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The index of hypoelliptic operators on foliated manifolds
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Abstract. In [VE1] and [VE2] we presented the solution to the index problem for a class of
hypoelliptic operators on closed contact manifolds. The proofs are based on an adaptation of
the tangent groupoid method of Alain Connes to hypoelliptic index problems. The methods
originally developed for contact manifolds have wider applicability to the index theory of
hypoelliptic Fredholm operators. As an illustration of the scope and effectiveness of these
methods, we present here an index theorem for a class of hypoelliptic differential operators on
closed foliated manifolds.
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1. Introduction

In [VE1], [VE2] we published the solution of the index problem for a class of hy-
poelliptic (pseudo)differential operators on contact manifolds. Our solution relied on
techniques from noncommutative geometry, and makes liberal use of C*-algebras,
groupoids, and analytic K-theory. The proof of our index theorem proceeded in two
stages. The key insight in [VE1] is that the principal part of a hypoelliptic operator
(suitably interpreted in the sense of the Heisenberg calculus) gives rise to a class
in the analytic K-theory of a noncommutative algebra. As it turns out, this analytic
K-theory group is canonically isomorphic to the topological group K°(T*M), and
the main theorem in [VE1] states that the Fredholm index of this class of hypoelliptic
operators can be computed by the Atiyah—Singer index formula.

This is, however, not yet a useful theorem, because a class in the analytic K-
theory of a noncommutative algebra is very hard to compute in concrete examples.
To obtain a cohomological index formula we must find a fropological expression for
this K-theory class as an element in K°(7*M). In [VE2] we solve this problem for
contact manifolds and derive a concrete topological construction of a symbol class
for hypoelliptic operators in K°(T*M).

While both papers [VE1], [VE2] discuss hypoelliptic index theory for contact
manifolds, the results presented in the first of these two papers [VE1] can be stated
in much greater generality. Contact manifolds can be thought of as a specific type
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of filtered manifolds, i.e., manifolds equipped with a distribution H € TM (not
necessarily of codimension 1). A typical hypoelliptic operator of the class we are
interested in would be a second order “elliptic” operator in the directions of H, but
would be of first order transversally to H. More precisely, we study operators that
are “elliptic” in the Heisenberg calculus associated to H. The ideas and techniques
developed in [VE1] can be generalized to apply to all such hypoelliptic operators,
regardless of the geometric nature of the structure . One could thus derive a
generalized index theorem for hypoelliptic operators and investigate what it says for
other types of geometric structure H .

The result of this new approach to hypoelliptic index theory is two-fold. On the
one hand we have a very general theorem (proven along the lines of [VE1]) whose
essential import is that the formula of Atiyah and Singer computes the Fredholm index
not only for elliptic operators, but for all hypoelliptic operators in the Heisenberg
calculus for some bundle H. The index theorem of Boutet de Monvel for Toeplitz
operators [Bo] is an example and a special case of this fact: the Atiyah—Singer formula
applies to Fredholm Toeplitz operators. The situation is analogous to (but different
from) an early theorem by Hormander, who extended the Atiyah—Singer formula to
hypoelliptic operators of type (p,8), with0 < 1 —p < § < p < 1 (See [H6]). The
operators covered by our methods are of type (%, %) and therefore not covered by
Hormander’s theorem. But in both cases the Atiyah—Singer formula computes the
index.

The second aspect of our approach is that in order to apply the topological formula
of Atiyah—Singer to non-elliptic operators we will have to modify the definition of the
K-theory class associated to the symbol of the operator. This is the general lesson to
be learned from the results of the second paper [VE2]: to turn the ‘noncommutative’
version of our hypoelliptic index theorem into an explicit cohomological formula
one must solve a nontrivial problem, namely to find a topological expression for an
analytically constructed K-theory class. In [VE2] we solved this problem if H is a
contact structure, but the ideas used in [VE2] do not apply in the general case. In fact,
there is no general method that solves this problem once and for all for all possible
structures H € TM. (In a forthcoming publication we will discuss this general
problem in more detail.) The details of the calculation of the correct symbol class in
K°(T*M) depend on specific geometric properties of the structure H, and creative
ideas are needed to solve it in each particular case.

