oı as generators of A. By Corollary 4.6 we know that Ǫ ; Ǒ; O�; Oı 2 A�

separate representations of A. The aim of this section is to prove that they generate
A in the sense of Woronowicz. For this purpose we shall use the following theorem,
which is a consequence of Theorem 4.2 of [11].

Theorem4.7. LetT1; T2; : : : ; Tn be elements affiliatedwith aC*-algebraA. Let
be
the subset of M.A/ consisting of elements of the form .1CT �

i Ti /
�1, .1CTiT

�
i /�1,

exp.�T �
i Ti /, exp.�TiT

�
i /. Assume that

(1) T1; T2 : : : ; Tn separate representations;

(2) there exist elements r1; r2; : : : ; rk 2 
 such that r1r2 : : : rk 2 A.

Then T1; T2; : : : ; Tn generate A.

Theorem 4.8. The affiliated elements Ǫ , Ǒ, O� , Oı generate the C*-algebra A of the
Heisenberg–Lorentz quantum group.
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Proof. From Theorem 4.7 and Corollary 4.6 we see that it is enough to prove that

.1 C Ǒ� Ǒ/�1 exp.� Ǫ � Ǫ / exp.�Oı� Oı/; (47)

which is an element of M.A/, belongs in fact to A � M.A/. In order to do that we
shall first analyze the element exp.� Ǫ � Ǫ / exp.�Oı� Oı/ 2 M.A/. For any g 2 G we
set

f .g/ D 1

cosh2. s
2
���/

exp
�

� 2.j˛j2 C jıj2/ tanh. s
2
���/

s���

�
:

Let ht be the family of functions defined by (73). A straightforward computation
shows that

f .g/ D
Z

d 2z1 d 2z2 h1.z1; � s
2
j� j2/h1.z2; s

2
j� j2/ exp.i Im.z1˛// exp.i Im.z2ı//:

(48)
One can check that exp.�j� j2/ exp.i Im.z1˛// and exp.�j� j2/ exp.i Im.z2ı// are
quantizable in the sense of Theorem A.3 and that

Q.exp.�j� j2/ exp.i Im.z1˛/// D exp.�j� j2/U Ǫ
z;0;

Q.exp.�j� j2/ exp.i Im.z2ı/// D exp.�j� j2/U
Oı

z;0:
(49)

Using (48), (49) and (74) we get

Q.f / D exp.� Ǫ � Ǫ / exp.�Oı� Oı/: (50)

Now, for the purpose of analysis of the whole product (47), we define two auxiliary
functions k1; k2 W G ! C:

k1.g/ D 1

1 C Ňˇ f .g/; k2.g/ D f � .1 C Op.ˇ/� Op.ˇ//k1: (51)

They satisfy the assumptions of Theorem A.1, hence we can quantize them obtaining
Q.k1/ and Q.k2/ 2 A. Combining (50) and (51) we see that

.1 C Ǒ� Ǒ/�1 exp.� Ǫ � Ǫ / exp.�Oı� Oı/

D .1 C Ǒ� Ǒ/�1.Q.f //

D .1 C Ǒ� Ǒ/�1Q..1 C Op.ˇ/� Op.ˇ//k1 C k2/

D .1 C Ǒ� Ǒ/�1Q..1 C Op.ˇ/� Op.ˇ//k1/ C .1 C Ǒ� Ǒ/�1Q.k2/

D Q.k1/ C .1 C Ǒ� Ǒ/�1Q.k2/:

Consequently .1 C Ǒ� Ǒ/�1 exp.� Ǫ � Ǫ / exp.�Oı� Oı/ 2 A since both factors of the
above sum belong to A.
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4.7. Comultiplication

Theorem 4.9. Let G D .A; �/ be the Heisenberg–Lorentz quantum group. Then the
action of � on the generators Ǫ ; Ǒ; O�; Oı 2 A� is given by

