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Abstract. We begin to study a sigma-model in which both the spacetime manifold and the
two-dimensional string world-sheet are made noncommutative. We focus on the case where
both the spacetime manifold and the two-dimensional string world-sheet are replaced by non-
commutative 2-tori. In this situation, we are able to determine when maps between such
noncommutative tori exist, to derive the Euler–Lagrange equations, to classify many of the
critical points of the Lagrangian, and to study the associated partition function.
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1. Introduction

Noncommutative geometry is playing an increasingly important role in physical field
theories, especially quantum field theory and string theory. Connes [6] proposed a
general formulation of action functionals in noncommutative spacetime, and there is
now a large literature on noncommutative field theories (surveyed in part in [11] and
[34]). Thus it seems appropriate now to study fully noncommutative sigma-models.

In our previous work [23], [24], [25], we argued that a consistent approach to
T-duality for spacetimes X which are principal torus bundles over another space
Z, with X possibly equipped with a non-trivial H-flux, forces the consideration of
“noncommutative” T-duals in some situations. A special case of this phenomenon
was also previously noted by Lowe, Nastase and Ramgoolam [22].

However, this work left open the question of what sort of sigma-model should
apply in the situation where the “target space” is no longer a space at all but a
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noncommutative C*-algebra, and in particular (as this is the simplest interesting
case) a noncommutative torus.

In classical sigma-models in string theory, the fields are maps g W † ! X , where
† is closed and 2-dimensional, and the target space X is 10-dimensional spacetime.
The leading term in the action is

S.g/ D
Z

†

krg.x/k2d�.x/; (1)

where the gradient and norm are computed with respect to suitable Riemannian (or
pseudo-Riemannian) metrics on † and X , � is volume measure on †, and critical
points of the action are just harmonic maps † ! X . Usually one adds to (1) a
Wess–Zumino term, related to the H-flux, an Einstein term, corresponding to general
relativity on X , and various other terms, but here we will focus on (1) (except in
Section 4.2, where the Wess–Zumino term will also come up).

The question we want to treat here is what should replace maps g W † ! X

and the action (1) when X becomes noncommutative. More precisely, we will be
interested in the case where we replace C0.X/, the algebra of continuous functions
on X vanishing at infinity, by a noncommutative torus. At the end of the paper, we
will also comment on what happens in the more complicated case, considered in [23],
[24], and [25], whereA D �0.Z;E/ is the algebra of sections vanishing at infinity of
a continuous field E of noncommutative 2-tori over a space Z, which plays the role
of reduced or “physically observable” spacetime. (In other words, we think of X as
a bundle over Z with noncommutative 2-torus fibers.)

Naively, since a mapg W † ! X is equivalent to a C*-algebra morphismC0.X/ !
C.†/, one’s first guess would be to consider �-homomorphisms A ! C.†/, where
† is still an ordinary 2-manifold. The problem with this approach whenA is compli-
cated is that often there are no such maps. For example, if A D C0.Z/˝A� with �
irrational (this is �0.Z;E/ for a trivial field E of noncommutative tori over Z), then
simplicity of A� implies there are no non-zero �-homomorphisms A ! C.†/. Thus
the first thing we see is that once spacetime becomes noncommutative, it is necessary
to allow the world-sheet † to become noncommutative as well.

In most of this paper, we consider a sigma-model based on �-homomorphisms be-
tween noncommutative2-tori. The first problem is to determine when such maps exist,
and this is studied in Section 2. The main result here is Theorem 2.7, which determines
necessary and sufficient conditions for existence of a non-zero �-homomorphism from
A‚ to Mn.A� /, when ‚ and � are irrational and n � 1. The main section of the pa-
per is Section 3, which studies an energy functional on such �-homomorphisms. The
critical points of the energy are called harmonic maps, and we classify many of them
when ‚ D � . We also determine the Euler–Lagrange equations for harmonic maps
(Proposition 3.9), which are considerably more complicated than in the commutative
case. Section 3.3 deals in more detail with the special case of maps from C.T 2/ to
a rational noncommutative torus. Even this case is remarkably complicated, and we
discover interesting connections with the field equations studied in [8]. Section 4
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deals with various variations on the theory, such as how to incorporate general met-
rics and the Wess–Zumino term, and what happens when spacetime is a “bundle” of
noncommutative tori and not just a single noncommutative torus. Finally, Section 5
discusses what the partition function for our sigma-model may look like.

The authors are very grateful to Joachim Cuntz, Hanfeng Li, and the referee of
this paper for several helpful comments. They are especially grateful to Hanfeng Li
for writing the appendix [20], which resolves two problems which were unsolved
when the first draft of this paper was written.

2. Classification of morphisms between irrational rotation algebras

In principle one should allow replacement of† by general noncommutative Riemann
surfaces, as defined for example in [28] (in the case of genus 0) and [26] (in the case
of genus > 1), but since here we take our spacetimes to be noncommutative tori, it is
natural to consider the “genus one” case and to replace C.†/ byA� for some � . This
case was already discussed and studied in [8], but only in the case of exceptionally
simple target spacesX . In fact, in [7] and [8], X was taken to be S0, i.e., the algebra
A was taken to be C ˚ C. (Or alternatively, one could say that they took A D C, but
allowed non-unital maps.)

We begin by classifying �-homomorphisms. We begin with the (easy) case of
unital maps.

Theorem 2.1. Fix ‚ and � in .0; 1/, both irrational. There is a unital �-homomor-
phism ' W A‚ ! A� if and only if ‚ D c� C d for some c; d 2 Z, c ¤ 0. Such a
�-homomorphism ' can be chosen to be an isomorphism onto its image if and only
if c D ˙1.

Proof. Remember from [29], [30] that projections in irrational rotation algebras are
determined up to unitary equivalence by their traces, that K0.A� / is mapped iso-
morphically to the ordered group Z C �Z � R by the unique normalized trace Tr
on A� , and that the range of the trace Tr on projections from A� itself is precisely
.Z C �Z/ \ Œ0; 1�.

Now a unital �-homomorphism ' W A‚ ! A� must induce an order-preserving
map '� of K0 groups sending the class of the identity to the class of the identity.
Since both K0 groups are identified with dense subgroups of R, with the induced
order and with the class of the identity represented by the number 1, this map can be
identified with the inclusion of a subgroup, with 1 going to 1. So‚, identified with a
generator ofK0.A‚/, must lie in ZC�Z, say,‚ D c�Cd for some c; d 2 Z. That
proves necessity of the condition, but sufficiency is easy, since Ac�Cd Š Ac� is the
universal C*-algebra on two unitaries U and V satisfying UV D e2�ic�V U , while
A� is the universal C*-algebra on two unitaries u and v satisfying uv D e2�i�vu. So
define ' by '.U / D uc , '.V / D v, and the required condition is satisfied. Note of
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course that if c D ˙1, then the images of U and V generate A� and ' is surjective,
whereas if jcj ¤ 1, then '� is not surjective (and so ' cannot be, either).

Remark 2.2. With notation as in Theorem 2.1, if c D ˙1, it is natural to ask if it
follows that any ' inducing the isomorphism onK0 is a �-isomorphism. The answer
is definitely “no”. In fact, by [14], Theorem 7.3, which applies because of [15], for
any given possible mapK0.A‚/ ! K0.A� /, there is a �-homomorphismA‚ ! A�

inducing any desired group homomorphism Z2 Š K1.A‚/ ! K1.A� / Š Z2,
including the 0-map. In particular, A� always has proper (i.e., non-invertible) unital
�-endomorphisms. (To prove this, take ‚ D � , and observe that if the induced map
on K1 is not invertible, then the endomorphism of A� cannot be invertible.) It is not
clear, however, whether or not such endomorphisms constructed using the inductive
limit structure of [15] can be chosen to be smooth.

But Kodaka [17], [18] has constructed smooth unital �-endomorphisms ˆ of
A� , whose image has nontrivial relative commutant, but only when � is a quadratic
irrational of a certain type. For a slight improvement on his result, see Theorem 3.7
below.

Note that the de la Harpe–Skandalis determinant� [10], with the defining property

�.ey/ D Tr.y/

2�i
mod Z C �Z;

maps the abelianization of the connected component of the identity in the unitary
group ofA� to C�=.ZC�Z/. Thomsen [35] has proved that everything in the kernel
of � is a finite product of commutators. But for the element e2�i� 2 ker�, we get
a stronger result. Since (by [15], [14]) A� has a proper �-endomorphism ' inducing
the 0-map onK1, that means there are two unitaries in A� (namely, '.U / and '.V /)
in the connected component of the identity in the unitary group with commutator
e2�i� .