The present paper contains the solution of the hypoelliptic index problem in the
Heisenberg calculus in the case where H C TM is a foliation. As it turns out, this
problem is easier to handle than the corresponding problem for contact manifolds.
The exposition in this paper is relatively self-contained, and we derive our index
theorem, as well as the necessary hypoelliptic Fredholm theory, from scratch.
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2. The index formula for foliations

Throughout this paper M denotes a smooth closed manifold of dimension zn. Consider
a differential operator P on M acting on smooth sections in a vector bundle E, with
values in a second bundle F,

P:C®(E) — C®(F).
Effective calculations with such an operator are performed in a coordinate system
x=(x1,....,x): U —>R"

in an open set U C M, where the bundles E, F are trivialized as U x R (we will
assume in what follows that £ and F have equal rank m). Then P is represented as

P = > au(x)o“.

le]<d

As is customary, @ = (o1, ...,a,) denotes a multi-index of nonnegative integers;
the coefficients a4 (x) are matrix-valued smooth functions on U ; and

= (5) - (5)”
~ \ox; T\ 0x, )

Finally, the degree of the monomial a,d* is denoted as

ol = a1+t an

and the order d of P is the maximal degree |«| for which a4 # 0 at some point of M .
The principal symbol of the operator P is the function

o(P)(x.§) = > aa(x)(i§)"

lel=d

for (x, §) € R"xR". The principal symbol transforms (under a change of coordinates)
as a smooth section in the bundle of algebras

Hom(n*E,n*F),

over the cotangent space T*M, where w: T*M — M denotes the base point map.
Obviously, o (P) is a homogeneous polynomial in the fibers of 7*M .

The operator P is called elliptic if the principal symbol is invertible at all points of
M (except, of course, at £ = 0), and elliptic operators are Fredholm if M is closed.
We will treat P as an unbounded Hilbert space operator

P: L*(E) — L*(F),
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with domain C*°(E). The differential operator has a closure, which we denote by
P. In this context, to say that P is Fredholm means that the closure P has closed
range and finite dimensional kernel and cokernel. The Fredholm index is defined as

Index P = dimKer P — dimCoker P,

and the formula of Atiyah and Singer [AS1], [AS3] computes the index of P as a
function of the homotopy type of the principal symbol,

Index P = / Ch(o(P)) ATd(M).
T*M

Now let M be foliated by an integrable sub-bundle H C TM of the tangent bundle.
We denote the rank of H by p, and the rank of the quotient bundle N = TM/H
by g (so that n = p + ¢). When working with a foliation we will always choose
coordinates x such that the bundle H (restricted to U C M) is spanned by the first p
coordinate vector fields d1, ..., d,. We now change the usual calculus of differential
operators by defining the weighted order of a monomial aq 0% to be

loll = 1 4+ + @ty + 2@ + -+ + ).

This amounts to assigning weight two to vector fields that are transversal to the
foliation. The point of this alternative calculus is to change the notion of highest order
part, or, what amounts to the same thing, the principal symbol of the operator P. With
the above notation, the weighted principal symbol of an operator P of weighted order
d is defined in the obvious way as

og(P)(x.§) = > aa(x)(i§)".

locll=d

It is easily verified that o (P) transforms in the same way as o (P), i.e., as a smooth
section of the vector bundle

Hom(n*E,n*F).

The reader who actually checks this last statement will notice that og (P) is, canon-
ically, a section in the pull-back bundle over the space H* @& N™* instead of over
T*M. Of course, by choosing an arbitrary section N — TM we may identify
T*M =~ H* & N*, and think if og (P) simply as a section over T*M. While this
introduces some arbitrariness, the choice of section N — TM does not affect the
homotopy type of oy (P).

Also, for what follows it is worth remarking that o7 (P) is homogeneous of degree
d in &. Of course, the appropriate notion of homogeneity is the one associated to the
grading of the bundle H & N, where vectors in H have degree 1, and vectors in N
have degree 2.

We can now state our result.
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Theorem 1. Let P be a differential operator on a closed foliated manifold (M, H).
Suppose that the weighted principal symbol o g (P) is invertible (when & # 0). Then
P is a Fredholm operator and the Fredholm index of P is computed by the Atiyah—
Singer formula,

Index(P) = [

Ch(og (P)) A Td(M).
T*M

The remainder of this paper is devoted to a new proof of this result using the
tangent groupoid methodology. The paper is largely self-contained, and we develop
the necessary hypoelliptic theory from scratch.

