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Van Den Bergh isomorphisms in string topology

Luc Menichi

Abstract. LetM be a path-connected closed oriented d -dimensional smooth manifold and let
k be a principal ideal domain. By Chas and Sullivan, the shifted free loop space homology of
M , H�Cd .LM/ is a Batalin–Vilkovisky algebra. Let G be a topological group such that M
is a classifying space ofG. Denote by S�.G/ the (normalized) singular chains onG. Suppose
thatG is discrete or path-connected. We show that there is a Van Den Bergh type isomorphism

HH�p.S�.G/; S�.G// Š HHpCd .S�.G/; S�.G//:

Therefore, the Gerstenhaber algebra HH�.S�.G/; S�.G// is a Batalin–Vilkovisky algebra and
we have a linear isomorphism

HH�.S�.G/; S�.G// Š H�Cd .LM/:

This linear isomorphism is expected to be an isomorphism of Batalin–Vilkovisky algebras. We
also give a new characterization of Batalin–Vilkovisky algebra in terms of the derived bracket.
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1. Introduction

We work over an arbitrary principal ideal domain k. LetM be a compact oriented d -
dimensional smooth manifold. Denote by LM ´ map.S1;M/ the free loop space on
M . Chas and Sullivan [6] have shown that the shifted free loop homologyH�Cd .LM/

has a structure of Batalin–Vilkovisky algebra (Definition 23). In particular, they
showed that H�Cd .LM/ is a Gerstenhaber algebra (Definition 21). On the other
hand, let A be a differential graded (unital associative) algebra. The Hochschild
cohomology of A with coefficients in A, HH�.A;A/, is a Gerstenhaber algebra.
These two Gerstenhaber algebras are expected to be related:

Conjecture 1. Let G be a topological group such that M is a classifying space of
G. There is an isomorphism H�Cd .LM/ Š HH�.S�.G/; S�.G// of Gerstenhaber
algebras between the free loop space homology and the Hochschild cohomology of
the algebra of singular chains on G.
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Suppose that G is discrete or path-connected. In this paper, we define a Batalin–
Vilkovisky algebra structure on HH�.S�.G/; S�.G// and an isomorphism of graded
k-modules

BFG�1 BD W H�Cd .LM/ Š HH�.S�.G/; S�.G//

which is compatible with the two� operators of the two Batalin–Vilkovisky algebras:
BFG�1 B D B � D � B BFG�1 B D . Indeed, Burghelea, Fiedorowicz [5] and
Goodwillie [19] gave an isomorphism of graded k-modules

BFG W HH�.S�.G/; S�.G// ��!Š H�.LM/

which interchanges Connes’ boundary map B and the � operator on H�Cd .LM/:
BFG B B D � B BFG. And in this paper, our main result is:

Theorem 2 (Theorems 45 and 43). LetG be a discrete or a path-connected topolog-
ical group such that its classifying space BG is an oriented Poincaré duality space of
formal dimension d . Then the following holds:

a) There exist k-linear isomorphisms

D W HHd�p.S�.G/; S�.G// ��!Š HHp.S�.G/; S�.G//:

b) Let B denote the Connes boundary map on HH�.S�.G/; S�.G//. Then
�´ �D B B BD�1 defines the structure of a Batalin–Vilkovisky algebra on
HH�.S�.G/; S�.G//, extending the canonical Gerstenhaber algebra structure.

c) The cyclic homology HC�.S�.G// of S�.G/ has a Lie bracket of degree 2� d .

By [33], Proposition 28, c) follows directly from b). Note that whenG is a discrete
group, the algebra S�.G/ of normalized singular chains on G is just the group ring
kŒG�.

To prove Conjecture 1 in the discrete or path-connected case, it suffices now to
show that the composite BFG�1 BD is a morphism of graded algebras. When k is a
field of characteristic 0 and G is discrete, this was proved by Vaintrob [39].

Suppose now that

M is simply-connected and that k is a field. (3)

In this case, there is a more famous dual conjecture relating Hochschild cohomology
and string topology.

Conjecture 4. Suppose that (3) holds. Then there is an isomorphismH�Cd .LM/ Š
HH�.S�.M/; S�.M// of Gerstenhaber algebras between the free loop space ho-
mology and the Hochschild cohomology of the algebra of singular cochains onM .

In fact, Theorem 2 is the Eckmann–Hilton or Koszul dual of the following theorem.
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Theorem 5 ([13], Theorem 23, and [33], Theorem 22). Assume (3).
a) There exist isomorphism of graded k-vector spaces

FTV W HHp�d .S�.M/; S�.M/_/ ��!Š HHp.S�.M/; S�.M//:

b) The Connes coboundary B_ on HH�.S�.M/; S�.M/_/ defines via the iso-
morphism FTV a structure of Batalin–Vilkovisky algebra extending the Gerstenhaber
algebra HH�.S�.M/; S�.M//.

Jones [23] proved that there is an isomorphism

J W HpCd .LM/ ��!Š HH�p�d .S�.M/; S�.M/_/

such that the� operator of the Batalin–Vilkovisky algebraH�Cd .LM/ and Connes’
coboundary map B_ on HH��d .S�.M/; S�.M/_/ satisfy J B� D B_ B J . There-
fore, as we explain in [33], to prove Conjecture 4, it suffices to show that the composite
FTV B J is a morphism of graded algebras.

In [12], together with Felix and Thomas, we prove that Hochschild cohomology
satisfies some Eckmann–Hilton or Koszul duality.

Theorem 6 ([12], Corollary 2; see also [7], Theorem 69, and below). Let k be a field.
Let G be a connected topological group. Denote by S�.BG/ the algebra of singular
cochains on the classifying space of G. Suppose that Hi .BG/ is finite dimensional
for all i 2 N. Then there exists an isomorphism of Gerstenhaber algebras

Gerst W HH�.S�.G/; S�.G// ��!Š HH�.S�.BG/; S�.BG//:

Therefore under (3), Conjectures 4 and 1 are equivalent, and, under (3), Theorem 2
as stated in this introduction follows from Theorem 5.

The problem is that the isomorphism Gerst in Theorem 6 does not admit a simple
formula. On the contrary, as we explain in Theorems 45 and 43, in this paper the
isomorphism D is very simple: D�1 is given by the cap product with a fundamental
class c 2 HHd .S�.G/; S�.G//.

In [18], Theorem 3.4.3 (i), Ginzburg (see also [26], Proposition 1.4) shows that
the Van den Bergh duality isomorphism D W HHd�p.A;A/ ��!Š HHp.A;A/ is
HH�.A;A/-linear for any Calabi–Yau algebra A: D�1 is also given by the cap
product with a fundamental class c 2 HHd .A;A/.

We now give the plan of the paper.
In Section 2 we recall the definitions of the bar construction, of the Hochschild

(co)chain complex and of Hochschild (co)homology.
In Section 3 we show that, for some augmented differential graded algebraA such

that the dual of its reduced bar construction B.A/_ satisfies the Poincaré duality, we
have a Van den Bergh duality isomorphism HHd�p.A;A/ Š HHp.A;A/ if A is
connected (Corollaries 13 and 14).
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There is a well-known isomorphism between group (co)homology and Hochschild
(co)homology. In Section 4 we show that, through this isomorphism, cap products in
Hochschild (co)homology correspond to cap products in group (co)homology.

In Section 5 we give a new characterization of Batalin–Vilkovisky algebras.
Ginzburg proved that if Hochschild (co)homology satisfies a Van den Bergh du-

ality isomorphism HHd�p.A;A/ Š HHp.A;A/ then Hochschild cohomology has a
Batalin–Vilkovisky algebra structure. In Section 6 we rewrite the proof of Ginzburg
using our new characterization of Batalin–Vilkovisky algebras and insisting on signs.

In Section 7 we show that a differential graded algebra quasi-isomorphic to an
algebra satisfying Poincaré duality, also satisfies Poincaré duality (Proposition 41).
Finally, we show our main theorem for path-connected topological group.

In Section 8 we show our main theorem for discrete groups. Extending a result of
Kontsevich [18], Corollary 6.1.4, and Lambre [26], Lemme 6.2, we also show that,
over any commutative ring k, the group ring kŒG� of an orientable Poincaré duality
group is a Calabi–Yau algebra.

Let G be a path-connected compact Lie group of dimension d . In Section 9 we
give another Van Den Bergh type isomorphism

HHp.S�.BG/; S�.BG// Š HH�d�p.S�.BG/; S�.BG//:

Therefore, the Gerstenhaber algebra HH�.S�.BG/; S�.BG// is a Batalin–Vilkovisky
algebra and we have a linear isomorphism

HH�.S�.BG/; S�.BG// Š H�Cd .LBG/:

In the Appendix, Section 10, we recall the notion of derived bracket follow-
ing Kosmann-Schwarzbach [24]. We interpret our new characterization of Batalin–
Vilkovisky algebra in terms of the derived bracket (Theorem 66). To any differential
graded algebra A, we associate

� a new Lie bracket on A (Remark 63),

� a new Gerstenhaber algebra which is a subalgebra of the endomorphism algebra
of HH�.A;A/ (Theorem 67).

We conjecture that Theorem 2 is true without assuming thatG is discrete or path-
connected. Note that the proof of the discrete case (Sections 4 and 8) is independent
of the proof of the path-connected case (Sections 3 and 7).

Acknowledgment. We wish to thank Jean-Claude Thomas for several discussions,
in particular for pointing out the Mittag-Leffler condition which is the key to Propo-
sition 12.

2. Hochschild homology and cohomology

We work over an arbitrary commutative ring k except in Sections 3 and 7, where k
is assumed to be a principal ideal domain and in Section 9 where k is assumed to
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be a field. We use the graded differential algebra of [11], Chapter 3. In particular,
an element of lower degree i 2 Z is by the classical convention [11], p. 41–42, of
upper degree �i . Differentials are of lower degree �1. All the algebras considered
in this paper, are unital and associative. Let A be a differential graded algebra. Let
M be a right A-module and N be a left A-module. Denote by sA the suspension
of A, .sA/i D Ai�1. Let d0 be the differential on the tensor product of complexes
M ˝ T .sA/˝N . We denote the tensor product of the elements m 2M , sa1 2 sA,
…, sak 2 sA and n 2 N by mŒa1j : : : jak�n. Let d1 be the differential on the graded
vector space M ˝ T .sA/˝N defined by

d1mŒa1j : : : jak�n D .�1/jmjma1Œa2j : : : jak�n

C
k�1P

iD1
.�1/"imŒa1j : : : jaiaiC1j : : : jak�n

� .�1/"k�1mŒa1j : : : jak�1�akn;

where "i D jmj C ja1j C � � � C jai j C i .
The bar construction ofA with coefficients inM and inN , denotedB.M IAIN/,

is the complex .M ˝ T .sA/ ˝ N; d0 C d1/. The bar resolution of A, denoted
B.AIAIA/, is the differential graded .A;A/-bimodule .A˝T .sA/˝A; d0Cd1/. If
A is augmented then the reduced bar construction ofA, denotedB.A/, isB.kIAIk/.

Denote by Aop the opposite algebra of A and by Ae ´ A˝ Aop the enveloping
algebra of A. Let M be a differential graded .A;A/-bimodule. Recall that any
.A;A/-bimodule can be considered as a left (or right) Ae-module. The Hochschild
chain complex is the complex M ˝Ae B.AIAIA/ denoted C�.A;M/. Explicitly
C�.A;M/ is the complex (M ˝ T .sA/; d0 C d1/ with d0 obtained by tensorization
and [8], (10), p. 78,

d1mŒa1j : : : jak� D .�1/jmjma1Œa2j : : : jak�C
k�1P

iD1
.�1/"imŒa1j : : : jaiaiC1j : : : jak�

� .�1/jsak j"k�1akmŒa1j : : : jak�1�:

The Hochschild homology of A with coefficients in M is the homology H of the
Hochschild chain complex:

HH�.A;M/´ H.C�.A;M//:

The Hochschild cochain complex ofAwith coefficients inM , denoted by C�.A;M/,
is the complex HomAe .B.AIAIA/;M/. Explicitly C�.A;M/ is the complex

.Hom.T .sA/;M/;D0 CD1/:

Here for f 2 Hom.T .sA/;M/, D0.f /.Œ �/ D dM .f .Œ �//, D1.f /.Œ �/ D 0, and for
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k � 1 we have

D0.f /.Œa1ja2j : : : jak�/ D dM .f .Œa1ja2j : : : jak�//

�
kP

iD1
.�1/N�if .Œa1j : : : jdAai j : : : jak�/

and

D1.f /.Œa1ja2j : : : jak�/ D �.�1/jsa1j jf ja1f .Œa2j : : : jak�/

�
kP

iD2
.�1/N�if .Œa1j : : : jai�1ai j : : : jak�/

C .�1/N�kf .Œa1ja2j : : : jak�1�/ak;

where N�i D jf j C jsa1j C jsa2j C � � � C jsai�1j.
The Hochschild cohomology of A with coefficients inM is

HH�.A;M/ D H.C�.A;M//:

Suppose that A has an augmentation " W A � k. Let NA ´ ker " be the augmen-
tation ideal. We denote by xB.A/ ´ .T s NA; d0 C d1/ the normalized reduced bar
construction, by xC�.A;M/ ´ .M ˝ T .s NA/; d0 C d1/ the normalized Hochschild
chain complex and by xC�.A;M/´ .Hom.T .s NA/;M/;D0 CD1/ the normalized
Hochschild cochain complex.