�. Ǫ / D Ǫ ˝ Ǫ u Ǒ ˝ O�;

�. Ǒ/ D Ǫ ˝ Ǒ u Ǒ ˝ Oı;

�. O�/ D O� ˝ Ǫ u Oı ˝ O�;

�. Oı/ D O� ˝ Ǒ u Oı ˝ Oı:

(52)

Remark 4.10. The elements appearing on the right-hand side of (52) (further denoted
by Q̨ , Q̌, Q� , Qı, respectively) are treated as closed operators acting on L2.G/˝L2.G/.
As usual, the sign u denotes the closure of the sum of two operators. The idea of
the proof of the above theorem goes as follows. Using Theorem 3.5 we see that the
quadruple . Q̨ ; Q̌; Q�; Qı/ is a representation of the Heisenberg–Lorentz commutation
relations. By Theorem 4.5 this quadruple corresponds to a unique corepresentation
U of yG on the Hilbert space L2.G/ ˝ L2.G/, which in turn corresponds to a unique
representation � 2 Rep.AI L2.G/ ˝ L2.G// such that �. Ǫ / D Q̨ , �. Ǒ/ D Q̌,
�. O�/ D Q� and �. Oı/ D Qı. On the other hand, .� ˝ id/ yW D yW23

yW13. Using the
correspondence U D .� ˝ id/ yW and Theorem 4.5 once again we see that to prove
(52) it is enough to show that U D yW23

yW13, which will be done in the following
proof. Note that in order to prove Theorem 4.9, it is first necessary to show that the
quadruple . Q̨ ; Q̌; Q�; Qı/ is a representation of the Heisenberg–Lorentz commutation
relations. The proof of this fact seems to be as difficult as the proof of the more
general Theorem 3.5.

Proof of Theorem 4.9. In this proof we shall use the notation of the proof of Theo-
rem 4.5. Let Q̨ , Q̌, Q� , Qı denote the right-hand sides of (52). As was explained in the
above remark, to prove our theorem it is enough to show that

yW23
yW13 D R. Qı Q��1/S. Q�/R. Q̨ Q��1/: (53)

From equation (45) we can see that

yW13 D R. Oı O��1 ˝ 1/S. O� ˝ 1/R. Ǫ O��1 ˝ 1/;

yW23 D R.1 ˝ Oı O��1/S.1 ˝ O�/R.1 ˝ Ǫ O��1/:

Therefore, the left-hand side of (53) has the form

R.1 ˝ Oı O��1/S.1 ˝ O�/R.1 ˝ Ǫ O��1/R. Oı O��1 ˝ 1/S. O� ˝ 1/R. Ǫ O��1 ˝ 1/: (54)

Using the fact that R.1 ˝ Ǫ O��1/ commutes with R. Oı O��1 ˝ 1/ we see that (54) is
equal to

R.1 ˝ Oı O��1/S.1 ˝ O�/R. Oı O��1 ˝ 1/R.1 ˝ Ǫ O��1/S. O� ˝ 1/R. Ǫ O��1 ˝ 1/:
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Formula (5) and the corresponding formula related to Qı imply that

Ǫ O��1 ˝ 1 D Q̨ Q��1 u Q��1. O��1 ˝ O�/;

1 ˝ Oı O��1 D Qı Q��1 u Q��1. O� ˝ O��1/:

Using these equalities and the fact that (54) is equal to yW23
yW13 we get:

yW23
yW13 D R. Qı Q��1/ exp.�i Im. Q��1. O� ˝ O��1/ ˝ Tr//S.1 ˝ O�/R. Oı O��1 ˝ 1/

� R.1 ˝ Ǫ O��1/S. O� ˝ 1/ exp.�i Im. Q��1. O��1 ˝ O�/ ˝ Tr//R. Q̨ Q��1/:

(55)

