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C*-algebras associated with integral domains and crossed
products by actions on adele spaces
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Abstract. We compute the K-theory for C*-algebras naturally associated with rings of integers
in number fields.

The main ingredient is a duality theorem for arbitrary global fields. It allows us to identify
the crossed product arising from affine transformations on the finite adeles with the analogous
crossed product algebra over the infinite adele space.
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1. Introduction

Let R be a countable ring. The elements of R act by addition and multiplication on
`2.R/. Denote by AŒR� the C*-algebra generated by all the corresponding operators
in L.`2.R//. In [Cun] the first named author had studied (using a different notation)
this ring C*-algebra for R D Z and had shown that it has an intriguing structure. In
particular, it is purely infinite simple (thus a Kirchberg algebra) and can be described as
a universal C*-algebra given by generators and relations. It is also Morita equivalent
to a crossed product of the algebra of functions on the finite adele space for Q by the
action of the ax C b-group over Q. These results were generalized in [CuLi] to the
case where R is an integral domain with finite quotients and in [Li] to general rings.

It is an obvious problem to determine the K-theory of AŒR�. In [Cun] the case
of R D Z was discussed and it was stated that K�.AŒZ�/ is given as an exterior Z-
algebra with one generator for each prime number in Z. A proof for this was sketched.
This proof however was not complete. Moreover, in [Cun] a duality theorem was
stated claiming that AŒZ� can be described also as a crossed product of C0.R/ by the
natural action of the ax C b-group over Q. Again a proof was sketched which was
not complete.

In the present paper we give complete proofs for these two results generalizing
them at the same time to a substantially more general setting. It turns out that the
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two results are related. We first prove a general duality theorem that holds for any
global fieldK and states that the crossed products C0.Af /ÌPK and C0.A1/ÌPK
are isomorphic. Here Af and A1 denote the spaces of finite and infinite adeles,
respectively, and PK denotes the ax C b-group over K. Both crossed products
describe AŒO� up to Morita equivalence, where O is the ring of integers inK. We note
at this point that we also determine the crossed product C0.A/ÌPK for the full adele
space A D Af � A1 and show that it is Morita equivalent to the group C*-algebra
C �.PK/. Moreover, we point out that in the case of number fields, the Bost–Connes
system and its generalizations considered in [BoCo], [CMR], [HaPa] and [LLN] are
carried by a natural subalgebra of AŒO�. This is explained in [CuLi] in more detail.

In a second step, we use our duality theorem to determine the K-theory for AŒO� in
the case where O is the ring of integers in a number fieldK which contains only 1,�1
as roots of unity. The point is that the description of AŒO� as C0.A1/ Ì PK is much
better suited for this computation since it allows for certain homotopy arguments
which do not apply in the totally disconnected space Af . We find that the K-theory
depends on the number of real embeddings of K: Roughly speaking, we get the
exterior Z-algebra over the torsion-free part of .K�; � /. But if the number of real
embeddings ofK is even and at least 2, we will get an additional copy of this exterior
algebra with coefficients in Z=2Z. These results indicate that the K-theory of AŒO�
as such does not contain information on the class number of K. Therefore, one is
forced to investigate finer structures in AŒO� to find out more about the class number
(compare [Li], 6.5).

For an arbitrary number field K, we also determine the K-theory of the subal-
gebra of AŒO� which is generated by the addition operators for elements in O and
the multiplication operators coming from the torsion-free part of K�. We think of
this subalgebra as AŒO� “without roots of unity”. We find that its K-theory can be
described as the exterior Z-algebra over the torsion-free part ofK�, with coefficients
in Z or Z=2Z depending on the real embeddings of K.

The paper is structured as follows:
In Section 2, we give an overview of certain aspects of algebraic number theory

which we will need. We also briefly recall the notion of ring C*-algebras.
Then we compute the K-theory of AŒZ�. There are several reasons why we choose

to treat this special case first. On the one hand, it was this case from which all our
investigations started. It serves as a guide through our computations in the general
setting and thereby helps to understand the general arguments. On the other hand, at
various points we can considerably shorten the calculations using special features of
the case R D Z. Moreover, it is possible to work out several steps explicitly in the
concrete situation of Z. This leads to a self-contained exposition, in the sense that
we do not need to refer to results from algebraic number theory in this special case.

Finally, we consider the general situation. As a first step, we establish a duality
theorem for arbitrary global fields (Section 4). Using this duality, we carry out the K-
theoretic computations, first for the subalgebras “without roots of unity” of arbitrary
number fields (Section 5) and then for the whole ring C*-algebras, but under the
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assumption that the number fields only contain the roots of unity 1;�1 (Section 6).
We are indebted to W. Lück for useful discussions and for bringing Lemma 6.1

to our attention.

2. Preliminaries

2.1. Algebraic number theory. Let us very briefly mention aspects from algebraic
number theory which will be of interest for us. First of all, the classical objects of
study in algebraic number theory are the so called number fields, which are finite
(separable) extensions of Q, and the corresponding rings of integers, which are the
integral closures of Z in those fields. Moreover, it turns out that the theory of the so
called function fields, which are finite separable extensions of Fp.T /, can be – at least
to some extent – developed parallely. For this reason, our constructions and some of
the results (our duality theorem) will apply to both situations.

However, the final step in our K-theoretic computation is only carried out for
number fields. For this, it is useful to note the following:

Lemma 2.1. Let K be a number field and � be the set of roots of unity in K. There
exists an infinitely generated free abelian group � � K� with K� D � � � .

Proof. Consider the exact sequence after Corollary (3.9) in [Neu], Chapter I, §4.

Now let K be a global field, which means a number field or a function field, and
let O be the integral closure of Z or FpŒT � in K. We will be concerned with the
following objects:

the infinite adele ring A1 D Q
vj1

Kv;

the finite adele ring Af D
Q
v−1

0Kv;

where the restricted product is taken with respect to the maximal compact subrings
Ov � Kv , and

the full adele ring A D A1 �Af :

These products are taken over equivalence classes of valuations ofK; infinite ones for
A1, finite ones for Af . At this point, we should note that for function fields, we choose
the valuations satisfying jT jv > 1 to be the infinite ones (compare [Weil], Chapter III,
§1, Theorem 2). Instead of equivalence classes of valuations, one can equivalently
take equivalence classes of embeddings ofK into locally compact, nondiscrete fields,
these are called places in [Weil]. Thus, we can always embedK diagonally into A1,
Af or A as each valuation v (we choose one representative for each class) gives rise
to an embedding K ,! Kv . We will not distinguish between K and its image under
these embeddings. This will be our convention in general as it will become clear
from the context into which object we embed.
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Remark 2.2. Adeles and their multiplicative analogues, the ideles, play an impor-
tant role in class field theory. The reader is referred to [Neu] or [Weil] for more
information.

Starting with O, we can form the profinite completion lim �fO=I g over the set of
nontrivial ideals in O ordered by inclusion. It turns out that this completion coincides
with the maximal compact subring

Q
v−1 Ov of Af :

lim �
.0/¤I

fO=I g ŠQ
Ov: (1)

Moreover, we have K as well as
Q

Ov sitting inside Af . For their intersection, we
get the following

Lemma 2.3. O D K \ .Qv−1 Ov/.

Proof. Compare [Weil], Theorem 1 of Chapter V, §2, for number fields. The proof
for function fields is analogous using [Weil], Chapter VI.

For an infinite place v of a number field, we either have Kv Š R or Kv Š C.
In the first case v is called real, and it is called a complex place otherwise. We will
write vR for a real place and vC for a complex one. Thus, we get

A1 Š R#fvRg �C#fvCg

as topological rings. Note that we consider equivalence classes of embeddings, which
means that two complex embeddings which are conjugate give rise to the same place.
As additive topological groups, we have A1 Š Rn where n is the degree ofK over Q.

The last point we would like to talk about is duality. Let K be a global field.

Theorem 2.4. There exists a nontrivial character � of A which is trivial on K. Any
such character yields a pairing

A �A! T ; .x; y/ 7! hx; yi ´ �.xy/:

This pairing induces an isomorphism of topological groups: A Š yA, x 7! Œy 7!
hy; xi�. Thus, we also obtain

A=K Š yK via �.x/ 7! Œa 7! ha; xi�; (2)

where � is the projection A ! A=K. Moreover, we can choose � so that h � ; � i
restricted to A1 yields an isomorphism

A1 ŠbA1; t 7! Œs 7! ht; si�: (3)

Proof. For the first two pairings, compare [Weil], Chapter IV, §2, Theorem 3, or
[Lang], Chapter XIV, §6, Theorem 10. The second result, (3), is proven in [Lang],
Chapter XIV, §1, Theorem 1, for number fields, and follows from [Weil], Chapter II,
§5, Theorem 3, in the general case. For the case of number fields, the reader may
also consult [Tate].
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2.2. Review of our constructions. Let us recall the concept of ring C*-algebras.
We will only consider the integral closures of Z or FpŒT � in a global field. This is
a nice situation as far as the construction of ring C*-algebras is concerned because
these rings are integral domains with finite quotients. We mention that it is possible
to extend the construction to arbitrary rings (see [Li]).

Now let O be the integral closure of Z or FpŒT � in a global field K. Consider the
following operators on the Hilbert space `2.O/:

U a�r D �aCr for a 2 O; Sb�r D �br for b 2 O
�:

Here f�rg is the canonical orthonormal basis of `2.O/, and O
� is the set of nontrivial

elements in O.
In analogy to the group case, we define the reduced ring C*-algebra as

Ar ŒO�´ C �.fU a; Sb j a 2 O; b 2 O
�g/ � L.`2.O//:

The full ring C*-algebra AŒO� is defined as the universal C*-algebra generated by
unitaries fua j a 2 Og and isometries fsb j b 2 O

�g satisfying

(I) uasbucsd D uaCbcsbd ,

(II)
P
uas

b
s�
b
u�a D 1,

where we sum over O=.b/ D faC .b/ j a 2 Og in (II).
We use the notation .b/´ b � O for principal ideals.
There is a canonical homomorphism� W AŒO�! Ar ŒO�which is called the regular

representation (as for groups). Moreover, it turns out that AŒO� is purely infinite and
simple (see [CuLi], Theorem 1), so that � is an isomorphism. This allows us to
identify AŒO� with its image under � on `2.O/.

These ring C*-algebras are closely related to the number-theoretic objects we in-
troduced before. Namely, it turns out that there is a canonical commutative
C*-subalgebra DŒO� ´ C �.fuaebu�a j a 2 O; b 2 O

�g/, where eb is the range
projection sbs�

b
of sb . And the bridge to number theory is built by the observation

Spec DŒO� Š Q
Ov (see [CuLi], Observation 1; the argument essentially uses (1)).

Furthermore, AŒO� can be described as a semigroup crossed product (see [CuLi],
Remark 3 and [La]):

AŒO� ŠDŒO� Ìe
O Ì O

� �M C0.Af / ÌK ÌK� D C0.Af / Ì PK ; (4)

where Ìe denotes the crossed product by endomorphisms (following the notation in
[Li]). Recall that, by definition, the ax C b-group PK is K ÌK�.

From now on, we will omit the argument O and simply write A, Ar or D respec-
tively as it will become clear from the context which ring we mean.
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3. Computations for Q

As announced, we study a special case first: the integers Z in Q. This leads to
a program which serves as a guide through more general computations. Roughly
speaking, the idea is to compute the K-groups explicitly for the C*-subalgebra
C �.u1; s�1; feb j b 2 Z�g/ by choosing a suitable filtration and then to apply
the Pimsner–Voiculescu sequence iteratively to get the K-theory of the whole ring
C*-algebra. Actually, this idea is already contained in [Cun]. However, to work out
the second step rigorously we will need as a new ingredient the comparison between
finite and infinite places.