3. The isomorphism between Hochschild cohomology and Hochschild homology
for differential graded algebras

Let A be a differential graded algebra. Let P and Q be two A-bimodules.
The action of HH�.A;Q/ on HH�.A; P / comes from a (right) action of the

C�.A;Q/ on C�.A; P / given by [8], (18), p. 82, [26],

ZW C�.A; P /˝ C�.A;Q/! C�.A; P ˝A Q/;
.mŒa1j : : : jan�; f / 7! .mŒa1j : : : jan�/Z f ´

nP

pD0
˙.m˝A f Œa1j : : : jap�/ŒapC1j : : : jan�:

(7)

Here˙ is the Koszul sign .�1/jf j.ja1jC:::janjCn/ [33], proof of Lemma 16.
Let f W A ! B be a morphism of differential graded algebras and let N be a

B-bimodule. The linear map B ˝A N ! N , b ˝ n 7! b � n, is a morphism of
B-bimodules. We call again cap product the composite

C�.A;B/˝ C�.A;N / Z�! C�.A;B ˝A N/! C�.A;N /: (8)

In this paper, our goal (Statement 9) is to relate the cap product with B D A to the
cap product with N D B D k.
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Statement 9. Let A be an augmented differential graded algebra such that each Ai
is k-free, i 2 Z. Let c 2 HHd .A;A/. Denote by Œm� 2 TorAd .k;k/ the image of c
by the morphism

HHd .A; "/ W HHd .A;A/! HHd .A;k/ D TorAd .k;k/:

Suppose that

� there exists a positive integer n such that TorAi .k;k/ D 0 for all i � �n and
i � n,

� each TorAi .k;k/, i 2 Z, is of finite type,

� the morphism of right Ext�
A.k;k/-modules

ExtpA.k;k/ ��!Š TorAd�p.k;k/; a 7! Œm�Z a;
is an isomorphism.

Then for any A-bimodule N the morphism

D�1 W HHp.A;N / ��!Š HHd�p.A;N /; a 7! c Z a;
is also an isomorphism.

This statement is the Eckmann–Hilton or Koszul dual of [33], Proposition 11. In
this section we prove this statement if A is connected. But we wonder if it is true in
the non-connected case or even for ungraded algebras.

Property 10. Let B and N be two complexes. Consider the natural morphism
of complexes ‚ W B_ ˝ N ! Hom.B;N /, which sends ' ˝ n to the linear map
f W B ! N defined by f .b/´ '.b/n. Suppose that each Bi is k-free. If

1) Bi D 0 for all i � �n and i � n, for some positive integer n, and if each Bi is
of finite type, or if

2) Hi .B/ D 0 for all i � �n and i � n, for some positive integer n, and if each
Hi .B/ is of finite type,

then ‚ is a homotopy equivalence.

Proof. 1) SinceB is bounded, the component of degree n of Hom.B;N / is the direct
sum

L
q2Z Hom.Bq�n; Nq/. Since Bq�n is free of finite type, Hom.Bq�n; Nq/ is

isomorphic to B_
q�n ˝Nq . Therefore ‚ is an isomorphism.

2) Since k is a principal ideal domain, the proof of [36], Lemma 5.5.9, shows that
there exists a complex B 0 satisfying 1) and which is homotopy equivalent to B . By
its naturality, ‚ is a homotopy equivalence of complexes.

Lemma 11. Statement 9 holds whenever N is a trivial A-bimodule, i.e., a � n D
".a/n D n � a for a 2 A and n 2 N .
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Proof. Since N is a trivial A-bimodule, the normalized Hochschild chain complex
xC�.A;N / is just the tensor product of complexes xC�.A;k/˝N D xB.A/˝N . (This
is also true for the unnormalized Hochschild chain complex, but it is less obvious).
And the normalized Hochschild cochain complex xC�.A;N / is just the Hom complex
Hom. xC�.A;k/; N / D Hom. xB.A/;N /. Since the augmentation ideal NA of A is
k-free, xB.A/ is also k-free. Each Hi . xB.A// is of finite type and Hi . xB.A// D
TorAi .k;k/ is null if i � �n or i � n. Therefore, by part 2) of Property 10,
‚ W xB.A/_ ˝ N ��!' Hom. xB.A/;N / is a quasi-isomorphism. A straightforward
calculation shows that the following diagram commutes:

xB.A/_ ˝N ‚

' ��

.Œm�Z�/˝N
����������������� Hom. xB.A/;N / D xC�.A;N /

cZ�
��

xB.A/˝N D xC�.A;N /.

Since xB.A/ is k-free and its dual xB.A/_ is torsion-free, by naturality of the Künneth
formula [36], Theorem 5.3.3, .Œm� Z �/ ˝ N is a quasi-isomorphism. Therefore
c Z� is also a quasi-isomorphism.

Proposition 12. Let A be an augmented differential graded algebra. Let N be an
A-bimodule. And let c 2 HHd .A;A/ satisfying the hypotheses of Statement 9. For

any k � 0, let F k ´ SAek �N . Then taking the inverse limit of the cap product with
c induces a quasi-isomorphism of complexes

lim � c Z�W lim �C�.A;N=F k/ ��!' lim �C�.A;N=F k/:

Proof. Consider the augmentation ideal SAe of the enveloping algebra Ae . For any

k � 0, let SAek be the image of the iterated tensor product SAe˝k
by the iterated

multiplication of Ae , � W .Ae/˝k ! Ae , and let F k be the image of SAek ˝N by the
action Ae ˝N ! N .

The F k form a decreasing filtration of sub-A-bimodules and subcomplexes ofN .
Since F k=F kC1 is a trivial A-bimodule, by Lemma 11, the morphism of complexes

C�.A; F k=F kC1/ ��!' C�.A; F k=F kC1/; a 7! c Z a;

is a quasi-isomorphism. By Noether’s theorem, we have the short exact sequences of
A-bimodules

0! F k=F kC1 ! N=F kC1 ! N=F k ! 0:

Since T .sA/ is k-free, the functors Homk.T .sA/;�/ and � ˝k T .sA/ preserve
short exact sequences. Therefore consider the morphism of short exact sequences of
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complexes induced by the cap product with c:

0 �� C�.A; F k=F kC1/ ��

cZ�'
��

C�.A;N=F kC1/ ��

cZ�
��

C�.A;N=F k/ ��

cZ�
��

0

0 �� C�.A; F k=F kC1/ �� C�.A;N=F kC1/ �� C�.A;N=F k/ �� 0.

Using the long exact sequences associated and the five lemma, by induction on k, we
obtain that the morphism of complexes

C�.A;N=F k/ ��!' C�.A;N=F k/; a 7! c Z a;
is a quasi-isomorphism for all k � 0.

The two towers of complexes

� � �� C�.A;N=F kC1/ � C�.A;N=F k/ � � � � ;
� � �� C�.A;N=F kC1/ � C�.A;N=F k/ � � � �

satisfy the trivial Mittag-Leffler condition since all the maps in the two towers are
onto. Therefore by naturality of [40], Theorem 3.5.8, for each p 2 Z, we have the
morphism of short exact sequences induced by the cap product with c:

lim �
1 HHp�1.A;N=F k/ ��

lim �1 cZ�Š
��

Hp lim �C�.A;N=F k/ ��

H.lim � cZ�/
��

lim �HHp.A;N=F k/

lim � cZ�Š
��

lim �
1 HHdC1�p.A;N=F k/ �� Hd�p lim �C�.A;N=F k/ �� lim �HHd�p.A;N=F k/.

Using the five lemma again, we obtain that the middle morphism

H.lim � c Z�/ W H
p lim �C�.A;N=F k/! Hd�p lim �C�.A;N=F k/

is an isomorphism.

Corollary 13. Statement 9 is true if A and N are non-negatively lower graded and
H0."/ W H0.A/ ��!Š k is an isomorphism.

Proof. Case 1: We first suppose that " W A0 ��!Š k is an isomorphism. Then SAek is
concentrated in degrees � k. Therefore F k and C�.A; F k/ are also concentrated in
degrees � k. This means that for n < k their components of degree n, .F k/n and
ŒC�.A; F k/�n, are trivial. Therefore the tower in degree n

� � � ! .N=F kC1/n � .N=F k/n ! � � �
is constant and equal to Nn for k > n. This implies that Nn D lim �.N=F

k/n.

Therefore as complexes and as A-bimodule, N D lim �N=F
k .
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Since C�.A;N=F k/ is the quotient C�.A;N /=C�.A; F k/, we also have that, as
complexes,

C�.A;N / D lim �C�.A;N=F k/:

The functor C�.A;�/ from (differential) A-bimodules to complexes is a right
adjoint (to the functorB.AIAIA/˝�). Therefore C�.A;�/ preserves inverse limits.
Since N D lim �N=F

k in the category of (differential) A-bimodules, we obtain that
as complex

C�.A;N / D C�.A; lim �N=F
k/ D lim �C�.A;N=F k/:

Since for any k � 0 the square

C�.A;N / ��

cZ�
��

C�.A;N=F k/

cZ�
��

C�.A;N / �� C�.A;N=F k/

commutes, the quasi-isomorphism

lim � c Z�W lim �C�.A;N=F k/ ��!' lim �C�.A;N=F k/

given by Proposition 12 coincides with c Z�W C�.A;N /! C�.A;N /.
Case 2: Now we only suppose thatH0."/ W H0.A/ ��!Š k is an isomorphism. Let
QA be the graded k-module defined by QA0 D k, QA1 D ker d W A1 ! A0, QAn D An

for n � 2 (compare with the upper graded version in [11], p. 184). Clearly QA is a

k-free differential graded subalgebra of A and the inclusion j W QA '
,�! A is a quasi-

isomorphism since im.d W A1 ! A0/ is equal to NA0.

Since the augmentation ideals ofA and QA, NA and NQA, are k-free and non-negatively
lower graded, the three morphisms HH�.j;N / W HH�. QA;N/ ��!Š HH�.A;N /,
HH�.j;N / W HH�.A;N / ��!Š HH�. QA;N/, HH�.j; j / W HH�. QA; QA/ ��!Š HH�.A;A/
are all isomorphisms by [28], 5.3.5, or [10], 4.3 (iii). Let Qc 2 HHd . QA; QA/ such that
HHd .j; j /. Qc/ D c. Using the definition of the cap product, it is straightforward to
check that the square

HH�.A;N / HH�.j;N/

Š
��

cZ�
��

HH�. QA;N/
QcZ�

��
HH�.A;N / HH�. QA;N/HH�.j;N/

Š��

commutes. Let zŒm� 2 Tor QA
d .k;k/ such that Torj

d
.k;k/. zŒm�/ D Œm�. When N D k,
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the previous square specializes to the commutative square

Ext�
A.k;k/

Ext�� j.k;k/

Š
��

Œm�Z� Š
��

Ext�
QA.k;k/

zŒm�Z�
��

TorA� .k;k/ Tor QA� .k;k/.Torj
�.k;k/

Š��

By hypothesis, Œm�Z� is an isomorphism. Therefore zŒm�Z� is also an isomorphism.
Since QA0 D k, we have seen in case 1 that

Qc Z�W HH�. QA;N/ ��!Š HH�. QA;N/

is an isomorphism. Therefore

c Z�W HH�.A;N / ��!Š HH�.A;N /

is also an isomorphism.