Noting that

R. Oı O��1 ˝ 1/R.1 ˝ Ǫ O��1/ D exp.�i Im. Q�. O��1 ˝ O��1/ ˝ Tr//

and using equation (55) we see that in order to prove equality (53) it is enough to
check that

S. Q�/

D exp.�i Im. Q��1. O� ˝ O��1/ ˝ Tr//S.1 ˝ O�/ exp.�i Im. Q�. O��1 ˝ O��1/ ˝ Tr//

� S. O� ˝ 1/ exp.�i Im. Q��1. O��1 ˝ O�/ ˝ Tr//: (56)

The operators Q� , 1 ˝ O� and O� ˝ 1 which appear in the above expression are normal
and strongly commute. Therefore, to prove (56) we have to check that

S.u/ D exp.�i Im.u�1vw�1Tr//S.w/ exp.�i Im.uv�1w�1Tr//

� S.v/ exp.�i Im.u�1v�1wTr//
(57)

for any u; v; w 2 C n f0g. Noting that

S.w/ D Zw ; exp.i Im.zTr// D Rz;

where Zw and Rz are operators defined in the proof of Theorem 4.5, we see that
equation (57) is equivalent to the matrix identity�

0 u�1

�u 0

�
D
�

1 �vu�1w�1

0 1

��
0 w�1

�w 0

��
1 �uv�1w�1

0 1

�

�
�

0 v�1

�v 0

��
1 �wu�1v�1

0 1

�
:

Its verification is a straightforward computation, which is left to the reader.



602 P. Kasprzak

Appendices

A. Quantization map

Let Q be the quantization map introduced in Definition 4.13 of [2]. Recall that Q

was defined on elements of the Fourier algebra

F D f.! ˝ id/V j ! 2 B.L2.G//�g
and Q..! ˝ id/V / D .! ˝ id/W , where V is the Kac–Takesaki operator of a locally
compact group G and W is the multiplicative unitary related to a Rieffel deformation
of G. Given a function f 2 C0.G/ it is usually difficult to check if f belongs to F ,
which makes Q not very useful in the practical applications. In the case of the Heisen-
berg–Lorentz quantum group we shall give a new description of the quantization map,
which does not have the aforementioned drawback. Q is defined on a different class
of functions, but when the function happens to be an element of F then the new
definition will coincide with the old one. Consider two representations of � � G on
L2.G/:

� 3 � 7! R� 2 B.L2.G//; � 3 � 7! L� 2 B.L2.G//:

Let Tl and Tr be infinitesimal generators of these representations:

R� D exp.i Im.�Tr//; L� D exp.i Im.�Tl// (58)

for any � 2 � ' C. The related complex vector fields on G are denoted by @l and
@r (see eq. (12)). Now consider two differential operators Kl D .1 C T �

l
Tl/

2 and
Kr D .1 C T �

r Tr/2 acting on L2.G/. Note that Kl and Kr are positive, invertible,
and their inverses K�1

l
; K�1

r are bounded.
Let x; y; v; w 2 L2.G/ be vectors such that x; y; w 2 D.Kr/ and v 2 D.Kl/.

Our next objective is to compute the matrix element h x ˝ v j W j y ˝ w i. Note that

h x ˝ v j W j y ˝ w i
D h Krx ˝ Klv j .K�1

r ˝ K�1
l /Y VX.K�1

r ˝ K�1
r / j Kry ˝ Krw i: (59)

Let �R; �L 2 Rep.C0.C/I L2.G// be representations of C0.C/ which send id 2
C0.C/� to Tr and Tl , respectively. We have the equalities

X.K�1
r ˝ K�1

r / D .�R ˝ �R/..K�1 ˝ K�1/‰/; (60)