We obtain, as announced in [Cun],K�.A/ Š ƒ�.Q>0/ as Z=2Z-graded abelian
groups. Here and in the sequel,ƒ� denotes the Z=2Z-graded exterior Z-algebra and
K� is the direct sum of K0 and K1 with the canonical grading.

3.1. K-theoretic computations I

Lemma 3.1. K0.C �.u1; s�1; febg// Š Q˚Z via

Œeb�0 7! . 1
b
; 0/ for all b 2 Z>0; Œ1

2
.1C s�1/�0 � Œ12 .1C u1s�1/�0 7! .0; 1/;

whereas K1.C �.u1; s�1; febg// is trivial.
Moreover, we have the following relation in K0.C �.u1; s�1; febg//:

Œ1�0 D 2 � Œ12 .1C u1s�1/�0: (5)

We write Œ � �0 or Œ � �1 for the classes in K0 or K1, respectively. Furthermore, we
use curly brackets f � g to indicate that we consider a whole family of generators of a
certain type. For instance, febg means feb j b 2 O

�g.
Proof. By the universal relation (II), eb lies in C �.u1; ebd /. Therefore, we can
form lim�!fC

�.u1; s�1; ebi
/g (over Z>0 ordered by divisibility), and we get in the

inductive limit C �.u1; s�1; febg/. Therefore, to determine K�.C �.u1; s�1; febg//,
we have to compute K�.C �.u1; s�1; eb// for single b and how the inclusion �b;bd :
C �.u1; s�1; eb/ ,! C �.u1; s�1; ebd / acts on K-theory.

First of all, it is well known that C �.u1; s�1/ Š C �.Z Ì .Z=2Z// Š .C �C/�.
This follows by comparing the universal properties of these C*-algebras. Mutually
inverse isomorphisms C �.u1; s�1/• .C �C/� are given by

s�1 7! 2p � 1; u1s�1 7! 2q � 1 and 1
2
.1C s�1/ Í p; 1

2
.1C u1s�1/ Í q;

where p and q are the canonical generators of C �C.
The K-theory of .C �C/� is known, it is given by

Kj ..C �C/�/ Š
´

ZŒ1�0 ˚ZŒp�0 ˚ZŒq�0 if j D 0;
¹0º for j D 1:
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This determines the K-groups of C �.u1; s�1/. Let us fix the identification

Z3 Š K0.C �.u1; s�1//I
e1 7! Œ1�0; e2 7! Œ1

2
.1C u1s�1/�0; e3 7! Œ1

2
.1C s�1/�0:

This also allows us to compute K�.C �.u1; s�1; eb// for any b 2 Z>0 since

C �.u1; s�1; eb/ ŠMb.C
�.u1; s�1//: (6)

The idea is that the projections eb , u1ebu�1, : : : , ub�1ebu�.b�1/ decompose `2.Z/
into b mutually isomorphic subspaces `2.bZ/, `2.1C bZ/, : : : , `2..b � 1/C bZ/
(see Lemma 5.2 for more details). Thus,

Kj .C
�.u1; s�1; eb// Š

´
Z3 if j D 0;
¹0º for j D 1: (7)

From these calculations, it already follows that K1.C �.u1; s�1; febg// is trivial.
It remains to computeK0.�b;bd /. However, it turns out that taking (7) into account,

we get K0.�b;bd / D K0.�b0;b0d / for any b; b0 2 Z>0 (see the proof of Lemma 5.1).
Thus, it suffices to consider �d ´ �1;d . Under the identification (6), we get the
following:

For d D 2, we have �2.u1/ D
�
0 u1

1 0

�
and �2.s�1/ D

�
s�1 0

0 u�1s�1

�
, which implies

on K0:

K0.�2/.Œ
1
2
.1C s�1/�0/ D Œ12 .1C s�1/�0 C Œ12 .1C u1s�1/�0

and

K0.�2/.Œ
1
2
.1C u1s�1/�0/ D Œ1�0:

Therefore, we get K0.�2/ D
�
2 1 0
0 0 1
0 0 1

�
.

For d odd we have �d .u1/ D
0
@0 : : : 0 u1

1 0

:::
:::

1 0

1
A, �d .s�1/ D

0
B@
s�1 0 : : : 0

0 u�1s�1

::: . .
.

0 u�1s�1

1
CA,

which implies on K0:

K0.�d /.Œ
1
2
.1C s�1/�0/ D Œ12 .1C s�1/�0 C d�1

2
Œ1�0

and

K0.�d /.Œ
1
2
.1C u1s�1/�0/ D Œ12 .1C u1s�1/�0 C d�1

2
Œ1�0:

Thus we conclude that K0.�d / D
�
d
d�1
2

d�1
2

0 1 0
0 0 1

�
.
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Putting these facts together, we get by choosing a cofinal sequence bi in Z>0 with
biC1 D 2dibi :

K0.C
�.u1; s�1; febg// Š lim�!

n
Z3I

�
2di di di �1
0 0 1
0 0 1

� o
Š Q˚Z: (8)

The map of the i -th K0-group Z3 into Q˚Z is given by

Z3 ! Q˚Z; .x; y; z/ 7! . 1
bi
.x C 1

2
y C 1

2
z/; y/:

This immediately implies Œ1�0 D 2 � Œ12 .1C u1s�1/�0. Moreover, K0 is generated by
Œeb�0 corresponding to . 1

b
; 0/ and Œ1

2
.1Cs�1/�0� Œ12 .1Cu1s�1/�0 which corresponds

to .0; 1/ under the identification in (8).

The next step is to adjoin the isometries sb . We consider to this end

A.m/´ C �.u1; s�1; febg; sp1
; : : : ; spm

/:

Here, p1 < p2 < � � � are the prime numbers in Z>0. By construction, we have
A Š lim�!fA

.0/ ,! A.1/ ,! � � � g. Therefore, it suffices to determine K�.A.m//.
Similarly to (4), A.m/ can be described as a semigroup crossed product. This yields

A.m/ �M C0.�m � .Q Zp// Ì .�m �Z/ Ì .� � �m/
Š lim�!fA

.m�1/IAd.spm
/g ÌAd.spm /

Z
(9)

where �m D hp1; : : : pmi � Q�. We have taken the inductive limit of

f � � � Ad.spm /�����! A.m�1/ Ad.spm /�����! A.m�1/ Ad.spm /�����! � � � g
to formally invert Ad.spm

/.
Just a remark on notation: When we write a product like �m � .Q Zp/ (or �m �Z),

it means that we embed the factors into an object carrying a multiplicative structure,
for instance Af (or Q), and take the product there. It will be clear from the context
which object we mean.

(9) is the reason why we can apply the Pimsner–Voiculescu sequence. First, we
compute:

Lemma 3.2. Kj .A.1// Š Z for j D 0; 1.
Proof. First of all, it follows from Lemma 3.1 that Ad.s2/ induces 1

2
idQ on the

summand Q of K0.A.0//.
To calculate K0.Ad.s2//.Œ12 .1C s�1/�0 � Œ12 .1C u1s�1/�0/, let us consider the

identification A.0/ ŠM2.A
.0// analogous to (6) under which

1
2
.1C s�1/ corresponds to

�1
2
.1Cs�1/ 0

0
1
2
.1Cu1s�1/

�
,



C*-algebras associated with integral domains 9

1
2
.1C u1s�1/ corresponds to 1

2

�
1 s�1
s�1 1

� � �
1 0
0 0

�
,

Ad.s2/.12 .1C s�1// corresponds to
�
1
2
.1Cs�1/ 0

0 0

�
,

Ad.s2/.12 .1C u1s�1// corresponds to
�
1
2
.1Cu1s�1/ 0

0 0

�
.

Thus, on K-theory, this isomorphism maps both

Œ1
2
.1C s�1/�0 � Œ12 .1C u1s�1/�0

and

K0.Ad.s2//.Œ12 .1C s�1/�0 � Œ12 .1C u1s�1/�0/
to Œ1

2
.1C s�1/�0 � Œ12 .1C u1s�1/�0, where we used (5).

This shows that K0.Ad.s2// is given by
�1
2

idQ 0

0 idZ

�
on K0.A.0// Š Q˚Z.

Hence, the Pimsner–Voiculescu sequence applied to (9), together with Lemma 3.1,
gives

Q˚Z
�idQ˚0 �� Q˚Z

��

�� K0.A
.1//

��
K1.A

.1//

��

0�� 0,��

which implies Kj .A.1// Š Z for j D 0; 1.

Actually, we can go one step further and show .Ad.s3//� D idK�.A.1//, but at this
point we cannot show directly .Ad.spmC1

//� D idK�.A.m// in general.

3.2. Infinite andfinite places overQ. To solve our problem given in the last section,
we compare the infinite place of Q with the finite ones. To be more precise, our goal
is to prove that the crossed products arising from the axC b-group PQ acting on the
finite adeles Af D Q� � .Q Zp/ and on the infinite place R of Q respectively are
Morita equivalent. This can be written in a slightly more complicated way as

C0.R/ Ì Q Ì Q� �M C0.Q
� � .Q Zp// Ì .Q� �Z/ Ì Q�:

The point is that we actually need this result not only for Q� but – more generally –
for any subgroup of Q� in place of the full group Q�. This will be proven along the
way as well.

The central idea of the proof is that the infinite place and the finite ones are
connected via duality (see Lemma 3.5). That is why we think of our result as a
duality theorem.
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3.2.1. Fourier transform for R. Let us consider some very basic constructions
(mainly to set up the notation):

We have an action of Q on C0.R/ given by translation:

O	 W Q! Aut.C0.R//; O	a.g/.t/ D g.t � a/; for all g 2 C0.R/; a 2 Q; t 2 R:

Moreover, the Fourier transform on Cc.R/ is given by

FR W Cc.R/! C0.R/; f 7! Of D
�
t 7!

Z
R

e.ts/f .s/ds
	
;

where we set
e.t/´ exp.2�it/

and identify R with yR by t 7! Œs 7! e.ts/�. FR extends to an isomorphism
FR W C �.R/! C0.R/.

Now we can consider the action 	 W Q ! Aut.C �.R// given by conjugating
O	 by FR. By construction, FR is a covariant isomorphism with respect to 	 and
O	 , and it thus extends to an isomorphism FR W C �.R/ Ì� Q ! C0.R/ Ì O� Q. To
simplify the notation, we will not distinguish between covariant homomorphisms
and their extensions to crossed product algebras. 	 is explicitly given by 	a.f /.t/ D
e.�at/f .t/ for all f 2 Cc.R/ � C �.R/.

Furthermore, consider the action Ǒ W Q� ! Aut.C0.R/ Ì O� Q/ given by

Ǒ
b.gu

a/ D g.b�1t/uab for all g 2 C0.R/; a 2 Q:

Again, conjugating Ǒ by FR gives an action ˇ W Q� ! Aut.C �.R/ Ì� Q/ such that
FR induces an isomorphism

FR W C �.R/ Ì� Q Ìˇ Q� ! C0.R/ Ì O� Q Ì Ǒ Q�:

This action ˇ is given by ˇb.f ua/ D jbjf .bt/uab .

3.2.2. Identification of crossed products. From this point of departure, we will
now move towards the finite adeles, and the bridge between the infinite place and the
finite ones is given by the additive group of our global field Q, in the following sense:
Start with the action 
 W R! Aut.C �.Q// given by


t .u
a/ D e.at/ua for all t 2 R; a 2 Q;

whereC �.Q/ denotes the group C*-algebra of .Q;C/. We will show that the crossed
product C*-algebras C �.R/ Ì� Q and C �.Q/ Ì� R are isomorphic.

