J. Noncommut. Geom. 5 (2011), 295–298 DOI 10.4171/JNCG/76

Journal of Noncommutative Geometry © European Mathematical Society

Appendix to V. Mathai and J. Rosenberg's paper "A noncommutative sigma-model"

Hanfeng Li^{*}

Abstract. Two problems posed in the paper [6] by V. Mathai and J. Rosenberg are resolved.

Mathematics Subject Classification (2010)*.* Primary 58B34; Secondary 46L87. *Keywords.* Noncommutative tori, energy.

This short note is an appendix to [6].
Let $\theta \in \mathbb{R}$. Denote by A_{θ} the rotation C*-algebra generated by unitaries U and V Let $\theta \in \mathbb{R}$. Denote by A_{θ} the rotation C*-algebra generated by unitaries U and V
iect to $UV = e^{2\pi i \theta} VII$ and by 4^{∞} its canonical smooth subalgebra. Denote by subject to $UV = e^{2\pi i \theta} VU$, [an](#page-3-0)d by A_{θ}^{∞} its canonical smooth subalgebra. Denote by
Tr the canonical faithful tracial state on A_{θ} determined by $Tr(U^{m}V^{n}) = \delta_{\theta} \circ \delta_{\theta}$ for Tr the canonical faithful tracial state on A_{θ} determined by $\text{Tr}(U^m V^n) = \delta_{m,0} \delta_{n,0}$ for all $m, n \in \mathbb{Z}$. Denote by δ_1 and δ_2 the unbounded closed \star -derivations of A_{θ} defined all $m, n \in \mathbb{Z}$. Denote by δ_1 and δ_2 the unbounded closed $*$ -derivations of A_θ defined
on some dense subalgebras of A_θ and determined by $\delta_2(U) = 2\pi i U \delta_2(U) = 0$ on some dense subalgebras of A_{θ} and determined by $\delta_1(U) = 2\pi i U$, $\delta_1(V) = 0$, and $\delta_2(U) = 0$, $\delta_2(V) = 2\pi i V$. The energy [9] $F(u)$ of a unitary u in A_{θ} is and $\delta_2(U) = 0$, $\delta_2(V) = 2\pi i V$. The *energy* [9], $E(u)$, of a unitary u in A_θ is defined as defined as

$$
E(u) = \frac{1}{2} \operatorname{Tr}(\delta_1(u)^* \delta_1(u) + \delta_2(u)^* \delta_2(u))
$$
 (1)

when u belongs to the domains of δ_1 and δ_2 , and ∞ otherwise.
Rosenberg has the following conjecture [9] Conjecture 5.4.

Rosenberg has the following conjecture [9], Conjecture 5.4, p. 108.

Conjecture 1. For any $m, n \in \mathbb{Z}$, in the connected component of $U^m V^n$ in the *unitary group of* A_{θ}^{∞} , the functional E *takes its minimal value exactly at the scalar multiples of* I^mV^n *multiples of* $U^m V^n$.

For a $*$ -endomorphism φ of A^{∞}_{θ} , its *energy* [6], $\mathcal{L}(\varphi)$, is defined as $2E(\varphi(U)) +$
($\varphi(V)$). Mathai and Rosenberg's Conjecture 3.1 in [6] about the minimal value $2E(\varphi(V))$. Mathai and Rosenberg's Conjecture 3.1 in [6] about the minimal value of $\mathcal{L}(\varphi)$ follows directly from Conjecture 1.

Denote by H the Hilbert space associated to the GNS representation of A_{θ} for and denote by $\|\cdot\|_2$ its norm. We shall identify A_{θ} as a subspace of H as usual. Tr, and denote by $\|\cdot\|_2$ its norm. We shall identify A_θ as a subspace of H as usual.
Then (1) can be rewritten as Then (1) can be rewritten as

$$
E(u) = \frac{1}{2}(\|\delta_1(u)\|_2^2 + \|\delta_2(u)\|_2^2).
$$

² -Partially supported by NSF Grant DMS-0701414.

296 H. Li

Now we prove Conjecture 1, and hence also prove Conjecture 3.1 of [6].