As far as �-automorphisms of A� are concerned, some structural facts have been
obtained by Elliott, Kodaka, and Elliott–Rørdam [13], [19], [16]. Elliott and Rørdam
[16] showed that Inn.A� /, the closure of the inner automorphisms, is topologically
simple, and that Aut.A� /=Inn.A� / Š GL.2;Z/. However, if one looks instead
at smooth automorphisms, what one can call diffeomorphisms, one sees a different
picture. For � satisfying a certain Diophantine condition [13], Aut.A1

�
/ is an iterated

semidirect product, .U.A1
�
/0=T / Ì .T 2 Ì SL.2;Z//. This is not true without the

Diophantine condition [19], but it may still be that Aut.A1
�
/ D Inn.A1

�
/Ì SL.2;Z/

for all � . (See Elliott’s review of [19] in MathSciNet.)

Next we consider �-homomorphisms that are not necessarily unital. We can
attack the problem in two steps. If there is a non-zero �-homomorphism ' W A‚ !
M`.A� /, not necessarily unital, then '.1A‚

/ D p is a self-adjoint projection, and
im ' � pM`.A� /p, which is an algebra strongly Morita-equivalent to A� . By [30],
Corollary 2.6, pM`.A� /p must be isomorphic toMn.Aˇ / for some ˇ in the orbit of
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� under the action of GL.2;Z/ on R by linear fractional transformations. So we are
essentially reduced to the unital case covered in Theorem 2.1, except that we have
to allow for the possibility of passage to matrix algebras. (This would be the case
even if ` D 1, since there is not necessarily any relationship between n and `.) This
modification is covered in the following:

Theorem 2.3. Fix ‚ and � in .0; 1/, both irrational, and n 2 N, n � 1. There is a
unital �-homomorphism ' W A‚ ! Mn.A� / if and only if n‚ D c� C d for some
c; d 2 Z, c ¤ 0. Such a �-homomorphism ' can be chosen to be an isomorphism
onto its image if and only if n D 1 and c D ˙1.

Proof. The argument is similar to that for Theorem 2.1 since K0.Mn.A� // is again
isomorphic (as an ordered group) to Z C �Z, but this time the class of the identity is
represented by n, so that if both K0 groups are identified with subgroups of R in the
usual way, '� must be multiplication by n. Hence if ' exists, n‚ 2 Z C �Z.

For the other direction, suppose that we know that n‚ D c� C d . We need to
construct an embedding of A‚ into a matrix algebra over A� . By [29], Theorem 4,
A‚ D A.c�Cd/=n is strongly Morita-equivalent to An=.c�Cd/, which embeds unitally
intoA1=.c�Cd/ as in the proof of Theorem 2.1, andA1=.c�Cd/ is Morita-equivalent to
Ac�Cd Š Ac� , which embeds unitally into A� . Stringing things together, we get an
embedding ofA‚ into a matrix algebra overA� . (By [29], Proposition 2.1, when two
unital C*-algebras are Morita-equivalent, each one embeds as a corner into a matrix
algebra over the other.) So we get a non-zero �-homomorphism A‚ ! M`.A� /

(not necessarily unital), possibly with ` ¤ n. The induced map '� on K0 can be

identified with an order-preserving homomorphism from Z C
�

c�Cd
n

�
Z to Z C �Z.

But in fact we can determine this map precisely, using the fact [29], p. 425, that the
Morita equivalence from A.c�Cd/=n to An=.c�Cd/ is associated to multiplication by
n=.c� C d/, and the Morita equivalence from A1=.c�Cd/ to Ac�Cd is associated to
multiplication by c� C d . Thus the composite map '� is multiplication by n, and
sends the class of 1A‚

to n, which is the class of 1n inK0.M`.A� //, where necessarily
` � n. Since (by [30]) projections are determined up to unitary equivalence by their
classes inK0, we can conjugate by a unitary and arrange for ' to map A‚ unitally to
Mn.A� /.

For the last statement we use [29], Theorem 3, which says that A‚ can be iso-
morphic to Mn.A� / only if n D 1.

We can now reorganize our conclusions in a way that is algebraically more ap-
pealing. First, it is helpful in terms of motivation to point out the following purely
algebraic lemma, which we suspect is known, though we do not know where to look
it up.

Lemma 2.4. Let M be the submonoid (not a subgroup) of GL.2;Q/ consisting
of matrices in M2.Z/ with non-zero determinant, i.e., of integral matrices having
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inverses that are not necessarily integral. ThenM is generated by GL.2;Z/ and by
the matrices of the form

�
r 0
0 1

�
, r 2 Z X f0g.

Proof. First we recall that applying an elementary row or column operation to a
matrix is the same as pre- or post-multiplying by an elementary matrix of the form�

1 ?
0 1

�
or

�
1 0
? 1

�
. So it will suffice to show that, given any matrix B 2 M , we can

write it as a product of matrices that reduce via elementary row or column operations
(over Z) to things of the form

�
? 0
0 1

�
. The proof of this is almost the same as for [31],

Theorem 2.3.2. Write B D
�

b11 b12

b21 b22

�
. Since B is nonsingular, b11 and b21 cannot

both be 0. Suppose that bj1 is the smaller of the two in absolute value (or if the
absolute values are the same, choose j D 1). Subtracting an integral multiple of the
j -th row from the other row, we can arrange to decrease the minimal absolute value
of the elements in the first column. Proceeding this way and using the Euclidean
algorithm, we can reduce the first column to either

�
r
0

�
or

�
0
r

�
(with r the greatest

common divisor of the original b11 and b21). Since we can, if necessary, left multiply
by the elementary matrix

�
0 1�1 0

�
, we can assume the first column has been reduced

to
�

r
0

�
, and thus that B has been reduced to the form�

b11 b12

0 b22

�
D

�
1 0

0 b22

� �
1 b12

0 1

� �
b11 0

0 1

�
:

And finally,
�

1 0
0 b22

�
is conjugate to

�
b22 0
0 1

�
under the elementary matrix

�
0 1�1 0

�
.

Remark 2.5. We can relate this back to the proofs of Theorems 2.1 and 2.3. Elements
of M lying in GL.2;Z/ correspond to Morita equivalences of irrational rotation
algebras [29], Theorem 4. Elements of the form

�
r 0
0 1

�
act on � by multiplication by r ,

and correspond to inclusions Ar� ,! A� . Lemma 2.4 says that general elements of
M are built out of these two cases. This motivates the following Theorem 2.7.

Remark 2.6. The appearance of the monoid GL.2;Z/ � M � GL.2;Q/, and
also the statement of Lemma 2.4, are somewhat reminiscent of the theory of Hecke
operators in the theory of modular forms, which also involve the action of the same
monoid M (on GL.2;R/=GL.2;Z/).

Theorem 2.7. Fix ‚ and � in .0; 1/, both irrational. Then there is a non-zero �-
homomorphism ' W A‚ ! Mn.A� / for some n, not necessarily unital, if and only if
‚ lies in the orbit of � under the action of the monoid M (of Lemma 2.4) on R by
linear fractional transformations. The possibilities for Tr.'.1A‚

// are precisely the
numbers t D c� C d > 0, c; d 2 Z such that t‚ 2 Z C �Z. Once t is chosen, n
can be taken to be any integer � t .