Corollary 14. Statement 9 is true if A and N are non-negatively upper graded,
H 0."/ W H 0.A/ ��!Š k is an isomorphism and k is a field.

Proof. Case 1: We first suppose that " W A0 ��!Š k is an isomorphism. SinceT .sA/ has
non-trivial elements of negative degrees, we need to use the normalized Hochschild
chain and cochain complexes xC� and xC� instead of the unnormalized C� and C�.
Now the proof is the same as in case 1 of the proof of Corollary 13.

Case 2: Now we only suppose that H 0."/ W H 0.A/ ��!Š k is an isomorphism.
Since k is a field, by [11], p. 184, there exists a differential graded algebra QA, non-
negatively upper graded, equipped with a quasi-isomorphism j W QA ��!' A such that
QA0 D k. Now the rest of the proof is exactly the same as in case 2 of the proof of

Corollary 13.

4. Comparison of the cap products in Hochschild and group (co)homology

Let G be a discrete group. Let M and N be two kŒG�-bimodules. Let � W k! kŒG�
be the unit map. Let E W kŒG�! kŒG �Gop� be the morphism of algebras mapping
g to .g; g�1/. Let

Q� W kŒG �Gop�˝kŒG� k! kŒG�

be the unique morphism of left kŒG�Gop�-modules extending �. Since kŒG�Gop� is
flat as left kŒG�-module viaE and since Q� is an isomorphism, by Eckmann–Schapiro
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[22], Chapter IV, Proposition 12.2, we obtain the well-known isomorphisms between
Hochschild (co)homology and group (co)homology:

Ext�
E .�;N / W HH�.kŒG�; N / D Ext�

kŒG�Gop�.kŒG�; N /

��!Š Ext�
kŒG�.k;

zN/ D H�.G; zN/:
and

TorE� .M; �/ W H�.G; zM/ D TorkŒG�� . zM;k/

��!Š Tor�
kŒG�Gop�.M;kŒG�/ D HH�.kŒG�;M/:

Here zM and zN denote the kŒG�-modules obtained by restriction of scalar viaE. Note
that we regard any left kŒG�-module as a right kŒG�-module via g 7! g�1 [4], p. 55.

Proposition 15. Observe that the canonical surjection

q W zM ˝ zN � EM ˝kŒG� N

is a morphism of kŒG�-modules since q.gmg�1 ˝ gng�1/ D gm˝ ng�1.
i) Cup product Y in Hochschild cohomology versus cup product in group coho-

mology (slight extension of [35], Proposition 3.1). The following diagram commutes:

HH�.kŒG�;M/˝ HH�.kŒG�; N / Y ��

Ext�
E
.�;M/˝Ext�

E
.�;N/

��

HH�.kŒG�;M ˝kŒG� N/

Ext�
E
.�;M˝kŒG�N/

��

H�.G; zM/˝H�.G; zN/ Y �� H�.G; zM ˝ zN/
H�.G;q/

�� H�.G;EM ˝kŒG� N/.

ii) Cap products Z. The following diagram commutes:

HH�.kŒG�;M/˝ HH�.kŒG�; N / Z �� HH�.kŒG�;M ˝kŒG� N/

H�.G; zM/˝H�.G; zN/ Z ��

TorE
� .M;�/˝Ext�

E
.�;N/�1

��

H�.G; zM ˝ zN/H�.G;q/
�� H�.G;EM ˝kŒG� N/.

TorE
� .M˝kŒG�N;�/

��

Remark 16. In the case N D kŒG� [35], (3.3), the morphism of kŒG�-modules

q W zM ˝ QkŒG� � FM ˝kŒG� kŒG� Š zM is simply the action m˝ g 7! m � g.
In the case M D N D kŒG� the diagram i) in Proposition 15 means that

Ext�
E .�;kŒG�/ W HH�.kŒG�;kŒG�/! H�.G; QkŒG�/

is a morphism of graded algebras.
In the case N D kŒG� the diagram ii) means that

TorE� .M; �/ W H�.G; zM/! HH�.kŒG�;M/
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is a morphism of right HH�.kŒG�;kŒG�/-modules:

TorE� .�;kŒG�/.˛ Z Ext�
E .�;kŒG�/.'// D TorE� .�;kŒG�/.˛/Z '

for any ˛ 2 H�.G; zM/ and any ' 2 HH�.kŒG�;kŒG�/.

Proof. Siegel and Witherspoon [35], Proposition 3.1, proved i) using that, for any
projective resolution P of k as left kŒG�-modules,

X ´ kŒG �Gop�˝kŒG� P

is a projective resolution of kŒG� as kŒG�-bimodules. Let � W P ,! QX the left kŒG�-
linear map defined by �.x/ D .1; 1/˝ x. Using that

HomE .�; N / W HomkŒG�Gop�.X;N / ��!Š HomkŒG�.P; zN/
is an isomorphism of complexes inducing Ext�

E .�;N / and that

M ˝E � W zM ˝kŒG� P ��!Š M ˝kŒG�Gop� X

is an isomorphism of complexes inducing TorE� .M; �/, Siegel and Witherspoon [35],
Proposition 3.1, proved i). It is possible to prove ii) in a similar way.

We find it simpler to give a proof of ii) using the bar resolution.

Let � W B.kŒG�IkŒG�Ik/!AB.kŒG�IkŒG�IkŒG�/ be the linear map defined by

�.g0Œg1j : : : jgn�/ D g0Œg1j : : : jgn�g�1
n : : : g�1

0 :

Obviously � fits into the commutative diagram of left kŒG�-modules

AB.kŒG�IkŒG�IkŒG�/ �� kŒG�

B.kŒG�IkŒG�Ik/ ��

�

��

k.

�

��

By an easy computation, � is a morphism of complexes. Thus HomE .�; N / is a mor-
phism of complexes from C�.kŒG�; N / Š .HomkŒG�Gop�.B.kŒG�IkŒG�IkŒG�/; N /
to HomkŒG�.B.kŒG�IkŒG�Ik/; zN/. Inducing Ext�

E .�;N / andM ˝E � is a morphism
of complexes from

B. zM IkŒG�Ik/ Š zM ˝kŒG� B.kŒG�IkŒG�Ik/
to

M ˝kŒG�Gop� B.kŒG�IkŒG�IkŒG�/ Š C�.kŒG�;M/;

inducing TorE� .M; �/. Explicitly M ˝E � is the morphism of complexes

B. zM IkŒG�Ik/! C�.kŒG�;M/
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defined by [14], (2.20),

�.mŒg1j : : : jgn� D g�1
n : : : g�1

1 mŒg1j : : : jgn�: (17)

And HomE .�; N / W Cn.kŒG�; N / ! Hom.kŒG�˝n; zN/ is the linear map � mapping
' 2 Cn.kŒG�; N / to the linear map �.'/ W kŒG�˝n ! zN defined by

�.'/.Œg1j : : : jgn�/ D '.Œg1j : : : jgn�/g�1
n : : : g�1

1 :

BothM˝E � and HomE .�; N / are in fact isomorphisms of complexes. The inverse of
M ˝E � is the morphism of complexes ˆ W C�.kŒG�;M/! B. zM IkŒG�Ik/ defined
by [28], 7.4.2.1,

ˆ.mŒg1j : : : jgn�/ D g1 : : : gnmŒg1j : : : jgn�:
Let F be any projective resolution of k as left kŒG�-module. Let P and Q be two
kŒG�-modules. The cap product in group cohomology is the composite [4], p. 113,
denoted Z,

P ˝kŒG� F ˝ HomkŒG�.F;Q/

id˝kŒG��˝kŒG�id

��
P ˝kŒG� .F ˝ F /˝ HomkŒG�.F;Q/

�

��
.P ˝Q/˝kŒG� F ,

where 	.a ˝ x ˝ y ˝ u/ D .�1/jujjxjCjujjyja ˝ u.x/ ˝ y and � is a diagonal
approximation. In case F is the bar resolution B.kŒG�IkŒG�Ik/, one can take � to
be the Alexander–Whitney map

AW W B.kŒG�IkŒG�Ik/! B.kŒG�IkŒG�Ik/˝ B.kŒG�IkŒG�Ik/
defined by [4], (1.4), p. 108:

AW.g0Œg1j : : : jgn�/ D
nP

pD0
g0Œg1j : : : jgp�˝ g0 : : : gpŒgpC1j : : : jgn�:

Therefore the cap product

ZW B.P IkŒG�Ik/˝ Hom.B.kŒG�/;Q/; d ! B.P ˝QIkŒG�Ik/
is the morphism of complexes mappingmŒg1j : : : jgn�˝u W Gp ! Q tom�g1 : : : gp˝
u.g1; : : : ; gp/ � g1 : : : gpŒgpC1j : : : jgn�. Using the explicit formula (7) for the cap
product in Hochschild cohomology, it is easy to check that the diagram

C�.kŒG�;M/˝ C�.kŒG�;N/
Z ��

ˆ˝HomE .�;N /

��

C�.kŒG�;M ˝kŒG� N/

ˆ

��
B. zM I kŒG�I k/˝B. zN I kŒG�I k/ Z

�� B. zM ˝ zN I kŒG�I k/
B.qIkŒG�Ik/

��
B.DM ˝kŒG� N I kŒG�I k/

commutes. By applying homology, ii) is proved.
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Definition 18 ([28], 7.4.5 when z D 1). Let 
 W B.kŒG�/ ,! C�.kŒG�;kŒG�/ be the
linear map defined by


.Œg1j : : : jgn�/ D g�1
n : : : g�1

1 Œg1j : : : jgn�:

Property 19. i) The map 
 is a morphism of cyclic modules ([28], 7.4.5 when z D 1).
ii) The morphism 
 of complexes coincides with the composite

B.kŒG�/
B.�IkŒG�Ik/��������! B.ekŒG�IkŒG�Ik/ ���!Š C�.kŒG�IkŒG�/:

Here � is the isomorphism of complexes defined by (17). Note that the unit map
� W k! ekŒG� is a morphism of kŒG�-modules.

iii) In particular, in homology, 
 coincides with

TorE .�; �/ W H�.GIk/! HH�.kŒG�IkŒG�/:
iv) The map 
 is a section of

C�.kŒG�; "/ W C�.kŒG�;kŒG�/! C�.kŒG�;k/ D B.kŒG�/:

Corollary 20. LetG be any discrete group,N be a kŒG�-bimodule, 
 W H�.GIk/!
HH�.kŒG�IkŒG�/ be the section of HH�.kŒG�; "/ W HH�.kŒG�;kŒG�/ ! H�.G;k/
given in Definition 18. Let z 2 Hd .G;k/ be any element in group homology. Then
the square

Hp.G; zN/ zZ� �� Hd�p.G; zN/
TorE

� .N;�/Š
��

HHp.kŒG�; N /
	.z/Z� ��

Ext�
E
.�;N/ Š

��

HHd�p.kŒG�; N /

commutes.

Proof. Consider

HH�.kŒG�;kŒG�/˝ HH�.kŒG�; N / Z �� HH�.kŒG�;kŒG�˝kŒG� N/

H�.G; ekŒG�/˝H�.G; zN/ Z ��

TorE
� .kŒG�;�/˝Ext�

E
.�;N/�1

��

H�.G; ekŒG�˝ zN/ H�.G;q/
�� H�.G; zN/

TorE
� .N;�/

��

H�.G;k/˝H�.G; zN/ Z ��

H�.G;�/˝id

��

H�.G;k˝ zN/.
H�.G;�˝ zN/

��

Š

���������������

The top rectangle commutes by ii) of Proposition 15 in the case M D kŒG�. The
bottom square commutes by naturality of the cap product in group (co)homology
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with respect to the morphism of kŒG�-modules � W k ! ekŒG�. The bottom triangle
commutes by functoriality of H�.G;�/. By ii) or iii) of Property 19, the vertical
composite is


˝Ext�
E .�;N /

�1 W H�.G;k/˝H�.G; zN/! HH�.kŒG�;kŒG�/˝HH�.kŒG�; N /:

5. A new definition of Batalin–Vilkovisky algebras

Definition 21. A Gerstenhaber algebra is a commutative graded algebraA equipped
with a linear map f�;�gW Ai ˝ Aj ! AiCjC1 of degree 1 such that the following
holds:

a) The bracket f�;�g gives A a structure of graded Lie algebra of degree 1. This
means that, for each a, b and c 2 A,

fa; bg D �.�1/.jajC1/.jbjC1/fb; ag (22)

and

fa; fb; cgg D ffa; bg; cg C .�1/.jajC1/.jbjC1/fb; fa; cgg:
b) The product and the Lie bracket satisfy the Poisson relation

fa; bcg D fa; bgc C .�1/.jajC1/jbjbfa; cg:
Definition 23. A Batalin–Vilkovisky algebra is a Gerstenhaber algebra A equipped
with a degree 1 linear map � W Ai ! AiC1 such that � B � D 0 and the bracket is
given by

fa; bg D .�1/jaj.�.a Y b/ � .�a/Y b � .�1/jaja Y .�b// (24)

for a and b 2 A.