Theorem 2. Let $\theta \in \mathbb{R}$ and $m, n \in \mathbb{Z}$. Let $u \in A_{\theta}$ be a unitary whose class in $K_{\theta}(A_{\theta})$ is the same as that of $L^m V^n$. Then $F(u) > F(L^m V^n)$ and "-" holds if $K_1(A_\theta)$ is the same as that of $U^m V^n$. Then
and only if u is a scalar multiple of $U^m V^n$. $K_1(A_\theta)$ is the same as that of U^mV^n . Then $E(u) \geq E(U^mV^n)$, and "=" holds if

Proof. We may assume that u belongs to the domains of δ_1 and δ_2 . Set $a_j = u^* \delta_j(u)$ for $i = 1, 2$. For any closed \ast -derivation δ defined on a dense subset of a unital for $j = 1, 2$. For any closed \ast -derivation δ defined on a dense subset of a unital C^* -algebra 4 and any tracial state τ of 4 vanishing on the range of δ if unitaries v_1 and C*-algebra A and any tracial state τ of A vanishing on the range of δ , if unitaries v_1 and v_2 in the domain of δ have the same class in $K_1(A)$, then $\tau(v_1^*\delta(v_1)) = \tau(v_2^*\delta(v_2))$
[7] n 281. Thus [7], p. 281. Thus

$$
\operatorname{Tr}(a_j) = \operatorname{Tr}((U^m V^n)^* \delta_j (U^m V^n)) = \begin{cases} 2\pi i m & \text{if } j = 1, \\ 2\pi i n & \text{if } j = 2. \end{cases}
$$

We have

$$
\|\delta_j(u)\|_2^2 = \|a_j\|_2^2
$$

= $\|\operatorname{Tr}(a_j)\|_2^2 + \|a_j - \operatorname{Tr}(a_j)\|_2^2$
 $\geq \|\operatorname{Tr}(a_j)\|_2^2$
= $|\operatorname{Tr}(a_j)|^2 = \begin{cases} 4\pi^2 m^2 & \text{if } j = 1, \\ 4\pi^2 n^2 & \text{if } j = 2, \end{cases}$

and "=" holds if and only if $a_i = \text{Tr}(a_i)$ $a_i = \text{Tr}(a_i)$ $a_i = \text{Tr}(a_i)$. It follows that $E(u) \geq 2\pi^2 (m^2 + n^2)$, and "=" holds if and only if $\delta_1(u) = 2\pi imu$ and $\delta_2(u) = 2\pi inu$ $\delta_2(u) = 2\pi inu$. Now the theorem follows from the fact that the elements a in A_{θ} satisfying $\delta_1(a) = 2\pi i ma$ and $\delta_2(a) = 2\pi i na$ are exactly the scalar multiples of $U^m V^n$ $\delta_2(a) = 2\pi i n a$ are exactly the scalar multiples of $U^m V^n$.

When $\theta \in \mathbb{R}$ is irrational, the C^{*}-algebra A_{θ} is simple [10], Theorem 3.7, has [rea](#page-3-0)l [ran](#page-3-0)k zero [1], Theorem 1.5, and is an AT -algebra [5], Theorem 4. It is a result of Elliott that for any pair of A^T -algebras with real rank zero, every homomorphism between their graded K -groups preserving the graded dimension range is induced by a *-homomorphism between them [4], Theorem 7.3. The graded dimension range
of a unital simple $A\mathbb{T}_{-}$ algebra A is the subset $f(a_0, a_1) \in K_0(A) \oplus K_1(A) : 0 \le$ of a unital simple $A\mathbb{T}$ -algebra A is the subset $\{(g_0, g_1) \in K_0(A) \oplus K_1(A) : 0 \leq g_0 \leq [1, \ldots] \}$ and $K_1(A) \oplus K_2(A) \oplus K_3(A)$ is a set of the subset $K_2(A) \oplus K_3(A)$ is a set of the subset $g_0 \leq [1_A]_0$ \cup (0, 0) of the graded K-group $K_0(A) \oplus K_1(A)$ [8], p. 51. It follows that, when θ is irrational, for any group endomorphism ψ of $K_1(A_\theta)$, there is a unital \star -endomorphism ω of A_θ inducing ψ on $K_1(A_\theta)$. It is an open question when one can choose φ to be smooth in the sense of preserving A_{θ}^{∞} , though it was shown in
[2] [3] that if θ is irrational and ω restricts to a x-automorphism of A^{∞} then ψ must -endomorphism φ of A_{θ} inducing ψ on $K_1(A_{\theta})$. It is an open question when one [2], [3] that if θ is irrational and φ restricts to a $*$ -automorphism of A_{θ}^{∞} , then ψ must
be an automorphism of the rank-two free abelian group $K_{\theta}(A_{\theta})$ with determinant 1 be an automorphism of the rank-two free abelian group $K_1(A_\theta)$ with determinant 1.
When ψ is the zero endomorphism from Theorem 2 one might quess that $\mathcal{C}(\alpha)$ could When ψ is the zero endomorphism, from Theorem 2 one might guess that $\mathcal{L}(\varphi)$ could be arbitrarily small. It is somehow surprising, as we show now, that in fact there is a