Proof. First suppose that ' exists, and let p D '.1A‚
/. Then

'� W K0.A‚/ ! K0.Mn.A� // D K0.A� /
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must be an injection of ordered groups sending 1 2 K0.A‚/ to t D Tr.p/ D c�Cd 2
ZC�Z. Since both groups are dense subgroups of R, this map must be multiplication
by t and must send ‚ to something in Z C �Z. So we have t‚ D a� C b for some
a; b 2 Z, and

‚ D a� C b

c� C d
D

�
a b

c d

�
� �:

The matrix
�

a b
c d

�
has integer entries, and cannot be singular since the numerator and

denominator are both non-zero (being Tr.'.q// and Tr.'.1//, respectively, where q
is a Rieffel projection in A‚ with trace ‚), and .a b/ and .c d/ cannot be rational
multiples of each other (as that would imply ‚ is rational). Hence

�
a b
c d

�
lies in M ,

and t is as required. And since p � 1n, t � n.
To prove the converse, suppose that A D �

a b
c d

� 2 M and .c� C d/‚ D a� C b.
Let t D c� C d and choose any integer n � t . Since the range of the trace on
projections inMn.A� / is Œ0; n�\ .Z C �Z/, we can choose a self-adjoint projection
p 2 Mn.A� /with Tr.p/ D t . The subalgebra pMn.A� /p ofMn.A� / is a full corner
(sinceA� is simple), hence is strongly Morita-equivalent toA� , hence is �-isomorphic
to Mk.Aˇ / for some ˇ in the orbit of GL.2;Z/ acting on � [30], Corollary 2.6. In
fact, we can compute k and ˇ; k is the (positive) greatest common divisor of c and
d , and ˇ is obtained by completing the row vector

�
c
k

d
k

�
to a matrix

�
a0 b0
c
k

d
k

�
2 GL.2;Z/

and then letting this act on � . By Theorem 2.3, there is a �-homomorphism ' W A‚ !
pMn.A� /p Š Mk.Aˇ / with '.1A‚

/ D p if and only if k‚ 2 Z C ˇZ. But, by
assumption,

k‚ D k
a� C b

c� C d
D a� C b

c
k
� C d

k

;

while

ˇ D a0� C b0
c
k
� C d

k

with

�
a0 b0
c
k

d
k

�
2 GL.2;Z/:

Note that the transpose matrix

�
a0 c

k

b0 d
k

�

also lies in GL.2;Z/. So we can we can solve for integers r and s such that

�
a0 c

k

b0 d
k

� �
r

s

�
D

�
a

b

�
:
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That says exactly that

rˇ C s D r � a
0� C b0

c
k
� C d

k

C s

D r.a0� C b0/C s. c
k
� C d

k
/

c
k
� C d

k

D .a0r C c
k
s/� C .b0r C d

k
s/

c
k
� C d

k

D a� C b
c
k
� C d

k

D k‚;

as required.

3. Harmonic maps between noncommutative tori

3.1. The action and some of its minima for maps between noncommutative tori.
In this section we consider the analogue of the action functional (1) in the context of
the �-homomorphisms classified in the last section. For simplicity, consider first of
all a unital �-homomorphism ' W A‚ ! A� as in Theorem 2.1. As before, denote the
canonical generators of A‚ and A� by U and V , u and v, respectively. The natural
analogue of S.g/ in our situation is

L.'/ D Tr.ı1.'.U //
�ı1.'.U //C ı2.'.U //

�ı2.'.U //

C ı1.'.V //
�ı1.'.V //C ı2.'.V //

�ı2.'.V ///:
(2)

(Except for a factor of two, this is the same as the sum of the “energies” of the unitaries
'.U / and '.V / in A� , as defined in [32], §5.) Here ı1 and ı2 are the infinitesimal
generators for the “gauge action” of the group T 2 on A� . More precisely, ı1 and ı2

are defined on the smooth subalgebra A1
�

by the formulas

ı1.u/ D 2�iu; ı2.u/ D 0; ı1.v/ D 0; ı2.v/ D 2�iv:

The derivations ı1 and ı2 play the role of measuring partial derivatives in the two
coordinate directions inA� (which, we recall, plays the role of the world-sheet†), the
product of an operator with its adjoint has replaced the norm squared, and integration
over † has been replaced by the trace. Note for example that if ‚ D � and ' D Id,
the identity map, then we obtain

L.Id/ D Tr.ı1.u/
�ı1.u/C 0C 0C ı2.v/

�ı2.v// D 8�2:
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More generally, for the �-automorphism 'A W u 7! upvq , v 7! urvs , with A D�
p q
r s

� 2 SL.2;Z/, we obtain

L.'A/ D Tr.ı1.u
pvq/�ı1.u

pvq/C ı2.u
pvq/�ı2.u

pvq/

C ı1.u
rvs/�ı1.u

rvs/C ı2.u
rvs/�ı2.u

rvs//

D 4�2.p2 C q2 C r2 C s2/:

(3)

Conjecture 3.1. The value (3) of L.'A/ is minimal among all L.'/, ' W A1
�

� a
�-endomorphism inducing the matrix A 2 SL.2;Z/ on K1.A� / Š Z2.

Note that this conjecture is a close relative of [32], Conjecture 5.4, which deals
with maps C.S1/ ! A� instead of maps A‚ ! A� . That conjecture said that the
multiples ofumvn minimize the energy of the unitaries in their connected components.
Since L.'/ is twice the sum of the energies of '.U / and '.V /, [32], Conjecture 5.4,
immediately implies the present conjecture. The following results provide support
for Conjecture 3.1.

Theorem 3.2. Conjecture 3.1 is true if ' W A1
�

� maps u to a scalar multiple of
itself. (In this case, p D s D 1 and q D 0.) The minimum is achieved precisely
when '.v/ D �urv, � 2 T .

Proof. Let '.u/ D 	u and '.v/ D w, where 	 2 T , w is unitary and smooth, and
(necessarily) uw D e2�i�wu. Since also uv D e2�i�vu, it follows that wv� is a
unitary commuting withu. Since the �-subalgebra generated byu is maximal abelian,
that implies that w D f .u/v, where f W T ! T is continuous, and the parameter
r is the winding number of f . Now we compute that ı1.f .u/v/ D 2�if 0.u/uv,
ı2.f .u/v/ D 2�if .u/v, and hence

L.'/ D Tr.ı1.u/
�ı1.u/C ı2.u/

�ı2.u/

C ı1.f .u/v/
�ı1.f .u/v/C ı2.f .u/v/

�ı2.f .u/v//

D 4�2 Tr.2C v�u�f 0.u/�f 0.u/uv/
D 4�2 Tr.2C f 0.u/�f 0.u//:

(4)

We can pull f W T ! T back to a function Œ0; 1� ! R via the covering map z D
e2�it , and then the winding number of f (as a self-map of T ) translates into the
difference f .1/ � f .0/ (for f defined on Œ0; 1�). The problem of minimizing (4) is
thus the same as that of minimizing

R 1

0
jf 0.t/j2 dt in the class of smooth functions

f W Œ0; 1� ! R with f .1/ � f .0/ D r . Since such a function can be written as
f .t/ D f .0/C t r C g.t/, with g.0/ D g.1/ D 0 and f 0.t/ D r C g0.t/, we have

Z 1

0

jf 0.t/j2 dt D
Z 1

0

.r2 C 2rg0.t/C g0.t/2/ dt D r2 C kg0k2
L2 � r2;
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with equality exactly when g0 	 0, i.e., g constant, and thus g 	 0 since g.0/ D 0.
Thus equality occurs when (going back to the original notation) f .u/ D �ur , i.e.,
'.v/ D �urv for some constant � 2 T .

We now give a complete proof of Conjecture 3.1 for �-automorphisms, in the
case where the Diophantine condition of [13] is satisfied. The same proof works in
general modulo a technical point which we will discuss below.

Theorem 3.3. Conjecture 3.1 is true for �-automorphisms, assuming the Diophan-
tine condition of [13] is satisfied. In other words, if ' is an �-automorphism of
A1

�
inducing the map given by A 2 SL.2;Z/ on K1.A� /, and if � satisfies the

Diophantine condition of [13], then

L.'/ � L.'A/;

with equality if and only if '.u/ D �'A.u/, '.v/ D 	'A.v/, for some �;	 2 T .