3. Fredholm theory for subelliptic operators

One way to prove an operator P is Fredholm is to exhibit an explicit parametrix.
This is the usual approach, and it requires the elaboration of an appropriate pseudod-
ifferential calculus in which the parametrix exists. In this section we give a more
elementary proof of the fact that differential operators with invertible og (P) are
Fredholm, without recourse to the full pseudodifferential Heisenberg calculus (see
[BG] or [Ta]). The basic idea is that one can prove so-called a priori estimates for P
directly, without first constructing a parametrix. No matter how it is dressed up, the
crucial element in the proof of Fredholmness is the Fourier transform.

Proposition 2. Let P be a differential operator of weighted order d on a closed
foliated manifold (M, H). Ifthe weighted principal symbol og (P)(x, §) is invertible,
then for every differential operator A on M of weighted order < d, there exists a
constant C > 0 such that

[Aul < C([Pull + [lu]l)

for every smooth function u € C%°(M). The norms in the inequality are L*(M)
norms.

Proof. Fix some point m € M, and choose a neighborhood U € M with foliation
coordinates x € R? xR? suchthatx = Oatm € U. Having chosen these coordinates,
we write

P = Pm-f—ZXij + R.

We explain the notation. First, P, denotes the weighted principal part of P, with
coefficients frozen at m, i.e.,

Puw= Y aq(m)o*.
leell=d
Thus, Py, is a constant coefficient operator on R”, homogeneous for our weighted
grading. The remaining terms contain operators Q; of weighted order d, and a lower
order part R.
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Let u be a smooth function in U € M supported in a ball of small radius |x| < &.
Then

[Pl = | Pull < |(Pn — Plull < €31 Qjull + | Rul.

Taking Fourier transforms and applying the Plancherel theorem, one easily verifies
that invertibility of oy (P) implies the inequality

[Sull < C(l Pmull + llul).

for every constant coefficient operator S of weighted order < d (C depends on S,
but not on u). Likewise

ITull < &l Prull + Clull,

for constant coefficient operators T of weighted order < d — 1 (here C depends on
T and ¢).

Once these inequalities have been established for constant coefficient operators,
the same inequalities for operators S, 7" with smoothly varying coefficients follow
directly (assuming u is compactly supported). In particular, we have

[Aull < Cl Prmull + llell)

for u supported in |x| < &. We also find
[ Pmull = [ Pull < &3 Ci (| Pmull + llull) + &l Pmull + Csllul.
By taking ¢ sufficiently small so that
e(1+> Cj) < %
we see that there exists a (large) C > 0 such that
[Pl = ([ Pull < 31| Pmuel| + C flul]

for u compactly supported in the ball |x| < e. This, in turn, implies

[ Prmue]| < 2[| Pul| + 2C [|u]|.

In summary, for every pointm € M we can choose a neighborhood V' (corresponding
to |x| < ¢ for sufficiently small ¢) such that the desired inequality

[Aull < C([Pull + [lu]l)

holds for all u with supportin V' (where C now depends on V). The global inequalities
follow by a partition of unity argument and the compactness of M . O
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Proposition 2 suggests the definition of a modified Sobolev norm. Choose an open
cover {U;} of M, and for each U; a set of vector fields X},..., X 7 that are linearly
independent at all points of U;, and such that the first p vector fields X},..., X f
span H. Let {¢;} be a partition of unity subordinate to {U;}. Note that ¢; X ]’ is an
operator of order 1 fori = 1,..., p, and of weighted order 2 otherwise. For the
positive integer d we then define the weighted Sobolev space W¢ = W4 (M, H) on
the foliated manifold M as the completion of C °° (M) with respect to the norm

iy =5 X 1o X2ul2a )
J lell=d

As usual, with this norm W¢ is a Hilbert space, and the equivalence class of the norm
is independent of the choice of measure on M or the choice of cover, partition of
unity, or vector fields.

This definition allows us to formulate the following corollary of Proposition 2.