Remark 25. In (24) a sign (here the sign chosen is .�1/jaj) is needed (see [25], (1.6),
or [17], beginning of the proof of Proposition 1.2) since the Lie bracket of degreeC1 is
graded antisymmetric (eq. (22)), while the associative product is graded commutative.
Therefore in the definition of Batalin–Vilkovisky algebra in [18], Theorem 3.4.3 (ii),
and in [26], p. 1, there is a sign problem.

The following characterization of Batalin–Vilkovisky algebras was proved by
Koszul and rediscovered by Getzler and by Penkava and Schwarz.

Proposition 26 ([25], p. 3, [17], Proposition 1.2, [34]). Let A be a commutative
graded algebra A equipped with an operator � W Ai ! AiC1 of degree 1 such that
� B� D 0. Consider the bracket f ; g of degreeC1 defined by

fa; bg D .�1/jaj.�.ab/ � .�a/b � .�1/jaja.�b//
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for any a, b 2 A. Then A is a Batalin–Vilkovisky algebra if and only if � is a
differential operator of degree � 2, which means that, for a, b and c 2 A,

�.abc/ D �.ab/c C .�1/jaja�.bc/C .�1/.jaj�1/jbjb�.ac/
� .�a/bc � .�1/jaja.�b/c � .�1/jajCjbjab.�c/:

(27)

Note that until now, in this section it is not necessary that the algebras have
a unit. Now if the algebras have a unit, we give a new characterization of the
Batalin–Vilkovisky algebra. One implication of this new characterization is inspired
by Ginzburg’s proof of Proposition 32. As we will recall in the proof of Theorem 66,
the converse of this characterization is due to [24], “the restriction of this derived
bracket to A is the BV-bracket”, p. 1270.

Proposition 28. Let A be a Gerstenhaber algebra A equipped with an operator
� W A! A of degree 1 such that � B� D 0. For any a 2 A, denote by la W A! A

the left multiplication by a, explicitly la.b/ D ab, b 2 A. Denote by Œf; g� D
f B g � .�1/jf jjgjg B g the graded commutator of two endomorphisms f W A! A

and g W A! A. Then A is a Batalin–Vilkovisky algebra if and only if

lfa;bg D �ŒŒla; ��; lb� and �.1/ D 0
for a, b 2 A.

Proof. For a and b 2 A,

ŒŒla; ��; lb� D .la B� � .�1/ja� B la/ B lb � .�1/jbj.jajC1/lb
B .la B� � .�1/ja� B la/

D la B� B lb � .�1/jaj� B lab � .�1/jbjlab
B�C .�1/jbj.jajC1/Cjajlb B� B la:

Therefore by applying this equality of operators to c 2 A we have

�.�1/jajŒŒla; ��; lb�.c/ D �.�1/jaja�.bc/C�.abc/
C .�1/jajCjbjab�.c/ � .�1/jbj.jajC1/b�.ac/:

(29)

Suppose that A is a Batalin–Vilkovisky algebra. By Proposition 26, using (29), we
obtain that

�.�1/jajŒŒla; ��; lb�.c/ D �.ab/c � .�a/bc � .�1/jaja.�b/c D .�1/jajfa; bgc:
Therefore �ŒŒla; ��; lb� D lfa;bg. In the case a D b D c D 1, eq. (27) gives
�.1/ D 3�.1/ � 3�.1/ D 0.

Conversely, suppose that �.1/ D 0 and lfa;bg D �ŒŒla; ��; lb�. Then using (29)
we have

fa; bg D lfa;bg.1/ D .�1/jaj.�.�1/jaja�.b/C�.ab/C 0 � .�a/b/:
Therefore, by Definition 23, A is a Batalin–Vilkovisky algebra.
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6. Batalin–Vilkovisky algebra structures on Hochschild cohomology

Let A be a differential graded algebra. The cap product defined in Section 3,

HH�.A;A/˝ HH�.A;A/ Z! HH�.A;A/; c ˝ a 7! c Z a;
is a right action.

Following Tsygan’s definition of a calculus, we want a left action. Therefore, we
define as in [26], Definition 1.2,

C�.A;A/˝C�.A;A/! C�.A;A/; f˝c 7! if .c/ D f �c´ .�1/jcjjf jcZf: (30)

Explicitly

if .mŒa1j : : : jan�/´
nP

pD0
.�1/jmjjf j.m � f Œa1j : : : jap�/ŒapC1j : : : jan�:

The sign in [8], (18), p. 82, is different. But with our choice of signs, we recover
Proposition 2.6 in [8], p. 82. Indeed for D, E 2 C�.A;A/ and c 2 C�.A;A/,

D � .E � c/ D .�1/jcjjE jD � .c ZE/
D .�1/jcjjE jCjDjjcjCjDjjE j.c ZE/ZD
D .�1/jcjjE jCjDjjcjCjDjjE jc Z .E YD/
D .�1/jDjjE j.E YD/ � c:

Since the cup product on HH�.A;A/ is graded commutative, forD,E 2 HH�.A;A/
and c 2 HH�.A;A/, we have

D � .E � c/ D .D YE/ � c; (31)

i.e., a left action. Note that in [33] we forgot to twist the right action by the sign
.�1/jcjjf j and so have also a sign problem.

Proposition 32 ([18], Theorem 3.4.3 (ii)). Let c 2 HHd .A;A/ such that the mor-
phism of left HH�.A;A/-modules

HHp.A;A/ ��!Š HHd�p.A;A/; a 7! a � c;
is an isomorphism. IfB.c/ D 0 then the Gerstenhaber algebra HH�.A;A/ equipped
with �B is a Batalin–Vilkovisky algebra.

Proof. Let us rewrite Victor Ginzburg’s proof (or more precisely the proof we already
gave in [33], Proposition 13 and Lemma 15) using explicitly Proposition 28 and our
choice of signs. Denote by

HHp.A;A/˝ HHj .A;A/! HHj�pC1.A;A/; a˝ x 7! La.x/;
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the action of the suspended graded Lie algebra sHH�.A;A/ on HH�.A;A/. Gelfand,
Daletski and Tsygan [15] proved that the Gerstenhaber algebra HH�.A;A/ and
Connes’ boundary map B on HH�.A;A/ form a calculus [8], p. 93. In particular, we
have the two relations

La D ŒB; ia�
and [8], Proposition 2.9, p. 83,

ifa;bg D .�1/jajC1ŒLa; ib�: (33)

Therefore
ifa;bg D .�1/jajC1ŒŒB; ia�; ib� D ŒŒia; B�; ib�: (34)

The operator � on HH�.A;A/ is defined by

.�a/ � c´ �B.a � c/ for any a 2 HH�.A;A/:

Thus B.c/ D 0 implies �.1/ D 0. Since we have a left action (eq. (31)), la.b/ � c D
.a Y b/ � c D a � .b � c/ D ia.b � c/ and so eq. (34) is equivalent to

lfa;bg D �ŒŒla; ��; lb�:
Therefore, by Proposition 28, HH�.A;A/ is a Batalin–Vilkovisky algebra.

Remark 35 (Signs). i) In [8], Example 4.6, p. 93, Tsygan writes that it follows from
[8], 2.9, p. 83, that ifa;bg D ŒLa; ib�. As Tsygan has kindly confirmed, there should
be a sign in this formula: from [8], 2.9, p. 83, the correct equation with the signs is
equation (33) above or equivalently ifa;bg D Œia; Lb� ([38], (0.1)).

ii) In a calculus there is a third relation that we do not use in this paper:

Lab D Laib C .�1/jajiaLb:

Since ab D .�1/jajjbjba,

Lab D .�1/jajjbjLba D .�1/jajjbjLbia C .�1/.jajC1/jbjibLa

and therefore
ŒLa; ib� D .�1/jajjbjŒLb; ia�: (36)

Since fa; bg D �.�1/.jajC1/.jbjC1/fb; ag, if we suppose like in [8], Example 4.6,
p. 93, that ifa;bg D ŒLa; ib�, we obtain that

ŒLa; ib� D �.�1/.jajC1/.jbjC1/ŒLb; ia�: (37)

The two equations (36) and (37) seem incoherent. Therefore the definition of calculus
in [8], Definition 4.3, p. 33, has some sign problem.

On the contrary, if we suppose (33), we obtain again (36).
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7. Proof of the main theorem for path-connected groups

Cap products associated to coalgebras. LetC be a (differential graded) coalgebra.
Then its dual C_ is a (differential graded) algebra. Let N be a left C -comodule.
Denote by �N W N ! C ˝ N the structure map. Let ZW N ˝ C_ ! N be the
composite

N ˝ C_ �N ˝C_

������! C ˝N ˝ C_ C˝
���! C ˝ C_ ˝N ev˝N����! k˝N Š N: (38)

Here � denotes the twist map given by n ˝ ' 7! .�1/jnjj'j' ˝ n and ev is the
evaluation map defined by ev.c ˝ '/ D .�1/j'jjcj'.c/. Then N equipped with the
cap product is a right C_-module [37], Proposition 2.1.1. In this paper we are only
interested in the case N D C .

Example 39. Let X be any topological space. The (normalized or unnormalized)
singular chains S�.X/ ofX form a differential graded coalgebra [30], p. 244–45. The
cap productZW S�.X/˝S�.X/! S�.X/ defined by (38) associated toC D S�.X/
is the usual cap product.

Example 40. Let A be any augmented differential graded algebra. Then the re-
duced (normalized or not) bar construction B.A/ D C�.A;k/ is a differential graded
coalgebra. The diagonal � W B.A/! B.A/˝ B.A/ is given by

�.Œa1j : : : jan�/ D
nP

pD0
Œa1j : : : jap�˝ ŒapC1j : : : jan�:

The cap product defined by (38) associated to C D B.A/ is given by

ZW B.A/˝ B.A/_ ! B.A/;

Œa1j : : : jan�Z f D
nP

pD0
.�1/jf j.ja1jC���CjanjCn/f .Œa1j : : : jap�/ŒapC1j : : : jan�:

Thus this cap product coincides with the cap product ZW C�.A;k/ ˝ C�.A;k/ !
C�.A;k/on the Hochschild (co)chain complex defined by (8) in the caseN D B D k.

Proposition 41. Let f W C ��!' D be a quasi-isomorphism of coalgebras. Suppose
thatC andD are k-free. Let Qc 2 C and Qd 2 D such that Qd D H�.f /.Œ Qc�/. Consider
the cap products defined by (38) associated to the coalgebras C and D. Then the
morphism of right C_-modules Qc Z �W C_ ! C given by a 7! Qc Z a is a quasi-
isomorphism if and only if the morphism of right D_-modules Qd Z �W D_ ! D

given by a 7! Qd Z a is a quasi-isomorphism.

Proof. The transpose of f W f _ W D_ ! C_ is a morphism of differential graded
algebras. Therefore f _ is a morphism of right D_-modules. Dually, since f is a
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morphism of coalgebras, f is a morphism of left D-comodules and therefore f is
also a morphism of rightD_-modules by (38), i.e., f .cZf _.'// D f .c/Z' for any
c 2 C and ' 2 D_. Note that if f is the coalgebra map S�.�/ W S�.X/ ! S�.Y /
induced by a continuous map� W X ! Y , this formula is well known ([3], ChapterVI,
Theorem 5.4, or [21], p. 241).

