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K-theory for ring C*-algebras attached to polynomial rings
over finite fields
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Abstract. We compute the K-theory of ring C*-algebras for polynomial rings over finite fields.
The key ingredient is a duality theorem which we had obtained in a previous paper. It allows
us to show that the K-theory of these algebras has a ring structure and to determine explicit
generators. Our main result also reveals striking similarities between the number field case
and the function field case.
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1. Introduction

The theory of ring C*-algebras, initiated in [Cun3], has been developed in [CuLi1],
[Li] and [CuLi2]. The present paper continues our work in [CuLi2] where we studied
ring C*-algebras associated to rings of integers in number fields. In [CuLi2] we
proved a duality theorem which was a key ingredient in the computation of the K-
theory of these algebras. It allowed us to pass from the finite adele ring to the infinite
one where we could use homotopy arguments to determine the K-theory.

In the present paper, we turn to the case of the function field of the projective line
over a finite field. More precisely, our goal is to compute the K-theory of the ring
C*-algebra for FqŒT � where q is a prime power, i.e., q D pn for some prime number
p. Since our duality theorem holds for arbitrary global fields (see [CuLi2]), we can
apply it to function fields as well. However, since in that case the infinite adele space
is totally disconnected, we cannot hope for homotopy arguments.

Nevertheless, the duality theorem and the passage from the finite to the infinite
adele space give us, in a somewhat unexpected way, a different handle on the com-
putation of K-theory. It allows us to find explicit generators for the K-theory which
have sufficiently nice properties. These generators are not visible in the representa-

1Research supported by the Deutsche Forschungsgemeinschaft (SFB 478).
2The second named author is supported by the Deutsche Telekom Stiftung. This work was done in the

context of his PhD project at the University of Münster.



332 J. Cuntz and X. Li

tion over the finite adele space. At the same time, this explicit description reveals a
ring structure on the K-theory.

As the final result, we obtain that the K-theory for the ring C*-algebra of FqŒT � can
be described as the tensor product over Z of zK0.C �.F �

q // and the exterior Z-algebra

over the torsion-free part of the multiplicative group Fq.T /�, where zK0.C �.F �
q // is

the reduced K-theory of C �.F �
q / (i.e., the cokernel of the canonical map K0.C/!

K0.C
�.F �

q //). This formula is compatible with the ring structure.
We proceed as follows: First of all, we recall the notion of ring C*-algebras. We

also summarize the results of [CuLi2] (Section 2). Then, we determine the K-theory
for the ring C*-algebra of FqŒT �: First, using the duality theorem, we reduce our
problem to computing K�.C0.Fq..T /// Ì Fq.T / Ì Fq.T /�/ (Section 3). Secondly,
we start with computingK�.C0.Fq..T ///ÌFq.T /Ì.F �

q �hT i//. It turns out that we
can find explicit generators, projections and unitaries, for the K-groups (Section 5).
The crucial point is that these projections and unitaries commute with all the remaining
unitaries one still has to adjoin in order to pass fromC0.Fq..T ///ÌFq.T /Ì.F �

q �hT i/
toC0.Fq..T ///ÌFq.T /ÌFq.T /� (Section 6). Finally, the computation is completed
by comparing our situation with commutative tori of suitable dimensions (Section 7).

2. Review

Let K be a global field and R the ring of integers in K. The ring C*-algebra AŒR�
is defined as follows: Consider the Hilbert space `2.R/ with canonical orthonormal
basis f�r W r 2 Rg. Define additive shifts U a via U a.�r/ D �aCr and multiplicative
shift operators Sb by Sb.�r/ D �br (for b ¤ 0). These unitaries and isometries
generate a C*-subalgebra of L.`2.R//, the ring C*-algebra AŒR�. This concrete
C*-algebra admits several alternative descriptions. For our purposes, the following
one is important (see [CuLi1], Remark 3 and Section 5):

Theorem 2.1. AŒR� is Morita equivalent to C0.Af / ÌK ÌK�.

The crossed product is taken with respect to the canonical action of K ÌK� on
the finite adele ring Af of K via affine transformations.

Moreover, we proved the following duality result (see [CuLi2], Theorem 4.1 and
Corollary 4.2):

Theorem 2.2. For every global field K, the crossed products C0.A1/ Ì K Ì K�
and C0.Af / ÌK ÌK� are Morita equivalent.

Here A1 is the infinite adele ring of K. The crossed products arise from the
natural actions of K ÌK� on A1 and Af via affine transformations.

This duality theorem allowed us to use homotopy arguments to determine
K�.AŒR�/ for the ring of integers R in a number field K. Our final result is (see
[CuLi2], Section 6):
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LetK be a number field with roots of unity� D f˙1g and ring of integersR. Let
#fvRg be the number of real places of K. There is a decomposition K� D � � � ,
where � is a free abelian group on infinitely many generators, such that the K-theory
of the ring C*-algebra of R can be described as follows:

Theorem 2.3.

K�.AŒR�/ Š

8̂<̂
:
K0.C

�.�//˝Z ƒ
�.�/ if #fvRg D 0;

ƒ�.�/ if #fvRg is odd;

ƒ�.�/˚ ..Z=2Z/˝Z ƒ
�.�// if #fvRg is even and at least 2:

This isomorphism is meant as an isomorphism between Z=2Z-graded abelian
groups. Here K�.AŒR�/ is the canonically graded group K0.AŒR�/ ˚ K1.AŒR�/,
K0.C

�.�// and Z=2Z are trivially graded, the exterior Z-algebra ƒ�.�/ is canoni-
cally graded and we consider graded tensor products.