Appendix to "A noncommutative sigma-model" 297

common positive lower bound for $\mathcal{L}(\varphi)$ for all $0 < \theta < 1$. This answers a question
Rosenberg raised at the Noncommutative Geometry workshop at Oberwolfach in Rosenberg raised at the Noncommutative Geometry workshop at Oberwolfach in September 2009.

Theorem 3. *Suppose that* $0 < \theta < 1$ *. For any unital* $*$ -endomorphism φ of A_{θ} *, one*
has $\mathcal{C}(\varphi) > 4(3 - \sqrt{5})\pi^2$ *has* $\mathcal{L}(\varphi) \geq 4(3 - \sqrt{5})\pi^2$.

Theorem 3 is a direct consequence of the following lemma.

Lemma 4. Let $\theta \in \mathbb{R}$ and let u, v be unitaries in A_{θ} with $uv = \lambda vu$ for some $\lambda \in \mathbb{C} \setminus \{1\}$. Then $F(u) + F(v) > 2(3 - \sqrt{5})\pi^2$ $\lambda \in \mathbb{C} \setminus \{1\}$ *. Then* $E(u) + E(v) \geq 2(3 - \sqrt{5})\pi^2$ *.*

Proof. We have

$$
Tr(uv) = Tr(\lambda vu) = \lambda Tr(uv),
$$

and hence $\text{Tr}(uv) = 0$. Thus

$$
-\operatorname{Tr}(u)\operatorname{Tr}(v) = \operatorname{Tr}(uv - \operatorname{Tr}(u)\operatorname{Tr}(v))
$$

=
$$
\operatorname{Tr}((u - \operatorname{Tr}(u))v) + \operatorname{Tr}(\operatorname{Tr}(u)(v - \operatorname{Tr}(v)))
$$

=
$$
\operatorname{Tr}((u - \operatorname{Tr}(u))v).
$$

We may assume that both u and v belong to the domains of δ_1 and δ_2 . For any $m, n \in \mathbb{Z}$, denote by $a_{m,n}$ the Fourier coefficient $\langle u, U^m V^n \rangle$ of u. Then $a_{0,0} = \text{Tr}(u)$ and

$$
(2\pi)^{2} \|u - \text{Tr}(u)\|_{2}^{2} = \sum_{\substack{m,n \in \mathbb{Z}, \\ m^{2}+n^{2} > 0}} |2\pi a_{m,n}|^{2}
$$

$$
\leq \sum_{\substack{m,n \in \mathbb{Z}, \\ m^{2}+n^{2} > 0}} |2\pi a_{m,n}|^{2} (m^{2}+n^{2})
$$

$$
= \|\delta_{1}(u)\|_{2}^{2} + \|\delta_{2}(u)\|_{2}^{2} = 2E(u).
$$

Thus

and

$$
|\text{Tr}(u)|^2 = ||\text{Tr}(u)||_2^2 = ||u||_2^2 - ||u - \text{Tr}(u)||_2^2 \ge 1 - \frac{1}{2\pi^2}E(u)
$$

$$
|\text{Tr}((u - \text{Tr}(u))v)| \le ||(u - \text{Tr}(u))v||_2 = ||u - \text{Tr}(u)||_2 \le \left(\frac{1}{2\pi^2}E(u)\right)^{1/2}.
$$

Similarly, $|{\rm Tr}(v)|^2 \ge 1 - \frac{1}{2\pi^2} E(v)$.
Write $\frac{1}{2\pi^2} E(u)$ and $\frac{1}{2\pi^2} E(v)$ as t and s, respectively. We just need to show that $t + s \geq 3 - \sqrt{5}$. If $t \geq 1$ or $s \geq 1$, then this is trivial. Thus we may assume that $1 - t$, $1 - s > 0$. Then

$$
(1-t)(1-s) \leq |\operatorname{Tr}(u)\operatorname{Tr}(v)|^2 \leq t.
$$

298 H. Li

Equivalently, $t(1 - s) \ge 1 - (t + s)$. Without of loss generality, we may assume $s \geq t$. Write $t + s$ as w. Then

$$
t(1-w/2) \ge t(1-s) \ge 1-(t+s) = 1-w,
$$

and hence

$$
w = t + s \ge \frac{1 - w}{1 - w/2} + \frac{w}{2}.
$$

It follows that $w^2 - 6w + 4 \le 0$. Thus $w \ge 3 - \sqrt{5}$.