The composite of the morphisms of right D_-modules

D_ f _

��! C_ QcZ����! C
f�! D

maps 1 to f . Qc/ and therefore coincides with the morphism of right D_-modules
D_ ! D, a 7! f . Qc/ Z a. Since Œ Qd� D Œf . Qc/�, the two maps a 7! f . Qc/ Z a and
a 7! Qd Za coincide after passing to homology. Therefore after passing to homology
the square

D_ f _

��

QdZ�
��

C_

QcZ�
��

D C
f

'��

(42)

commutes. Since both C and D are k-free and k is a principal ideal domain, by
naturality of the universal coefficient theorem for cohomology, H�.f _/ is an iso-
morphism becauseH�.f / is an isomorphism. The proposition now follows from the
square (42).

Theorem 43. LetM be a simply-connected oriented Poincaré duality space of formal
dimension d . Let G be a topological group such thatM is a classifying space for G
or let G be 
M the (Moore) pointed loop space on M . Let ŒM � 2 Hd .M/ be its
fundamental class. Let c the image of ŒM � through the composite

H�.M/
H�.s/����! H�.LM/

BFG�1

����! HH�.S�.G/; S�.G//:

a) The morphism of left HH�.S�.G/; S�.G//-modules

D�1 W HHp.S�.G/; S�.G// ��!Š HHd�p.S�.G/; S�.G//; a 7! a � c;
is an isomorphism.

b) The Gerstenhaber algebra HH�.S�.G/; S�.G// equipped with the operator
�´ �D B B B D�1 is a Batalin–Vilkovisky algebra.

Here s denotes s W M ,! LM the inclusion of the constant loops into LM and BFG
is the isomorphism of graded k-modules between the free loop space homology ofM
and the Hochschild homology of S�.G/ introduced by Burghelea, Fiedorowicz [5]
and Goodwillie [19]. Finally B denotes Connes’ boundary on HH�.S�.G/; S�.G//.
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Remark 44. We expect that the above theorem can be extended to any path-connected
topological monoid G instead of just the topological monoid of pointed Moore loop
spaces 
M or instead of just any topological group.

Proof. By [10], Proposition 6.13 in the case F D pt , whenG is a topological group
or by [10], Theorem 6.3, whenG D 
M , there exists a differential graded coalgebra
B.S�.EG/IS�.G/Ik/ and two quasi-isomorphisms of coalgebras

B.S�.G// ��' B.S�.EG/IS�.G/Ik/ ��!' S�.M/:

The induced isomorphism in homology is the well-known isomorphism due to Moore
[31], Corollary 7.29,

� W TorS�.G/.k;k/ D H�.B.S�.G/// ��!Š H�.M/:

Let Œm� 2 H�.B.S�.G/// such that �.Œm�/ D ŒM �. By Proposition 41 and Example
40, the cap product with Œm�, Œm�Z�W B.S�.G//_ ��!' B.S�.G//, a 7! Œm�Z a, is
a quasi-isomorphism.

Denote by ev W LM � M , l 7! l.0/, the evaluation map. The isomorphism BFG
of Goodwillie, Burghelea and Fiedorowicz fits into the commutative square

HH�.S�.G/; S�.G// BFG

Š
��

HH�.S�.G/;"/

��

H�.LM/

H�.ev/
��

HH�.S�.G/;k/ �

Š
�� H�.M/.

Here " denote the augmentation of S�.G/. Let c ´ BFG�1 BHd .s/.ŒM �/. Since s
is a section of the evaluation map ev, HH�.S�.G/; "/.c/ D Œm�. So the hypotheses
of Statement 9 are satisfied for A D S�.G/.

Let N be any non-negatively graded S�.G/-bimodule. Since M is simply con-
nected, by Corollary 13, we obtain that the morphism

D�1 W HHp.S�.G/;N / ��!Š HHd�p.S�.G/;N /; a 7! c Z a;
is an isomorphism. By taking N D S�.G/ and by passing from a right action to a
left action, we obtain a) from (30).

The isomorphism BFG of Goodwillie, Burghelea and Fiedorowicz satisfies
� B BFG D BFG BB . Consider M equipped with the trivial S1-action. The section
s W M ,! LM is S1-equivariant. Since

B.c/ D B B BFG�1 BHd .s/.ŒM �/ D BFG�1 B� BHd .s/.ŒM �/ D 0;
by Proposition 32, we obtain b).
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8. Proof of the main theorem for discrete groups

Theorem 45. Let G be a discrete group such that its classifying space K.G; 1/ is
an oriented Poincaré duality space of formal dimension d . Let ŒM � 2 Hd .G;k/
be a fundamental class. Let c be the image of ŒM � by TorE� .�; �/ W H�.G;k/ !
HH�.kŒG�;kŒG�/ (Property 19 ii)).

a) The morphism of left HH�.kŒG�;kŒG�/-modules

D�1 W HHp.kŒG�;kŒG�/ ��!Š HHd�p.kŒG�;kŒG�/; a 7! a � c;
is an isomorphism.

b) The Gerstenhaber algebra HH�.kŒG�;kŒG�/ equipped with the operator�´
�D B B B D�1 is a Batalin–Vilkovisky algebra.

Proof. Let N be any ungraded kŒG�-bimodule. Since, by hypothesis, G is an ori-
entable Poincaré duality group, the cap product with ŒM � in group (co)homology
gives an isomorphism ([4], 10.1 iv), Remark 1 and Example 1, p. 222, [16], Theo-
rem 15.3.1)

ŒM �Z�W Hp.G; zN/ ��!Š Hd�p.G; zN/; a 7! ŒM �Z a:
Therefore, by Corollary 20, the cap product with c D 
.ŒM�/ in Hochschild (co)ho-
mology gives the isomorphism

c Z�W HHp.kŒG�; N /! HHd�p.kŒG�; N /; a 7! c Z a:
TakingN D kŒG� and passing from a right action to left action as in (30), we obtain a).

By i) of Property 19, 
 W H�.GIk/! HH�.kŒG�;kŒG�/ commutes with Connes’
boundary map B on H�.GIk/ and on HH�.kŒG�;kŒG�/. By a well-known result
of Karoubi (see, e.g., [28], E.7.4.8, or [40], Theorem 9.7.1), Connes’ boundary map
B is trivial on H�.GIk/. Therefore B.c/ D B B 
.ŒM�/ D 
 B B.ŒM�/ D 0. By
applying Proposition 32, we obtain b).

Property 46. Let A and B be two algebras (differential graded if we want). Let N
be an .A;A˝ B/-bimodule. Let c 2 HHd .A;A/. Then

i) HH�.A;N / and HH�.A;N / are two right B-modules, and

ii) the cap product

c Z�W HHp.A;N /! HHd�p.A;N /; a 7! c Z a;
is a morphism of right B-modules.

Proof. Since N is an .Ae; B/-bimodule, C�.A;N / Š HomAe .B.AIAIA/;N / is
a (differential graded) right B-module and its homology HH�.A;N / is a right B-
module. Similarly C�.A;N / Š N ˝Ae B.AIAIA/ and HH�.A;N / are two right
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B-modules. Let c be aŒa1j : : : jan� 2 Cn.A;A/. Let f 2 Cp.A;N /. By definition,
c Z f ´˙af .Œa1j : : : jap�/ŒapC1j : : : jan�: Therefore

.c Z f / � b D ˙af .Œa1j : : : jap�/bŒapC1j : : : jan�
D ˙a.f � b/.Œa1j : : : jap�/ŒapC1j : : : jan� D c Z .f � b/

for any b 2 B .

Remark 47. We will be only interested in the case N D A ˝ A and B D Ae .
Here the A-bimodule structure on N is given by a � .x ˝ y/ � b D ax ˝ yb and is
called the outer structure [18], (1.5.1). And the right B-module on N is given by
.x˝y/ � .a˝b/ D xa˝by, x˝y 2 N , a˝b 2 B and is called the inner structure.

Definition 48 ([18], Definition 3.2.3, formula (3.2.5), Remark 3.2.8, or simply [2],
Definition 2.1)). An ungraded algebra A is Calabi–Yau of dimension d if

i) viewed as an A-bimodule over itself, A admits a finite resolution by finite type
projective A-bimodules, i.e., there exists an exact sequence of Ae-projective finite
type module of the form

0! Pi ! Pi�1 ! � � � ! P1 ! P0 ! A! 0;

ii) HHk.A;A˝ A/ D 0 for all k ¤ d , and
iii) as .A;A/-bimodule, HHd .A;A˝ A/ is isomorphic to A. (Here the .A;A/-

bimodule on HH�.A;A˝ A/ is given by Property 46 and Remark 47.)

Proposition 49 ([18], Remark 3.4.2, stated without proof). Let A be an ungraded
algebra, and let c 2 HHd .A;A/. Suppose that, for every A-bimodule N ,
c Z �W HHp.A;N / ��!Š HHd�p.A;N /, a 7! c Z a, is an isomorphism. Then
A satisfies conditions ii) and iii) of Definition 48.

Proof. LetN be a free .A;A/-bimodule. Then HH�.A;N / D 0 if � ¤ 0. Therefore
HHk.A;N / D 0 if k ¤ d . Suppose moreover thatN is a .A;A˝B/-bimodule. The
quasi-isomorphism of complexes C�.A;N / Š N ˝Ae B.AIAIA/ ��!' N ˝Ae A is
a morphism of right B-modules. By Property 46,

c Z�W HHd .A;N /! HH0.A;N / Š N ˝Ae A

is an isomorphism of right B-modules.
Let N be the .A;A/-bimodule A˝ A with the outer structure and B D Ae (see

Remark 47). ThenN ˝Ae A D .A˝A/˝Ae A ��!Š A, .x˝y/˝Ae m 7! ymx, is an
isomorphism whose inverse is the map mappinga 7! .1˝1/˝Aea. A straightforward
calculation shows that these isomorphisms are right Ae-linear. Therefore, we have
proved that HHd .A;A˝ A/ is isomorphic to A as right Ae-module.
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Theorem 50. Let k be any commutative ring. Let G be an orientable Poincaré
duality group of dimension d . Then its group ring kŒG� is a Calabi–Yau algebra of
dimension d .

When k is a field of characteristic 0 or of characteristic prime to the cardinal of
G, this theorem was proved by Kontsevich [18], Corollary 6.1.4, and Lambre [26],
Lemme 6.2.

Proof. By [4], Remark 2, p. 222, there exists a finite resolution P ��!' k of k by
finite type projective kŒG�-left modules. Then X ´ kŒG �Gop�˝kŒG� P ��!' kŒG�
is a finite type resolution of kŒG� by finite type projective kŒG�-bimodules.

In the course of the proof of Theorem 45, we saw that, for any kŒG�-bimodule
N , c Z �W HHp.kŒG�; N / ��!Š HHd�p.kŒG�; N /, a 7! c Z a, is an isomorphism.
Therefore, by Proposition 49, kŒG� is a Calabi–Yau algebra of dimension d .

9. String topology of classifying spaces

In [7], Chataur and the author, and in [1], Behrend, Ginot, Noohi and Xu developed
a string topology theory dual to Chas–Sullivan string topology.

Theorem 51 ([1], [7]). Let G be a path-connected compact Lie group of dimension
d . Denote by BG its classifying space. Then the shifted free loop space cohomology
H�Cd .LBG/ is a (possibly non-unital) Batalin–Vilkovisky algebra.

The goal of this section is to prove the following theorem:

Theorem 52. LetG be a path-connected compact Lie group of dimension d . Denote
by S�.BG/ the singular cochains on the classifying space of G.

a) There exists an explicit isomorphism of left HH�.S�.BG/; S�.BG//-modules

D�1 W HHp.S�.BG/; S�.BG// ��!Š HH�d�p.S�.BG/; S�.BG//:

b) The Gerstenhaber algebra HH�.S�.BG/; S�.BG// equipped with the operator
�´ �D B B B D�1 is a Batalin–Vilkovisky algebra.

Both Batalin–Vilkovisky algebras in Theorems 51 and 52 are determined by an
orientation class of Hd .G/. In [23], Jones gave an isomorphism of graded vector
spaces

J W HH�.S�.BG/; S�.BG// ��!Š H�.LBG/:

We guess that the isomorphism J BD�1 W HH�.S�.BG/; S�.BG// ��!Š H�Cd .LBG/
of graded vector spaces is a morphism of Batalin–Vilkovisky algebras.