3. Applying the duality theorem

Now we turn to function fields. Let us consider the case K D Fq.T / and R D
FqŒT � for a prime power q. Our goal is to determine the K-theory of AŒR�. By
Theorem 2.1, we know that AŒR� �M C0.Af / ÌK ÌK�. Moreover, Theorem 2.2
yields C0.A1/ Ì K Ì K� �M C0.Af / Ì K Ì K�. Thus we have to compute the
K-theory of C0.A1/ ÌK ÌK�.

It is our convention that the infinite adele ring over K D Fq.T / is given by

A1 Š Fq..T // D
˚P1

iDn aiT i W n 2 Z; ai 2 Fq
�
:

Fq..T // is a locally compact field with respect to the valuation

ˇ̌ 1P
iDn

aiT
i
ˇ̌ D q�n if an ¤ 0:

Moreover, to form the crossed product C0.A1/ Ì K Ì K�, we also need to know
how K sits inside A1. The embedding K ,! A1 is determined by

K � FqŒT � 3 a.T / 7! a.T �1/ 2 Fq..T // Š A1

(it is our convention that the infinite place of K is given by the valuation ja=bj1 D
qdeg.a/�deg.b/ for a 2 FqŒT �, b 2 FqŒT ��).

Let Qva, Qtb be the unitaries in the multiplier algebra of C0.A1/ ÌK ÌK� which
implement the additive and the multiplicative action, respectively. In other words,
we have

Qva Qtbf Qt�b . Qva/� D f .�.b/�1.t � �.a///
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for every f 2 C0.Fq..T ///, where � is the ring isomorphism

Fq.T /! Fq.T /; a.T / 7! a.T �1/:

We observe that we can equally well consider the crossed product associated to
the canonical embedding Fq.T / ,! Fq..T //. We denote this crossed product by
C0.Fq..T /// Ì Fq.T / Ì Fq.T /� and let va, tb be the canonical unitaries in the mul-
tiplier algebra of this crossed product corresponding to addition and multiplication,
respectively. We can identifyC0.Fq..T ///ÌFq.T /ÌFq.T /� andC0.A1/ÌKÌK�
via f vatb 7! f Qv�.a/ Qt�.b/. To be more precise, this homomorphism identifies the
*-algebras Cc.Fq.T /Ì Fq.T /�; C0.Fq..T //// and Cc.K ÌK�; C0.A1// viewed as
*-subalgebras ofC0.Fq..T ///ÌFq.T /ÌFq.T /� orC0.A1/ÌKÌK�, respectively.
Furthermore, this map is isometric with respect to the `1-norms, so that it extends to
an isomorphism of the crossed products.

Thus our task is to determine the K-theory of C0.Fq..T /// Ì Fq.T / Ì Fq.T /�.

4. Notation

In the following, let 1ŒX� be the characteristic function of a subset X in Fq..T //.
In particular, the ring of power series FqŒŒT �� D fP1

iD0 aiT i W ai 2 Fqg sits inside
Fq..T //, and we denote by 1n the characteristic function 1ŒT n�Fq ŒŒT ���. The character-
istic function of FqŒŒT �� is denoted by 1 (i.e., 1´ 10). Since the subset T n � FqŒŒT ��
is closed and open in Fq..T //, the functions 1n and 1 lie in C0.Fq..T ///.

Moreover, as we already had above, let va, tb be the canonical unitaries in the
multiplier algebra of C0.Fq..T /// Ì Fq.T / Ì Fq.T /� implementing the additive or
the multiplicative action, respectively.

Furthermore, let f1; f2; f3; : : : be an enumeration of the irreducible polynomials
in FqŒT � with constant term 1, i.e., fi 2 1 C T � FqŒT �. Let � be the subgroup
of Fq.T /� generated by the polynomials T and f1; f2; f3; : : : . � is a free abelian
group, and free generators are precisely given by T; f1; f2; f3; : : : . We have the
decomposition Fq.T /� D F �

q � � . Let �m´ hT; f1; : : : ; fmi.
We will determine K�.C0.Fq..T /// Ì Fq.T / Ì Fq.T /�/ step by step, so it will

be helpful to choose appropriate C*-subalgebras. Let

A�1´ C0.Fq..T /// Ì Fq.T / Ì F �
q

and

Am´ C0.Fq..T /// Ì Fq.T / Ì .F �
q � �m/ for all m 2 Z�0:

If � denotes the multiplicative action of � on A�1, then we have A0 Š A�1 Ì�T
Z

and Am Š Am�1 Ì�fm
Z for allm 2 Z�0. Finally, C0.Fq..T ///Ì Fq.T /Ì Fq.T /�

is isomorphic to lim�!Am with respect to the canonical maps Am�1 ! Am. Thus we
have to determine the K-theory of Am for each m.
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5. Explicit generators for K-theory

The first step is to determine the K-theory of A�1. It turns out that A�1 is approxi-
mately finite dimensional, so we just have to find a suitable description of A�1 as an
inductive limit of finite dimensional C*-algebras to compute its K-theory.

5.1. Filtrations. Let �T be the endomorphism of C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q

induced by multiplication with T . �T is given by

�T .f v
atb/ D .f .T �1t/ � 1.T �1t//vaT tb:

Lemma 5.1. A�1 can be identified with the inductive limit of the system

� � � �T��! C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q

�T��! C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q

�T��! � � � :

Proof. The idea is that going over to this inductive limit corresponds to formally
inverting �T .