Proof. What we use from [13] is that the hypothesis on � ensures that we can write
'.u/ D �w'A.u/w

�, '.v/ D 	w'A.v/w
�, for some �;	 2 T and for some unitary

w 2 A1
�

. Suppose that A D �
p q
r s

� 2 SL.2;Z/. Since L.'/ is a sum of four terms,
all of which have basically the same form, it will be enough to estimate the first term;
the estimate for the other three is precisely analogous. We find that

ı1.'.u// D ı1.�wu
pvqw�/

D �.ı1.w/u
pvqw� C w2�ipupvqw� C wupvqı1.w/

�/;

so the first term in L.'/, Tr
�
ı1.'.u//

�ı1.'.u//
�

is a sum of nine terms, three “princi-
pal” terms and six “cross” terms. Note that N� in ı1.'.u//

� cancels the � in ı1.'.u//,
so we can ignore the � altogether. The three principal terms are

Tr..ı1.w/u
pvqw�/�.ı1.w/u

pvqw�/
C .w2�ipupvqw�/�.w2�ipupvqw�/
C .wupvqı1.w/

�/�.wupvqı1.w/
�//

D 2Tr.ı1.w/
�ı1.w//C 4�2p2;

(5)

where in the last step we have used (several times) the invariance of the trace under
inner automorphisms.
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Now consider the six cross-terms. These are

Tr..ı1.w/u
pvqw�/�.w2�ip upvqw�/

C .ı1.w/u
pvqw�/�.wupvqı1.w/

�/
C .w2�ip upvqw�/�.ı1.w/u

pvqw�/
C .w2�ip upvqw�/�.wupvqı1.w/

�/
C .wupvqı1.w/

�/�.ı1.w/u
pvqw�/

C .wupvqı1.w/
�/�.w2�ip upvqw�//

D Tr.2�ip ı1.w/
�w C w

�
upvq

��
ı1.w/

�wupvqı1.w/
�

� 2�ip w�ı1.w/ � 2�ip w ı1.w/
�

C ı1.w/.u
pvq/�w�ı1.w/u

pvqw� C 2�ip ı1.w/w
�/

D Tr.w.upvq/�ı1.w/
�wupvqı1.w/

�

C ı1.w/.u
pvq/�w�ı1.w/u

pvqw�/:

(6)

(Note the use of “integration by parts”, [32], Lemma 2.1.) Now we put (5) and (6)
together. We obtain

Tr.ı1.'.u//
�ı1.'.u/// D 4�2p2 C Tr.2ı1.w/

�ı1.w/

C w.upvq/�ı1.w/
�wupvqı1.w/

�

C ı1.w/.u
pvq/�w�ı1.w/u

pvqw�/:

We make the substitutions T D ı1.w/
�w and W D upvq . Note that W is unitary.

We obtain

Tr.ı1.'.u//
�ı1.'.u///

D 4�2p2 C Tr.T T � C T �T CW �T W T C T �W �T �W /
(using invariance of the trace under cyclic permutations)

D 4�2p2 C Tr.T �WW �T C T �W T �W � CW TW �T CW T T �W �/
D 4�2p2 C Tr..W �T C T �W �/�.W �T C T �W �//
� 4�2p2:

Furthermore, equality holds only if W �T C T �W � D 0, i.e., T D �W T �W �.
Similar estimates with the other three terms in the energy show that L.'/ � L.'A/ D
4�2.p2 C q2 C r2 C s2/, with equality only if ıj .w/�w D �Ww�ıj .w/W � and
ıj .w/

�w D �W1w
�ıj .w/W �

1 , where W1 D urvs . (The conditions involving W1

come from the analysis of the last two terms in L.'/, which use the second row
of the matrix A.) So if equality holds, W and W1 both conjugate w�ıj .w/ to the
negative of its adjoint. In particular,w�ıj .w/ commutes withW �W1. But this unitary
generates a maximal abelian subalgebra, so w�ıj .w/ is a function f of W �W1. So
w�ıj .w/ D f .W �W1/ with Wf .W �W1/W

� D �f .W �W1/
�. One can check that
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these equations can be satisfied only if f D 0. Indeed, we have the commutation
relation WW1 D e2�i�W1W , so

W.W �W1/
nW � D .W1W

�/n D e2�in� .W �W1/
n:

If we expand f in a Fourier series, f .W �W1/ D P
n cn.W

�W1/
n, then we must

have

�f .W �W1/
� D � P

n

cn.W
�W1/

�n

D � P
n

c�n.W
�W1/

n

D P
n

cnW.W
�W1/

nW �

D P
n

cne
2�in� .W �W1/

n:

Equating coefficients gives

�c�n D cne
2�in� ;

and replacing n by �n,

�cn D c�ne
�2�in� :

These give
�c�n D cne

�2�in� D �c�ne
�4�in� ;

so all cn must vanish for n ¤ 0. Thus f is a constant equal to its negative, i.e.,
f D 0, so ı1.w/ D 0 and ı2.w/ D 0, w is a scalar, and ' differs from 'A only by a
gauge transformation. That completes the proof.

Remark 3.4. Note that the same proof always shows that L.'A/ � L.'/ for any
' in the orbit of 'A under gauge automorphisms and inner automorphisms, and
thus, by continuity, under automorphisms in the closure (in the topology of point-
wise C1 convergence) of the inner automorphisms. So if the conjecture of Elliott
that Aut.A1

�
/ D Inn.A1

�
/ Ì SL.2;Z/ mentioned earlier is true, the Diophantine

condition in Theorem 3.3 is unnecessary.

Remark 3.5. After the first draft of this paper was written, Hanfeng Li succeeded
in proving [32], Conjecture 5.4, and Conjecture 3.1 (in complete generality). His
solution is given in the appendix [20].

Remark 3.6. Of course, so far we have neglected smooth proper �-endomorphisms
of A� , which by [17], [18] certainly exist at least for certain quadratic irrational
values of � . We do not know if one can construct such endomorphisms to be energy-
minimizing. But we can slightly improve the result of [18] as follows.
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Theorem 3.7. Suppose that � is irrational. Then there is a (necessarily injective) uni-
tal �-endomorphism ˆ W A� ! A� , with image B ¨ A� having non-trivial relative
commutant and with a conditional expectation of index-finite type from A� onto B
if and only if � is a quadratic irrational number. When this is the case, ˆ can be
chosen to be smooth.

Proof. The “only if” direction and the idea behind the “if” direction are both in [18].
We just need to modify his construction as follows. Suppose that � is a quadratic
irrational. Thus there exist a; b; c 2 Z with a�2 C b� C c D 0, a ¤ 0. Choose
d 2 Z with 0 < a� C d < 1, and let e be an orthogonal projection in A� with trace
a� C d . Since

.a� C d/� D a�2 C d� D .d � b/� � c 2 Z C �Z;

by Theorem 2.7, there is an injective �-homomorphism '1 W A� ! A� with image
eA�e. Let e? D 1 � e. Since Tr.1 � e/ D �a� C 1 � d and

.�a� C 1 � d/� D �a�2 C .1 � d/� D .1C b � d/� C c 2 Z C �Z;

there is also an injective �-homomorphism '2 W A� ! A� with image e?A�e
?.

Since eA�e and e?A�e
? are orthogonal, ˆ D '1 C '2 is a unital �-endomorphism

of A� whose image has e in its relative commutant. It is clear (since e can be chosen
smooth) that ˆ can be chosen to be smooth. The last part of the argument can be
taken more-or-less verbatim from [17]. Let

‰.x/ D 1
2
.exe C e?xe? C '2.'

�1
1 .exe//C '1.'

�1
2 .e?xe?///:

Then‰ is a faithful conditional expectation onto the image ofˆ, and it has index-finite
type as shown in [17], §2.

Remark 3.8. As pointed out earlier by Kodaka, the endomorphisms constructed in
Theorem 3.7 can be constructed to implement a wide variety of maps on K1. In
fact, one can even choose ˆ so that ˆ� D 0 on K1, with ˆ taking both u and v
to the connected component of the identity in the unitary group. One can see this
as follows. The map ˆ constructed in Theorem 3.7 can be written as 
 B �, where
� W A� ! A� 
A� is the diagonal map and 
 is an inclusion ofA� 
A� intoA� (which
exists for � a quadratic irrational). Since “block direct sum” agrees with the addition
in K1, it follows that (in the notation of the proof above) ˆ� D .'1/� C .'2/�
on K1. One can easily arrange to have .'1/� D .'2/� D Id, which would make
ˆ� D multiplication by 2. But if '3 is the automorphism of A� with u 7! u�1,
v 7! v�1 and we replaceˆ D 
 B� byˆ0 D 
 B .Id 
'3/ B�, then since .'3/� D �1
on K1, we get an endomorphism ˆ0 inducing the 0-map on K1.

In fact, one can modify the construction so that ˆ� is any desired endomorphism
of K1. So far we have seen how to get ˆ� D 2 or ˆ� D 0. To get ˆ� D 1,
use a construction with three blocks. In other words, choose mutually orthogonal
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projections e and f in A� so that there exist �-isomorphisms '1, '2, and '3 from
A� onto each of eA�e, fA�f , and .1 � e � f /A� .1 � e � f /, respectively. (With
a, b, c, d as above, this can be done by choosing Tr e D .a� C d/2 and Tr f D
.a�Cd/.1�d �a�/.) As above, one can arrange to have .'1/� D .'2/� D 1 onK1

and .'3/� D �1. So if ˆ D '1 C '2 C '3, ˆ is a unital �-endomorphism inducing
multiplication by 1C 1 � 1 D 1 on K1. Other cases can be done similarly.