Corollary 3. Let P be a differential operator of weighted order d on a closed
foliated manifold (M, H). If the weighted principal symbol og (P) is invertible,
then the domain of the closure of P is the weighted Sobolev space W4, and the a
priori estimates of Proposition 2 extend by continuity to all u € we.

The Fredholm property of P now follows from the a priori estimates.

Theorem 4. Let P be a differential operator of weighted order d on a closed foliated
manifold (M, H). If the weighted principal symbol oy (P) is invertible, then the
closed operator P: L*>(E) — L?*(F) is Fredholm.

Proof. The proof is a standard argument from elliptic theory. We sketch the main
steps here. First, re-write the a priori estimates of P as follows,

< C(IPul® + [ul®) = C{(P*P + Du,u) = C|(P*P + 1)"/?u]*.

2
lullya <

In other words, the a priori estimates for P are equivalent to the boundedness of the
Hilbert space operator

(P*P + 1)"V2: L2(E) > W9 (E).

Observe that Wd(E ) is contained in the standard Sobolev space of order k, where
k is the largest integer such that k < d/2. Since invertibility of oz (P) implies that
P is at least of weighted order 2, we have k > 1. It follows by the standard Rellich
lemma that the operator (P* P + 1)~! is compact as an operator on L2(E).

To prove that P is Fredholm we must prove that (P P* + 1)~! is also compact as
an operator on L?(F). Since the weighted symbol of the formal adjoint P is simply
the matrix adjoint of og (P)(x, §), it is clear that P! has invertible symbol as well,
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and so by the same argument as above we deduce that (P**P* 4+ 1)~! is compact
on L2(F). This will finish the proof if we can show that the closure of the formal
adjoint P’ is identical to the Hilbert adjoint P*.

To see that this is correct, the necessary analytical step is to establish that on
L?-sections one may identify the weak action of P with the closure P of P. In
other words, if u € L?(E) and v € L?(F) and Pu = v weakly — in the sense of
distribution theory — then it follows that u € W% (E) and that Pu = v. (The proof
is an application of Friedrichs mollifiers; see for example [Roe].) Since by definition
P*u = v is equivalent to P'u = v weakly for u,v € L?, Corollary 3 implies that
the closure of P’ is indeed equal to the Hilbert space adjoint P* of P. O

4. The tangent groupoid for foliations

In this section we construct the tangent groupoid that is appropriate for the type
of operators we are studying here. The construction is very similar to, but subtly
different from the construction of the tangent groupoid for contact manifolds. For
the original idea of the tangent groupoid method, see [Co].

As before, (M, H) denotes a foliated closed manifold. Algebraically, the tangent
groupoid Tz M for (M, H) is simply the union of smooth groupoids

TeM =H& N U M x M x(0,1].

Here H @ N is conceived as a bundle of algebraically disjoint (graded) abelian groups,
while M x M x (0, 1] is a family of pair groupoids M x M parametrized by ¢ € (0, 1].
As usual, the point is that the algebraic groupoid Ty M can be equipped with the
structure of a smooth groupoid, by appropriately gluing together the two constituent
pieces.

In order to achieve the desired gluing, we ‘blow up’ the diagonal in M x M using
the graded dilations

§; RPTY 5 RPH: §,(x, y) = (tx,1%y)

in the first component of M. To be more specific, for an open subset U € M, choose
coordinates
(x,y): U > R xR?

compatible with the foliation, i.e., such that d;,...,d, span H. Such coordinates
induce coordinates (x, y,&,n7) € R? x R? x R? x R? on the total space of H & N
(restricted to U'). Then alocal chart for Ty M is obtained by extending the coordinates
(x.y.£,1n,0)on H@® N tocoordinates (x +17'&, y +1t72n,x,y,t)onU xU x (0, 1].
One could say that the tangent groupoid makes rigorous the idea that H & N is an
infinitesimal tubular neighborhood of the diagonal of M x M, with the added subtlety
that we have modified the usual notion of the ‘order’ of infinitesimals, conform the
weighted grading of our calculus.
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It must be shown that different choices of local coordinates on M induce a consis-
tent smooth structure on Tz M . This follows from a simple Taylor expansion. Specif-
ically, to study the effect of a change of coordinates on M, let ¢: RPT4 — RPT4
be a diffeomorphism that preserves the foliation structure and that fixes the origin,
i.e., $(0,0) = (0, 0). The fact that ¢ fixes the foliation implies that there are smooth
functions f: R?*4 — R? and g: R? — RY such that

P(x.y) = (f(x.y). g)).