To prove the claim, consider for each n 2 Z�0 the homomorphism

C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q ! A�1; f vatb 7! f .T nt/va=T n

tb:

This family of homomorphisms is compatible with �T and thus gives rise to a ho-
momorphism

lim�!fC.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q I�T g ! A�1:

This homomorphism is clearly surjective. To see injectivity, consider for each n 2
Z�0 the commutative square

C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q

��

�� A�1

��
C.FqŒŒT ��/ �� C0.Fq..T ///,

where the upper horizontal arrow is the homomorphism introduced above (for thenwe
have chosen) and the lower horizontal arrow is given by f 7! f .T nt/. The vertical
arrows are the canonical faithful conditional expectations. They exist because we are
dealing with discrete amenable groups. As the lower horizontal homomorphism is
clearly injective, the upper one has to be so as well. This proves injectivity for each
n and thus for the induced homomorphism on the inductive limit.

Now, for every d 2 � let �d be the endomorphism of C.FqŒŒT ��/ Ì FqŒT � Ì F �
q

induced by multiplication with d . It is given by f vatb 7! f .d�1t/vdatb . We have
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Lemma 5.2.

C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q Š lim�!

d2�
fC.FqŒŒT ��/ Ì FqŒT � Ì F �

q I�d g:

Proof. This can be proven analogously to the previous lemma.

Moreover, let .FqŒT �/.n/ be the additive subgroup fa0 C � � � C anT n W ai 2 Fqg
of FqŒT �. For each n in Z>0, we can identify .FqŒT �/.n�1/ and FqŒT �=T n � FqŒT � as
additive groups. Thus .FqŒT �/.n�1/ acts additively on C.FqŒT �=T n � FqŒT �/. This
additive action and the multiplicative action of F �

q give rise to the crossed product

C.FqŒT �=T
n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �

q :

Let �n;nC1 be the homomorphism

C.FqŒT �=T
n�FqŒT �/Ì.FqŒT �/.n�1/ÌF �

q ! C.FqŒT �=T
nC1�FqŒT �/Ì.FqŒT �/.n/ÌF �

q

given by gvatb 7! .g B �nC1;n/vatb with the canonical projection �nC1;n from
FqŒT �=T nC1 � FqŒT � onto FqŒT �=T n � FqŒT �. We have

Lemma 5.3.

C.FqŒŒT ��/Ì FqŒT �Ì F �
q Š lim�!

n

fC.FqŒT �=T n � FqŒT �/Ì .FqŒT �/.n�1/ Ì F �
q I �n;nC1g:

Proof. Again, the proof is analogous to the one of Lemma 5.1. The point is that
FqŒŒT �� can be identified with

lim �
n

fFqŒT �=T nC1 � FqŒT �I�nC1;ng

both algebraically and topologically.

5.2. Explicit generators for the K-groups. The preceding filtrations allow us to
compute the K-theory of A�1. The first step is the following

Lemma 5.4.

C.FqŒT �=T
n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �

q ŠMqn.C/˝ C �.F �
q /:

Proof. Let en 2 C.FqŒT �=T n � FqŒT �/ be the characteristic function of the coset
0 C T n � FqŒT �. It is clear that fvaenv�a0 W a; a0 2 .FqŒT �/.n�1/g are matrix units.
Let ea;a0 be the canonical rank 1 operator in L.`2.FqŒT �=T n �FqŒT �// corresponding
to the cosets a C T n � FqŒT � and a0 C T n � FqŒT �. We can identify C.FqŒT �=T n �
FqŒT �/ Ì .FqŒT �/.n�1/ with L.`2.FqŒT �=T n � FqŒT �// ŠMqn.C/ via

vaenv
�a0 7! ea;a0 :
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Moreover, the action of F �
q onC.FqŒT �=T n �FqŒT �/Ì .FqŒT �/.n�1/ must be inner

as we have seen that C.FqŒT �=T n � FqŒT �/ Ì .FqŒT �/.n�1/ is isomorphic to a matrix
algebra. The unitaries implementing the action of F �

q are given byP
a2.Fq ŒT �/.n�1/

vbaenv
�a

for b 2 F �
q .

So on the whole, we obtain the identification

C.FqŒT �=T
n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �

q Š L.`2.FqŒT �=T
n � FqŒT �//˝ C �.F �

q /

via
vaenv

�a0

tb 7! ea;b�1a0 ˝ Vb;
where Vb are the canonical unitary generators of C �.F �

q /.

For every character 	 of F �
q , let p� be the spectral projection

1
q�1

P
b2F �

q

	.b/tb

in C.FqŒT �=T n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �
q . As an immediate consequence of

Lemma 5.4 we get

Corollary 5.5.

K0.C.FqŒT �=T
n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �

q / Š
L
bF �

q

Z .Š Zq�1/

and free generators for K0 are Œen � p��, 	 2 cF �
q .

K1.C.FqŒT �=T n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �
q / vanishes.

Recall that en 2 C.FqŒT �=T n � FqŒT �/ is the characteristic function of the coset
0C T n � FqŒT �.