References

- [1] [B. Blackadar, A](http://www.emis.de/MATH-item?0601.46059)[. Kumjian,](http://www.ams.org/mathscinet-getitem?mr=789311) [and M](#page-1-0). Rørdam, Approximately central matrix units and the structure of noncommutative tori. [K](http://www.emis.de/MATH-item?0809.46067)*-Theory* **⁶** (1992), 267–284. Zbl 0813.46064 MR 1189278 296
- [2] B. Brenken, J. Cuntz, G. A. Elliott, and R. Nest, On the classification of noncommutative tori, III. In *Operator algeb[ras and mathem](http://www.emis.de/MATH-item?0847.46034)[atical physics](http://www.ams.org/mathscinet-getitem?mr=1247990)* [\(Iow](#page-1-0)a City, Iowa, 1985), Contemp. Math. 62, Amer. Math. Soc., Providence, RI, 1987, 503–526. Zbl 0631.46055 MR 0878397 29[6](#page-0-0)
- [3] J. Cuntz, G. A. Elliott, F. M. Goodman, and P. E. T. Jorgensen, On the classification of noncommutative tori, II. *C. R. Math. Rep. Ac[ad. Sci. Cana](http://www.ams.org/mathscinet-getitem?mr=0471796)[da](#page-1-0)* **7** (1985), 189–194. Zbl 0601.46059 MR 789311 296
- [4] G. A. Elliott, On the classification of C^* -algebras of real rank zero. *J. Reine Angew.*
Math 443 (1993) 179-219 7bl 0809 46067 MR 1241132 296 *Math.* **443** (1993), 179–219. [Zbl 080](http://www.emis.de/MATH-item?1016.46037)[9.46067 MR 1](http://www.ams.org/mathscinet-getitem?mr=1878882)[2411](#page-1-0)32 296
- [5] G. A. Elliott and D. E. Evans, The structure of the irrational rotation C^* -algebra. *Ann. of Math* (2) **138** (1993) $477-501$ **7bl** 0847 46034 MR 1247990 296 *Math.* (2) **138** [\(1993\), 47](http://www.emis.de/MATH-item?1159.58005)[7–501.](http://www.ams.org/mathscinet-getitem?mr=2444094) Zbl 08[47.46](#page-0-0)034 MR 1247990 296
- [6] V. Mathai and J. Rosenberg. A noncommutative sigma-model. *J. Noncommut. Geom.* **5** (2011), 265–294. 295, 296
- [7] W. Pusz and S. L. Woronowicz, Passive states and KMS states for general quantum systems. *Comm. Math. Phys.* **58** (1978), 273–290. MR 0471796 296
- [8] M. Rørdam, Classification of nuclear, simple C^{*}-algebras. In *Classification of nuclear*

C^{*}-algebras. Entropy in operator algebras. Encyclopedia Math. Sci. 126. Springer C^* -algebras. *Entropy in operator algebras*, Encyclopaedia Math. Sci. 126, Springer,
Berlin 2002, 1–145, Zbl 1016, 46037 MR 1878882, 296 Berlin 2002, 1–145. Zbl 1016.46037 MR 1878882 296
- [9] J. Rosenberg, Noncommutative variations on Laplace's equation. *Anal. PDE* **1** (2008), 95–114. Zbl 1159.58005 MR 2444094 295
- [10] J. Slawny, On factor representations and the C^* -algebra of canonical commutation rela-
tions *Comm Math Phys* 24 (1972) 151–170 Zbl 0225 46068 MR 0293942 296 tions. *Comm. Math. Phys.* **24** (1972), 151–170. Zbl 0225.46068 MR 0293942 296

Received October 5, 2009

H. Li, Department of Mathematics, SUNY at Buffalo, Buffalo, NY 14260-2900, U.S.A. E-mail: hfli@math.buffalo.edu

 \Box