Theorem 52 is the Eckmann–Hilton or Koszul dual of the following theorem
proved by Chataur and the author.
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Theorem 53 ([7], Theorem 54). Let G be a path-connected compact Lie group of
dimensiond . Denote byS�.G/ the algebra of singular chains ofG. ConsiderConnes’
coboundary map H.B_/ on the Hochschild cohomology of S�.G/ with coefficients
in its dual HH�.S�.G/IS�.G//. Then there is an isomorphism

D�1 W HHp.S�.G/IS�.G// ��!Š HHpCd .S�.G/IS�.G//

of graded vector spaces of upper degree d such that the Gerstenhaber algebra
HH�.S�.G/IS�.G// equipped with the operator � D D B H.B_/ B D�1 is a
Batalin–Vilkovisky algebra.

9.1. Frobenius algebras

Definition 54. Let A be a differential graded algebra. We say that A is a Frobenius
algebra if there is a quasi-isomorphism of right A-modules A ��!' A_. In particular,
a graded algebra A is a Frobenius algebra if A is isomorphic as right A-modules to
its dual A_.

Property 55 ([29], Theorem 9.8). Let A be a differential graded algebra. Then A is
a Frobenius algebra if and only if its homology H.A/ is a Frobenius algebra.

Proof. Let M be any left A-module. A straightforward computation shows that the
linear map � W H.Hom.M;k//! Hom.H.M/;k/ mapping a cycle f W M ! k to
H.f / W H.M/ ! k is a morphism of right H.A/-modules. Since in this section
k is a field, by the universal coefficient theorem for cohomology, this map � is an
isomorphism. We are only interested in the case M D A.

Suppose that we have an quasi-isomorphism of right A-modules ‚ W A ��!' A_.

Then the composite H.A/
H.‚/���! H.A_/

��! H.A/_ is an isomorphism of right
H.A/-modules.

Conversely, suppose that we have an isomorphism ‚ W H.A/ ��!Š H.A/_ of

right H.A/-modules. Then the composite H.A/
‚�! H.A/_

��1

���! H.A_/ is also an
isomorphism of rightH.A/-modules. Let x be a cycle ofA_ such that��1 B‚.1/ D
Œx�.The morphism of right A-modules A ! A_, a 7! xa, coincides in homology
with the isomorphism ��1 B‚.

Corollary 56. Let A and B be two differential graded algebras such that H.A/ Š
H.B/ as graded algebras. Then A is Frobenius if and only if B is.

Observe that there does not necessarily exist a quasi-isomorphism of algebras
f W A ��!' B . (Compare with Proposition 41 or [29], Corollary 9.9.)

Property 57. Let A be a graded algebra and let C be a graded coalgebra. Consider
a bilinear form h ; i W C ˝ A W ! k. Let � W A ! C_, a 7! h�; ai, and let
 W C ! A_, c 7! hc;�i, be the right and left adjoints. Suppose that � is a
morphism of graded algebras. Then
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i)  is a morphism of right A-modules with respect to the cap product (38) as-
sociated to the coalgebra C , i.e.,  .c Z �.a// D  .c/ � a for any c 2 C and
a 2 A,

ii) ifA is non-negatively graded and of finite type in each degree then W C ! A_
is a morphism of graded coalgebras.

Proof. i) Let �c D P
c0 ˝ c" be the diagonal of c. By definition, the cap product

c Z �.a/ is equal to
P
.�1/jc"jjajhc0; aic". Therefore  .c Z �.a// is the form on

A mapping x 2 A to
P
.�1/jc"jjajhc0; aihc"; xi. On the other hand,  .c/ � a is the

form on A mapping x 2 A to hc; axi. But � is a morphism of algebras if only and if
hc; axi DP

.�1/jc"jjajhc0; aihc"; xi for every a, x 2 A and c 2 C .

Let us give a well-known application of i) of Property 57. Let C D S�.M/ and
A D C_ D S�.M/. We obtain that the quasi-isomorphism  W S�.M/! S�.M/_
is a morphism of S�.M/-modules [13], Section 7. Therefore, by Poincaré duality,
S�.M/ is a Frobenius algebra, and so is H�.M/.

9.2. String topology of manifolds. Let M be a closed oriented d -dimensional
smooth manifold. Denote by H�.M/ ´ H�Cd .M/. Poincaré duality [21], Theo-
rem 3.30, gives an isomorphism of graded algebras

H�.M/ Š H�.M/;

where

� the product on H�.M/ is the cup product H�.�/,
� the product on H�.M/ is the intersection product �Š, and

� the fundamental class ŒM � 2 Hd .M/ is the unit of H�.M/.

Chas and Sullivan have defined a Batalin–Vilkovisky algebra on H�.LM/ ´
H�Cd .LM/. The Chas–Sullivan loop product on H�.LM/ mixes the intersection
product �Š on H�.M/ and the Pontryagin product H�.comp/ on H�.
M/.

More precisely, let Q� W MS1_S1
,! LM � LM be the inclusion map and let

comp W MS1_S1 ! LM be the map obtained by composing loops. The Chas–
Sullivan loop product is the composite

H�.LM � LM/
Q�Š�! H��d .MS1_S1

/
H�.comp/������! H��d .LM/:

The loop product admits Hd .s/.ŒM �/ as unit. More generally H�.s/ W H�.M/ !
H�.LM/ is a morphism of algebras preserving the units. Let i W 
M ,! LM be
the inclusion of the pointed loops into the free loops. The shriek map of i , called
the intersection map, iŠ W H�.LM/ ! H�.
M/, is also a morphism of algebras
preserving the units [6], Proposition 3.4.

The unit of the Batalin–Vilkovisky algebra H�.LM/ and the fact that �1 D 0 in
any unital Batalin–Vilkovisky algebras was the key for proving Theorem 43.
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9.3. Versus string topology of classifying spaces. Let G be a path-connected Lie
group of dimension d . Denote H�.
BG/ D H�Cd .
BG/. Since H�.
BG/ is
a finite dimensional Hopf algebra, H�.
BG/ is a Frobenius algebra: there is an
isomorphism of right H�.
BG/-modules [7], Section 4.1,

‚ W H�.
BG/ Š H�.
BG/:

By [37], Theorem 5.1.2 (with left Hopf modules instead of right Hopf modules),

the composite H�.
BG/
S�! H�.
BG/

‚�! H�.
BG/ of the antipode of the Hopf
algebraH�.
BG/ and of‚ is an isomorphism of left Hopf modules overH�.
BG/,
and so coincides with Poincaré duality.

Therefore this isomorphism ‚ is an isomorphism of algebras if

� the product on H�.
BG/ is the Pontryagin product H�.comp/,

� the product on H�.
BG/ is the composite

H�.
BG/˝H�.
BG/

�! H�.
BG/˝H�.
BG/

compŠ

���! H��d .
BG/;

where � denotes the twist map given by a˝ b 7! .�1/jajjbjb ˝ a and compŠ is
the shriek map of comp.

Of course, ‚.1/ is the unit of the algebra H�.
BG/.
The product on H�.LBG/ ´ H�Cd .LBG/ mixes the cup product H�.�/ on

H�.BG/ and the product compŠ on H�.
BG/. More precisely, the product on
H�.LBG/ is the composite

H�.LBG � LBG/
H�. Q�/����! H�.BGS

1_S1

/
compŠ

���! H��d .LBG/:

Comparing with the definition of the Chas–Sullivan loop product defined above, we
see a general principle. In order to pass from string topology of manifolds to string
topology of classifying spaces, you replace

� homology by cohomology,

� shriek map in homology like Q�Š by the map induced in singular cohomology
like H�. Q�/,

� maps induced in singular homology likeH�.comp/ by shriek map in cohomol-
ogy like compŠ.

In particular, you never change the direction of arrows.
Guided by this general principle, we now transpose the proof of Theorem 43

into a proof of Theorem 52. Using this general principle, the product on H�.LBG/
should have sŠ.1/ as a unit. More generally sŠ W H�.BG/ ! H�.LBG/ should be a
morphism of algebras preserving the units. Also H�.i/ W H�.LBG/ ! H�.
BG/
should be a morphism of algebras preserving the units. The problem is that sŠ is not
easy to define [7], Remark 56, and that we have not yet proved the previous assertions.
Instead, we are going only to prove the following lemma.
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Lemma 58. There exists an explicit element I 2 Hd .LBG/ such that �I D 0 and
such that the morphism ‚ W Hp.
BG/ ��!Š Hd�p.
BG/, a 7! Hd .i/.I/ � a, of
rightH�.
BG/-modules is an isomorphism.

As explained above, we believe that I is the unit of the Batalin–Vilkovisky algebra
H�.LBG/.

Proof. Let � W feg ! G be the unit of G. Consider �Š W Hd .G/! k the shriek map
of �. By Lemma 55 of [7], the morphismHp.G/ ��!Š Hd�p.G/, a 7! �Š �a, of right
H�.G/-modules is an isomorphism. Consider the commutative diagram of graded
algebras

H�.LBG/
H�.�/

Š
��

H�.i/

��

H�.j�Gj/
H�.jj j/

��

H�.EG �G Gad/
H�.jˆ/j

Š
��

H�.E���G
ad/

���������������

H�.
BG/
H�. N�/

Š
�� H�.G/,

where the right triangle is the triangle considered in the proof of Theorem 54 of [7]
and the left square is induced by the commutative square of topological spaces

G
jj j ��

N�'
��

j�Gj
�'

��

BG

i �� LBG

considered in the proof of Theorem 7.3.11 of [28]. Consider the equivariant Gysin
map: EG �G �Š W H�.BG/ ! H�Cd .EG �G Gad/. Let I be the image of 1 by the
composite H�.	/�1 BH�.jˆj/ B EG �G �Š. In [7, (58)], we saw that �I D 0. By
Lemma 57 of [7], H�.E� �� Gad/ maps EG �G �Š.1/ to �Š 2 Hd .G/_. Therefore
using the above commutative diagram, H�.i/.I/ D H�. N	/�1.�Š/.

By Lemma 7.3.12 of [28], N	 W G ��!' 
BG is the classical homotopy equivalence,
which is well known to be a morphism of H -spaces. Therefore the isomorphism
induced in homology, H�. N	/ W H�.G/ ��!Š H�.
BG/, is a morphism of algebras.
Since H�.G/ is a Frobenius algebra, H�.
BG/ is also a Frobenius algebra. More
precisely, the morphism‚ W Hp.
BG/! Hd�p.
BG/_, a 7! H�. N	/�1.�Š/ � a, of
right H�.
BG/-modules is an isomorphism.

To finish the proof of Theorem 52, we need also the following algebraic results.

9.4. Bar and cobar construction. LetC be a coaugmented DGC. Denote by xC the
kernel of the counit. The normalized cobar construction on C , denoted 
C , is the
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augmented differential graded algebra .T .s�1 xC/; d1 C d2/ where d1 and d2 are the
unique derivations determined by

d1s
�1c D �s�1dc and d2s

�1c DP

i

.�1/jxi js�1xi ˝ s�1yi ; c 2 xC ;

where the reduced diagonal N�c DP
i xi ˝yi . We follow the sign convention of [9].

Remark 59 ([20], (A.6)). A bilinear form h ; i W V ˝W ! k of graded vector spaces
extends a bilinear form h ; i W TV ˝ TW ! k defined by

hv1 ˝ � � � ˝ vi ; w1 ˝ � � � ˝ wi i D ˙
iQ

jD1
hvj ; wj i

and hv1 ˝ � � � ˝ vi ; w1 ˝ � � � ˝wj i D 0 if i ¤ j . Here again˙ is the sign given by
the Koszul sign convention.

Proposition 60. Let C be a coaugmented differential graded coalgebra. Denote by
A´ C_ the differential graded algebra dual of C . Let h ; i W sA˝s�1C ! k be the
non-degenerate bilinear form defined by hsa; s�1ci D .�1/jajC1a.c/ in [20], p. 276
in the case V D s�1C andX D A. Consider the bilinear form h ; i W BA˝
C ! k
extending h ; i W sA˝ s�1C ! k (Remark 59). Then

i) the right adjoint � W 
C ! .BA/_ is a natural morphism of differential graded
algebras and the left adjoint  W BA! .
C/_ is a natural morphism of com-
plexes,

ii) if C is of finite type in each degree and C D k˚ C�2 then both � and  are
isomorphisms,

iii) ifH.C/ is of finite type in each degree and C D k˚ C�2 then bothH.�/ and
H. / are isomorphisms.