Just a remark on notation: Œ � � denotes a class in K-theory.
By continuity of K1 and with the help of Lemmas 5.1, 5.2 and 5.3, we deduce

from the previous corollary

Corollary 5.6.
K1.A�1/ Š f0g:

It remains to determine K0.A�1/.
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Lemma 5.7. We can identify K0.C.FqŒŒT ��/ Ì FqŒT � Ì F �
q / with

ZŒ 1
q
�˚ L

bF �

q nf1g
Z .Š ZŒ 1

q
�˚Zq�2/:

Moreover, the identification can be chosen so that the n-th embedding

�n W C.FqŒT �=T n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �
q ! C.FqŒŒT ��/ Ì FqŒT � Ì F �

q

is given on K0 by

.�n/�.Œen�/ D

�
1
qn

0
:::
0

�
I .�n/�.Œen � p��/ D

ˇ
� 1
qn
qn�1
q�1
0
:::
1
:::
0

�

for every 	 2 cF �
q n f1g. Here, the “1” in the image of Œen � p�� is the entry corre-

sponding to 	 in
LbF �

q nf1g Z.

In particular, generators for K0.C.FqŒŒT ��/ Ì FqŒT � Ì F �
q / are given by

Œ1n�; n 2 Z�0; and Œp��; 	 2 cF �
q n f1g:

1n is the characteristic function of T n � FqŒŒT ��, and 1 2 cF �
q denotes the trivial

character.

Proof. With Lemma 5.3 in mind, we compute .�n;nC1/�. By definition,

�n;nC1.en/ D P
b2Fq

vbT
n
enC1v�bT n I �n;nC1.tb/ D tb:

Thus, by Corollary 5.5, we have to determine

Œ�n;nC1.en � p�/� D Œ.Pb2Fq
vbT

n
enC1v�bT n

/ � p��
in K0.C.FqŒT �=T nC1 � FqŒT �/ Ì .FqŒT �/.n/ Ì F �

q /.
First of all, we have

p� �
� P
b2F �

q

 .b/vbT
n
enC1v�bT n�

D 1
q�1

P
b;b02F �

q

	.b0/ .b/tb0vbT
n
enC1v�bT n

D 1
q�1

P
b;b02F �

q

	.b0/ .b/vb0bT n
enC1v�b0bT n

tb0

D 1
q�1

P
b02F �

q

� P
b2F �

q

 .b0/ .b/vb0bT n
enC1v�b0bT n� x .b0/	.b0/tb0

D � P
b2F �

q

 .b/vbT
n
enC1v�bT n� � p x ��

(1)
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for every  , 	 in cF �
q . This result implies that the projections .en � enC1/ � p x ��

and .en � enC1/ � p� D .
P
b2F �

q
vbT

n
enC1v�bT n

/ � p� are Murray–von Neumann
equivalent via the partial isometry

p� �
� P
b2F �

q

 .b/vbT
n
enC1v�bT n�

:

This shows that in K0.C.FqŒT �=T nC1 � FqŒT �/ Ì .FqŒT �/.n/ Ì F �
q /, the following

equality holds true:

.q � 1/ŒenC1� D
� P
b2F �

q

vbT
n
enC1v�bT n�

D Œen � enC1�
D P
 2bF �

q

Œ.en � enC1/ � p x ���

D .q � 1/Œ.en � enC1/ � p��

for every 	 2 cF �
q . Comparing this with

.q � 1/ŒenC1� D .q � 1/ P
 2bF �

q

ŒenC1 � p �;

we deduce
Œ.en � enC1/ � p�� D P

 2bF �

q

ŒenC1 � p �

for every 	 2 cF �
q . Therefore,

.�n;nC1/�.Œen �p��/ D Œ.enC1C.en�enC1// �p�� D Œ.enC1 �p�/�C P
 2bF �

q

ŒenC1 �p �:

Hence, under the identification

K0.C.FqŒT �=T
n � FqŒT �/ Ì .FqŒT �/.n�1/ Ì F �

q / Š Zq�1

in Corollary 5.5, we get

.�n;nC1/� D
 
1 0

:::
0 1

!
C
 
1 ::: 1
::: 1

:::
1 ::: 1

!
D
 
2 1

:::
1 2

!
:

Finally, by Lemma 5.3, we compute

K0.C.FqŒŒT ��/ Ì FqŒT � Ì F �
q / Š lim�!

n
Zq�1I

�
2 1:::
1 2

�o
Š ZŒ 1

q
�˚ L

bF �

q nf1g
Z:
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Moreover, we can choose this identification so that .�n/� is given by

.�n/�.Œen�/ D

�
1
qn

0
:::
0

�
I .�n/�.Œen � p��/ D

�
� 1
qn
qn�1
q�1
0
:::
1
:::
0

�
for all 	 2 cF �

q n f1g:

The last statement about the generators of K0.C.FqŒŒT ��/ Ì FqŒT � Ì F �
q / follows

from the observation that en is sent to 1n under �n.

From now on, we fix this particular description ofK0.C.FqŒŒT ��/Ì FqŒT �Ì F �
q /.

1n is the characteristic function of T n � FqŒŒT �� � FqŒŒT ��. For all d in � ,

�d .1n/ D 1ŒT n�Fq ŒŒT ���.d
�1t/ D 1Œd �.T n�Fq ŒŒT ��/� D 1n

because every d in � is invertible in FqŒŒT �� (� and � are defined in Section 4).
Moreover, �d certainly leaves p� invariant. Therefore, by Lemma 5.7, .�d /� D id
on K0.C.FqŒŒT ��/ Ì FqŒT � Ì F �

q /. This, together with Lemma 5.2, implies

Corollary 5.8.

K0.C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q / Š ZŒ 1

q
�˚ L

bF �

q nf1g
Z

and the canonical inclusion

C.FqŒŒT ��/ Ì FqŒT � Ì F �
q ! C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �

q

is an isomorphism on K0.