The point is that g is independent of x. A first order Taylor expansion gives
¢(tx,1%y) = (Df (tx.1%y) + O(t?), Dg(t*y) + O(t))
= (tDf(x,0) + O(t*),1*Dg(y) + O(*)),

which implies
87 '¢8:(x.y) = (Df(x.0). Dg(y)),

which is the transformation law for coordinates on H @ N . This simple fact guarantees
that the smooth structure on Ty M is well-defined. It also explains why we must take
H @ N as the groupoid at ¢ = 0, instead of TM.

5. The topological index

The tangent groupoid encodes, in a very nice way, the notion that the (noncommuta-
tive) algebra of operators on M quantizes the (commutative) algebra of symbols on
T*M.

Recall that the reduced C*-algebra of a smooth groupoid § is the completion
of the convolution algebra C£°(¥) in a suitable norm. The C*-norm is defined as
the supremum of the operator norms in the regular representations of ¥. Following
Connes’ argument ([Co]), the restriction of smooth functions on Tg M tothet = 0
fiber H & N induces a *-homomorphism,

70: C*(TgM) - C*(H® N) = Co(H* ® N*).
The kernel of this map is the contractible C*-algebra
C*(M x M x (0,1]) = Co((0,1)  C*(M x M).
Therefore, the induced map in K-theory is an isomorphism
7o Ko(C*(TygM)) = K°(H* @ N*) = KO(T*M).
Restriction to the ¢ = 1 fiber induces the x-homomorphism

71 C*(TyM) — C*(M x M) = K (L*(M)).
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Combining the two maps, we obtain what we shall call the topological index for the
foliation (M, H),

Indg = momy': K9(T*M) — Ko(K) = Z.

Now, an invertible weighted principal symbol o (P) defines a compactly supported
K-theory element

[7*E,n*F, o5 (P)] € K°(T*M)

in exactly the same way that an elliptic symbol does. We have two vector bundles 7* E
and 7* F over T*M , and an isomorphism o7 (P ) between them that is defined outside
a compact set. Such a triple, by definition, determines an element in K°(T*M).

We will prove two things. First, we will show that our topological index Indg ap-
plied to the K-theory class [og (P )] computes the Fredholm index for the hypoelliptic
operator P (Theorem 8§ below). Secondly, we will show that the topological index is
in fact independent of the foliation (Theorem 9). Thus, the topological index Indg for
hypoelliptic operators associated to a foliation is the same as the topological index
computed by Atiyah and Singer for elliptic operators. Theorem 8 and Theorem 9
together prove our index formula Theorem 1.

6. The index as a graph projection

Before constructing the relevant elements in K-theory, we quickly review the notion of
agraph projection. Let T € End (V) be alinear endomorphism of a finite dimensional
complex inner product space V. The graph projection er of T is the orthogonal
projection of vectors in V' @ V onto the graph {(v,Tv) € V& V}of T. Itis an
elementary exercise in linear algebra to derive a formula for this projection as

_(Q+T*T)Y A+ T*T)IT*
T=\TA+T*T)Y TA + TFT)IT*

_(a+T*T)Y T*Q+TTH!
“\ra+1m7) 11— +TTH)

More generally, if T is a closed unbounded operator in a Hilbert space #, then the
graph projection of 7 is a bounded operator on # @ #, and is computed by the same
formula.

To see the relevance to index theory of this construction, consider a Fredholm
differential operator P : L?(E) — L?(F) that satisfies a priori estimate as in Propo-
sition 2. The graph projection of P is an operator on the Hilbert space L?(E )@ L?(F).
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The a priori estimates (together with the Rellich lemma in Sobolev theory) imply that
(1+P*P)' e X(L*(E))
P(1+ P*P)"! € X(L*(E), L*(F)).
(1+PP*)™' e X(L*(F)),
P*(1+ PP*)"! € X(L*(F),L*(E)).

Taken together these expressions amount to the statement that

ep — (g ‘1)) e X(LX(E @ F)).
Thus, we can define a K-theory element

[P]=ler]©[(§7)] € Ko(X).