3.2. Euler–Lagrange equations. In Proposition 3.9 below, we determine the Euler–
Lagrange equations for the energy functional, L.'/ in (2). One striking difference
with the classical commutative case, is that one cannot get rid of the “integral” Tr
in the Euler–Lagrange equations whenever � is irrational. In Corollary 3.10, we
construct explicit harmonic maps with respect to L.

Proposition 3.9. Let L.'/ denote the energy functional for a unital �-endomorphism
' of A� . Then the Euler–Lagrange equations for ' to be a harmonic map, that is, a
critical point of L, are

0 D
2P

j D1

f Tr.A ıj Œ'.u/�ıj .'.u//�/C Tr.B ıj Œ'.v/�ıj .'.v//�/ g

where A, B are self-adjoint elements in A� constrained to satisfy the equation

A � '.v/�A'.v/ D B � '.u/�B'.u/:
Proof. Consider the 1-parameter family of �-endomorphisms of A� defined by

't .u/ D '.u/eih1.t/

D '.u/Œ1C i th0
1.0/CO.t2/�;

't .v/ D '.v/eih2.t/

D '.v/Œ1C i th0
2.0/CO.t2/�;

where hj .t/, j D 1, 2 are 1-parameter families of self-adjoint operators with h1.0/ D
0 D h2.0/. Therefore

ıj .'t .u// D ıj .'.u//C i tıj .'.u//h
0
1.0/C i t'.u/ıj .h

0
1.0//CO.t2/;

and taking adjoints,

ıj .'t .u//
� D ıj .'.u//

� � i th0
1.0/ıj .'.u//

� � i tıj .h0
1.0//'.u/

� CO.t2/;

and similarly with v in place of u, h2 in place of h1. Using this, the term of order t
in Tr.ıj .'t .u//

�ıj .'t .u/// equals

i Tr.ıj .h
0
1.0//.ıj .'.u//

�'.u/ � '.u/�ıj .'.u////
D �2i Tr.ıj .h

0
1.0//'.u/

�ıj .'.u///:
(7)
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(Here we used the fact that since '.u/ is unitary, ıj .'.u//�'.u/C'.u/�ıj .'.u// D
0.) Because of “integration by parts” [32], Lemma 2.1, equation (7) equals

2i Tr.h0
1.0/ ıj Œ'.u/

�ıj .'.u//�/:

Similarly, we calculate the term of order t in Tr.ıj .'t .v//
�ıj .'t .v/// to be

2i Tr.h0
2.0/ ıj Œ'.v/

�ıj .'.v//�/:

Setting A D h0
1.0/; B D h0

2.0/, we deduce that the Euler–Lagrange equations for
L, defined by 0 D d

dt
L.'t /jtD0, are given as in the proposition.

We next differentiate the constraint equations,

0 D d
dt
.'t .u/'t .v/ � e2�i�'t .v/'t .u//jtD0

D '.u/h0
1.0/'.v/C '.u/'.v/h0

2.0/ � e2�i� Œ'.v/h0
2.0/'.u/C '.v/'.u/h0

1.0/�:

Using the fact that ' is a unital �-endomorphism of A� , that is, ' satisfies

'.u/'.v/ D e2�i�'.v/'.u/

we easily see that the constraint equations of the proposition are also valid.

The following is not especially interesting since it is already implied by the
stronger result in [20], but it illustrates how one might check this condition in some
cases.

Corollary 3.10. If 'A is the �-automorphism of A1
�

defined by 'A.u/ D upvq and
'A.v/ D urvs , with A D �

p q
r s

� 2 SL.2;Z/, then 'A is a critical point of L.'/.

Proof. We compute

ı1.'A.u// D 2�ip'A.u/; ı2.'A.u// D 2�iq'A.u/;

ı1.'A.v// D 2�ir'A.v/; ı2.'A.v// D 2�is'A.v/:

Therefore

'A.u/
�ı1.'A.u// D 2�ip;

'A.u/
�ı2.'A.u// D 2�iq;

'A.v/
�ı1.'A.v// D 2�ir;

'A.v/
�ı2.'A.v// D 2�is:

Applying any derivation ıj , j D 1, 2, to any of the terms above gives zero, since
they are all constants. Therefore 'A is a critical point of L, by the Euler–Lagrange
equations in Proposition 3.9.

Of course, a major question is to determine how many critical points there are for
L aside from those of the special form 'A, A 2 SL.2;Z/.



280 V. Mathai and J. Rosenberg

3.3. Certain maps between rational noncommutative tori. In this section we
investigate certain harmonic maps between rational noncommutative tori. This is
an exception to our general focus on irrational rotation algebras, but it might shed
some light on what seems to be the most difficult case, of (possibly nonunital) maps
' W A‚ ! Mm.A� / implementing a Morita equivalence when

‚ D 1=� D
�
0 1

1 0

�
� �:

In effect, we consider this same situation, but in the case where ‚ D n > 1 is a
positive integer, so that A‚ D C.T 2/, the universal C �-algebra generated by two
commuting unitaries U and V . In this case, A� D A1=n is an algebra of sections of a
bundle over T 2 with fibers Mn.C/. This bundle is in fact the endomorphism bundle
of a complex vector bundle V over T 2, with Chern class c1.V / 	 1 .mod n/. (More
generally, Ak=n is the algebra of sections of the endomorphism bundle of a vector
bundle of Chern class 	 k .mod n/; one can see this, for instance, from the explicit
description of the algebra in [9].) If u and v are the canonical unitary generators
of A1=n, then un and vn are both central, and generate the center of A1=n, which
is isomorphic to C.T 2/, the copy of T 2 here being identified with the spectrum
of the algebra A1=n. Since the normalized trace on A1=n sends 1 to 1, it takes the
value 1

n
on rank-one projections e, which exist in abundance. (The fact that there

are lots of global rank-one projections is due to the fact that the Dixmier–Douady
invariant of the algebra vanishes.) A choice of e determines a �-isomorphism 'e from
A0 D An D C.T 2/ to eA1=ne, sending U to eun and V to evn. Let us compute the
action functional on 'e .

Proposition 3.11. With notation as above, i.e., with e a self-adjoint projection in
A1=n and

'e W C.T 2/ ��!Š eA1=ne; 'e.U / D eun; 'e.V / D evn;

we have

L.'e/ D 2Tr.ı1.e/
2 C ı2.e/

2 C 4�2n2/:

Thus, up to a renormalization, this is the same as the action functional on e as defined
in [7], [8]. Thus 'e is harmonic exactly when e is harmonic.

Proof. We have

ı1.eu
n/ D ı1.e/ u

n C 2�ineun D .ı1.e/C 2�ine/un

and

ı2.eu
n/ D ı2.e/u

n;
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and similarly for evn (with the roles of ı1 and ı2 reversed). Since un and vn are
central, they cancel out when we compute

�
ı1.eu

n/
��
ı1.eu

n/, etc., and we obtain

.ı1.eu
n//�ı1.eu

n/ D .ı1.e/C 2�ine/�.ı1.e/C 2�in e/

D .ı1.e//
2 C 2�in.ı1.e/e � eı1.e//C 4�2n2;

.ı2.eu
n//�ı2.eu

n/ D .ı2.e//
2;

.ı1.ev
n//�ı1.ev

n/ D .ı1.e//
2;

.ı2.ev
n//�ı2.ev

n/ D .ı2.e//
2 C 2�in.ı2.e/e � eı2.e//C 4�2n2;

and the result follows since the “cross-terms” have vanishing trace.

While a complete classification seems difficult, we at least have an existence
theorem.

Theorem 3.12. There exist harmonic nonunital �-isomorphisms 'e W C.T 2/ !
A1=n.

Proof. By Proposition 3.11, it suffices to show that A1=n contains harmonic rank-1
projections. In terms of the realization ofA1=n as �.T 2;End.V //, the sections of the
endomorphism bundle of the complex vector bundle V , this is equivalent to showing
that P.V /, the CPn�1-bundle over T 2 whose fiber at a point x is the projective space
of 1-dimensional subspaces of Vx , has harmonic sections for its natural connection.