Finally, we have to compute .�T /� on K0.C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q /. We

have �T .1n/ D 1nC1 and �T .p�/ D 11 � p�. Thus, under the identifications in
Lemma 5.7 and Corollary 5.8, we have

.�T /� D

�
1
q

� 1
q
::: � 1

q
0 1 0
:::

:::
0 0 1

�
: (2)

In particular, .�T /� is bijective on K0.C.FqŒŒT ��/ Ì .� � FqŒT �/ Ì F �
q /. Again,

combining this result with Lemma 5.1 and Corollary 5.8, we get

Corollary 5.9.
K0.A�1/ Š ZŒ 1

q
�˚ L

bF �

q nf1g
Z
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and the canonical inclusion

C.FqŒŒT ��/ Ì FqŒT � Ì F �
q ! A�1

is an isomorphism on K0.
Generators of K0.A�1/ are

Œ1n� ¶

�
1
qn

0
:::
0

�
and Œ1 � p�� ¶

�
0
:::
1
:::
0

˘
:

Here “1” is the entry corresponding to 	 in
LbF �

q nf1g Z.

So we have obtained a concrete description of the K-theory of

A�1 D C0.Fq..T /// Ì Fq.T / Ì F �
q :

We fix this description of K0.A�1/ from now on. The next step is to determine the
K-theory of

A0 D C0.Fq..T /// Ì Fq.T / Ì .F �
q � �0/ Š C0.Fq..T /// Ì Fq.T / Ì F �

q Ì�T
Z:

For every 	 in cF �
q , let

x N�´ P
b2F �

q

N	.b/1ŒbCT �Fq ŒŒT ��� 2 A0: (3)

Moreover, we construct

w� D tT .1 � p1/C x N�p� C .1 � p�/t�T C .1 � 1 � p1 � 1 � p�/ (4)

in the unitalization .A0/� of A0. 1 denotes the unit in .A0/�. A straightforward
computation shows that w� is unitary.

Proposition 5.10. We can identify K0.A0/ with
LbF �

q nf1g Z and free generators are

Œ1 � p��, 1 ¤ 	 2 cF �
q .

We also have K1.A0/ ŠLbF �

q nf1g Z and free generators are Œw��, 1 ¤ 	 2 cF �
q .

Proof. A0 can be described as the crossed product A�1 Ì�T
Z. Thus we can apply

the Pimsner–Voiculescu sequence. It looks as follows:

f0g ! K1.A0/
@�! K0.A�1/

id�.�T /�������! K0.A�1/! K0.A0/! f0g:
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If we plug in (2), then we obtain

ker.id � .�T /�/ D h fŒ1 � p1� � Œ1 � p�� W 	 2 cF �
q n f1gg iI

im.id � .�T /�/ D h fŒ1n� W n 2 Z�0g i:
As an immediate consequence, we get thatK0.A0/ ŠLbF �

q nf1g Z with free generators

Œ1 � p��, 1 ¤ 	 2 cF �
q , as desired.

To prove our assertion about K1, we have to show that

@.Œw��/ D Œ1 � p1� � Œ1 � p�� (up to sign):

In order to do so, let us have a closer look at the Pimsner–Voiculescu sequence
(compare [PV]). It is derived from the Toeplitz extension associated with the crossed
product, where the C*-algebra on which Z acts is assumed to be unital. As we
are in the nonunital case, we have to look at the Toeplitz extension associated to
.A�1/� Ì Q�T

Z, i.e.,

f0g !K ˝ .A�1/� ! T ! .A�1/� Ì Q�T
Z! f0g: (5)

Here, K is the C*-algebra of compact operators (on some infinite-dimensional separa-
ble Hilbert space) and T is the C*-subalgebra ofC �.v/˝..A�1/� Ì Q�T

Z/ generated
by v ˝ tT and f1˝ x W x 2 .A�1/�g. C �.v/ is the Toeplitz algebra with canonical
generator v. The quotient map in (5) maps v ˝ tT to tT .

Now, to compute @.Œw��/, we consider the partial isometry

s� D v ˝ tT .1 � p1/C 1˝ x N�p� C v� ˝ .1 � p�/t�T C 1˝ .1 � 1 � p1 � 1 � p�/:
s� is mapped to w� under the quotient map in (5). Thus, by definition of @, we have
(up to sign)

@.Œw��/ D Œs�
�s�� � Œs�s�

��

D Œ1˝ 1 � .1 � vv�/˝ .11 � p�/� � Œ1˝ 1 � .1 � vv�/˝ .11 � p1/�
D Œ.1 � vv�/˝ .11 � p1/� � Œ.1 � vv�/˝ .11 � p�/�

where we used (1). The last term corresponds to Œ11 �p1��Œ11 �p�� under the canonical
isomorphism K0.K ˝ .A�1/�/ Š K0..A�1/�/. Finally, using Lemma 5.7, we
deduce that

Œ11 � p1� � Œ11 � p�� D .�1/�.Œp1�/ � .�1/�.Œp��/
corresponds to �

1
q
.q�1/
�1
:::

�1

�
�

�
� 1
q

0
:::
1
:::
0

�
D
 1�1
:::

�1

!
�

˙
0
:::
1
:::
0

�
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in ZŒ 1
q
�˚LbF �

q nf1g Z. But by Lemma 5.7, Œ1 � p1� � Œ1 � p�� also corresponds to

 1�1
:::

�1

!
�

�
0
:::
1
:::
0

˘
in ZŒ 1

q
�˚LbF �

q nf1g Z, where in the second vector “1” is the entry corresponding to

	 in
LbF �

q nf1g Z.