The significance of this construction is clear from the following proposition.

Proposition 5. Under the isomorphism
Ko(K)=Z

that maps compact projections to their rank, the element [P] constructed above
corresponds to the Fredholm index of P.

Proof. The graph projections e; of the scaled operators P, ¢t > 1 form a norm
continuous family, withe; = ep. Ast — oo, this homotopy of projections converges
in norm to the projection

_ ([Ker P] 0
€oo—( 0 1—[KerP*])'

Here [Ker P] and [Ker P *] denote the projections onto the kernels of (the closure of)
P and P*, respectively. Thus, we have an equivalence of K-theory elements

erl @ [N T=[ (™" ppey) | O [(§9)] = [Ker P] = [Ker P¥]. O

The beauty of the preceding construction is that we can also apply it to the weighted
principal symbol og (P)(x,§) of P. Let ey, (p) denote the family of graph projec-
tions of oy (P), conceived as a smooth projection-valued section in the bundle of
x-algebras

End(n*E & n* F),

over H* @ N*. We obtain an analytic K-theory element

loa(P)] = leoy (] ©[(89)] € Ko(Co(H* & N¥)).
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The crucial point this time is that invertibility of oz (P) for & # 0 guarantees that all
the sections

(1+0*0)"", o(l+o*0)™", (1+00"7", o*(1+o00%)7"!

vanish as & — oo. In other words, all these expressions represent Cy-sections over
the locally compact space H* @ N*, so that

€op (P) — (8 (1)) € Co(H* ® N*,End(n*E & n* F)),
as required.

Proposition 6. Under the canonical isomorphism between analytic and topological
K-theory
Ko(Co(H*® N*)) = KY(H*® N*)
the element [og (P)] constructed above corresponds to the triple
[n*E,7n*F,0(P)]
in compactly supported K-theory.

Proof. Let G denote the range of the projection e,,, (p) as a sub-bundle of 7*E &
n*F, and let

1:G > n*F
denote the restriction of the map n*E @ n*F — n*F to G. Clearly, 7 is an
isomorphism for £ # 0.

The invertibility of oz (P) implies that as § — oo the fiber of G converges to the
fiber of 7* F, and therefore T converges to the identity. To see this, simply let § — oo
in the formula for the graph projection of o (P). Thus G and 7n* F are identical
sub-bundles of 7* E @ 7* F at an appropriately chosen boundary of H* & N*. Tt
follows that the formal difference

o] ©[(69)]

in analytic K-theory corresponds in compactly supported K-theory to the triple
[G,n*F, 1] € K°(H* @ N*).

Now G is isomorphic to 7 * E by the restriction to G of the projection p: E®F — E.
Then oy (P) = 7o p~! shows that the cycles [G, 7* F, t] and [(n*E, n*F, oy (P)]
are isomorphic. O

We see that essentially the same construction gives the Fredholm index of P
(as a K-theory class), and an element in topological K-theory K°(T*M) for the
principal symbol og (P). Our next step is to further unite these two objects by
considering the graph projection of a single operator P on the tangent groupoid
Ty M that encompasses both the operator P and its principal symbol o (P).



The index of hypoelliptic operators on foliated manifolds 119

7. K -theoretic proof of the index theorem

The tangent groupoid provides the precise geometric context in which to combine the
differential operator P and its principal symbol oz (P) into a single operator. From
this unified operator P we can construct, by the same analytic method employed in the
previous section, a single element in Ko(C*(Tg M)). This single K-theory element
is really a continuous deformation of the symbol class [0z (P)] € K°(T*M) to the
Fredholm index of P (as a class in Ko(K)). The index theorem follows as an easy
corollary.

In order to construct a differential operator P on Tz M that smoothly connects
the principal symbol (at # = 0) with the operator P (att = 1), the principal symbol
is best thought of as a smooth family { P,, } of constant coefficient operators

Pn= > ag(m)d®
lal=d

on the fibers of the vector bundle H,, & N,,. In the language of smooth groupoids,
the principal symbol corresponds to a right-invariant family on the groupoid H @& N.