.K�1
r ˝ K�1

l /Y D .�R ˝ �L/..K�1 ˝ K�1/‰/; (61)

where K W C ! R is the function given by the formula

K.z/ D .1 C jzj2/2

and ‰ 2 M.C0.C/˝C0.C// is defined by (6). Let l W C2 ! C be the function given
by

l.w1; w2/ D
Z

d 2z1d 2z2

exp.�i Im.z1w1 C z2w2 � s
4
z1 Nz2//

.1 C jz1j2/2.1 C jz2j2/2
:
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Note that l 2 L1.C2/ and the right-hand side of (60) can be expressed by l :

.�R ˝ �R/..K�1 ˝ K�1/‰/ D
Z

d 2w1d 2w2 l.w1; w2/.Rw1
˝ Rw2

/: (62)

We have a similar formula for the right-hand side of (61):

.�R ˝ �L/..K�1 ˝ K�1/‰/ D
Z

d 2w1d 2w2 l.w1; w2/.Rw1
˝ Lw2

/: (63)

Let f D .!x;y ˝ id/V 2 C0.G/ be the slice of the Kac–Takesaki operator and
Qh 2 C0.C/ the function given by

Qh.w/ D
Z

d 2z
exp.i Im.wz//

.1 C s�2jzj2/2
: (64)

Let �can 2 Rep.C0.G/ÌC2I L2.G// be the representation introduced in Remark 4.5
of [2] and 	L; 	R 2 Mor.C0.C/I C0.G/ Ì C2/ the morphisms introduced in the
paragraph following Proposition 4.2 of [2]. A simple but tedious computation, which
starts with inserting (62) and (63) into (59), leads to the equality

h x ˝ v j W j y ˝ w i
D
Z

d 2w1d 2w2h v j �can. O�‰
w1;w2

.	L. Qh/..1 C @�
r @r/2.1 C @�

l @l/
2f /	R. Qh/// j w i:

Denoting

	L. Qh/
�
.1 C @�

r @r/2.1 C @�
l @l/

2f
�
	R. Qh/ 2 M.C0.G/ Ì C2/

by bf we get

h x ˝ v j W j y ˝ w i D
Z

d 2w1d 2w2h v j �can. O�‰
w1;w2

.bf // j w i: (65)

If bf happens to be in the domain of E‰ – the averaging map with respect to the
twisted dual action O�‰ – then in formula (65) we can enter the integral under the
scalar product to obtain

h x ˝ v j W j y ˝ w i D h v j �can
�Z

d 2w1d 2w2 O�‰
w1;w2

.bf /

�
j w i: (66)

Equation (66) may then be rewritten as

Q.f / D �can.E‰.bf //:

Let us show that this last equation holds whenever f is regular enough. In the next
theorem we shall keep the same notation Tl and Tr for normal operators acting on
L2.G/ (see (58)) and elements affiliated with C0.G/ Ì C2 (see (10)).
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Theorem A.1. Let @l , @r be the complex vector fields on G given by (12) and
f 2 C0.G/ a continuous function such that @k�

l
@k0

l
@�m

r @m0

r f 2 C0.G/ whenever
k; k0; l; l 0 � 5. Let bf 2 M.C0.G/ Ì C2/ be the element given by

bf D 	L. Qh/..1 C @�
r @r/2.1 C @�

l @l/
2f /	R. Qh/:

Then bf is in the domain of the averaging map E‰ and there exists a positive constant
c such that

kE‰.bf /k � c max
k;k0;l;l 0�5

sup
g2G

j@k�
l @k0

l @�m
r @m0

r f j:

If f 2 C0.G/ is quantizable in the sense of Definition 4.13 of [2], then

Q.f / D �can.E‰.f //:

To prove the above theorem we shall need the following lemma.