Thus, Œ11 �p1�� Œ11 �p�� D Œ1 �p1�� Œ1 �p�� inK0.A�1/. This proves our claim.

At this point, we remark that A0 can be described as a Cuntz–Krieger algebra.
This leads to an alternative way of computing the K-theory for A0.

First of all,C.FqŒŒT ��/ÌFqŒT �Ìe
�T

N is generated by the isometries vatT , a 2 Fq ,
whose range projections sum up to 1. Here tT is the isometry which implements the
endomorphism �T . Thus C.FqŒŒT ��/ Ì FqŒT � Ìe

�T
N is isomorphic to the Cuntz

algebra Oq (by the universal property of Oq and since the Cuntz algebra is simple,
see [Cun1]).

Secondly, consider the crossed product Oq Ì .Z=.q � 1/Z/ with respect to the
action

Sj 7�!
´
Sj for j D 1;

j�2Sj if j � 2

for a primitive .q � 1/-th root of unity 
, where the Sj are the canonical generators
of Oq . We claim that

Oq Ì .Z=.q � 1/Z/ Š C.FqŒŒT ��/ Ì FqŒT � Ìe
�T

N Ì F �
q :

To show this, choose a generator b of F �
q and consider the isometries

tT and 1p
q�1

q�2P
nD0

.
2�j /nv.bn/tT for 2 	 j 	 q:

These q isometries generate C.FqŒŒT ��/ Ì FqŒT � Ìe
�T

N, and their range projections
sum up to 1. Moreover, we have tbtT t�b D tT and

tb
�

1p
q�1

q�2P
nD0

.
2�j /nv.bn/tT
�
t�
b
D 
j�2� 1p

q�1
q�2P
nD0

.
2�j /nv.bn/tT
�

for 2 	 j 	 q. Thus we have found a Z=.q � 1/Z Š F �
q -invariant isomorphism

Oq Š C.FqŒŒT ��/ Ì FqŒT � Ìe
�T

N:
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Here we again used the universal property of Oq together with the fact that Oq is
simple (see [Cun1]). We conclude that

Oq Ì .Z=.q � 1/Z/ Š C.FqŒŒT ��/ Ì FqŒT � Ìe
�T

N Ì F �
q ;

as claimed.
And thirdly, by [CuEv] we know that Oq Ì .Z=.q � 1/Z/ is isomorphic to the

Cuntz–Krieger algebra OA associated with the matrix A D
�
2 1:::
1 2

�
.

Thus we get
C.FqŒŒT ��/ Ì FqŒT � Ìe

�T
N Ì F �

q Š OA:

Now this isomorphism can be worked out explicitly, and we can compute the K-
theory of OA in an explicit way (compare [CuKr] and [Cun2]). Therefore we obtain
a concrete description for the K-theory of C.FqŒŒT ��/ Ì FqŒT � Ìe

�T
N Ì F �

q .
Finally, it follows from our computations that the canonical homomorphism

C.FqŒŒT ��/ Ì FqŒT � Ìe
�T

N Ì F �
q ! A0

is an isomorphism on K-theory. So this is an alternative route of computing the
K-theory of A0.

6. Commuting unitaries

Now we come to the crucial point in our computations. We have invested some effort
in describing the K-groups of A0 as explicitly as possible. The reason is that we are
interested in the following observation:

Lemma 6.1. For every i and 1 ¤ 	 2 cF �
q , we have

Q�fi
.1 � p�/ D �fi

.1 � p�/ D 1 � p� and Q�fi
.w�/ D w�:

Recall that f1; f2; f3; : : : is an enumeration of the irreducible polynomials in
FqŒT � with constant term 1.

Proof. We have �fi
.1/ D 1Œfi �Fq ŒŒT ��� D 1 as fi is invertible in FqŒŒT ��. This shows

that Q�fi
.1 � p�/ D �fi

.1 � p�/ D 1 � p�.
To show thatw� (defined in (4)) is Q�fi

-invariant, it remains to prove that x N� is�fi
-

invariant. By construction of x N� (defined in (3)), it suffices to prove that 1ŒbCT �Fq ŒŒT ���

is �fi
-invariant for all b in F �

q . Since �fi
.1ŒbCT �Fq ŒŒT ���/ D 1Œfi �.bCT �Fq ŒŒT ��/�, we

have to show that bC T � FqŒŒT �� D fi � .bC T � FqŒŒT ��/. As fi has constant term 1,
it is clear that “�” holds. To prove the reverse inclusion, take an arbitrary element
b C T x in b C T � FqŒŒT ��. Then

b C T x D fi � .b C f �1
i„ƒ‚…

2Fq ŒŒT ��

�..1 � fi /b C T x„ ƒ‚ …
2T �Fq ŒŒT ��

// 2 fi � .b C T � FqŒŒT ��/:
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This proves our lemma.

As we will see, this simple observation plays a very important role in our compu-
tations. Moreover, note that this observation heavily relies on the fact that we have
applied our duality theorem to pass from the finite adele ring to the infinite one. The
reason why our lemma holds true basically is that all the fi are invertible in FqŒŒT ��.
But this only happens in the canonical subring of the infinite adele ring, whereas in
the canonical subring of the finite adele ring, there is for each polynomial fi a finite
place where fi is not invertible.

Now, the reason why this observation is so important is that it allows us to produce
generators for the K-theory of Am.