If § is a smooth groupoid with base §© and source and range maps r,s: § —
€O then a right-invariant family 7" of differential operators is, by definition, a
collection T = {T}} parametrized by base elements b € §©, such that (1) each T},
is a differential operator on the source fiber &, = s~ (b); (2) the coefficients of the
family Tj are smooth functions of § (equivalently, 7 is a differential operator on §)
and (3) the family is invariant under right-multiplication Ry : §,,) — () with
elements y € §.

Applied to the groupoid ¢ = H @ N with base §© = M, the fibers §,, =
s~Y(m) are just the fibers H,, @ N,, of the vector bundle. Then a right-invariant
family is simply a collection of operators T;,, m € M, such that each T}, is a constant
coefficient operator on H,, & N,,, with coefficients that are smooth functions on M.
Clearly, the principal symbol corresponds to such a right-invariant family.

The operator P itself can also be conceived as a right-invariant family, this time
on the pair groupoid & = M x M. The base of the pair groupoid is again § @ = M,
and each fiber §,, = s~!(m) = M x {m} is simply a copy of M. (We adopt the
usual convention that arrows in the pair groupoid point from right to left, so that
s(m,m’y = m’, r(m,m’) = m.) In this case, right invariance simply means that the
operator is the same on each copy of M. In other words, a right invariant family
on M x M corresponds simply to a differential operator on the first factor M in the
Cartesian product.

Now the tangent groupoid is constructed precisely in such a manner that P and
{ Py, } can be combined into a single right-invariant family P on the tangent groupoid
Ty M. For elements (m,t) € M x [0, 1] in the base of Ty M we take

[P(m’,) = [dP,
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if t # 0, while for ¢t = 0 we let
|P(m,0) = Pm.

The smooth structure on Ty M is constructed precisely in such a manner that the
coefficients of this family [P are smooth functions on Tz M.

The construction outlined so far is valid for any differential operator P (and can
easily be extended to the appropriate class of pseudodifferential operators). The
following proposition is the crucial ingredient in the proof of the index theorem, and
it relies on the invertibility of o (P) and the Fredholmness of P.

Proposition 7. There exists an analytic K-cycle
[P] € Ko(C*(TuM))
that restricts, at t = 0, to the cycle

loa(P)] = leoy )] —[(§9)] € KO(H* @ N*),

and that att = 1 restricts to
[P1=ler]—[(39)] € Ko(X).

The cycle [[P] is, of course, constructed from the graph projections e, ;) for the
operators [P, sy, by the method explained in the previous section. In other words, if
we let

ep = {e(m,t)v (m7t) €M x [O’ 1]}

denote the entire family of graph projections, then

[Pl =les] © [ (1) ]-

The idea is that the family of projections e(m,) in the Hilbert spaces L?($(n )
actually corresponds to the regular representation of a single element in (a matrix
algebra over the unitalization of) the C*-algebra C *(Tgy M). It is remarkably tedious
to prove this. The fact that P is a smooth family is not sufficient. It is, in particular,
the continuity at f = 0 of the family e, ;) that is difficult to verify. In some sense,
this is the ‘hard nut’ at the heart of the index theorem that is not yet cracked by the
machinery presented here. In the last section of [VE1] a detailed proof is presented,
and we refer the interested reader to that paper.

An immediate corollary of Proposition 7 is the K-theoretic version of the index
theorem.

Theorem 8. Let P be a differential operator on a closed foliated manifold (M, H)
with invertible principal symbol og (P). Then

Index P = Indg ([og (P)]).
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Proof. By definition, Indg is the composition of two maps: (1) the inverse of the
isomorphism
Ko(C*(TygM) = Ko(C*(H & N))

induced by restriction to the ¢ = 0 fiber in Ty M, and (2) restriction at t = 1.
But Proposition 7 states precisely that [og (P)] is the restriction at ¢ = 0 of a K-
theory element in Ko(C*(Tgy M)) that, in turn, restrict to the Fredholm index of P
atr = 1. O

All that is left to prove is that the topological index Indg constructed here is
identical to the topological index of Atiyah and Singer. That proof is the content of
the next and final section.

8. The computation of the topological index

We defined a topological index for a foliation (M, H)
Indg: K°(H*® N*) > Z
by means of the tangent groupoid Tg M. Any choice of section N — TM induces
the same canonical isomorphism
K°(H* ® N*) = K°(T*M).
It is therefore hardly surprising that there is only one topological index.