To this end, define a linear map

' W Cc.Q; Cc.R//! C �.Q/ Ì� R;
P
a

fau
a 7! Œt 7!P

a e.at/fa.t/ua�:
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Lemma 3.3. ' identifies Cc.Q; Cc.R// – viewed as a *-subalgebra of C �.R/Ì� Q
– with the *-subalgebra Cc.Q � R/ of C �.Q/ Ì� R.

Proof. This follows by computations as in the proof of Lemma 4.3.

Lemma 3.4. ' extends to an isomorphism ' W C �.R/ Ì� Q Š C �.Q/ Ì� R.

Proof. ' extends to an isometric isomorphism `1.Q;L1.R// Š L1.R; `1.Q//, where
we view `1.Q;L1.R// and L1.R; `1.Q// as *-subalgebras of C �.R/ Ì� Q and
C �.Q/ Ì� R, respectively. Moreover, C �.R/ Ì� Q is the enveloping C*-algebra
of `1.Q;L1.R// and C �.Q/ Ì� R is the enveloping C*-algebra of L1.R; `1.Q//.
Thus, we indeed get an isomorphism ' W C �.R/ Ì� Q Š C �.Q/ Ì� R (compare the
proof of Lemma 4.3 for the details).

Once again, the Q�-action on C �.R/ Ì� Q, conjugated by ', yields an action
˛ W Q� ! Aut.C �.Q/ Ì� R/. ˛ is given by the formula

˛b.Œt 7!
P
a

fa.t/u
a�/ D Œt 7!P

a

jbjfa.bt/uab�

for all Œt 7!P
a fa.t/u

a� 2 Cc.R; `1.Q//.
By construction, ' induces an isomorphism

.C �.R/ Ì� Q/ Ìˇ Q� �!Š' .C �.Q/ Ì� R/ Ì˛ Q�:

3.2.3. Fourier transform for Q. At this point, the following well-known result
brings the finite adele ring or rather its maximal compact subring into the game:

Lemma 3.5. The dual group of Q can be identified with

Y ´ R �Z .
Q

Zp/ D .R � yZ/=.r;z/�.rC1;zC1/:

Proof. We use the well-known result that
Q

Zp can be identified with .1Q=Z/ via

Q
Zp 3 z 7�! .Œm

n
� 7! e.z.n/ � m

n
// 2 .1Q=Z/; (10)

where we view the maximal compact subring
Q

Zp of Af as the projective limit of
quotients of Z which is realized as a subspace of …n>0Z=nZ.

Now define Y
�! yQ, Œr; z� 7! Œm

n
7! e..r�z.n// � m

n
/�. The map � is well defined

and continuous. Since both spaces are compact, we just have to show bijectivity to
prove that � is a homeomorphism.

To prove surjectivity, take any � 2 yQ. Restricting � to Z yields a character of Z
which is of the form e.rt/ for some r 2 R. Therefore, � � e.�rt/ has constant value
1 on Z, hence it induces a character of Q=Z. In other words, there exists z 2Q

Zp
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such that �.m
n
/e.�r � m

n
/ D e.�z.n/ � m

n
/ for all m

n
2 Q because of (10). This means

� D �.Œr; z�/.
The map � is injective as well: As one immediately checks, � is actually a group

homomorphism (where addition on Y is defined componentwise). Thus, we just have
to show that � has trivial kernel. Given Œr; z� 2 ker.�/, we have 1 � �.Œr; z�/jZ D
e.rt/jZ which implies r 2 Z. Furthermore, this shows that r � z is an element inQ

Zp yielding the trivial character on Q=Z. Hence, by (10), it must be 0, which
means Œr; z� � Œ0; 0�.

This result can be viewed as a special case of Theorem 2.4, (2).
The map � can be used to identify C �.Q/ and C.Y / via the Fourier transform

given by

Cc.Q/
FQ��! C.Y /IFQ.u

m=n/.Œr; z�/ D evm=n.�.Œr; z�// D e..r � z.n// � m
n
/:

Conjugating 
 W R ! Aut.C �.Q// by FQ yields an action O
 on C.Y / given by
O
t .f /.Œr; z�/ D f B O
�

t .Œr; z�/ with O
�
t .Œr; z�/ D Œr C t; z�. This follows from

.FQ B 
t .um=n//.Œr; z�/ D FQ.e.mn � t /um=n/.Œr; z�/
D e...r C t / � z.n// � m

n
/ D FQ.u

m=n/.Œr C t; z�/:

Again, we get an isomorphism C �.Q/ Ì� R ��!ŠFQ C.Y / Ì O� R.
As the last step, we describe the action Ǫ of Q� on C.Y / Ì O� R induced by ˛

conjugated by FQ. For any Q� 3 b D mb

nb
(mb 2 Z, nb 2 Z>0), consider

Y
Ǫ �

b�! Y; Œr; z� 7! Œ.r � z.nb// � b; .z.t � nb/ � z.nb// � b�:
Multiplication with b D mb

nb
makes sense since z.t � nb/ � z.nb/ is in

Q
Zp with

z.lnb/ � z.nb/ 2 nbZ for all l 2 Z>0 and because it is independent of the repre-
sentation of b. Moreover, the expression defining Ǫ�

b
is compatible with � so that

Ǫ�
b

is well defined. Furthermore, Ǫ�
b

is continuous and thus a homoemorphism since
Ǫ�
b
B Ǫ�

1=b
D idY .

Now we claim that Ǫ W Q� ! Aut.C.Y /Ì O�R/ given by Ǫb D FQ B˛b BF �1
Q is of

the form Ǫb.f �g/ D .Œr; z� 7! .f B Ǫ�
b
/ � .jbjg.bt/// for all f 2 C.Y /, g 2 Cc.R/.

This follows from

.FQ B ˛b.Œs 7! g.s/ua�/.t//Œr; z�

D jbjg.bt/ � e..r � z.nanb//ab/
D jbjg.bt/e...r � z.nb// � b � ..z.t � nb/ � z.nb// � b/.na// � a/
D jbjg.bt/FQ.u

a/.Œ.r � z.nb// � b; .z.t � nb/ � z.nb// � b�/
D .jbjg.bt/FQ.u

a/ B Ǫ�b /Œr; z�:
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Remark 3.6. It is useful to consider the action � W R Ì Q� ! Aut.C.Y // given by
�.t; b/.f / D f B Ǫ�

b
B O
�

t , where the semidirect product is taken with respect to the
action Q� ! Aut.R/I b 7�! Œt 7! t=b�. The action � is a group homomorphism
since O
�

t B Ǫ�b D Ǫ�b B O
�
t=b

. Using a general result on crossed products by semidirect
products (compare [Wil], Proposition 3.11), one immediately deduces

.C.Y / Ì O� R/ Ì Ǫ Q� Š C.Y / Ì� .R Ì Q�/:

Remark 3.7. Up to now, we could just as well consider a subgroup of Q� instead of
the whole group. So, to sum up, we have shown that for any subgroup � of Q�, we
have an isomorphism

.C0.R/ Ì O� Q/ Ì Ǒ � Š C.Y / Ì� .R Ì �/: (11)

3.2.4. Morita equivalent crossed product C*-algebras

Proposition 3.8. The transformation groupoids associated to the action of

R Ì Q� on Y via Œr; z� � .t; b/ D Ǫ�b B O
�
t .Œr; z�/;

denoted by G , and of

Q Ì Q� on Af by z � .a; b/ D b�1.z � a/;
denoted by zG , are equivalent in the sense of [MRW].

Proof. We will show that both groupoids are equivalent to certain subgroupoids which
we can identify.

First, consider the closed subset zN ´ Q
Zp � Af D zG 0. As Q� � .Q Zp/ D

Af , zN meets every orbit in zG 0. Moreover, the restricted range and source maps are
open (details can be found in Lemma 4.4). Thus, by [MRW], Example 2.7, zG and
zG zN

zN are equivalent, where

zG zN
zN D f.z; .a; b// 2 .

Q
Zp/ � .Q Ì Q�/ j b.z C a/ 2Q

Zpg:
As a second step, consider the closed subset �.f0g � .Q Zp//μ N of Y where �

is the canonical projection R � .Q Zp/
��! .R � .Q Zp//=Z D Y . N meets every

orbit in Y D G 0 because
S
t2R
O
�
t .N / D Y . Again, the restricted range and source

maps are open (compare Lemma 4.4 for the details). Thus, G and GNN are equivalent
by Example 2.7 of [MRW].

We have GNN D f.Œ0; z�; .t; b// 2 N � .R Ì Q�/ j Ǫ�
b
.Œt; z�/ 2 N g. Now,

Ǫ�b .Œt; z�/ D Œ.t � z.nb// � b; .z.t � nb/ � z.nb// � b� 2 N
() Œ.t � z/ �mb�.nb/ D .t � z.nb// �mb 2 nbZ
() .t � z/ � b 2Q

Zp:
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In particular, this implies t 2 Q. Therefore, zG zN
zN and GNN can be identified (as in

Lemma 4.4) via zG zN
zN 3 .z; .a; b// 7! .Œ0; z�; .a; b�1// 2 GNN .

If we replace Q� by an arbitrary subgroup� of Q�, we have to consider the action
of .� �Z/Ì� on � � .Q Zp/ and the action of R Ì� on Y . With these modifications,
everything works out as above.

Corollary 3.9. C0.� � .Q Zp//Ì .� �Z/Ì� �M C.Y /Ì� .RÌ�/ for any subgroup
� of Q�.

Proof. This follows from Proposition 3.8 (applied to � instead of Q�) together with
[MRW], Theorem 2.8, and the well-known fact that for a transformation groupoid
the (full) groupoid C*-algebra and the corresponding (full) crossed product are iso-
morphic.

Corollary 3.10. For any subgroup � of Q�, C0.� � .Q Zp// Ì .� � Z/ Ì � and
.C0.R/ Ì O� Q/ Ì Ǒ � are Morita equivalent.

Proof. This result follows by combining the last corollary with (11).

3.3. K-theoretic computations II. Corollary 3.10 enables us to continue with our
computations of Section 3.1. The crucial point is that on R, we can work with
homotopies to compute the multiplicative action of Q� on K-theory.

By (4), A �M C0.Af /ÌQÌQ�. Thus, by Corollary 3.10, we have to determine
the K-theory of C0.R/ Ì Q Ì Q�.

As a first step, the K-theory of C0.R/ Ì Ǒ
�1
� can be computed with the help of

the split exact sequence C0.R/ Ì � ,! C.T / Ì � � C �.�/ (recall that � D f˙1g
in this case). We get

Kj .C0.R/ Ì Ǒ
�1
�/ Š

´
Z if j D 0;
0 for j D 1: (12)

As a next step, we have

Kj .C0.R/ Ì Q Ì Ǒ
�1
�/ Š

´
Q˚Z for j D 0;
0 if j D 1;

because of Lemma 3.1, (9) for m D 0 and Corollary 3.10 for � D �.
Similarly, Lemma 3.2 impliesKj .C0.R/ÌQÌ.���1// Š Z (j D 0; 1) because

of (9) form D 1 and Corollary 3.10 for � D ���1. Recall that �m is hp1; : : : ; pmi,
the subgroup of Q� generated by the first m primes.

The inclusion i W C0.R/ ,! C0.R/ Ì Q is covariant with respect to Ǒ and thus
induces homomorphisms between the corresponding crossed products.
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Lemma 3.11. i W C0.R/ Ì .� � �1/! C0.R/ Ì Q Ì .� � �1/ induces C � idZ for
some 0 ¤ C 2 Z on both K0 and K1.