Lemma A.2. Let X be a locally compact Hausdorff space, � W C ! Aut.C0.X// a
continuous action and .C0.X/ÌC; 	; O�/ the canonical C-product associated with �.
Let @, @� be the differential operators acting on the smooth domain D1.�/ � C0.X/

of the action �:

@f D @

@z
�zf

ˇ̌
zD0

; @�f D @

@ Nz �zf
ˇ̌
zD0

:

Further, let Qh 2 C0.C/ be the function defined by (64) and let g 2 C0.X/ be such
that @�l@kg 2 C0.C/ for k; l 2 f0; 1g. Then 	. Qh/g is in the domain of the averaging
map E and there exists a positive constant c 2 R such that

kE.	. Qh/g/k � c max
l;k�1

sup
x2X

j@�l@kg.x/j: (67)

Proof. Using the universal properties of the group C*-algebra C�.C/ we see that
the representation 	 2 Rep.CI C0.X/ Ì C/ corresponds to a unique element of
Mor.C�.C/I C0.X/ Ì C/ (which we also denote by 	). Identifying C�.C/ with
C0.C/ (note that we use the self-duality of C) we can apply 	 to Qh 2 C0.C/:
	. Qh/ 2 M.C0.X/ Ì C/.

In order to show that 	. Qh/g is in the domain of the averaging map D.E/ it is
enough to express it as a linear combination of elements of the form

	.h1/b	.h2/; (68)

where h1; h2 2 C0.C/ \ L2.C/ and b 2 C0.X/ Ì C (see [5]). Let T � C0.X/ Ì C
be the image of id 2 C0.C/ under 	 2 Mor.C0.C/I C0.X/ Ì C/: T D 	.id/. Note
that

	. Qh/g D 	. Qh/g.1 C T �T /.1 C T �T /�1

D 	. Qh/g.1 C T �T /�1 C 	. Qh Nz/gT .1 C T �T /�1

C 	. Qh/@�gT .1 C T �T /�1;

(69)
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where we used the relation
@�g D Œg; T ��

linking @� and T �. Note also that .1 C T �T /�1 D 	..1 C jzj2/�1/, hence

	. Qh/ D 	..1 C jzj2/ Qh/.1 C T �T /�1:

Therefore, the first summand of the right-hand side of (69) is of the form

	. Qh/g.1 C T �T /�1 D 	..1 C jzj2/ Qh/..1 C T �T /�1g/	..1 C jzj2/�1/:

Using the fact that Qh is of the Schwartz type and .1 C jzj2/�1 2 L2.C/ we can see
that the above element is of the form (68). Now, by inequality (10) of [2], we get

kE.	. Qh/g.1 C T �T /�1/k � k Qhk2 kgk k.1 C jzj2/�1k2

and observe that kE.	. Qh/g.1 C T �T /�1/k may be estimated by the right-hand side
of (67) for c0 big enough:

kE.	. Qh/g.1 C T �T /�1/k � c0 max
l;k�1

sup
x2X

j@�l@kg.x/j: (70)

Let us analyze the second summand of the right-hand side of (69). Note that

	. Qh Nz/gT .1 C T �T /�1 D 	. Qhjzj2/g.1 C T �T /�1 C 	. Qh Nz/@g.1 C T �T /�1:

A reasoning similar to the one above shows that there exists a constant c00 such that

kE.	. Qh Nz/gT .1 C T �T /�1/k � c00 max
l;k�1

sup
x2X

j@�l@kg.x/j: (71)

Similarly, we prove that there exists a constant c000 such that

kE.	. Qh/@�gT .1 C T �T /�1/k � c000 max
l;k�1

sup
x2X

j@�l@kg.x/j: (72)

Combining (69), (70), (71) and (72) we get (67) for c D maxfc0; c00; c000g.