Theorem 9. The topological index
Indg : K9(T*M) - Z
is independent of the foliation H.

Proof. We enlarge the parabolic tangent groupoid by introduction of a second pa-
rameter s € [0, 1]. This larger groupoid is, in fact, the adiabatic groupoid of Ty M.
For a general smooth groupoid §, the adiabatic groupoid is a groupoid fibered over
s € [0, 1] that ‘blows up’ a tubular neighborhood of the space of units ¥ ©®ing, gener-
alizing the way that Connes’ tangent groupoid blows up the diagonal in§¥ = M x M .
(For a general discussion of this construction, see for example [Ni]).

Recall that we can think of Tz M as a family of groupoids over the unit interval
[0, 1], where at = 0 we have H @ N, while ateach t > 0 we have a copy of M x M.
Algebraically, the adiabatic groupoid Tz M is the union of a family of groupoids
Y1.5) parametrized by (7, s) € [0, 1]?, and defined as follows:

Gus5) =M xM fort>0,s5>0,

G40 =TM fort > 0,
Y05 =H@®N forsel0,1].
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Since each groupoid §(; s has unit space M, the unit space of the adiabatic groupoid
Ty M is the manifold with corners M x [0, 1] x [0, 1]. Schematically:
(t.s) =(0,0) ~~H@N 87" TM
s—1 s TM

HeN " Mx M < (t9) = (1),
t

For a constant value of s, the ‘blow-up’ along the ¢-axis is conform the graded dilations
] t_l, while for a constant value of ¢, the ‘blow-up’ (following the general construction
of an adiabatic groupoid) is simply by the factor s~!. Observe that the = 1 edge
contains a copy of the usual tangent groupoid T M of Connes. In the present context
it can be conceived as the tangent groupoid for the degenerate foliation H = TM .

The point of introducing the groupoid Ty M ad s that it gives rise to acommutative
diagram in K-theory, induced by restriction of functions on Tz M to each of the
four corners of the square [0, 1]2. We proceed step-by-step.

Restriction of elements in C*(Ty M) to the (¢, s) = (0, 0) corner,

C*(TuM™) — C*(%0.0) = Co(H* & N*),
induces an isomorphism in K-theory,
Ko(C*(TgM™) = K°(H* @& N*).

To see this, let & denote the groupoid that is the union of the # = 0 and s = 0 edges
in Ty M. The restriction map C*(Tyg M) — C*(%,) induces an isomorphism
in K-theory, because the kernel of this map is the contractible ideal Cy((0, 1], K).
But C* (%)) itself contracts to C*(§(9,0)) = C*(H ® N).

Now let o denote restriction to the edge s = 1,

a: CH(TuM*) — C*(TuM),
and B restriction to the edge 1 = 1,
B: C*(TyM™) — C*(TM).
Further restriction to the corner (z,s) = (1, 1) gives two x-homomorphisms,
¢: C*(TygM) - C*(M xM), ¥:C*(TM)—C*(M xM).

We obtain a commutative diagram,

Ko(C*(Tgyg M™)) b Ko(C*(TM))

: lw

Ko(C*(TpM)) —— Ko(C™(M x M)).
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But ¢ is just our topological index Indg, while ¥ is the topological index for the

degenerate case H = TM. It is, therefore, just the topological index of Atiyah—

Singer, and we denote it by Indras. Moreover, a simple inspection of the definition

of Ty M ™ shows that the maps « and 8 induce the obvious isomorphisms in K-theory.
Thus, our diagram simplifies to

K°(H* ® N*) —= K%T*M)

E\L llndTM

K°(H* ® N*) zZ,

Ind gy

which shows that under the canonical isomorphism K°(H* @ N*) =~ K°(T*M) the
topological index Indg is equal to the topological index Indzs for elliptic operators.
O

Remark. A full proof of Theorem 1 of course requires that one computes the co-
homological formula for the index map Indrys. All we have shown here is that the
formula for our class of hypoelliptic operators is the same as that for elliptic opera-
tors. We can simply point to the third paper on index theory of elliptic operators by
Atiyah and Singer for a computation of the elliptic formula ([AS3]). Alternatively, an
independent proof of this formula following the tangent groupoid methodology can
be found in [Co]. (See also [Hi].)
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