Proof. First of all, we claim that i W C0.R/ Ì Ǒ
�1
�! C0.R/ Ì O� Q Ì Ǒ

�1
� induces

Z
0˚.C �id/������! Q˚Z on K0 for some 0 ¤ C 2 Z.
To show this, we consider the Ǒ�1-invariant inclusion C0.R/ ,! C0.R/ Ì O�1 Z.

It yields, using the Pimsner–Voiculescu sequence and its naturality, the following
commutative diagram with exact rows:

� � � �� Z

Š
��

2id �� Z

Š
��

�� K1.C0.R/ Ì Ǒ
�1

Z/

K1.i/

��

�� 0

� � � �� Z
2id �� Z �� K1..C0.R/ Ì O�1 Z/ Ì Ǒ

�1
Z/ �� � � � .

Therefore, i W C0.R/ Ì Ǒ
�1

Z ! .C0.R/ Ì O�1 Z/ Ì Ǒ
�1

Z does not induce the trivial
map on K1.

Now, by [Bla], Theorem 10.7.1 (the sequence described therein is natural with
respect to covariant homomorphisms), we get the following commutative diagram
with exact rows:

K0.C0.R/ Ì Ǒ
�1
�/

K0.i/

��

�� K1.C0.R/ Ì Ǒ
�1

Z/

K1.i/

��

�� 0

K0..C0.R/ Ì O�1 Z/ Ì Ǒ
�1
�/ �� K1..C0.R/ Ì O�1 Z/ Ì Ǒ

�1
Z/ �� � � � .

In the commutative square, going right and then down does not yield the trivial map,
and hence K0.i/ is not trivial.

AsK0.C0.R/Ì Ǒ
�1
�/ Š Z by (12) and Ǒb �h id onC0.R/Ì Ǒ

�1
�, the nontrivial

image of K0.i/ is fixed by K0. Ǒb/ for all b 2 Z>0. Hence it follows that

C0.R/ Ì Ǒ
�1
�

i�! C0.R/ Ì O� Q Ì Ǒ
�1
� Š lim�!

b2Z>0

f.C0.R/ Ì O�1 Z/ Ì �I Ǒbg

does not yield the trivial homomorphism on K0, either.
Now,

Kj .C0.R/ Ì Q Ì �/ Š
´

Q˚Z if j D 0;
¹0º for j D 1;

and Kj .C0.R/ Ì Q Ì .� � �1// Š Z for j D 0; 1 as we already know. Therefore,
studying the Pimsner–Voiculescu sequence and going through the possibilities yield

thatK0. Ǒ2/must be of the form Q˚Z
‹˚idZ����! Q˚Z with ‹ ¤ idQ onK0.C0.R/Ì
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Q Ì Ǒ
�1
�/. But we have just seen that K0.i/.1/ is fixed by K0. Ǒ2/, where 1 is the

generator of Z Š K0.C0.R/Ì Ǒ
�1
�/. Thus,K0.i/.1/ D .0; C / for some 0 ¤ C 2 Z

(C is nontrivial as K0.i/ ¤ 0). This proves our claim.
Secondly, the Pimsner–Voiculescu sequence, together with its naturality, implies

that the assertion of the lemma is true.

Theorem 3.12. We have Kj .A.m// Š Z2m�1
for all m 2 Z>0 (j D 0; 1).

Proof. We prove by induction on m that Kj .C0.R/ Ì Q Ì .� � �m// Š Z2m�1
for

j D 0; 1 and that C0.R/ Ì .� � �m/ i�! C0.R/ Ì Q Ì .� � �m/ induces

�C �
:::

0 C

�
on K-theory.

The case m D 1 has just been shown in the last lemma.
Now assume that we have proven our assertion form. We have (for j D 0; 1) the

following commutative diagram

Kj .C0.R/ Ì .� � �m//
i�

��

0 �� Kj .C0.R/ Ì .� � �m//
i�

��
Kj .C0.R/ Ì Q Ì .� � �m//

id�. Ǒ
pmC1

/�1
� �� Kj .C0.R/ Ì Q Ì .� � �m//.

As we know by induction hypothesis that Kj .C0.R/ Ì Q Ì .� � �m// (j D 0; 1) is

torsion-free and that i� D
�C �

:::
0 C

�
, it follows that id� . ǑpmC1

/�1� must be trivial.

Therefore,

Kj .C0.R/ Ì Q Ì .� � �mC1//
Š Kj .C0.R/ Ì Q Ì .� � �m//˚KjC1.C0.R/ Ì Q Ì .� � �m//
Š Z2m

for j D 0; 1, and the inclusion i induces0
BBBBB@

C �
: : : �

0 C
C �

0
: : :

0 C

1
CCCCCA

on K-theory under this decomposition of Kj .C0.R/ Ì Q Ì .�� �mC1// (j D 0; 1),
as we wanted to prove.

Now the theorem follows from (9) and Corollary 3.10.
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We can instantly derive the following consequences:

Corollary 3.13. Ad.spmC1
/ induces the identity on K�.A.m//.

Corollary 3.14. K�.A/ Š ƒ�.Q>0/ whereK0 corresponds to products of even and
K1 corresponds to products of odd numbers of pairwise distinct primes.

Remark 3.15. Using analogous arguments, we can determine the K-theory of
C �.u1; fsb j b 2 Z>0g/. This case has already been investigated in [Cun], where
C �.u1; fsb j b 2 Z>0g/ is denoted by QN. Again, the main point is that Corol-
lary 3.10 allows us to compute the multiplicative action of Z>0 or Q>0 on K-theory.
As the final result, we get K�.C �.u1; fsb j b 2 Z>0g// Š ƒ�.Q>0/ where K0 cor-
responds to products of odd numbers, K1 corresponds to products of even numbers
of pairwise distinct primes.

Remark 3.16. Looking back at our explicit calculations for Q, we see the following
main steps:

1. Compute the K-theory of A.0/ D C �.fuag; s� ; febg/. Here  is a root of unity
which generates �.

2. Compare the finite adele ring and the infinite one.
3. Show that it is enough to consider the multiplicative action ofK� on the infinite

adeles.
4. Apply the Pimsner–Voiculescu sequence iteratively, together with a homotopy

argument showing that the multiplicative action of the torsion-free part ofK� is trivial
on K-theory.

4. A duality theorem

First of all, let us concentrate on the second step of our program. We can generalize
Corollary 3.10 to arbitrary global fields (number fields or function fields). Our result
can be viewed as a duality theorem based on the duality results of Theorem 2.4. So
we prove the following result:

Theorem 4.1. Let K be a global field and � be a subgroup of K�.
The C*-algebras C0.A1/ÌK Ì � and C0.� � .Q Ov//Ì .� � O/Ì � are Morita

equivalent, where the groups act via inverse affine transformations.

With PK D K ÌK� we get as a special case (� D K�):

Corollary 4.2. C0.A1/ Ì PK �M C0.Af / Ì PK .

As in the case of Q, this result allows us to compute the action of K� by homo-
topies. But first of all, let us prove Theorem 4.1. We need two lemmas.
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4.1. Crossed products by subgroups of the dual group

Lemma 4.3. Assume that .G;C/ is a locally compact abelian group and H is a
subgroup of the Pontryagin dual yG. Equip H with a topology such thatH becomes
a locally compact group, and ıh.f / D Œg 7! h.g/f .g/� and "g. Qf / D Œh 7!
h.�g/ Qf .h/� extend to strongly continuous actions of H on C �.G/ and of G on
C �.H/, respectively.

Then ' W Cc.G �H/! Cc.H �G/, f 7! Œ.h; g/ 7! h.�g/f .g; h/�, extends to
an isomorphism C �.G/ Ìı H Š C �.H/ Ì" G.

Before we come to the proof, just note that the discrete topology on H is always
a possible choice. Actually, this is the case of interest for our applications.

Moreover, Lemma 4.3 generalizes our result in Section 3.2.2.

Proof. The strategy is to show that ' is an isomorphism of *-algebras and that ' is
isometric with respect to the norms k � kL1.H;L1.G// and k � kL1.G;L1.H//. Then we
just have to see that C �.G/ ÌH and C �.H/ ÌG are the enveloping C*-algebras of
L1.H;L1.G// and L1.G;L1.H//.

The central idea is that infinitesimally, we have the relation

whvg D h.g/vgwh (13)

in both crossed products C �.G/ Ìı H and C �.H/ Ì" G. Here, vg and wh are the
infinitesimal generators corresponding to G and H respectively.

So, as a first step, integrating (13) gives '.f1 � f2/ D '.f1/ � '.f2/. Thus, ' is
multiplicative. Moreover, a simple computation shows that ' is involutive as well.

Secondly, applying Fubini, we see that ' extends to an isometric isomorphism

L1.H;L1.G// Š L1.G;L1.H//:
Finally,C �.G/ÌH is defined as the norm closure ofL1.H;C �.G//with respect

to the norm

kf k D supfk�.f /k j � nondegenerate representation of L1.H;C �.G//g:
Now we claim that we can equally well take the norm closure of L1.H;L1.G// in
the norm

kf k0 D supfk�.f /k j � nondegenerate representation of L1.H;L1.G//g:
To see this, it suffices to prove k � k D k � k0 on L1.H;L1.G//, since this algebra
is dense in L1.H;C �.G//. So it remains to show that any nondegenerate repre-
sentation of L1.H;L1.G// extends to a representation of L1.H;C �.G// (which
will automatically be nondegenerate, too). Now any nondegenerate representation
of L1.H;L1.G// is the integrated form of a covariant representation. Actually,
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one can adapt the proof of the analogous statement for L1.H;C �.G// (see for in-
stance [Ped]). The only thing one has to use is that L1.G/ has an approximate unit.
But then the integrated form of the corresponding covariant representation defines a
(nondegenerate) representation of L1.H;C �.G// extending the original one. This
shows thatC �.G/ÌH is the enveloping C*-algebra ofL1.H;L1.G//. Analogously,
C �.H/ Ì G is the enveloping C*-algebra of L1.G;L1.H//. But we already know
that ' extends to an isometric isomorphism L1.H;L1.G// Š L1.G;L1.H//. Thus
' also extends to an isomorphism C �.G/ ÌH Š C �.H/ ÌG.

4.2. Comparison of groupoids. As a second step, consider the following transfor-
mation groupoids which are closely related to the C*-algebras appearing in Theo-
rem 4.1: Fix a subgroup � of K�. Each b 2 � acts on A1 via multiplication by
b�1. This gives rise to an action of � on A1 and thus to the semidirect product
A1 Ì� . Let G be the groupoid associated to the right action of A1 Ì� on A=K via
affine transformations (given by �.x/ � .t; b/ D �.b..t; 0/C x//, with the canonical
projection � W A! A=K).

Now let O be the integral closure of Z inK ifK is a number field, and the integral
closure of FpŒT � in case K is a function field of characteristic p. Moreover,

Q
Ov is

the maximal compact subring of Af , as above. � acts on � � O by multiplication as
well (this time we do not take inverses) and we can form .� �O/Ì� . Denote by zG the
groupoid associated to the right action of � � O � � on � � .Q Ov/ � Af via inverse
affine transformations (z � .a; b/ D b�1.z � a/).

Lemma 4.4. G and zG are equivalent as groupoids, in the sense of [MRW].

This is the analogue of Proposition 3.8, but now in the general context.

Proof. We will use Example 2.7 of [MRW] to reduce our assertion to certain sub-
groupoids. The remaining groupoids will even be isomorphic.

First of all, it is shown in [MRW], Example 2.7, that a locally compact (Hausdorff)
groupoid G is equivalent to GNN if N is a closed subset of G0 such that

(i) N meets every orbit in G0,

(ii) the restricted range and source maps GN ! G are open.