The above lemma is also true if we replace E with E‰. An extension of this
lemma to the case of an action of C2 gives a proof of Theorem A.1. Using the same
techniques one can also prove the following theorem:

Theorem A.3. Let f 2 Cb.G/ be a function such that @k�
l

@k0

l
@�m

r @m0

r f 2 Cb.G/

whenever k; k0; l; l 0 � 5. Let bf 2 M.C0.G/ Ì C2/ be given by

bf D 	L. Qh/..1 C @�
r @r/2.1 C @�

l @l/
2f /	R. Qh/:

Then bf 2 D.E‰/; E‰.bf / 2 M.A/ and there exists a positive constant c such that

kE‰.bf /k � c max
k;k0;l;l 0�5

sup
g2G

j@k�
l @k0

l @�m
r @m0

r f j:

The element E‰.bf / 2 M.A/ appearing in the above theorem will also be denoted
by Q.f /.
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B. Counit in Rieffel deformation

The aim of this section is to show that a quantum group G obtained by the Rief-
fel deformation posses a counit. Our argument is different from the one given by
M. Rieffel in [8]. Let G be a locally compact group, � � G its abelian subgroup
and ‰ a 2-cocycle on O� . Let � be the action of �2 on C0.G/ given by the left
and right shifts and let �� be the corresponding action of �2 on C0.�/. Note that
the restriction morphism �� W C0.G/ ! C0.�/ is �2-covariant. Using Proposition
3.8 of [2] we get the induced morphism �‰

� 2 Mor.C0.G/‰I C0.�/‰/. Since �

is abelian, it follows that the dual quantum group of .C0.�/‰; �/ coincides with
the quantum group .C�.�/; O�/. Therefore .C0.�/‰; �/ coincides with .C0.�/; �/.
This shows that �‰

� 2 Mor.C0.G/‰I C0.�// and enables us to define a counit e for
G by the formula e.a/ D e�.�‰

� .a// for any a 2 A, where e� W C0.�/ ! C is the
counit for .C0.�/; �/.

Let us now draw an important conclusion from the existence of the counit for G.
Using Proposition 5.16 of [9] we can see that the universal dual quantum group of
yG D .C�

r .G/; �‰/ is isomorphic to the reduced dual: G D .A; �/. In particular,
representations of C*-algebra A are in one-to-one correspondence with corepresen-
tations of the quantum group yG. This follows from Theorem 5.4 of [9].

C. Complex generator of Heisenberg Lie algebra

Let H be the Heisenberg group, h its Lie algebra and E the enveloping algebra of h.
E is generated by an element a 2 E such that the commutator 	 D Œa�; a� is central
in E . Let A be a C*-algebra and let U 2 Rep.HI A/ be a representation. As was
described in the third chapter of [12], U induces the map

dU W E ! fclosed maps on Ag:
By D1.U / we shall denote the set of U -smooth elements in A. In the next definition
we identify a representation of H in the C*-algebra of compact operators K.H / with
the corresponding Hilbert space representation.

Definition C.1. Let H be a Hilbert space and let . Qa; Q	/ be a pair of closed operators
acting on H . We say that this pair is an infinitesimal representation of H on H if there
exists a representation U 2 Rep.HI K.H // such that dU.a/ D Qa and dU.	/ D Q	.

The representation U in the above definition is determined by Qa, therefore in
this context it will be denoted by U Qa. Let U 2 Rep.HI C�.H// be the canonical
representation of H. The map dU in this case is injective, which enables us to identify
dU.T / with T 2 E . The aim of this section is to show that a 2 E is affiliated with
C�.H/. In fact one can prove that a generates C�.H/ in the sense of Woronowicz,
but we shall not use and so will not prove this fact.
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Let M 2 E . The criterion for a map dU.M/ W D.dU.M// ! C�.H/ to be
affiliated with C�.H/ is provided by Theorem 2.1 of [12]. Our proof that a� C�.H/

uses a different approach, which is based on the explicit construction of the semigroup
RC 3 t 7! exp.�ta�a/ 2 M.C�.H//.

Theorem C.2. Let a be the complex generator of the algebra E . Then a is affiliated
with C�.H/.