One way to prove this is by using holomorphic geometry. Realize T 2 as an elliptic
curveE D C=.ZCiZ/ and V as a holomorphic bundle. Then a holomorphic section
of P.V / is certainly harmonic. But a holomorphic section of P.V /will exist provided
V has an everywhere non-vanishing holomorphic section s, since the line through s.z/
is a point of P.Vz/ varying holomorphically with z. Since n D rank V > dimE D 1,
this is possible by [2], Theorem 2, p. 426, assuming thatV has “sufficient holomorphic
sections”, i.e., that there is a holomorphic section through any point in any fiber. The
condition of having sufficient sections is weaker than being ample, which we can
arrange by changing c1.V / to be sufficiently positive (recall that only c1.V / mod n
is fixed, so we have this flexibility).

In preparation for Example 3.14 below, it will be useful to give a concrete model
for the algebra A1=n.

Proposition 3.13. Let n > 1, and let � D e2�i=n. Fix the n 
 n matrices

u0 D

0
BBB@
0 1 0 : : :

0 0 1 : : :

0 0 0
: : :

1 0 0 : : :

1
CCCA ; v0 D

0
BBB@
1 0 0 : : :

0 � 0 : : :

0 0 �2 : : :

0 0 0
: : :

1
CCCA ;
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or in other words v0 D diag.1; �; �2; : : : ; �n�1/. Then A1=n can be identified with
the algebra of continuous functions f W T 2 ! Mn.C/ satisfying the transformation
rules ´

f .��; 	/ D v�1
0 f .�; 	/v0;

f .�; �	/ D u0f .�; 	/u
�1
0 :

Proof. Observe that un
0 D vn

0 D 1 and that u0v0 D �v0u0. It is then easy to see that
the most general irreducible representation of A1=n is equivalent to one of the form
��;� W u 7! 	u0; v 7! �v0 for some .	; �/ 2 T 2. However, we are “overcounting”,
because it is clear that v�1

0 conjugates��;� to���;�, andu0 conjugates��;� to��;��.
The spectrum of the algebra A1=n can thus be identified with the quotient of T 2 by
the action by multiplication by n-th roots of unity in both coordinates. The result
easily follows.

Example 3.14. We now give a specific example of this situation in which one can write
down an explicit harmonic map. We suspect one can do something similar in general,
but to make the calculations easier, we restrict to the case n D 2. Proposition 3.13
describes A1=2 as the algebra of continuous functions f W T 2 ! M2.C/ satisfying

f .��;	/ D
�
1 0

0 �1
�
f .�; 	/

�
1 0

0 �1
�
;

f .�;�	/ D
�
0 1

1 0

�
f .�; 	/

�
0 1

1 0

�
:

(8)

If we write � D ei�1 and 	 D ei�2 , we can rewrite (8) by thinking of

f D
�
f11 f12

f21 f22

�

as defined on Œ0; �� 
 Œ0; ��, subject to boundary conditions

f11.�; �2/ D f11.0; �2/; f22.�; �2/ D f22.0; �2/;

f12.�; �2/ D �f12.0; �2/; f21.�; �2/ D �f21.0; �2/;

f11.�1; �/ D f22.�1; 0/; f22.�1; �/ D f11.�1; 0/;

f12.�1; �/ D f21.�1; 0/; f21.�1; �/ D f12.�1; 0/:

(9)

To get a nonunital harmonic map inducing an isomorphism fromC.T / to a nonunital
subalgebra of A1=2, we need by Proposition 3.11 to choose f satisfying (9) so that,
for all �1 and �2, f .�1; �2/ is self-adjoint with trace 1 and determinant 0, and so that
f is harmonic. The conditions (9) as well as the conditions for f to be a rank-one
projection will be satisfied provided that f is of the form

f .�1; �2/ D 1

2

�
1C cos.g.�1// cos �2 sin.g.�1// � i cos.g.�1// sin �2

sin.g.�1//C i cos.g.�1// sin �2 1 � cos.g.�1// cos �2

�
(10)
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with g real-valued and satisfying the conditions

g.0/ D ��
2
; g.�/ D �

2
: (11)

For f to be harmonic, we need to make sure it satisfies the Euler–Lagrange equation
f .�f / D .�f /f , which is derived in [8], §4.1. In the realization of Proposi-
tion 3.13, the canonical generators of A1=2 are given by

u.ei�1 ; ei�2/ D ei�1u0; v.ei�1 ; ei�2/ D ei�2v0

so that ı1 and ı2 act by 2� @
@�1

and 2� @
@�2

, respectively. Thus up to a factor of 4�2,
� can be identified with the usual Laplacian in the variables �1 and �2. A messy
calculation, which we performed with Mathematica®, though one can check it by
hand, shows that the commutator of f and �f vanishes exactly when the function
g in (10) satisfies the nonlinear (pendulum) differential equation

2g00.�/C sin.2g.�// D 0:

Subject to the boundary conditions (11), this has a unique solution, which Mathemat-
ica plots as in Figure 1.

Π

4

Π

2

3 Π

4
Π

�
Π

2

Π

2

g�Θ�

Figure 1. Plot of g.�/ as computed by Mathematica.

Note incidentally that Mathematica calculations show that this solution is neither
self-dual nor anti-self-dual, in the sense of [8]. In fact, writing out the self-duality and
anti-self-duality equations for a projection of the form (10) shows that they reduce to
g0.�/ D ˙ cos.g.�//, so the only self-dual or anti-self-dual projections of this form
satisfying the initial condition g.0/ D ��=2 are constant (and thus do not satisfy the
other boundary condition in (11)).

It may be of interest to compute the value of L for this example. The normalized
trace TrA on A1=2 for matrix-valued functions f satisfying (9) is

TrA f D 1

2�2

Z �

0

Z �

0

Tr f .�1; �2/ d�1d�2;
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so by Proposition 3.11,

L.'f / D 2TrA.ı1.f /
2 C ı2.f /

2 C 4�2n2/; with n D 2;

D 2TrA
�
4�2

�
@f
@�1

�2 C 4�2
�

@f
@�2

�2 C 4�2 � 4�
D 8�2

�
4C 1

2�2

Z �

0

Z �

0

Tr
��

@f
@�1

�2 C �
@f
@�2
/2

�
d�1d�2

�

D 8�2.4C 0:1116/ � 32:89�2:

(The integral was computed numerically with Mathematica.)

4. Variations and refinements

One can argue that what we have done up till now was somewhat special, in that
we took a very special form for the metric on the “world-sheet”, and ignored the
Wess–Zumino term in the action. In this section, we discuss how to generalize the
results given earlier in the paper. The modifications to the proofs given in the earlier
sections are routine, and most arguments will not be repeated.

4.1. Spectral triples and sigma-models. In this subsection, we write a general
sigma-model energy functional for spectral triples, that specializes to the cases ex-
isting in the literature, including what was discussed earlier in the paper. It is an
explicit variant of the discussion in [6], §VI.3, and [8], §2. Recall that a spectral
triple .A;H ;D/ is given by an involutive unital algebra A represented as bounded
operators on a Hilbert space H and a self-adjoint operator D with compact resol-
vent such that the commutators ŒD; a� are bounded for all a 2 A. A spectral triple
.A;H ;D/ is said to be even if the Hilbert space H is endowed with a Z2-grading
� which commutes with all a 2 A and anti-commutes with D. Suppose in addition
that .A;H ;D/ is .2;1/-summable, which means (assuming for simplicity that D
has no nullspace) that Tr!.ajDj�2/ < 1, where Tr! denotes the Dixmier trace. We
recall from VI.3 in [6] that

 2.a0; a1; a2/ D Tr..1C �/a0ŒD; a1�ŒD; a2�/

defines a positive Hochschild 2-cocycle on A, where � D �
1 0
0 �1

�
is the grading

operator on H , and where Tr denotes the Dixmier trace composed withD�2. In this
paper, although we consider the canonical trace Tr instead of the above trace, all the
properties go through with either choice. Using the Dixmier trace Tr! composed with
D�2 has the advantage of scale invariance, i.e., it is invariant under the replacement of
D by�D for any nonzero� 2 C, which becomes relevant when one varies the metric,
although for special classes of metrics the scale invariance can be obtained by other
means also. The positivity of  2 means that ha0 ˝ a1; b0 ˝ b1i D  2.b

�
0a0; a1; b

�
1 /

defines a positive sesquilinear form on A ˝ A.
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We now give a prescription for energy functionals in the sigma-model consisting
of homomorphisms ' W B ! A, from a smooth subalgebra of a C �-algebra B

with target the given even .2;1/-summable spectral triple .A;H ;D/. Observing
that '�. 2/ is a positive Hochschild 2-cocycle on B, we need to choose a formal
“metric” on B, which is a positive element G 2 
2.B/ in the space of universal
2-forms on B. Then evaluation

LG;D.'/ D '�. 2/.G/ � 0

defines a general sigma-model action.
Summarizing, the data for a general sigma-model action consists of

(1) a .2;1/-summable spectral triple .A;H ;D/;

(2) a positive element G 2 
2.B/ in the space of universal 2-forms on B, known
as a metric on B.