We fix the following notation: Let t .i/ be the unitary tfi
in the multiplier algebra

of Am for every 1 	 i 	 m. We know that Am Š Am�1 Ì�fm
Z, and we denote

by @m the boundary map in the corresponding Pimsner–Voiculescu sequence. It will
become clear from the context whether we mean the index map or the exponential
map. Let

.1 � p�; t .m//´ t .m/.1 � p�/C .1 � 1 � p�/ 2 .Am/�: (6)

Here 1 is the unit in .Am/�.

Lemma 6.2. .1 � p�; t .m// is a unitary in .Am/� with

@m.Œ.1 � p�; t .m//�/ D Œ1 � p�� 2 K0.Am�1/ (7)

(up to sign).

Proof. First of all, .1 � p�; t .m// is a unitary since t .m/ commutes with 1 � p� as
1 � p� is �fm

-invariant. To prove (7), we have to look at the Toeplitz extension (with
generalized Toeplitz algebra T ) associated to .Am�1/� Ì Q�fm

Z as in the proof of
Proposition 5.10. Here Q�fm

is the extension of �fm
to the unitalization.

We find that the partial isometry Qs� ´ v ˝ t .m/.1 � p�/ C 1 ˝ .1 � 1 � p�/ is
mapped to .1 � p�; t .m// under the quotient map T ! .Am�1/� Ì Q�fm

Z. Thus,

@m.Œ.1 � p�; t .m//�/ D ŒQs�
� Qs�� � ŒQs� Qs�

�� D Œ.1 � vv�/˝ 1 � p��
(up to sign) and the last term corresponds to Œ1 �p�� under the canonical identification
K0.K ˝ .Am�1/�/ Š K0..Am�1/�/. This proves our lemma.

In the following, we produce generators for K�.Am/ by comparing our situation
with higher-dimensional commutative tori. We denote byK�.Am/ the Z=2Z-graded
abelian group K0.Am/˚K1.Am/.

For each l 2 Z>0, let z0; : : : ; zl be the canonical unitary generators of C.T lC1/.
Choose some 1 ¤ 	 2 cF �

q . Let� 0
m be the subgroup of� generated by the polynomials

f1; : : : ; fm, i.e.,
� 0
m´ hf1; : : : ; fmi: (8)
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By universal property of C.T lC1/, the commuting unitaries w�; t .i1/; : : : ; t .il/ (for
some 1 	 i1 < � � � < il 	 m) give rise to a homomorphism

C.T lC1/! .A0/
� Ì Q� � 0

mI z0 7! w�; zj 7! t .ij /:

Here Q� is the extension of � to the unitalization. Note that we can construct such a
homomorphism precisely because of Lemma 6.1.

We denote by Œw�; t .i1/; : : : ; t .il/� the image of Œz0�� � � � � Œzl � (see [HiRo], 4.7,
for the definition of the product on K-theory) under this homomorphism in K-theory.
A priori, Œw�; t .i1/; : : : ; t .il/� lies in K�..A0/� Ì Q� � 0

m/. However, we observe the
following:

Lemma 6.3. Œw�; t .i1/; : : : ; t .il/� lies in

K�.Am/ D K�.A0 Ì� � 0
m/ Š ker.K�..A0/� Ì Q� � 0

m/! K�.C �.� 0
m///:

Proof. The identification

K�.A0 Ì� � 0
m/ Š ker.K�..A0/� Ì Q� � 0

m/! K�.C �.� 0
m///

is justified by the split-exact sequence

f0g ! A0 Ì� � 0
m ! .A0/

� Ì Q� � 0
m ! C �.� 0

m/! f0g:
Now, consider the commutative diagram

C0.R/˝ C.T l/ �� C.T lC1/

��

�� C.T l/

��
.A0/

� Ì Q� � 0
m

�� C �.� 0
m/.

The first row is split-exact. Moreover, Œz0��� � ��Œzl � clearly comes fromK�.C0.R/˝
C.T l//. Therefore, Œz0� � � � � � Œzl � is mapped to 0 under the homomorphism
K�.C.T lC1// ! K�.C.T l//. Since the diagram above commutes, it follows that
Œw�; t .i1/; : : : ; t .il/� must lie in the kernel of K�..A0/� Ì Q� � 0

m/ ! K�.C �.� 0
m//.

Lemma 6.4. If il D m, l � 1, then

@m.Œw�; t .i1/; : : : ; t .il/�/ D Œw�; t .i1/; : : : ; t .il�1/� (up to sign): (9)

Proof. Under the boundary map K�.C.T lC1// ! K�C1.C.T l// associated with
the Toeplitz extension of C.T lC1/ Š C.T l/ Ìid Z, Œz0� � � � � � Œzl � is mapped to
Œz0� � � � � � Œzl�1� (up to sign). Therefore, by naturality of the Pimsner–Voiculescu
sequence, our claim follows.
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Similarly, we can considerC.T l/with canonical unitary generators Qzi , 1 	 i 	 l ,
and the homomorphism C.T l/! .A0/

� Ì Q� � 0
m (� 0

m is defined in (8)) given by

Qz1 7! .1 � p�; t .i1//I Qzj 7! t .ij / for 2 	 j 	 l; 1 	 i1 < � � � < il 	 m:
The unitary .1 � p�; t .i1// is defined as in (6). Again, this homomorphism exists
because the unitaries .1 � p�; t .i1//; t.i2/; : : : ; t .il/ commute (see Lemma 6.1).