Proof. For any z 2 C, x 2 R and t 2 RC we set

ht .z; x/ D x exp tx

4� sinh tx
exp

�
� jzj2x coth tx

4

�
2 RC: (73)

We would like to define an element Ht 2 M.C�.H// by the integral

Ht D
Z

C
d 2z ht .z; 1

2
	/Uz;0;

but there is a problem with its convergence. To circumvent it we observe that for any
b 2 C�.H/ and f 2 C1

c .C/ the integralZ
d 2z ht .z; 1

2
	/Uz;0f .	/b

converges in the norm sense and the following inequality holds:����
Z

d 2z ht .z; 1
2
	/Uz;0f .	/b

���� � kf .	/bk:

Hence Ht is well defined on the elements of the form f .	/b and by the above
inequality it can be extended to the whole C�.H/ giving a self-adjoint element of
M.C�.H//. Let us list some properties of Ht .

(1) The map RC 3 t 7! Ht 2 M.C�.H// is a norm-continuous semigroup and
kHtk � 1.

(2) limt!0 Htb D b for any b 2 C�.H/.

(3) For any b 2 D1.U / the map RC 3 t 7! Htb is differentiable and

d

dt
Htb

ˇ̌
tD0

D �a�a b:

Property (1) enables us to define the element

„ D
Z

RC

dt e�tHt 2 M.C�.H//:

Using properties (2) and (3) we can check that for any b 2 D1.U / we have „b 2
D1.U / and

.1 C a�a/„b D b:
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This shows that .1 C a�a/ D1.U /k�k D C�.H/, which by Proposition 2.2 of [10] is
sufficient for a to be affiliated with C�.H/.

Remark C.3. Let H be a Hilbert space. Analyzing the above proof, one can conclude
that, given any representation � 2 Rep.C�.H/I H /, a compactly supported function
f 2 C0.C/ and v 2 H , we have

exp.�t�.a/��.a//�.f .	//v D
Z

C
d 2z ht .z; 1

2
�.	//�.Uz;0f .	//v; (74)

where the integral on the right is taken in the sense of norm topology on H . Let us
also note that given any v 2 H such that the differential

@

@z
�.Uz;0/v

ˇ̌
zD0

exists, we have v 2 D.�.a// and

�.a/h D 2
@

@z
�.Uz;0/v

ˇ̌
zD0

: (75)

Further, let B be a C*-algebra and � 2 Mor.C�.H/I B/. For any b 2 B , such that
the differential

@

@z
�.Uz;0/b

ˇ̌
zD0

exists, we have b 2 D.�.a// and

�.a/b D 2
@

@z
�.Uz;0/b

ˇ̌
zD0

: (76)

D. Product of affiliated elements

Let A be a C*-algebra, and let T1; T2�A. In general, the product of T1 and T2 is
not well defined, but it can be defined, assuming that T1 and T2 commute in a good
sense. The construction of the product given here is a generalization of the case when
A D A1 ˝ A2, T1 D S1 ˝ 1 and T2 D 1 ˝ S2, where S1�A1 and S2�A2. Then
the product of T1 and T2 is the tensor product S1 ˝ S2�A1 ˝ A2, the construction
of which was described in [12].

Definition D.1. Let A be a C*-algebra and let T1; T2 be elements affiliated with A.
Let z1; z2 2 M.A/ be z-transforms of T1 and T2, respectively. We say that T1 and
T2 strongly commute if

z1z2 D z2z1; z�
1 z2 D z2z�

1 :

Let T1 and T2 be a pair of closed operators acting on a Hilbert space H . We say that
T1 and T2 strongly commute if they strongly commute as elements affiliated with the
algebra of compact operators K.H /.
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Theorem D.2. Let A be a C*-algebra and let T1; T2�A be a strongly commuting pair
of affiliated elements. Let us consider the set D.T0/ D fa 2 D.T2/ j T2a 2 D.T1/g
and define an operator T0 W D.T0/ ! A by the formula T0a D T1.T2a/. Then T0

a is closable operator acting on the Banach space A and its closure T cl
0 is affiliated

with A. This closure will be denoted by T1T2. We also have T1T2 D T2T1.