We would like to apply this result to G and zG : Consider the first groupoid with
N D �.f0g � .Q Ov// � A=K D G 0; N is closed because f0g � .Q Ov/ is compact
and � is continuous.

Moreover, N satisfies (i) since given x D .x1; xf / 2 A, we can find a 2 K,
z 2Q

Ov such that aC z D xf (we have Af D KC .
Q

Ov/, see [Weil], Chapter IV,
Lemma 2.1, and [Weil], Chapter I, Corollary 4.2). Thus, x D .x1�a; z/Ca, which
implies

�.x/ D �.0; z/ � .x1 � a; 1/ D r.�.0; z/; .x1 � a; 1//
where r is the range map of G . This shows that N meets every orbit in G 0.
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To prove (ii), note that GN D f.�.x/; .t; b// 2 G j �.b..t; 0/ C x// 2 N g by
definition. sjGN

W GN ! N , .�.x/; .t; b// 7! �.b..t; 0/C x//, is open because, for
any open subsetU � G , s.U \GN / D s.U \s�1.N // D s.U /\N is an open subset
of N since the source map s is open. It remains to prove that r jGN

W GN ! A=K,
.�.x/; .t; b// 7! �.x/, is open. To see this, take open sets U � A=K, V � A1 and
b 2 � . Consider the open subset U � .V � fbg/ of G . It suffices to look at open sets
of this form since they form a basis for the topology of G .

Now we have r.U � .V � fbg/\ GN / D U \ �..�V / � b�1 � .Q Ov// because
of the following reason: For any x 2 A, �.x/ 2 r.U � .V � fbg/\ GN / means that
�.x/ lies in U and that .�.x/; .t; b// 2 GN for some t 2 V . The second statement
is equivalent to: “There exists t 2 V with �.x/ 2 �..�t; 0//C b�1 � N ”, which is
again equivalent to “�.x/ 2 �..�V / � b�1 � .Q Ov//”. This proves our claim.

But since � is open and b�1 � .Q Ov/ is open in Af , U \�..�V /� b�1 � .Q Ov//

is open in G 0 D A=K. Therefore, (i) and (ii) hold true and thus G is equivalent to
GNN D f.�.x/; .t; b// 2 A=K � .A1 Ì �/ j �.x/ 2 N and �.b..t; 0/C x// 2 N g.

We study zG in a similar way: Consider the closed subset zN ´ Q
Ov of

� � .Q Ov/ D zG 0. By construction, zN meets every orbit in zG0.
Moreover, zG zN is given as f.z; .a; b// 2 zG j b�1.z � a/ 2 zN g. Let Qr , Qs be the

range and source maps of zG .
Now Qsj zG zN

is open as Qs.U \ zG zN / D Qs.U \ Qs�1. zN// D Qs.U / \ zN is open in

zN D Q
Ov for any open subset U � zG because Qs is open. And Qr j zG zN

is open since

given any open subset U � � � .Q Ov/, Qr.U �f.a; b/g\ zG zN / D U \ .aC b.
Q

Ov//

is again open in � � .Q Ov/ D zG 0. As above, it is sufficient to consider open subsets
of this type as they form a basis for the topology of zG .

Thus, we have seen that (i) and (ii) hold. This implies that zG is equivalent to
zG zN

zN D f.z; .a; b// 2 � � .
Q

Ov/ � .� � O Ì �/ j z 2Q
Ov and b�1.z � a/ 2Q

Ovg.
Finally, we want to show that ˆ W zG zN

zN ! GNN , .z; .a; b// 7! .�.0; z/; .a; b�1//,
defines an isomorphism of topological groupoids.

First of all,ˆ is well defined as .z; .a; b// 2 zG zN
zN means b�1.z�a/ 2 zN DQ

Ov

and therefore �.b�1..a; 0/C .0; z/// D �.b�1a; b�1z/ D �.0; b�1z�b�1a/ 2 N .
Furthermore, ˆ is injective since .�.0; z/; .a; b�1// D .�.0; z0/; .c; d�1// implies
a D c, b D d and .0; z�z0/ 2 K () z D z0. ˆ is surjective: Given .�.x/; .t; b//
in GNN , �.x/ 2 N means that there exists z 2Q

Ov with �.x/ D �.0; z/. Moreover,
we know �.bt; bz/ D �.b..t; 0/ C .0; z// 2 N . This implies that there exists
z0 2Q

Ov with .bt; bz/�.0; z0/ D .bt; bz�z0/ 2 K. Thus, bt 2 K andbt D bz�z0,
which yield t 2 K\.� �.Q Ov// D � �.K\.Q Ov// D � �O by Lemma 2.3. Therefore,

we have found .z; .t; b�1// 2 zG zN
zN with ˆ.z; .t; b�1// D .�.x/; .t; b//.

Moreover, it is easy to check that ˆ respects the groupoid structures as well.
As the last point, we have to check thatˆ is a homeomorphism. It is immediate that

ˆ is continuous. To prove thatˆ�1 is continuous, choose a sequence .zn; .an; bn// 2
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zG zN
zN with limn!1ˆ.zn; .an; bn// D ˆ.z; .a; b// 2 GNN for .z; .a; b// 2 zG zN

zN .

This means limn!1.�.0; zn/; .an; b�1
n // D .�.0; z/; .a; b�1//. We have to show

limn!1.zn; .an; bn// D .z; .a; b// in zG zN
zN . As limn!1 b�1

n D b�1 in the discrete
group � , we conclude that bn D b for almost all n. Thus, we can assume without loss
of generality that bn D b for all n. Moreover, we have for all n that an lies in K and
b.zn � a/ 2 zN D Q

Ov . With b D l
m

for some l , m in O, m ¤ 0, we conclude that
an 2 ..Q Ov/Cb�1 � .Q Ov//\K � .1l � .

Q
Ov//\K D 1

l
�O by Lemma 2.3. Since

1
l
� O sits discretely in A1, it follows that an D a for almost all n. Finally, to see

that limn!1 zn D z in zN D Q
Ov , observe that zN D Q

Ov ! N , z 7! �.0; z/, is
a homeomorphism as it is a bijective, continuous map between compact (Hausdorff)
spaces.

This shows that zG zN
zN Š GNN as topological groupoids. Hence, we have shown

zG �M zG zN
zN Š GNN �M G :

4.3. End of proof. With these two lemmas, we are ready for the

Proof of Theorem 4.1. Start with the additive action of K on C0.A1/ given by
O	a.g/ D g.t � a/ for all g 2 C0.A1/. Since A1 Š bA1 by Theorem 2.4, (3),
Fourier transform yields

C �.A1/ Š C0.A1/; Cc.A1/ 3 f 7!
�
t 7!

Z
A1

hs; tif .s/ds
	
:

Under this identification, O	 corresponds to the action 	 onC �.A1/ given by 	a.f / D
h�a;ti � f . Thus, we are precisely in the situation of Lemma 4.3 with G D A1,
H D K (H viewed as a discrete group). Lemma 4.3 yields

C0.A1/ Ì O� K Š C �.A1/ Ì� K Š C �.K/ Ì� A1

with 
t .ua/ D ha; tiua for all a 2 K, t 2 A1. Applying again Fourier transform,
together with Theorem 2.4, (2), we end up with

C �.K/ Ì� A1 Š C. yK/ Ì A1 Š C.A=K/ Ì O� A1

with O
t .f / D f .�.t; 0/Ct/.
So, to sum up these observations, we have an isomorphism

C0.A1/ Ì O� K Š C.A=K/ Ì O� A1:

Now let � be a subgroup of K�. Under the last identification, the action of �
on C0.A1/ Ì O� K given by Ǒb.g � ua/ D g.b�1t/ � uab for all g 2 C0.A1/,
a 2 K, b 2 K�, corresponds to the following action of � on C.A=K/ Ì O� A1:
Ǫb.Œt 7! ft �/ D Œt 7! jN.b/jfbt .bt/� where N denotes the norm on K�.
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Using [Wil], Proposition 3.11, we deduce

.C0.A1/ Ì O� K/ Ì Ǒ � Š .C.A=K/ Ì O� A1/ Ì Ǫ � Š C.A=K/ Ì .A1 Ì �/:

The semidirect product A1 Ì� is taken with respect to the action of � on A1 which
we already had in Theorem 4.1, and the action of A1 Ì � on C.A=K/ is given by
.t; b/ � f .x/ D f .x � .t; b// D f .�.b..t; 0/ C x///. Thus, Lemma 4.4, combined
with [MRW], Theorem 2.8, yields

C0.A1/ Ì .K Ì �/ Š .C0.A1/ Ì O� K/ Ì Ǒ �
Š C.A=K/ Ì .A1 Ì �/
Š C �.G / �M C �. zG /
Š C0.� � .Q Ov// Ì .� � O/ Ì �:

The first identification follows again from [Wil], Proposition 3.11. Moreover, the
first and the last crossed products are given by the corresponding actions via inverse
affine transformations.

5. Computations “without roots of unity”

Let us concentrate on number fields now. Fix such a field K and let O be the ring
of integers in K. Before we turn to the whole ring C*-algebra of O, let us study the
C*-algebra “without roots of unity” first. More precisely, we fix a subgroup � ofK�
with K� D � � � and consider the decomposition O

� D � � .� \ O
�/. Note that

� � O by definition. Then we consider B D C �.fua; sb j a 2 O; b 2 � \ O
�g/.

This C*-subalgebra is generated by all unitaries given by addition but only those
isometries which come from the torsion-free part � of K�. We point out that B
depends on the choice of � .

The reason why we first compute the K-groups of B is twofold: On the one hand,
it is possible to carry out the calculation in complete generality, in contrast to the
computation of K�.A/ (at least up to now). On the other hand, some of the results
which we prove along our way to determining K�.B/ will enter into the calculation
of K�.A/ later on.

As far as our strategy is concerned, we more or less follow the program de-
scribed in Remark 3.16. This means that we will first compute the K-theory of
B.0/ ´ C �.fuag; febg/ via a suitable filtration and then use Theorem 4.1 to adjoin
the isometries by a homotopy argument.

The final result is

K�.B/ Š

8̂̂
<̂
ˆ̂̂:
ƒ�.�/ if #fvRg D 0;
ƒ�.�/ if #fvRg odd and #fvR j vR.b/ < 0g even 8 b 2 �;
.Z=2Z/˝Z ƒ

�.�/ if #fvRg odd and 9 b 2 �: #fvR j vR.b/ < 0g odd;

.Z=2Z/˝Z ƒ
�.�/ if #fvRg 	 2 even:
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Here, Z=2Z is trivially graded and we consider graded tensor products.

5.1. K-theory of B.0/. As a first step, the K-theory of B.0/ can be computed with
the help of a suitable filtration.

Lemma 5.1.

Kj .B
.0// Š

´
Q2n�1

if j � nC 1 mod 2;

Q2n�1�1 ˚Z if j � n mod 2:

If !1, : : : , !n is a Z-basis for O and if we write u.i/´ u!i , then the copy of Z
will be generated by Œu.1/�1 � � � � � Œu.n/�1 2 Kn.B.0//. Here, we take the product
on K-theory as it is described in [HiRo], 4.7.

Proof. By relation (II), p. 5, we have eb D
P
ubaebdu

�ba where we sum over
O=.d/ D fa C .d/g. Thus, we obtain the inductive system fC �.fuag; eb/I �b;bd g
with the inclusions �b;bd W C �.fuag; eb/ ,! C �.fuag; ebd /. The associated induc-
tive limit coincides with C �.fuag; febg/ D B.0/. Hence, we have to determine
K�.C �.fuag; eb// for single b as well as .�b;bd /�.