Proof. i) and ii) Denote by TAW the tensor algebra on W , and by TCV the ten-
sor coalgebra on V [20], p. 277–78. It is easy to check that the right adjoint map
� W TAW ! TCV _ of the bilinear map defined by Remark 59 is a morphism of
graded algebras. In [32], proof of Theorem 6.1 ii), we have checked carefully that
 W C�.A;A/ ! .C ˝ 
C; ı/_, where .C ˝ 
C; ı/ is the cyclic cobar complex
of C , is a morphism of complexes and an isomorphism if C is of finite type in each
degree and xC D xC�2. The same proof applies to  W BA! 
C_ as well.

iii) By Proposition 4.2 of [9], there exist a differential graded algebra of the form
.TV ; d /, where V D V �2 is of finite type in each degree, and a quasi-isomorphism
f W TV ��!' C_ of augmented differential graded algebras. By ii) of Property 57,

the adjoint map g W C ��!' .C_/_
f _

��!' TV_ is a quasi-isomorphism of coaugmented

differential graded coalgebras [12], p. 56. Denote D´ TV_.
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Since xC�1 D xD�1 D 0, by Remark 2.3 of [9], 
f W 
C ��!' 
D is a
quasi-isomorphism of augmented differential graded algebras. Since k is a field,
f _ W D_ ��!' C_ is also a quasi-isomorphism of augmented differential graded
algebras. By naturality of  , we have the commutative square of complexes

B.C_/  �� .
C/_

B.D_/  

Š
��

B.f _/ '
��

.
D/_,

.
f /_'
��

where the two vertical morphisms are quasi-isomorphisms. By ii) we have that
 W B.D_/ ��!Š .
D/_ is an isomorphism. Therefore  W B.C_/ ��!' .
C/_ is
a quasi-isomorphism. Similarly, one proves that � W 
C ��!' B.C_/_ is a quasi-
isomorphism as well.

Proof of Theorem 52. The Eilenberg Moore formula gives an isomorphism of graded
algebras EM W H�.
BG/ ��!Š H.
S�.BG//. It follows from Proposition 60 iii) that
 W BS�.BG/ ��!' 
S�.BG/_ is a quasi-isomorphism of complexes. The Jones
isomorphism J fits into the commutative diagram

HH�.S�.BG/; S�.BG// J

Š
��

HH�.S
�.BG/;"/

��

H�.LBG/

H�.i/

��
TorS

�.BG/.k;k/
H. /

Š
�� H.
S�.BG//_ EM_

Š
�� H�.
BG/.

Consider the element I 2 Hd .LBG/ given by Lemma 58. Let c be J�1.I/ 2
HH�d .S�.BG/; S�.BG//. Denote bym 2 BS�.BG/ a cycle such that its class Œm� is
equal to HH�d .S�.BG/; "/.c/.

Since H�.
BG/ is a Frobenius algebra, H.
S�.BG// is also a Frobenius al-
gebra. More precisely, by Lemma 58, the morphism of right H�.
BG/-modules
Hp.
BG/ ��!Š Hd�p.
BG/_ mapping 1 to Hd .i/.I/ is an isomorphism. There-
fore the morphism Hp.
S�.BG// ��!Š Hd�p.
S�.BG//_ of right H.
S�.BG//-
modules mapping 1 to .EM_/�1 B Hd .i/.I/ is an isomorphism. Since the above
diagram is commutative, .EM_/�1 BHd .i/.I/ D H. /.Œm�/. By Property 55, the
differential graded algebra
S�.BG/ is a Frobenius algebra. More precisely, the mor-
phism � W 
S�.BG/ ��!' .
S�.BG//_, a 7!  .m/ � a, of right 
S�.BG/-modules
is a quasi-isomorphism.

By Proposition 60, � W 
S�.BG/ ��!' BS�.BG/_ is a quasi-isomorphism of
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differential graded algebras. Therefore by i) of Property 57, the square of complexes


S�.BG/
�

' ��

� '
��

.BS�.BG//_

mZ�'
��

.
S�.BG//_ BS�.BG/
 

'��

commutes. Therefore (Example 40),

Œm�Z�W Extp
S�.BG/.k;k/ ��!Š TorS

�.BG/
�d�p .k;k/

is an isomorphism.
Let N be any non-negatively upper graded S�.BG/-bimodule. Since BG is path-

connected, we obtain from Corollary 14 that the morphism

D�1 W HHp.S�.BG/; N / ��!Š HH�d�p.S�.BG/; N /; a 7! c Z a;
is an isomorphism. By taking N D S�.BG/ and by passing from a right action to a
left action by (30), we obtain a).

The isomorphism J of Jones satisfies � B J D J B B . Since by Lemma 58

B.c/ D B B J�1.I/ D J�1 B�.I/ D 0;
we obtain b) from Proposition 32.

10. Appendix

The key of the proof of Proposition 32 is the relation

ifa;bg D .�1/jajC1ŒŒB; ia�; ib� D ŒŒia; B�; ib�:
In this appendix we recall that ŒŒia; B�; ib� is the derived bracket of ia and ib , and

we explain that this relation means that the morphism of graded algebras

HH�.A;A/! End.HH�.A;A//; a 7! ia;

is a morphism of generalized Loday–Gerstenhaber algebras (Theorem 67).

Definition 61 ([24], p. 1247). A generalized Loday–Gerstenhaber algebra is a
(not necessarily commutative) graded algebra A equipped with a linear map f�;�g:
Ai ˝ Aj ! AiCjC1 of degree 1 such that

a) the bracket f�;�g givesA the structure of a graded Leibniz algebra of degree 1,
which means that

fa; fb; cgg D ffa; bg; cg C .�1/.jajC1/.jbjC1/fb; fa; cgg
for each a, b and c 2 A,
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b) the product and the Leibniz bracket satisfy the Poisson relation

fa; bcg D fa; bgc C .�1/.jajC1/jbjbfa; cg:
Proposition 62. Let A be a graded algebra equipped with an operator d W An !
AnC1 such that d B d D 0 and such that d is a derivation. Then A equipped with the
derived bracket (defined by [24], (2.8))

Œa; b�d ´ .�1/jajC1Œda; b�

is a generalized Loday–Gerstenhaber algebra.

Proof. Since A is an associative graded algebra, the bracket Œ�;�� defined by

Œa; b�´ ab � .�1/jajjbjba

is a Lie bracket. Since d is a derivation for the associative product of A, d is a
derivation for the Lie bracket Œ�;��. Therefore by [24], Proposition 2.1, the derived
bracket Œ�;��d satisfies the graded Jacobi identity andd is a derivation for the derived
bracket Œ�;��d . Since Œ�;��d does not satisfy in general anti-commutativity, Œ�;��d
is only a Leibniz bracket in the sense of Loday [27] and not a Lie bracket in general.
The Lie bracket Œ�;�� satisfies the Poisson relation

Œa; bc� D Œa; b�c C .�1/.jajC1/jbjbŒa; c�:

Therefore, since Œa;��d is the derivation .�1/jajC1Œda;��, the Leibniz bracket Œ�;��d
also satisfies the Poisson relation ([24], Proposition 2.2)

Œa; bc�d D Œa; b�dc C .�1/.jajC1/jbjbŒa; c�d :

Remark 63. In Proposition 62, if instead we define the bracket by

Œa; b�d ´ ad.b/ � .�1/.jajC1/.jbjC1/bd.a/;

then Œ�;��d satisfies anti-commutativity and Jacobi: Œ�;��d is a Lie bracket1 of
degree C1. But this time, Œ�;��d does not satisfy the Poisson relation. Note that
again d is a derivation for Œ�;��d .

Proof. Let a 2 Ax�1, b 2 By�1 and c 2 Cz�1 be three elements of A of degrees
x � 1, y � 1 and z � 1. Then

Œa; Œb; c�d �d D ad.bdc/ � .�1/zyad.cdb/
� .�1/xyCxzb.dc/.da/C .�1/xyCxzCyzc.db/.da/;

ŒŒa; b�d ; c�d D a.db/.dc/ � .�1/xyb.da/.dc/
C .�1/zxCzycd.adb/C .�1/zxCzyCxycd.bda/;

.�1/xy Œb; Œa; c�d �d D .�1/xybd.adc/ � .�1/xyCxzbd.cda/
� .�1/yza.dc/.db/C .�1/yzCxzc.da/.db/:

1We could not find this Lie bracket in the literature. So this Lie algebra structure might be new.
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Since d is a derivation and d2 D 0, it follows that d.adb/ D .da/.db/. Hence we
have the Jacobi identity:

Œa; Œb; c�d �d D ŒŒa; b�d ; c�d C .�1/xy Œb; Œa; c�d �d :
Since Œda; b�d D .da/.db/ and Œa; db�d D �.�1/x.yC1/.db/.da/, we have

d.Œa; b�d / D .da/.db/ � .�1/xy.db/.da/ D Œda; b�d C .�1/xŒa; db�d :
This means that d is a derivation for Œ�;��d .

Example 64 (interior derivation). LetA be an associative graded algebra. Let � 2 A1
such that �2 D 0. Then d ´ Œ�;�� is a derivation of the associative product and
d Bd D 0. Therefore, we can apply the previous proposition. In this case, we denote
the derived bracket Œa; b�d simply by Œa; b�
 and have ([24], Example, p. 1250)

Œa; b�
 D .�1/jajC1ŒŒ�; a�; b� D ŒŒa; ��; b�:

Corollary 65 ([24], beginning of Section 2.4). LetE be a graded k-module equipped
with an operator B W En ! EnC1 such that B B B D 0. Then End.E/ equipped
with the derived bracket Œa; b�B D ŒŒa; B�; b� is a generalized Loday–Gerstenhaber
algebra.

Proof. Apply Proposition 62 and Example 64 to End.E/ equipped with the compo-
sition product.

Theorem 66 (implicit in [24], p. 1269–70, pointed out by Krasilshchik). Let A be
a Batalin–Vilkovisky algebra. The morphism of graded algebras induced by left
multiplication

‰ W A! End.A/; a 7! la;

is an injective morphism of generalized Loday–Gerstenhaber algebras.

Proof. Since A is a graded module equipped with an operator � W An ! AnC1 such
that�B� D 0, by Corollary 65 applied toA and toB D ��, End.A/ equipped with
the derived bracket Œf; g��� D ŒŒf;���; g� is a generalized Loday–Gerstenhaber
algebra. By Proposition 28,

lfa;bg D �ŒŒla; ��; lb� D ŒŒla; B�; lb�:
Therefore ‰ is a morphism of generalized Loday–Gerstenhaber algebra.

Theorem 67. Let A be a differential graded algebra.
1) End HH�.A;A/ equipped with the derived bracket

Œa; b�B D Œa; B�; b�
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is a generalized Loday–Gerstenhaber algebra.
2) The morphism of graded algebras induced by the action

ˆ W HH�.A;A/! End HH�.A;A/; a 7! ia;

is a morphism of a generalized Loday–Gerstenhaber algebra. In particular, its image
ˆ.HH�.A;A// is a Gerstenhaber algebra.

Proof. Since the Connes boundary B W HH�.A;A/ ! HH�C1.A;A/ satisfies
B B B D 0, we obtain 1) from Corollary 65.

Since iab D ia B ib (eq. (31)) and ifa;bg D ŒŒia; B�; ib� D Œia; ib�B , it follows that
‰ is a morphism of a generalized Gerstenhaber–Loday algebra.

Since HH�.A;A/ is a Gerstenhaber algebra, so is ˆ.HH�.A;A//.

Remark 68. IfA is a differential graded algebra satisfying the hypotheses of Proposi-
tion 32, the morphismˆ W HH�.A;A/ ,! End HH�.A;A/ of Theorem 67 is injective
and can be identified with the morphism‰ of Theorem 66 for the Batalin–Vilkovisky
algebra HH�.A;A/.