Consider a unital C �-algebra generated by the n unitaries fUj W i D 1; : : : ng,
with finitely many relations as in [21], and let B be a suitable subalgebra consisting
of rapidly vanishing series whose terms are (noncommutative) monomials in theUi ’s.
Then a choice of positive element G 2 
2.B/ (or metric on B) is given by

G D
nP

j;kD1

Gjk.dUj /
�dUk;

where the matrix .Gjk/ is symmetric, real-valued, and positive definite. Then we
compute the energy functional in this case,

LG;D.'/ D '�. 2/.G/ D
nP

j;kD1

Gjk Tr..1C �/ŒD; '.Uj /
��ŒD; '.Uk/�/ � 0:

The Euler–Lagrange equations for ' to be a critical point of LD can be derived
as in Proposition 3.9, but since the equations are long, we omit them.

We next give several examples of this sigma-model energy functional. In all of
these cases, the target algebra A will be A1

�
. The first example is the Da̧browski–

Krajewski–Landi model [8], consisting of non-unital �-homomorphisms ' W C !
A1

�
. Note that '.1/ D e is a projection in the noncommutative torus A� , and for

any .2;1/-summable spectral triple .A1
�
;H ;D/ on the noncommutative torus, our

sigma-model energy functional is

LD.'/ D TrŒ.1C �/ŒD; e�ŒD; e��:

Choosing the even spectral triple given by H D L2.A� /˝C2 consisting of the Hilbert
space closure of A� in the canonical scalar product coming from the trace, tensored
with the 2-dimensional representation space of spinors andD D �1ı1 C �2ı2, where

�1 D
�
0 1

1 0

�
; �2 D

�
0 �i
i 0

�
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are the Pauli matrices, we calculate that

LD.'/ D
2P

j D1

TrŒ.ıj e/2�;

recovering the action in [8] and the Euler–Lagrange equation .�e/e D e.�e/ there.
Next we consider the model in Rosenberg [32], §5, consisting of unital �-homo-

morphisms ' W C.S1/ ! A1
�

. Let U be the unitary given by multiplication by the
coordinate function z on S1 (considered as the unit circle T in C). Then '.U / is a
unitary in the noncommutative torusA� , and for any .2;1/-summable spectral triple
.A1

�
;H ;D/ on the noncommutative torus, our sigma-model energy functional is

LD.'/ D TrŒ.1C �/ŒD; '.U /��ŒD; '.U /��:

Choosing the particular spectral triple on the noncommutative torus as above, we
calculate that

LD.'/ D
2P

j D1

TrŒ.ıj .'.U ///�ıj .'.U //�;

recovering the action in [32] and the Euler–Lagrange equation

'.U /��.'.U //C .ı1.'.U ///
�ı1.'.U //C .ı2.'.U ///

�ı2.'.U // D 0

there.
The final example is the one treated in this paper. For any (smooth) homomorphism

' W A‚ ! A� and any .2;1/-summable spectral triple .A1
�
;H ;D/, and any positive

element G 2 
2.A‚/ (or metric on A‚) given by

G D
2P

j;kD1

Gij .dUj /
�dUk;

the energy of ' is

LG;D.'/ D '�. 2/.G/ D
2P

j;kD1

Gjk Tr..1C �/ŒD; '.Uj /
��ŒD; '.Uk/�/ � 0:

where U , V are the canonical generators of A‚.
Choosing the particular spectral triple on the noncommutative torus as above, we

obtain the action and Euler–Lagrange equation considered in §3.
One can consider other choices of spectral triples on A� defined as follows. For

instance, let g D �
g11 g12
g21 g22

� 2 M2.R/ be a symmetric real-valued positive definite
matrix. Then one can consider the 2-dimensional complexified Clifford algebra, with
self-adjoint generators �� 2 M2.C/ and relations

���� C ���� D g�� ; 	; � D 1; 2;
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where .g��/denotes the matrixg�1. Then with H as before, defineD D P2
�D1 ��ı�.

The energy in this more general case is

LG;D.'/ D '�. 2/.G/ D
2P

j;kD1

2P
�;�D1

Gjkg
�� Tr.ı�.'.Uj //

�ı�.'.Uk// � 0: (12)

In this case, the trace Tr is either the Dixmier trace composed with D�2, or the
canonical trace on A� multiplied by the factor

p
det.g/, to make the energy scale

invariant. The Euler–Lagrange equations in this case are an easy modification of
those in Proposition 3.9.

4.2. TheWess–Zumino term. There is a rather large literature on “noncommutative
Wess–Zumino theory” or “noncommutative WZW theory”, referred to in [7], §5,
and summarized in part in the survey articles [11] and [34]. Most of this literature
seems to deal with the Wess–Zumino–Witten model (where spacetime is a compact
group) or with the Moyal product, but we have been unable to find anything that
applies to our situation where both spacetime and the world-sheet are represented
by noncommutative C �-algebras (or dense subalgebras thereof). For that reason, we
will attempt here to reformulate the theory from scratch.

The classical Wess–Zumino term is associated to a closed 3-formH with integral
periods on X (the spacetime manifold). If †2 is the boundary of a 3-manifold W 3,
and if ' W † ! X extends to z' W W ! X , the Wess–Zumino term is

LW Z.'/ D
Z

W

.z'/�.H/:

The fact thatH has integral periods guarantees that e2�iLW Z.'/ is well-defined, i.e.,
independent of the choice of W and the extension z' of '.

To generalize this to the noncommutative world, we need to dualize all spaces and
maps. We replace X by B (which in the classical case would be C0.X/), † by A,
and W by C . Since H classically was a cochain on X (for de Rham cohomology),
it becomes an odd cyclic cycle on B. The integral period condition can be replaced
by requiring

hH;ui 2 Z

for all classes u 2 K1.B/ (dualK-theory, defined via spectral triples or some similar
theory). The inclusion † ,! W dualizes to a map q W C ! A, and we suppose that
' W B ! A has a factorization

C

q

��
B

' ��

z'
��

A:

The noncommutative Wess–Zumino term then becomes

LW Z.'/ D hz'�.H/; ŒC �i;



288 V. Mathai and J. Rosenberg

with ŒC � a cyclic cochain corresponding to integration over W . The integral period
condition is relevant for the same reason as in the classical case—if we have another
“boundary” map q0 W C 0 ! A and corresponding z'0 W B ! C 0, and if C ˚A C 0 is
“closed”, so that ŒC � � ŒC 0� corresponds to a class u 2 K1.C ˚A C 0/, then

hz'�.H/; ŒC �i � hz'0�.H/; ŒC 0�i D hH; .z' ˚ z'0/�.u/i 2 Z;

and thus e2�iLW Z.'/ is the same whether computed via ŒC � or via ŒC 0�.
Now we want to apply this theory when A D A� (or a suitable smooth subalgebra,

say A1
�

). If we realize A� as the crossed product C1.S1/ Ì� Z, we can view A1
�

as the “boundary” of C D C1.D2/Ì� Z, whereD2 denotes the unit disk in C. The
natural element ŒC � is the trace on C coming from normalized Lebesgue measure on
D2.

To summarize, it is possible to enhance the sigma-model action on a spacetime
algebra B with the addition of a Wess–Zumino term LW Z.'/, depending on a choice
of a “flux” H .

4.3. More general spacetimes. In references such as [22], [23], [24], T-duality
considerations suggested that very often one should consider spacetimes which are
not just noncommutative tori, but “bundles” of noncommutative tori over some base
space, such as the C*-algebra of the discrete Heisenberg group, called the “rotation
algebra” in [1]. A theory of some of these bundles was developed in [12].

For present purposes, the following definition will suffice.