Let Œ1 � p�; t .i1/; t.i2/; : : : ; t .il/� be the image of Œ Qz1� � � � � � Œ Qzl � under the ho-
momorphism above in K-theory. In complete analogy to the preceding two lemmas,
we get

Lemma 6.5. Œ1 � p�; t .i1/; t.i2/; : : : ; t .il/� lies in

K�.Am/ D K�.A0 Ì� � 0
m/ Š ker.K�..A0/� Ì Q� � 0

m/! K�.C �.� 0
m///:

and

Lemma 6.6.

@m.Œ1 � p�; t .i1/; t.i2/; : : : ; t .il/�/ D Œ1 � p�; t .i1/; t.i2/; : : : ; t .il�1/� (10)

(up to sign) for il D m and l > 1.

7. Final result

Now we are ready to compute the K-theory of Am (see Section 4 for the definition of
Am). We just have to put everything together.

Proposition 7.1. We have (with � 0
m defined in (8))

K�.Am/ Š K�.A0/˝Z ƒ
�.� 0

m/:

Generators for K0 are Œw�; t .i1/; : : : ; t .ik/� for 1 	 i1 < � � � < ik 	 m, 1 	 k
odd; Œ1�p�; t .i1/; : : : ; t .il/� for 1 	 i1 < � � � < il 	 m, 0 	 l even, with	 2 cF �

q nf1g.
Generators for K1 are Œw�; t .i1/; : : : ; t .ik/� for 1 	 i1 < � � � < ik 	 m, 0 	 k

even; Œ1�p�; t .i1/; : : : ; t .il/� for 1 	 i1 < � � � < il 	 m, 1 	 l odd, with	 2 cF �
q nf1g.

Recall thatK�.Am/ is the Z=2Z-graded abelian groupK0.Am/˚K1.Am/. The
isomorphism in this proposition is meant as an isomorphism of Z=2Z-graded abelian
groups, whereƒ�.� 0

m/ is canonically graded and we consider graded tensor products.

Proof. First of all, the statement makes sense because of Lemma 6.3 and Lemma 6.5.
Now, to prove our claim, we proceed inductively. For m D 0 the claim about the
generators has been proven in Proposition 5.10.
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Assume that m � 1 and that our assertion holds true for m � 1. We consider the
Pimsner–Voiculescu sequence associated to Am Š Am�1 Ì�fm

Z. The boundary
map @m is surjective because we have (up to sign)

@m.Œw�; t .i1/; : : : ; t .ik/; t.m/�/ D Œw�; t .i1/; : : : ; t .ik/�
for every i1 < � � � < ik < m, 0 	 k, by (9) and

@m.Œ1 � p�; t .i1/; : : : ; t .il/; t.m/�/ D Œ1 � p�; t .i1/; : : : ; t .il/�
for every i1 < � � � < il < m, 0 	 l , by (7) and (10).

Therefore, our claim follows from the exactness of the Pimsner–Voiculescu se-
quence for Am Š Am�1 Ì�fm

Z and by the induction hypothesis. In particular, we
have .�fm

/� D id on K�.Am�1/ for every m 2 Z>0.

Finally, this result allows us to compute the K-theory of the ring C*-algebra
associated to FqŒT �. By our considerations in Section 3, we know that the K-theory
of the ring C*-algebra AŒFqŒT �� can be identified with the K-theory ofC0.Fq..T ///Ì
Fq.T / Ì Fq.T /�. Moreover, we have

C0.Fq..T /// Ì Fq.T / Ì Fq.T /
� Š lim�!Am:

Thus, using continuity of K-theory together with Propositions 5.10 and 7.1, we arrive
at the following final result:

Theorem 7.2. K�.AŒFqŒT ��/ Š zK0.C �.F �
q //˝Z ƒ

�.�/.

zK0.C �.F �
q // denotes the reduced K-theory of C �.F �

q /, i.e., the cokernel of the
canonical map K0.C/ ! K0.C

�.F �
q //. � is defined in Section 4. Moreover,

K�.AŒFqŒT ��/ is the Z=2Z-graded abelian group K0.AŒFqŒT ��/ ˚ K1.AŒFqŒT ��/,
and the isomorphism in the theorem above is meant as an isomorphism of Z=2Z-
graded abelian groups. Here zK0.C �.F �

q // is trivially graded, ƒ�.�/ is canonically
graded and we consider graded tensor products.

Our computations show how to define a product structure onK�.AŒFqŒT ��/which
corresponds to the canonical product structure on zK0.C �.F �

q //˝Zƒ
�.�/ under the

isomorphism above. Actually, it follows from Lemma 6.1 that for every 	 in cF �
q nf1g,

the elements t .1/.1 �p�/, t .2/.1 �p�/, t .3/.1 �p�/, … are commuting unitaries in .1 �
p�/.C0.Fq..T ///ÌFq.T /ÌFq.T /�/.1 �p�/. So they give rise to a homomorphism of
the algebra of continuous functions on the infinite dimensional torus toC0.Fq..T ///Ì
Fq.T /ÌFq.T /�. It follows from Proposition 7.1 that this homomorphism induces an
embedding on K-theory. Thus we just have to carry over the product structure on the
K-theory of the infinite dimensional torus to K�.AŒFqŒT ��/ Š K�.C0.Fq..T /// Ì
Fq.T / Ì Fq.T //.

As the last comment, we point out that there are striking similarities between the
number field case and the function field case (compare Theorem 2.3 and Theorem 7.2).
So from this point of view, our results fit nicely into the general picture concerning
analogies between number fields and function fields.
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