First of all, C �.fuag/ Š C �.O/ Š C �.Zn/. Thus, K�.C �.fuag// Š Z2n
and

fŒu.i1/�1 � � � � � Œu.ik/�1 j 1 
 i1 < � � � < ik 
 n; 0 
 k 
 ng is a Z-basis. For
k D 0 we get Œ1�0. Moreover, we have

Lemma 5.2. For any b 2 Z>0, we have C �.fuag; eb/ ŠMbn.C �.fuag//.

Proof of Lemma 5.2. Choose a minimal system Rb of representatives for O=.b/ in
O, in the sense that for any c, c0 in Rb , c � c0 2 .b/ implies c D c0. We always
assume 0 2 Rb . From this data – using `2.O/ Š `2.c C .b//, �r 7! �cCbr – we
construct a unitary `2.O/ Š L

c2Rb
`2.c C .b// Š L

Rb
`2.O/. Conjugation with

this unitary yields an isomorphism

'b W L.`2.O// ŠMbn.L.`2.O///; T 7! .s�
bu

�cT uc0

sb/c;c0 :

We now show that 'b.C �.fuag; eb// D Mbn.C �.fuag//: The universal prop-
erty of Mbn.C �.fuag// Š Mbn.C/ ˝ C �.fuag/ gives rise to a homomorphism
�b W Mbn.C �.fuag//! C �.fuag; eb/ via �b.ec;c0 ˝ 1/ D ucebu�c0

, �b.1˝ ua/ D
uba. �b is surjective, and we have 'b B �b D idMbn .C�.fuag;eb// by construction.
This implies that 'b.C �.fuag; eb// DMbn.C �.fuag//.

Thus, C �.fuag/ e0;0˝id�����! Mbn.C �.fuag// �bŠ C �.fuag; eb/ induces an isomor-
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phism on K-theory. By continuity of K�, we get

K�.B.0// Š lim�!
Z>0

fK�.C �.fuag; eb//I .�b;bd /�g

Š lim�!
Z>0

fK�.C �.fuag//I .e0;0 ˝ id/�1� B .'bd /�

B .�b;bd /� B .�b/� B .e0;0 ˝ id/�g;
where we used ��1

bd
D 'bd (see Lemma 5.2). It suffices to take the inductive limit

over Z>0 as Z>0 is cofinal in O
�.

To understand the structure maps, note that by a modified version of Lemma 5.2,
�bd B .e0;0 ˝ id/ can be written as the composition

C �.fuag/ e0;0˝id�����!Mdn.C �.fuag// �d��! C �.fuag; ed /
e0;0˝id�����!Mbn.C �.fuag; ed // �b�! C �.fuag; ebd /

and that the diagram

C �.fuag/
	1;d

��

�bB.e0;0˝id/ �� C �.fuag; eb/
	b;bd

��
C �.fuag; ed / �bB.e0;0˝id/ �� C �.fuag; ebd /

commutes (these observations follow from �b B .e0;0 ˝ id/ D Ad.sb/). Thus,

.e0;0 ˝ id/�1� B .'bd /� B .�b;bd /� B .�b/� B .e0;0 ˝ id/�
D .e0;0 ˝ id/�1� B .'d /� B .e0;0 ˝ id/�1� B .'b/� B .�b/� B .e0;0 ˝ id/� B .�1;d /�
D .e0;0 ˝ id/�1� B .'d /� B .�1;d /�:

Therefore, with �d ´ �1;d , it remains to determine .e0;0 ˝ id/�1� B .'d /� B .�d /�.
Now define �d W C �.fuag/! C �.fuag/Iua 7! uda for d 2 Z>0. Functoriality

of the K-theoretic product yields

.�d /�.Œu.i1/�1 � � � � � Œu.ik/�1/ D dkŒu.i1/�1 � � � � � Œu.ik/�1:
The crucial observation for our purposes is that we have

'd B �d B �d D 1dn ˝ id: (14)

This follows from the construction. We get

.e0;0 ˝ id/�1� B .'d /� B .�d /� B .�d /� D .e0;0 ˝ id/�1� B .1dn ˝ id/� D dn � id�
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and thus .e0;0 ˝ id/�1� B .'d /� B .�d /� D dn � .�d /�1� . We conclude that

.e0;0 ˝ id/�1� B .'d /� B .�d /�.Œu.i1/�1 � � � � � Œu.ik/�1/
D dn�k � .Œu.i1/�1 � � � � � Œu.ik/�1/:

(15)

This allows us to calculate the K-groups of B.0/, and we get the desired results.

5.2. K-theory of B. We distinguish between the following cases:
1. #fvRg D 0.
By [Neu], Chapter I, Proposition (8.4), there are infinitely many primes in Z � O

which are unramified in O. Hence, since � is finite, by taking an appropriate product
of unramified primes, we find a number p 2 Z>0 in � which we can extend to a
Z-basis for � of the form fp; p1; p2; : : : g.

Let�m be the subgroup hp; p1; : : : ; pmi of� and consider B.1/´ C �.B.0/; sp/.
Since Ad.sp/�.Œu.i1/�1 � � � � � Œu.ik/�1/ D pk�nŒu.i1/�1 � � � � � Œu.ik/�1 by (15)

and

B.1/ Š B.0/ Ìe
Ad.sp/

N �M lim�!fB
.0/IAd.sp/g ÌAd.sp/ Z

�M C0.�0 � .Q Ov// Ì �0 � O Ì �0

(similar to (4)), we conclude thatKj .B.1// Š Z for j D 0; 1. This result, Lemma 5.1
and Theorem 4.1 show that

Kj .C0.A1/ ÌK/ Š Kj .C.Q Ov/ Ì O/

Š Kj .B.0// Š
´

Q2n�1
for j � nC 1 mod 2;

Q2n�1�1 ˚Z for j � n mod 2I
(16)

Kj .C0.A1/ ÌK Ì �0/ Š Kj .C.�0 � .Q Ov// Ì .�0 � O/ Ì �0/
Š Kj .B.1// Š Z for j D 0; 1: (17)

Moreover, as the multiplicative action ofK� on A1 is homotopic to the trivial action,
the Pimsner–Voiculescu sequence yields Kj .C0.A1/ Ì �0/ Š Z (j D 0; 1). Now
we claim thatKj .C0.A1/ÌKÌ�m/ Š Kj .C0.A1/Ì�m/ Š Z2m

for j D 0; 1 and
that im W C0.A1/Ì�m ! C0.A1/ÌK Ì�m, the map induced by theK�-covariant
inclusion C0.A1/ ,! C0.A1/ Ì K, yields an injective map on K-theory. Let us
prove this assertion by induction on m.

m D 0: We already knowKj .C0.A1/ÌK Ì�0/ Š Kj .C0.A1/Ì�0/ Š Z for
j D 0; 1. It remains to show the injectivity of .i0/�: By (16), (17) and the Pimsner–
Voiculescu sequence, C0.A1/ÌK ,! C0.A1/ÌK Ì�0 must be nontrivial on the
copy of Z in Kj (j � n mod 2). Moreover, C0.A1/ ,! C0.A1/ Ì O is injective
on K-theory by the Pimsner–Voiculescu sequence. And we have C0.A1/ Ì K Š
lim�!fC0.A1/Ì Ogwhere the structure maps fix the image of C0.A1/ in C0.A1/Ì O

on K-theory. It follows that C0.A1/ ,! C0.A1/ ÌK is injective on K-theory and
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its image is fixed by �0 in K-theory and thus must be contained in the copy of Z
(j � n mod 2). Thus, .i0/� is injective.

Now assume that we have proven the claim for m. The diagram

Kj .C0.A1/ Ì �m/

.im/�
��

0 �� Kj .C0.A1/ Ì �m/

.im/�
��

Kj .C0.A1/ ÌK Ì �m/
id�. Ǒ

pmC1
/�1
� �� Kj .C0.A1/ ÌK Ì �m/

commutes, where we used that the multiplicative action ofK� onC0.A1/ is equivari-
antly homotopic to the identity. AsKj .C0.A1/ÌK Ì�m/ (j D 0; 1) is torsion-free
and .im/� is injective by hypothesis, it follows that . ǑpmC1

/� D idK�.C0.A1/ÌKÌ
m/.

Thus, we get Kj .C0.A1/ Ì K Ì �mC1/ Š Z2mC1
for j D 0; 1 by the Pimsner–

Voiculescu sequence. Injectivity of .�mC1/� D
�
.im/� �
0 .im/�

�
follows by induction

hypothesis. This proves our claim.
Therefore,

K�.C0.A1/ ÌK Ì �/ Š lim�!
m

K�.C0.A1/ ÌK Ì �m/ Š lim�!
m

ƒ�.�m/ Š ƒ�.�/:

Since B �M C0.Af / Ì K Ì � �M C0.A1/ Ì K Ì � by the analogue of (4) and
Theorem 4.1, we conclude that K�.B/ Š ƒ�.�/.

The remaining cases are very similar to the first one. The only difference lies in
the fact that the multiplicative action does not need to be homotopic to the identity
any more.

2. #fvRg odd and #fvR j vR.b/ < 0g is even for all b 2 � .

We still have that the action of � is equivariantly homotopic to the identity on
C0.A1/. Thus, we can adapt the computations of the first case. Again,

K�.B/ Š ƒ�.�/:

3. #fvRg odd and #fvR j vR.b/ < 0g is odd for some b 2 � .

Choose a basis fp; p1; : : : g of � as in the first case (#fvRg D 0), but we addition-
ally require #fvR j vR.p1/ < 0g to be odd and #fvR j vR.pi / < 0g to be even for all
i > 1. Now let �m D hp; p1; : : : ; pmi � � as above, and let � 0

m be the subgroup
generated by fp; p2; : : : ; pmg such that �m D � 0

m � hp1i.
We have Ǒpm

�h Ǒtm where tm ´ .v.pm/=jv.pm/j/vj1. Here, we extend the

multiplicative action of K� on C0.A1/ to A�1 and still denote this action by Ǒ.
For m ¤ 1, Ǒtm is of period 2 and induces the identity on K�.C0.A1//. Thus,
going through the Pimsner–Voiculescu sequences, we get that Ǒtm and therefore Ǒpm

induces the identity on K�.C0.A1/ Ì � 0
m�1/.

Hence, for the same reasons as above (in the first case), we get

K�.C0.A1/ ÌK Ì � 0
m/ Š ƒ�.� 0

m/:
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But now we have to add p1. Ǒp1
induces �id on K�.C0.A1/ Ì � 0

m/ as the map
is of order 2 on K-theory but gives �id on K�.C0.A1//. So, using the Pimsner–
Voiculescu sequence again, we see that Ǒp1

induces �id on K�.C0.A1/ Ì � 0
m/ and

thus on K�.C0.A1/ ÌK Ì � 0
m/ as well. Hence we get

K�.C0.A1/ ÌK Ì �m/ Š .Z=2Z/˝Z ƒ
�.� 0

m/

and finally, in the inductive limit,

K�.B/ Š K�.C0.A1/ ÌK Ì �/ Š .Z=2Z/˝Z ƒ
�.�/:

4. #fvRg 	 2 even.

Since R �K D A1, there must be some b 2 � with #fvR j vR.b/ < 0g odd. Then
the same arguments as in the previous case show that

K�.B/ Š K�.C0.A1/ ÌK Ì �/ Š .Z=2Z/˝Z ƒ
�.�/:

6. General results for � D f˙1g

As in the previous section, let K be a number field of degree n D ŒK W Q� and let O

be the ring of integers inK. We follow the program of Remark 3.16 and compute the
K-groups of the ring C*-algebra associated to O under the assumption that the only
roots of unity in K are˙1 (� D f˙1g). We will explain below why we cannot treat
the general case up to now.