Proof. We define T1T2 using the method described in Theorem 2.3 of [10]. The
related matrix Q 2 M.A/ ˝ M.C2/ has the form

Q D
 

.1 � z�
1 z1/

1
2 .1 � z�

2 z2/
1
2 �z�

1 z�
2

z1z2 .1 � z1z�
1 /

1
2 .1 � z2z�

2 /
1
2

!
:

(Compare with the matrix Q from the proof of Theorem 6.1 of [12].) Q satisfies all
the assumptions of Theorem 2.3, hence it gives rise to an affiliated element. We leave
it to the reader to check that this affiliated element is T1T2 2 A� of our theorem.

For the needs of this article we shall prove the following lemmas.

Lemma D.3. Let A be a C*-algebra, T an element affiliated with A and X a dense
subspace of D.T /. Then:

(1) If .1 C T �T /
1
2 X is dense in A, then X is a core of T .

(2) If X � D.T �T / and .1 C T �T /X is dense in A, then X is a core of T .

Proof. It is easy to see that for any dense subspace X 0 � A the set .1CT �T /� 1
2 X 0 is

a core of T . Taking X 0 D .1 C T �T /
1
2 X we get the proof of point (1) of our lemma.

To prove point (2) note that .1 C T �T /� 1
2 X 0 is dense in A whenever X 0 is dense in

A. Applying this to the set .1 C T �T /X of point (2) we see that .1 C T �T /
1
2 X is

dense in A. Using point (1) we conclude that X is a core of T .

Lemma D.4. Let T1; T2 2 A� strongly commute and let X � A be a dense subspace.
Then the set

.1 C .T1T2/�.T1T2//.1 C T �
1 T1/�1.1 C T �

2 T2/�1X

is dense in A. In particular .1 C T �
1 T1/�1.1 C T �

2 T2/�1X is a core of T1T2.

Proof. Note that

.1 C .T1T2/�.T1T2//.1 C T �
1 T1/�1.1 C T �

2 T2/�1

D .1 C .T �
1 T1/.T �

2 T2//.1 C T �
1 T1/�1.1 C T �

2 T2/�1:

We express the right-hand side of the above equation using z-transforms of T1 and T2:

.1 � z2
jT1j/.1 � z2

jT2j/ C z2
jT1jz

2
jT2j:
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Let f W Œ0; 1� � Œ0; 1� ! RC be the function defined by

f .x1; x2/ D .1 � x2
1/.1 � x2

2/ C x2
1x2

2 :

Note that f .x1; x2/ D 0 if and only if x1 D 1 and x2 D 0, or x1 D 0 and x2 D 1.
Let us also define a function g W Œ0; 1� � Œ0; 1� ! R by the formula

g.x1; x2/ D .1 � x2
1/

1
2 .1 � x2

2/
1
2 :

We have the implication

.f .x1; x2/ D 0/ H) .g.x1; x2/ D 0/:

Using Proposition 6.2 of [12] we get the inclusion

.1 C T �
1 T1/� 1

2 .1 C T �
2 T2/� 1

2 X
k�k

� .1 C .T �
1 T1/.T �

2 T2//.1 C T �
1 T1/�1.1 C T �

2 T2/�1X
k�k

:

We end the proof by noting that A D .1 C T �
1 T1/� 1

2 .1 C T �
2 T2/� 1

2 X
k�k

.

Lemma D.5. Let T1; T2 2 A� be a strongly commuting pair of operators and let
Y � D.T �

2 T2/ be such that .1 C T �
2 T2/Y is dense in A. Then the set

.1 C .T1T2/�.T1T2//.1 C T �
1 T1/�1Y

is dense in A.

Proof. This follows from the previous proof, with X D .1 C T �
2 T2/Y .
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