References

[1] K. Behrend, G. Ginot, B. Noohi, and P. Xu, String topology for stacks. Preprint 2007.
arXiv:0712.3857

[2] R. Berger and R. Taillefer, Poincaré–Birkhoff–Witt deformations of Calabi–Yau algebras.
J. Noncommut. Geom. 1 (2007), 241–270. Zbl 1161.16022 MR 2308306

[3] G. E. Bredon, Topology and geometry. Grad. Texts in Math. 139, Springer-Verlag, New
York 1997. Zbl 0934.55001 MR 1700700

[4] K. S. Brown, Cohomology of groups. Grad. Texts in Math. 87, Springer-Verlag, NewYork
1994. Zbl 0584.20036 MR 0672956

[5] D. Burghelea and Z. Fiedorowicz, Cyclic homology and algebraicK-theory of spaces–II.
Topology 25 (1986), 303–317. Zbl 0639.55003 MR 842427

[6] M. Chas and D. Sullivan, String topology. Preprint 1999. arXiv:math/9911159

[7] D. Chataur and L. Menichi, String topology of classifying spaces. Preprint 2007.
arXiv:0801.0174

[8] J. Cuntz, G. Skandalis, and B. Tsygan, Cyclic homology in non-commutative geom-
etry. Encyclopaedia Math. Sci. 121, Springer-Verlag, Berlin 2004. Zbl 1045.46043
MR 2052770

[9] Y. Félix, S. Halperin, and J.-C. Thomas, Adams’ cobar equivalence. Trans. Amer. Math.
Soc. 329 (1992), 531–549. Zbl 0765.55005 MR 1036001

[10] Y. Félix, S. Halperin, and J.-C. Thomas, Differential graded algebras in topology. In Hand-
book of algebraic topology, North-Holland, Amsterdam 1995, 829–865. Zbl 0868.55016
MR 1361901

http://arxiv.org/abs/0712.3857
http://www.emis.de/MATH-item?1161.16022
http://www.ams.org/mathscinet-getitem?mr=2308306
http://www.emis.de/MATH-item?0934.55001
http://www.ams.org/mathscinet-getitem?mr=1700700
http://www.emis.de/MATH-item?0584.20036
http://www.ams.org/mathscinet-getitem?mr=0672956
http://www.emis.de/MATH-item?0639.55003
http://www.ams.org/mathscinet-getitem?mr=842427
http://arxiv.org/abs/math/9911159
http://arxiv.org/abs/0801.0174
http://www.emis.de/MATH-item?1045.46043
http://www.ams.org/mathscinet-getitem?mr=2052770
http://www.emis.de/MATH-item?0765.55005
http://www.ams.org/mathscinet-getitem?mr=1036001
http://www.emis.de/MATH-item?0868.55016
http://www.ams.org/mathscinet-getitem?mr=1361901


104 L. Menichi

[11] Y. Félix, S. Halperin, and J.-C. Thomas, Rational homotopy theory. Grad. Texts in Math.
205, Springer-Verlag, New York 2001. Zbl 0961.55002 MR 1802847

[12] Y. Félix, L. Menichi, and J.-C. Thomas, Gerstenhaber duality in Hochschild cohomology.
J. Pure Appl. Algebra 199 (2005), 43–59. Zbl 1076.55003 MR 2134291

[13] Y. Felix, J.-C. Thomas, and M. Vigué-Poirrier, The Hochschild cohomology of a closed
manifold. Publ. Math. Inst. Hautes Études Sci. 99 (2004), 235–252. Zbl 1060.57019
MR 2075886

[14] P. Feng and B. Tsygan, Hochschild and cyclic homology of quantum groups. Comm.
Math. Phys. 140 (1991), 481–521. Zbl 0743.17020 MR 1130695

[15] I. M. Gel’fand, Y. L. Daletskiı̆, and B. L. Tsygan, On a variant of noncommutative differ-
ential geometry. Dokl. Akad. Nauk SSSR 308 (1989), 1293–1297; English transl. Soviet
Math. Dokl. 40 (1990), 422–426. Zbl 0712.17026 MR 1039918

[16] R. Geoghegan, Topological methods in group theory. Grad. Texts in Math. 243, Springer,
New York 2008. Zbl 1141.57001 MR 2365352

[17] E. Getzler, Batalin–Vilkovisky algebras and two-dimensional topological field theories.
Comm. Math. Phys. 159 (1994), 265–285. Zbl 0807.17026 MR 1256989

[18] V. Ginzburg, Calabi-Yau algebras. Preprint 2006. arXiv:0612139

[19] T. G. Goodwillie, Cyclic homology, derivations, and the free loopspace. Topology 24
(1985), 187–215. Zbl 0569.16021 MR 793184

[20] S. Halperin, Universal enveloping algebras and loop space homology. J. Pure Appl. Al-
gebra 83 (1992), 237–282. Zbl 0769.57025 MR 1194839

[21] A. Hatcher, Algebraic topology. Cambridge University Press, Cambridge 2002.
Zbl 1044.55001 MR 1867354

[22] P. J. Hilton and U. Stammbach, A course in homological algebra. 2nd ed., Grad. Texts in
Math. 4, Springer-Verlag, New York 1997. Zbl 0863.18001 MR 1438546

[23] J. D. S. Jones, Cyclic homology and equivariant homology. Invent. Math. 87 (1987),
403–423. Zbl 0644.55005 MR 870737

[24] Y. Kosmann-Schwarzbach, From Poisson algebras to Gerstenhaber algebras. Ann. Inst.
Fourier (Grenoble) 46 (1996), 1243–1274. Zbl 0858.17027 MR 1427124

[25] J.-L. Koszul, Crochet de Schouten-Nijenhuis et cohomologie. Astérisque 1985, Numéro
Hors Série, 257–271. Zbl 0615.58029 MR 837203

[26] T. Lambre, Dualité de Van den Bergh et structure de Batalin–Vilkoviskiı̆ sur les algèbres
de Calabi–Yau. J. Noncommut. Geom. 4 (2010), 441–457. Zbl 05777174 MR 2670971

[27] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz.
Enseign. Math. (2) 39 (1993), 269–293. Zbl 0806.55009 MR 1252069

[28] J.-L. Loday, Cyclic homology. 2nd ed., Grundlehren Math. Wiss. 301, Springer-Verlag,
Berlin 1998. Zbl 0885.18007 MR 1600246

[29] D. M. Lu, J. H. Palmieri, Q. S. Wu, and J. J. Zhang, Koszul equivalences inA1-algebras.
New York J. Math. 14 (2008), 325–378. Zbl 1191.16011 MR 2430869

[30] S. Mac Lane, Homology. Grundlehren Math. Wiss. 114, Springer-Verlag, Berlin 1963.
Zbl 0133.26502 MR 0156879

http://www.emis.de/MATH-item?0961.55002
http://www.ams.org/mathscinet-getitem?mr=1802847
http://www.emis.de/MATH-item?1076.55003
http://www.ams.org/mathscinet-getitem?mr=2134291
http://www.emis.de/MATH-item?1060.57019
http://www.ams.org/mathscinet-getitem?mr=2075886
http://www.emis.de/MATH-item?0743.17020
http://www.ams.org/mathscinet-getitem?mr=1130695
http://www.emis.de/MATH-item? 0712.17026 
http://www.ams.org/mathscinet-getitem?mr=1039918
http://www.emis.de/MATH-item?1141.57001
http://www.ams.org/mathscinet-getitem?mr=2365352
http://www.emis.de/MATH-item?0807.17026
http://www.ams.org/mathscinet-getitem?mr=1256989
http://arxiv.org/abs/0612139
http://www.emis.de/MATH-item?0569.16021
http://www.ams.org/mathscinet-getitem?mr=793184
http://www.emis.de/MATH-item?0769.57025
http://www.ams.org/mathscinet-getitem?mr=1194839
http://www.emis.de/MATH-item?1044.55001
http://www.ams.org/mathscinet-getitem?mr=1867354
http://www.emis.de/MATH-item?0863.18001
http://www.ams.org/mathscinet-getitem?mr=1438546
http://www.emis.de/MATH-item?0644.55005
http://www.ams.org/mathscinet-getitem?mr=870737
http://www.emis.de/MATH-item?0858.17027
http://www.ams.org/mathscinet-getitem?mr=1427124
http://www.emis.de/MATH-item?0615.58029
http://www.ams.org/mathscinet-getitem?mr=837203
http://www.emis.de/MATH-item?05777174
http://www.ams.org/mathscinet-getitem?mr=2670971
http://www.emis.de/MATH-item?0806.55009
http://www.ams.org/mathscinet-getitem?mr=1252069
http://www.emis.de/MATH-item?0885.18007
http://www.ams.org/mathscinet-getitem?mr=1600246
http://www.emis.de/MATH-item?1191.16011
http://www.ams.org/mathscinet-getitem?mr=2430869
http://www.emis.de/MATH-item?0133.26502
http://www.ams.org/mathscinet-getitem?mr=0156879


Van Den Bergh isomorphisms in string topology 105

[31] J. McCleary, A user’s guide to spectral sequences. 2nd ed., Cambridge Stud. Adv. Math.
58, Cambridge University Press, Cambridge 2001. Zbl 0959.55001 MR 1793722

[32] L. Menichi, The cohomology ring of free loop spaces. Homology Homotopy Appl. 3
(2001), 193–224. Zbl 0974.55005 MR 1854644

[33] L. Menichi, Batalin-Vilkovisky algebra structures on Hochschild cohomology. Bull. Soc.
Math. France 137 (2009), 277–295. Zbl 1180.16007 MR 2543477

[34] M. Penkava and A. Schwarz, On some algebraic structures arising in string theory. In Per-
spectives in mathematical physics, Conf. Proc. Lecture Notes Math. Phys., III, Internat.
Press, Cambridge, MA, 1994, 219–227. Zbl 0871.17021 MR 1314668

[35] S. F. Siegel and S. J. Witherspoon, The Hochschild cohomology ring of a group algebra.
Proc. London Math. Soc. (3) 79 (1999), 131–157. Zbl 1044.16005 MR 1687539

[36] E. H. Spanier, Algebraic topology. Springer-Verlag, New York 1981. Zbl 0477.55001
MR 0666554

[37] M. E. Sweedler, Hopf algebras. W. A. Benjamin, Inc., New York 1969. Zbl 0194.32901
MR 0252485

[38] D. Tamarkin and B. Tsygan, Noncommutative differential calculus, homotopy BV alge-
bras and formality conjectures. Methods Funct. Anal. Topology 6 (2000), no. 2, 85–100.
Zbl 0965.58010 MR 1783778

[39] D. Vaintrob, The string topology BV algebra, Hochschild cohomology and the Goldman
bracket on surfaces. Preprint 2007. arXiv:math/0702859

[40] C. A. Weibel, An introduction to homological algebra. Cambridge Stud. Adv. Math. 38,
Cambridge University Press, Cambridge 1994. Zbl 0797.18001 MR 1269324

Received July 29, 2009

L. Menichi, UMR 6093 associée au CNRS, Université d’Angers, Faculté des Sciences,
2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

E-mail: luc.menichi@univ-angers.fr

http://www.emis.de/MATH-item?0959.55001
http://www.ams.org/mathscinet-getitem?mr=1793722
http://www.emis.de/MATH-item?0974.55005
http://www.ams.org/mathscinet-getitem?mr=1854644
http://www.emis.de/MATH-item?1180.16007
http://www.ams.org/mathscinet-getitem?mr=2543477
http://www.emis.de/MATH-item?0871.17021
http://www.ams.org/mathscinet-getitem?mr=1314668
http://www.emis.de/MATH-item?1044.16005
http://www.ams.org/mathscinet-getitem?mr=1687539
http://www.emis.de/MATH-item?0477.55001
http://www.ams.org/mathscinet-getitem?mr=0666554
http://www.emis.de/MATH-item?0194.32901
http://www.ams.org/mathscinet-getitem?mr=0252485
http://www.emis.de/MATH-item?0965.58010
http://www.ams.org/mathscinet-getitem?mr=1783778
http://arxiv.org/abs/math/0702859
http://www.emis.de/MATH-item?0797.18001
http://www.ams.org/mathscinet-getitem?mr=1269324

	Introduction
	Hochschild homology and cohomology
	The isomorphism between Hochschild cohomology and Hochschild homology for differential graded algebras
	Comparison of the cap products in Hochschild and group (co)homology
	A new definition of Batalin–Vilkovisky algebras
	Batalin–Vilkovisky algebra structures on Hochschild cohomology
	Proof of the main theorem for path-connected groups
	Proof of the main theorem for discrete groups
	String topology of classifying spaces
	Frobenius algebras
	String topology of manifolds
	Versus string topology of classifying spaces
	Bar and cobar construction

	Appendix
	References