The final result (with K� D � � �) is as follows:

K�.A/ Š

8̂<
:̂
K0.C

�.�//˝Z ƒ
�.�/ if #fvRg D 0;

ƒ�.�/ if #fvRg odd;

ƒ�.�/˚ ..Z=2Z/˝Z ƒ
�.�// if #fvRg 	 2 even:

Here we consider graded tensor products where K0.C �.�// and Z=2Z are trivially
graded. We take the diagonal grading on the direct sum. Moreover, note that the
condition “#fvRg is odd” is equivalent to “n is odd”.

6.1. The K-theory of A.0/. The first step is to calculate the K-groups of
C �.fuag; s�1/, or – what amounts to the same – of the group C*-algebra of O Ì� Š
Zn Ì Z=2Z. Let !1, : : : , !n be a Z-basis of O and set u.i/ D u!i for 1 
 i 
 n.
We thank W. Lück for pointing out the following result to us.

Lemma 6.1. The K-theory of C �.O Ì �/ is given by

K0.C
�.O Ì �// D Gfin ˚Ginf ;
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where Gfin Š Z2n
is the part coming from finite subgroups and Ginf Š Z2n�1

.
K1.C

�.O Ì �// is trivial.
Moreover, if we identify C �.O Ì �/ with C �.fuag; s�1/, we obtain the following

projections whose classes in K0.C �.fuag; s�1// form a Z-basis for Gfin:

1
2
.1C u.i1/ : : : u.ik/s�1/ where 1 
 i1 < � � � < ik 
 n; 0 
 k 
 n:

Furthermore, the inclusion

i W C �.fuag/ Š C �.O/ ,! C �.O Ì �/ Š C �.fuag; s�1/

maps K0.C �.fuag// into Ginf injectively. Thus, its cokernel is finite.

Proof. See [ELPW], Theorem 0.4.

The next step is to compute the K-theory of A.0/´ C �.fuag; s�1; febg/.

Lemma 6.2.

K0.A
.0// Š

´
Z˚Q2n�1

if n odd;

Z˚Q2n�1�1 ˚Z if n even:

K1.A
.0// is trivial.

Proof. Again, A.0/ Š lim�!fC
�.fuag; s�1; eb/g and with analogous arguments as in

the proof of Lemma 5.1, we get

K�.A.0// Š lim�!
d2Z>0

fK�.C �.fuag; s�1//I .e0;0 ˝ id/�1� .'d /�.�d /�g:

It remains to determine

�d ´ .e0;0 ˝ id/�1� .'d /�.�d /� W K�.C �.fuag; s�1//! K�.C �.fuag; s�1//

for d 2 Z>0. In our computations ofK�.B.0// in Lemma 5.1, we have already seen
in (15) that

�d .Œu.i1/�1 � � � � � Œu.ik/�1/ D dn�kŒu.i1/�1 � � � � � Œu.ik/�1
for 1 
 i1 < � � � < ik 
 n, 0 
 k 
 n. Thus, by Lemma 6.1, �d jK0.C�.fuag// is
given by a diagonal matrix whose entries are powers of d . Among these diagonal
entries, 1 D d0 appears if and only if n is even, this entry then corresponds to
.Œu.1/�1 � � � � � Œu.n/�1/ 2 Kn.C �.fuag; s�1//.

To determine �d jGfin , we distinguish between two cases:
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1. d D 2: As in the proof of Lemma 5.2, we choose a set of representatives for
O=.2/ in O, R2 ´ f0; !1; !2; !1 C !2; !3; : : : ; !1 C � � � C !ng. With this choice,
and under analogous identifications as in Lemma 5.2,

'2 B �2.s�1/ D

0
BBB@
s�1

u.1/�s�1
u.2/�s�1

u.1/�u.2/�s�1
: : :
u.1/� : : : u.n/�s�1

1
CCCA :

This shows that �2.Œ12 .1C s�1/�0/ D
P
Œ1
2
.1C u.i1/ : : : u.ik/s�1/�0 where the sum

is taken over all 1 
 i1 < � � � < ik 
 n, 0 
 k 
 n.
Now the remaining symmetries u.i1/ : : : u.ik/s�1 with 1 
 i1 < � � � < ik 
 n,

1 
 k 
 n map `2.c C .2// bijectively into `2.c0 C .2// for c ¤ c0 in R2. Thus, a
typical building block in '2 B �2.u.i1/ : : : u.ik/s�1/ is of the form0

B@
0 : : : V �
::: 0

:::

V : : : 0

1
CA

for a unitary V . As

1

2

0
BBBBB@

1 0 : : : 0 V �
0 0
::: 0

:::

0 0

V 0 : : : 0 1

1
CCCCCA �

0
BBB@
1 0 : : : 0

0
::: 0

0

1
CCCA ;

we get �2.Œ12 .1C u.i1/ : : : u.ik//�0/ D 2n�1Œ1�0. Thus, �2 is given by

0
BBBBBB@

1
::: 0 0
1

0 2n�1 : : : 2n�1 2n
::: 0

: : :
0 2‹

1
CCCCCCA
;

where ‹ is 0 or 1 depending on the parity of n.
2. Let d be odd, say d D 2d 0 C 1:
This time let Rd be fPn

mD1 lm!m j �d 0 
 lm 
 d 0g, a set of representatives for
O=.d/ in O as in the proof of Lemma 5.2.

For any 0 
 k 
 n, 1 
 i1 < � � � < ik 
 n, u.i1/ : : : u.ik/s�1 maps `2.c C .d//
bijectively into itself if and only if c D �Pk

mD1 d 0!im , and a calculation shows
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that for this c 2 Rd , u.i1/ : : : u.ik/s�1 acts on `2.cC .d// like u.i1/� : : : u.ik/�s�1
under the identification `2.O/ Š `2.c C .d//, �r 7! �cCdr .

Thus, �d .Œ
1
2
.1Cu.i1/ : : : u.ik/s�1/�0/ D Œ12 .1Cu.i1/ : : : u.ik/s�1/�0Cd

n�1
2
Œ1�0.

Then �d is given by 0
BBBBBB@

1
: : : 0

1
dn�1
2

: : : d
n�1
2

dn

0
: : :

d ‹

1
CCCCCCA
;

where ‹ is 0 or 1 depending on the parity of n.
Therefore, �2d (for d odd) is represented by the matrix0

BBBBBB@

1
::: 0 0
1

2n�1dn � 2n�1 .2d/n�1 : : : .2d/n�1 .2d/n
::: 0

: : :
0 .2d/‹

1
CCCCCCA

where ‹ is 0 or 1 depending on the parity of n.
The result on the K-theory of A.0/ follows.

Our computations show that for any d 2 Z>1, Ad.sd / induces id on the copies
of Z and multiplies the generators of Q by some constant > 1 in K0. Thus,

Kj .C
�.fuag; s�1; febg; sd // Š

´
Z if n odd;

Z2 for n even
(18)

for j D 0; 1. Here we have used the Pimsner–Voiculescu sequence together with the
description C �.fuag; s�1; febg; sd / �M lim�!fA

.0/IAd.sd /g ÌAd.sd / Z.

6.2. Comparisonbetween infinite andfiniteplaces. The main result (Theorem 4.1)
has already been proven in Section 4. Applying Theorem 4.1 to our situation, we
obtain, together with Lemma 6.2,

K0.C0.A1/ ÌK Ì �/ Š
´

Z˚Q2n�1
if n odd;

Z˚Q2n�1�1 ˚Z if n even;

K1.C0.A1/ ÌK Ì �/ Š f0g
and, using (18),

Kj .C0.A1/ ÌK Ì .� � hd i// Š
´

Z if n odd;

Z2 if n even
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for j D 0; 1. Furthermore, studying the Pimsner–Voiculescu sequence associated to

C0.A1/ ÌK Ì .� � hd i/ Š .C0.A1/ ÌK Ì �/ � hd i
(hd i Š Z), we get that the only Q>0-invariant part ofK0.C0.A1/ÌK Ì�/ is given
by the copies of Z. We will need this observation later on.

6.3. The multiplicative action. By equivariant Bott periodicity, we obtain

K0.C0.A1/ Ì �/ Š
´

Z if n odd;

Z2 if n even;

and

K1.C0.A1/ Ì �/ Š f0g
since A1 Š Rn (compare Section 2.1).

Now consider i W C0.A1/Ì�! C0.A1/ÌK Ì�, the homomorphism induced
by the inclusion C0.A1/ ,! C0.A1/ Ì K. Our aim is to prove that i� is injective
on K-theory.

First of all, note that it suffices to prove that i 0 W C0.A1/Ì�! C0.A1/Ì O Ì�
is injective on K0 since C0.A1/ ÌK Ì � can be written as an inductive limit (with
C0.A1/ÌOÌ� as C*-algebra in each step) where the structure maps leave the image
of C0.A1/ Ì � fixed on K0. Thus, we have to prove the following

Lemma 6.3. .i 0/� is injective on K0.

Proof. The main ingredient is Theorem A1 of [Nat], which is some sort of Mayer–
Vietoris sequence relating the K-theory of crossed products by a free product of two
groups with the K-theory of the single crossed products. We apply this result to the
group OÌ� Š ZnÌZ=2Z. Namely, the identification ZÌZ=2Z Š Z=2Z�Z=2Z,
z 7! t2t1, t 7! t1 (z, t , t1, t2 are the canonical generators) is compatible with the
action on Zn�1 and on C0.A1/. Thus, Theorem A1 of [Nat] yields the following
sequence which is exact in the middle:

K0.C0.A1/ Ì Zk/
����0

�����! K0.C0.A1/ Ì Zk Ì Ǒ
�1

Z=2Z/

˚K0.C0.A1/ Ì Zk Ì Ǫ!kC1
Ǒ
�1

Z=2Z/

"�C"0
�����! K0.C0.A1/ Ì ZkC1 Ì Ǒ

�1
Z=2Z/

(19)

where �, �0, " and "0 are the canonical maps and 0 
 k 
 n � 1.
Now consider the translation-invariant isomorphism

C0.A1/! C0.A1/; f 7! f .t � 1
2
!kC1/:
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It yields an isomorphism

C0.A1/ Ì Zk  ! C0.A1/ Ì Zk; f � ua 7! f .t � 1
2
!kC1/ � ua:

We have

 B Ǒ�1.f � ua/ D f .� tC12!kC1/ � u�a

D Ǫ!kC1
B Ǒ�1.f .t � 1

2
!kC1/ � ua/

D Ǫ!kC1
B Ǒ�1. .f � ua//:

Thus,  induces an isomorphism

 W C0.A1/ Ì Zk Ì Ǒ
�1

Z=2Z Š C0.A1/ Ì Zk Ì Ǫ!kC1
Ǒ
�1

Z=2Z:

Now, the crucial point is that the following diagram commutes:

C0.A1/ Ì Zk

 

��

� �� C0.A1/ Ì Zk Ì Ǒ
�1

Z=2Z

 

��

C0.A1/ Ì Zk �0
�� C0.A1/ Ì Zk Ì Ǫ!kC1

Ǒ
�1

Z=2Z.