Definition 4.1. Let Z be a compact space and let ‚ W Z ! T be a continuous
function from Z to the circle group. We define the noncommutative torus bundle
algebra associated to .Z;‚/ to be the universal C*-algebra A D A.Z;‚/ generated
over a central copy of C.Z/ (continuous functions vanishing on the base space, Z)
by two unitaries u and v, which can be thought of as continuous functions fromZ to
the unitaries on a fixed Hilbert space H , satisfying the commutation rule

u.z/v.z/ D ‚.z/v.z/u.z/: (13)

Note that A is the algebra �.Z;E/ of sections of a continuous field E of rotation
algebras, with fiber Alog ‚.z/=.2�i/ over z 2 Z.

Examples 4.2. The reader should keep in mind three key examples of Definition 4.1.
If Z D fzg is a point, A.Z;‚/ is just the rotation algebra Alog ‚.z/=.2�i/. More
generally, if ‚ is a constant function with constant value e2�i� , then A.Z;‚/ D
C.Z/ ˝ A� . And finally, there is a key example with a nontrivial function ‚, that
already came up in [23] from T-dualization of T 3 (viewed as a principal T 2-bundle
over T ) with a nontrivial H-flux, namely the group C*-algebra of the integral Heisen-
berg group. In this example, Z D S1 D T and ‚ W T ! T is the identity map. If
w is the canonical unitary generator of C.Z/, then in this case the commutation rule



A noncommutative sigma-model 289

(13) becomes simply uv D wvu (with w central), so as explained in [1], A is the
universal C*-algebra on three unitaries u, v, w, satisfying this commutation rule.

Remark 4.3. Let A D A.Z;‚/ be as in Definition 4.1, and fix � irrational. Then
homomorphisms A ! A� , not assumed necessarily to be unital, can be identified
with triples consisting of the following:

(1) a projection p 2 A� which represents the image of 1 2 A,

(2) a unital �-homomorphism � from C.Z/ to pA�p, and

(3) a unitary representation of the Heisenberg commutation relations (13) into the
unital C*-algebra pA�p, with the images of u and v commuting with �.C.Z//.

Even in the case discussed above with A D C �.u; v; w j uv D wvu/ and in
the special case of unital maps, the classification of maps ' W A ! A� is remarkably
intricate. For example, choose any n mutually orthogonal self-adjoint projections
p1; : : : ; pn in A� with p1 C � � � C pn D 1. Each pjA�pj is Morita-equivalent to
A� , and is thus isomorphic to a matrix algebra Mnj

�
A�j

�
, �j 2 GL.2;Z/ � � . For

each j , there is a unital map 'j W A ! Mnj

�
A�j

�
sending the central unitary w to

e2�i�j . Then '1 ˚ � � � ˚ 'n is a unital �-homomorphism from A to A� sending w toP
e2�i�jpj . Since n can be chosen arbitrarily large, one sees that there are quite a

lot of inequivalent maps. In this particular example, K1.A/ is a free abelian group
on 3 generators, u, v, and an additional generator W 2 M2.A/ [1], Proposition 1.4
(w does not give an independent element since it is the commutator of u and v). A
notion of “energy” for such maps ' may be obtained by summing the energies of the
three unitaries '.u/, '.v/, and '.W / (for the last of these, one needs to extend ' to
matrices over A in the usual way). Estimates for the energy can again be obtained
using the results and methods of [20].

5. A physical model

To write the partition function for the sigma-model studied in this paper, recall the
expression for the energy from equation (12),

LG;D.'/ D '�. 2/.G/ D
p

det.g/
2P

j;kD1

2P
�;�D1

Gijg
�� Tr.ı�.'.Uj //

�ı�.'.Uk//:

It is possible to parametrize the metrics .g��/ by a complex parameter � ,

g.�/ D .g��.�// D
�
1 �1

�1 j� j2
�
;

where � D �1 C i�2 2 C is such that �2 > 0. Note that g is invertible with inverse
given by

g�1.�/ D .g��.�// D ��2
2

�j� j2 ��1

��1 1

�
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and
p

det.g/ D �2. The “genus 1” partition function is

Z.G; z/ D
Z

�2C;�2>0

d�^d N�
�2

2 Z.G; �; z/

where

Z.G; �; z/ D
Z

D Œ'�e�zLG;� .'/
. Z

D Œ'�:

is the renormalized integral. Here LG;� D LG;D , where we emphasize the depen-
dence of the energy on � . This integral is much too difficult to deal with even in
the commutative case, so we oversimplify by considering the semiclassical approx-
imation, which is a sum over the critical points. Even this turns out to be highly
nontrivial, and we discuss it below. In the special case when ‚ D � and is not a
quadratic irrational, then the semiclassical approximation to the partition function
above is

Z.G; �; z/ � P
m2M=f˙1g

P
A

e�zLG;� .'A/;

up to a normalizing factor, in the notation as explained later in this section. In this
approximation,

Z.G; z/ �
Z

�2C;�2>0

d�^d N�
�2

2

P
m2M=f˙1g

P
A e

�zLG;� .'A/:

We expect Z.G/ and Z.G�1/ to be related as in the classical case [27], [4], as a
manifestation of T-duality.

In the rest of this section we specialize to a (rather oversimplified) special case
based on the results of Section 3.1. As explained before, we basically take our
spacetime to be a noncommutative 2-torus, and for simplicity, we ignore the integral
over � (the parameter for the metric on the world-sheet) and take � D i .

As pointed out by Schwarz [33], changing a noncommutative torus to a Morita-
equivalent noncommutative torus in many cases amounts to an application of T-
duality, and should not change the underlying physics. For that reason, it is per-
haps appropriate to stabilize and take our spacetime to be represented by the algebra
A‚ ˝ K (K as usual denoting the algebra of compact operators), which encodes
all noncommutative tori Morita-equivalent to A‚ at once. (Recall A‚0 is Morita-
equivalent to A‚ if and only if they become isomorphic after tensoring with K , by
the Brown–Green–Rieffel theorem [3].)

Since this algebra is stable, to obtain maps into the world-sheet algebras we should
take the latter to be stable also, and thus we consider a sigma-model based on maps
' W A‚ ˝ K ! A� ˝ K , where � is allowed to vary (but ‚ remains fixed). Via
the results of Section 2, such maps exist precisely when there is a morphism of
ordered abelian subgroups of R, from Z C Z‚ to Z C Z� , or when there exists
c� C d 2 Z C Z� , c� C d > 0, such that .c� C d/‚ 2 Z C Z� , i.e., when there
existsm 2 M D GL.2;Q/\M2.Z/ (satisfying the sign condition c�Cd > 0) such
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that ‚ D m � � or � D m�1 �‚ for the action of GL.2;Q/ on R by linear fractional
transformations.

Given that ‚ D m � � for some m 2 M , the matrix m determines the map
'� W K0.A‚ ˝ K/ ! K0.A� ˝ K/, which turns out to be multiplication by

D.m; �/ D jc� C d j if m D
�
a b

c d

�
:

(Note the similarity with the factor that appears in the transformation law for modular
forms. Also note that if ‚ D m � � , then also ‚ D m0 � � for many other matrices
m0, since one can multiply both rows by the same positive constant factor.) However,
m does not determine the map induced by ' on K1. A natural generalization of
Conjecture 3.1 would suggest that if � D ‚ andm D 1, at least if � is not a quadratic
irrational (so as to exclude the Kodaka-like maps), then the induced map '� on K1

has a matrix

A D
�
p q

r s

�

in SL.2;Z/, and there should be (up to gauge equivalence) a unique energy-minimi-
zing map ' W A‚ ˝ K ! A� ˝ K with energy

4�2 .p2 C q2 C r2 C s2/:

Note that p2 C q2 C r2 C s2 is the squared Hilbert–Schmidt norm of A (i.e., the sum
of the squares of the entries). We want to generalize this to the case of other values
of m.

Unfortunately, the calculation in Section 3.3 suggests that there may not be a good
formula for the energy of a harmonic map just in terms of the induced maps on K0

andK1. But a rough approximation to the partition function might be something like

Z.z/ � P
m2M=f˙1g

P
A

e�4�2D.m;�/kAk2
HSz :

The formula 4�2D.m; �/kAk2
HS for the energy is valid not just for the automorphisms

'A but also for the map U 7! upvq , V 7! urvs with

A D
�
p q

r s

�
; detA D n;

from An� to A� , which one can check to be harmonic, just as in Corollary 3.10. The
associated map on K0 corresponds to the matrix

m D
�
n 0

0 1

�

with D.m; �/ D 1.
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