This fact, together with  �h id on C0.A1/ Ì Zk , implies that

 ��� D �0� (20)

on K-theory.
We would like to show that "� is injective. Assume that x 2 ker."�/. Then

.x; 0/ 2 ker."� C "0�/ D im.�� � �0�/ because of (19). Thus, there exists y in
K0.C0.A1/ Ì Zk/ with ��.y/ D x and �0�.y/ D 0. But by (20), we have 0 D
�0�.y/ D  ���.y/ D  �.x/, and since  is an isomorphism, this implies x D 0.
Thus, for any 0 
 k 
 n � 1, "� is injective. This proves our claim, since i 0 D
".n�1/ B � � � B ".0/ if ".k/ denotes the k-th map

C0.A1/ Ì Zk Ì �! C0.A1/ Ì ZkC1 Ì �:

6.4. The general result. It remains to put everything together. We distinguish
between three cases.

a) #fvRg D 0:
Choose an unramified prime p 2 Z>0 and a Z-basis fp; p1; p2; : : : g of � , where

K� D � � � . Let �m D hp; : : : ; pmi.
We have seen that Kj .C0.A1/ ÌK Ì .� � �0// Š Z2 for j D 0; 1 (#fvRg D 0

implies that n is even). Moreover, it follows from our results of Section 6.3 and the
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Pimsner–Voiculescu sequence that i� W K�.C0.A1/ Ì .� � �0//! K�.C0.A1/ Ì
K Ì .� � �0// is injective. Now let us prove inductively that

Kj .C0.A1/ Ì .� � �m// Š Kj .C0.A1/ ÌK Ì .� � �m// Š Z2mC1

for j D 0; 1 and that i� W K�.C0.A1/Ì .���m//! K�.C0.A1/ÌKÌ .���m//
is injective. The case m D 0 has already been proven above.

If the claim is proven for m, the Pimsner–Voiculescu sequence, together with its
naturality, will yield the result formC 1 (analogously to the first case of Section 5.2,
we have to use that Ǒb �h id equivariantly).

Thus, we concludeK�.A/ Š K�.C0.A1/ÌKÌK�/ Š K0.C �.�//˝Zƒ
�.�/.

b) #fvRg odd:
Again, choose p 2 Z>0 prime and unramified and a Z-basis fp; p1; : : : g of �

with K� D � � � . As #fvRg is odd, we can arrange by multiplying with �1 that
#fvR j vR.pi / < 0g is even for all i . As above, let �m D hp; : : : ; pmi. We can show
for each m that

Kj .C0.A1/ Ì .� � �m// Š Kj .C0.A1/ ÌK Ì .� � �m// Š Z2m

for j D 0; 1 and that i� W K�.C0.A1/Ì .���m//! K�.C0.A1/ÌKÌ .���m//
is injective.

All we have to show is that . ǑpmC1
/� D id on K�.C0.A1/ Ì .� � �m//. This

follows from ǑpmC1
�h id on C0.A1/ Ì � and ǑpmC1

�h Ǒ.v.pmC1/=jv.pmC1/j/vj1
.

The second fact implies that ǑpmC1
is of period 2, while the first one, together with

the Pimsner–Voiculescu sequence, shows that ǑpmC1
can be described by an upper

triangular matrix where all the diagonal elements are 1. These two facts imply our
claim, namely . ǑpmC1

/� D id on K�.C0.A1/ Ì .� � �m//.
Thus, K�.A/ Š K�.C0.A1/ ÌK ÌK�/ Š ƒ�.�/.
c) #fvRg 	 2 even:
Again, letK� D ��� and choose a Z-basis fp; p1; p2; : : : g of� , withp 2 Z>0.

We can arrange that #fvR j vR.p1/ < 0g is odd and #fvR j vR.pi / < 0g is even for
all i > 1. Let �m D hp; : : : ; pmi and � 0

m D hp; p2 : : : ; pmi. As above, we can
show that Kj .C0.A1/ Ì K Ì .� � � 0

m// Š Z2m
for j D 0; 1 (ŒK W Q� is even by

assumption).

Lemma 6.4. The following holds:

. Ǒp1
/� D

0
BB@
1 �1 0

: : :
0 1 �1

1
CCA

onKj .C0.A1/ÌK Ì .��� 0
m// Š Z2m

for j D 0; 1 with respect to an appropriate
Z-basis.
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Proof. Note that it is equivalent to prove our claim on Kj .C0.A1/ Ì .� � � 0
m//

because a refinement of Lemma 6.3 yields that i W C0.A1/ ,! C0.A1/ÌK induces
isomorphisms i� W K�.C0.A1/ Ì .� � � 0

m// Š K�.C0.A1/ Ì K Ì .� � � 0
m// for

m 2 Z�0.
Now we extend the multiplicative action of K� on C0.A1/ to A�1 and denote

the corresponding action by Ǒ as before. We have Ǒp1
�h Ǒ.v.p1/=jv.p1/j/vj1

and
Ǒ
.v.p1/=jv.p1/j/vj1

D Ǒ.1;�1;1;1;::: / B Ǒp0 where #fvR j vR.p
0/ < 0g is even. Thus,

. Ǒp0/� D id on K�.C0.A1/ Ì .� � � 0
m// and it remains to show the claim for

Ǒ
.1;�1;1;1;::: /. Here, .1;�1; 1; 1; : : : / is the element in A1 given by 1, �1 on the

first two real places (#fvRg 	 2) and by 1 on the remaining places (real and complex
ones). We proceed inductively:

To get started, we need to determine Ǒ.1;�1/ explicitly on K0.C0.R2/ Ì �/. To
do so, it is helpful to consider the concrete situation whereK D QŒ

p
2� since we can

explicitly write down generators for the K-groups in this special case. For QŒ
p
2�, we

have O D ZCZ
p
2. We would like to show . Ǒp2/� D

�
1 �1

�
onK0.C0.A1/Ì�/.

By Theorem 4.1 and the Pimsner–Voiculescu sequence applied toC0.A1/Ì.��hpi/,
it suffices to show that Ad.sp2/ induces

�
1 �1

�
onKj .C �.fuag; s�1; febg; sp// (j D

0; 1).
To determine Ad.sp2/, we compute .e0;0 ˝ id/�1� .'p

2/�.�p2/�. We have

.�p
2/�.Œu

1�1 � Œu
p
2�1/ D Œu

p
2�1 � Œu2�1 D �2Œu1�1 � Œu

p
2�1:

Thus Ad.sp2/ induces�1 on the second copy of Z inK0.C �.fuag; s�1; febg//. Here

we used that (14) also holds for d D p2.
Now take the set of representatives Rp

2 D f0; 1g for O=.
p
2/ in O as in the proof

of Lemma 5.2. Then, under similar identifications as in Lemma 5.2,

.'p
2/ B .�p2/.12 .1C s�1// D

�1
2
.1C s�1/

1
2
.1C u�p

2s�1/

�
and

.'p
2/ B .�p2/.12 .1C u1s�1// D 1

2

�
1 s�1
s�1 1

�
:

Thus,

.e0;0 ˝ id/�1� B .'p
2/� B .�p2/�.Œ12 .1C s�1/�0 � Œ12 .1C u1s�1/�0/

D Œ1
2
.1C s�1/�0 � .Œ1�0 � Œ12 .1C u�p

2s�1/�0/:

In the inductive limit, we get that Ad.sp2/ induces idZ on the first copy of Z in
K0.C

�.fuag; s�1; febg// by the analogue of (5).
Thus, . Ǒ.1;�1//� D

�
1 �1

�
on K0.C0.A1/ Ì �/ D K0.C0.R2/ Ì �/ as K 3p

2 7! .
p
2;�p2/ �h .1;�1/ 2 A1. But this already implies . Ǒ.1;�1;1;1;::: //� D



C*-algebras associated with integral domains 35�
1 �1

�
on K0.C0.A1/ Ì �/ for any number field with � D f˙1g: Let B be the

Bott element in KK�.C; C0.Rn�2//. Then 1C0.R2/ ˝ B is an invertible element of
KK�.C0.R2/; C0.R2/˝ C0.Rn�2//. By [Kas], Theorem 2.14 8),

. Ǒ.1;�1//� � .1C0.R2/ ˝ B/ � �� D .B ˝ 1C0.R2// � .1C0.Rn�2/ ˝ . Ǒ.1;�1//�/

where � is the flip C0.R2/˝ C0.Rn�2/ Š C0.Rn�2/˝ C0.R2/. This implies that

. Ǒ.1;�1//� � .1C0.R2/ ˝ B/ D .B ˝ 1C0.R2// � .1C0.Rn�2/ ˝ . Ǒ.1;�1//�/ � ��1�
D .B ˝ 1C0.R2// � ��1� � .. Ǒ.1;�1//� ˝ 1C0.Rn�2//

D .1C0.R2/ ˝ B/ � .. Ǒ.1;�1//� ˝ 1C0.Rn�2//:

Thus, using 1C0.R2/˝B to identifyK0.C0.A1/Ì�/ with Z2 Š K0.C0.R2/Ì�/,
. Ǒ.1;�1;1;1;::: //� is given by

�
1 �1

�
. This proves our claim for m D 1, where we

applied the Pimsner–Voiculescu sequence to � 0
0 D hpi Š Z.

To go from m to m C 1, we apply the induction hypothesis together with the
Pimsner–Voiculescu sequence to find a Z-basis for Kj .C0.A1/ Ì .� � � 0

mC1// for
j D 0; 1 such that

. Ǒ.1;�1;1;1;::: //� D

0
BBBBBBBBBBB@

1 �1 0
: : : �

0 1 �1
1 �1 0

0
: : :

0 1 �1

1
CCCCCCCCCCCA
:

Now the Pimsner–Voiculescu sequence implies that the torsion-free part of
Kj .C0.A1/ Ì .� � �mC1// is Z2mC1

. Using . Ǒ.1;�1;1;1;::: //2� D id, we deduce

that Kj .C0.A1/ Ì .� � � 0
mC1//=im.id � . Ǒ.1;�1;1;1;::: //�/ can only contain tor-

sion of order 2. Thus, Kj .C0.A1/ Ì .� � � 0
mC1//=im.id � . Ǒ.1;�1;1;1;::: //�/ Š

Z2m ˚ .Z=2Z/2m
by the Pimsner–Voiculescu sequence. But this result, together

with the elementary divisor theorem, tells us that we can modify the first chosen
Z-basis for Kj .C0.A1/ Ì .� � � 0

mC1// so that our claim holds.

Hence, applying the Pimsner–Voiculescu sequence iteratively gives

K�.C0.A1/ ÌK Ì .� � �m// Š ƒ�.� 0
m/˚ .Z=2Z˝Z ƒ

�.� 0
m//

and thus

K�.A/ Š ƒ�.�/˚ ..Z=2Z/˝Z ƒ
�.�//:
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Remark 6.5. At this point, it also becomes clear that we cannot treat the general case
(without the restriction � D f˙1g) for the following reasons: It is not clear how to
prove analogous statements as Lemma 6.1 and Lemma 6.3 in general. Once these
two problems are solved, it should be possible to determine the K-theory without
further assumptions on the number fields.

Remark 6.6. With a similar idea as in Theorem 4.1, we can treat the case of the full
adele ring with the action of the ax C b-group: Let K be any global field. As K is a
discrete subgroup of A, it acts freely and properly on A so that

C0.A/ ÌK �M C.A=K/ Š C. yK/ Š C �.K/:

C �.K/ is the group C*-algebra of .K;C/. Moreover, it turns out that this Morita
equivalence can be chosen equivariantly (in the sense of [CMW]) with respect to the
multiplicative action of K�. Thus, by [CMW], we get

C0.A/ Ì PK D C0.A/ ÌK ÌK� �M C �.K ÌK�/ D C �.PK/: (21)

This means that the crossed product is Morita equivalent to the C*-algebra of the
axCb-group overK. We note that this group C*-algebra is also the ring C*-algebra
associated with the field K.

(21) can be used to compute the K-theory. For example, in the case K D Q, we
get

K�.C0.A/ Ì Q Ì Q�/ Š K0.C �.f˙1g//˝Z ƒ
�.Q>0/:
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