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A calculation of the multiplicative character

Jens Kaad

Abstract. We give an explicit formula for the application of the Connes–Karoubi multiplicative
character to higher Loday products of elements in the connected component of the identity. On
our way we construct a product on the relative K-groups of Banach algebras and investigate
the multiplicative properties of the relative Chern character.
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1. Introduction

To each n-summable Fredholm module .F; H/ over a C-algebra A, A. Connes and
M. Karoubi associate a multiplicative character on algebraic K-theory:

MF W Kn.A/ ! C=.2�i/d n
2 eZ:

The construction uses the relative K-groups of a Banach algebra and the relative
Chern character with values in continuous cyclic homology. It can be understood as a
pairing between the abelian group generated by finitely summable Fredholm modules
and algebraic K-theory, [9].

In the case where n D 1 the multiplicative character has a direct interpretation
as a Fredholm determinant, see [9]; likewise, in the case where n D 2 the multi-
plicative character coincides with the determinant invariant as defined in [2], [3], see
[15]. This implies the independence of the multiplicative character under trace class
perturbations. Furthermore, when A is a commutative Banach algebra we have the
explicit formula

MF .Œea� � Œeb�/ D �q.TrŒPaP; PbP �/ 2 C=.2�i/Z; a; b 2 A; (1.1)

for the application of the multiplicative character to the Loday product Œea� � Œeb� 2
K2.A/. The operator P D .F C1/=2 2 L.H/ is the projection onto the eigenvectors
with eigenvalue 1 of the selfadjoint unitary F 2 L.H/. The map q W C ! C=.2�i/Z
is the quotient map and Tr W L1.PH/ ! C is the operator trace on the trace ideal.
With these low-dimensional interpretations in mind we could try to think of the
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multiplicative character as a higher determinant on algebraic K-theory. The aim of
the present paper is then to find an analogue of the formula (1.1) in higher dimensions.
This pursuit could be justified by the amount of research which focus on the quantity
TrŒPaP; PbP � 2 C, see for example [4], [5], [13]. We would also like to mention
the use of the determinant invariant in relation with generalizations of the Szegö limit
theorem, [6].

Let us fix a continuous n-summable Fredholm module .F; H/ over a unital com-
mutative Banach algebra A. The interior Loday product makes the direct sum
of algebraic K-groups

L1
kD1 Kk.A/ into a graded commutative ring; see [20].

Let us choose some elements a0; : : : ; an�1 2 M1.A/ and form their exponentials
ea0 ; : : : ; ean�1 2 GL0.A/. Each of them determines a class in the first algebraic
K-group and we can consider their Loday product

Œx� D Œea0 � � � � � � Œean�1 � 2 Kn.A/:

The main result of the present paper is then the explicit formula

MF .Œx�/ D .�1/n
P

s2†n�1

sgn.s/.q B �F /.TR.a0/ ˝ TR.as.1// ˝ � � � ˝ TR.as.n�1///

(1.2)
for the application of the multiplicative character to this concrete element in higher
K-theory. The linear map TR W M1.A/ ! A is the matrix trace and q W C !
C=.2�i/dn=2eZ is the quotient map. The homomorphism

�F W C cont
n�1.A/=Im.1 � t / ! C;

.a0; : : : ; an�1/ 7! cn�1 Tr.�nF ŒF; a0� : : : ŒF; an�1�/;

is the continuous index cocycle associated with the continuous n-summable Fredholm
module; see [8], Section IV.1. Here cn�1 2 Q is some rational constant and � 2
L.H/ is the grading operator of the Fredholm module. In case n D 2m is even,
the above formula can be expressed in terms of the higher fundamental trace form of
J. W. Helton and R. E. Howe. Indeed,P

s2†2m�1

sgn.s/�F .TR.a0/ ˝ TR.as.1// ˝ � � � ˝ TR.as.2m�1///

D � 1
mŠ

hP TR.a0/P; : : : ; P TR.a2m�1/P i;
where we recall that the trace form is given by

h�; : : : ; �i W .x1; : : : ; x2m/ 7! Tr.
P

s2†2m
sgn.s/xs.1/ : : : xs.2m//

on suitable algebras; see [13], part II, §2, and [7], part I, §7. This shows that the
multiplicative character is computable on the subgroup of Kn.A/ generated by Loday
products of elements in the connected component of the identity. Note that the
commutativity assumption serves to ensure the existence of the interior Loday product
which is needed for the calculation to make sense.
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Let us reflect a bit on what we have obtained. First of all, we could choose
different "logarithms" for the exponentials ea0 ; : : : ; ean�1 2 GL0.A/. Thus, let
b0; : : : ; bn�1 2 M1.A/ be any elements such that ebi D eai for all i 2 f0; : : : ; n�1g.
We then get that the differenceP

s2†n�1

sgn.s/.�F .a0 ˝ as.1/ ˝ � � � ˝ as.n�1//

� �F .b0 ˝ bs.1/ ˝ � � � ˝ bs.n�1/// 2 .2�i/dn=2eZ

lies in the additive subgroup .2�i/dn=2eZ � C. This is an immediate corollary of
the formula (1.2). Furthermore, the properties of the Loday product yields a couple
of desirable properties for the map

dF W GL.A/n ! C=.2�i/dn=2eZ; .g0; : : : ; gn�1/ 7! MF .Œg0� � � � � � Œgn�1�/:

To be more precise:

(1) It is multilinear:

dF .g0; : : : ; gi �hi ; : : : ; gn�1/ D dF .g0; : : : ; gn�1/CdF .g0; : : : ; hi ; : : : ; gn�1/:

(2) It is antisymmetric:

dF .gs.0/; : : : ; gs.n�1// D sgn.s/dF .g0; : : : ; gn�1/; s 2 †n:

(3) It vanishes whenever one of the entries is an elementary matrix:

dF .g0; : : : ; ei ; : : : ; gn�1/ D 0; ei 2 E.A/:

See [20]. We will think of the map dF W GL.A/n ! C=.2�i/dn=2eZ as a higher de-
terminant associated with the continuous n-summable Fredholm module .F; H/ over
the unital commutative Banach algebra A. This is justified by the low-dimensional
case, the properties listed above, and the concrete expression in terms of logarithms
and the operator trace on Loday products of elements in the connected component of
the identity; see (1.2).

The similiarity of the trace formula in (1.2) with the expression in the bivari-
ant case, makes us expect the following generalizations: First of all the quantity
hP TR.a0/P; : : : ; P TR.a2m�1/P i 2 C should be invariant under perturbations of
the operators P TR.ai /P by elements in the Schatten ideal Lm.PH/. Furthermore,
under suitable conditions, the form should be expressible by means of an integral
over the joint essential spectrum of the operators in question. In this respect, see [13],
part II, and [8], Section IV.2.� , Theorem 8, p. 308.

At this point, we would like to explain briefly how the main result is obtained. Let
us assume that A is a unital commutative Banach algebra. In order to calculate the
multiplicative character of some element Œx� 2 Kn.A/ the first obstacle is to construct
a lift in relative K-theory,

Œ�� 2 Krel
n .A/; �Œ�� D Œx�:
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Let us assume that our element Œx� 2 Kn.A/ is defined as the Loday product of
elements represented by invertibles in the connected component of the identity

Œx� D Œg0� � � � � � Œgn�1� 2 Kn.A/; g0; : : : ; gn�1 2 GL0.A/:

The contractibility assumption on our representatives entails that there exists a lift of
each of them in the first relative K-group. Let us choose some lifts

Œ�0�; : : : ; Œ�n�1� 2 Krel
1 .A/; �Œ�i � D Œgi �:

To find a lift of the element Œx� 2 Kn.A/ we construct an explicit product on
the relative K-groups. This product makes the direct sum of relative K-groupsL1

kD1 Krel
k

.A/ into a graded commutative ring and the map

� W
1L

kD1

Krel
k

.A/ !
1L

kD1

Kk.A/

becomes a homomorphism of graded rings (recall that A is assumed to be commuta-
tive), see Theorem 3.18. The desired lift Œ�� 2 Krel

n .A/ is then given by the relative
Loday product of the individual lifts

Œ�� D Œ�0� �rel � � � �rel Œ�n�1�; � Œ�� D Œx�:

On our way we also express the second relative K-group as the second homology
group of a certain simplicial set, see Corollary 3.8.

Having found the lift Œ�� 2 Krel
n .A/ the next problem is to calculate the relative

Chern character of this lift

chrel W Krel
n .A/ ! HCn�1.A/; chrelŒ�� D ‹:

Following the same vein of ideas we show in Theorem 4.9 that the relative Chern char-
acter is a homomorphism of graded rings. This should be understood in the following
sense: The relative Chern character has degree minus one, so the corresponding
product in continuous cyclic homology has degree plus one,

�W HCk�1.A/ ˝C HCm�1.A/ ! HCkCm�1.A/; x � y D x � .sN /.y/:

The operator N W Cm�1.A/ ! Cm�1.A/ is the norm operator and the operator
s W Cm�1.A/ ! Cm.A/ is the extra degeneracy. The map �W Ck�1.A/ � Cm.A/ !
CmCk�1.A/ is the interior Hochschild shuffle product; see also [21]. The calculation
in question thus reduces to the case of chrel W Krel

1 .A/ ! HC0.A/. The elements in
Krel

1 .A/ are represented by smooth maps � W Œ0; 1� ! GL.A/ which send 0 to the
identity 1 2 GL.A/. The relative Chern character essentially determines the corre-
sponding logarithm of the endpoint �.1/ 2 GL0.A/. The desired formula (1.2) is
now proved without too much effort, see Theorem 5.2.
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The paper is organized as follows: In Section 2 we give an account of the various
product structures which will be used throughout the paper. We continue in Section 3
by constructing the product in relative K-theory and we give a proof of its main
properties. In Section 4 we study the multiplicative properties of the relative Chern
character with values in continuous cyclic homology. Finally, in Section 5, we show
how our results lead to a calculation of the Connes–Karoubi multiplicative character
on higher Loday products.

Acknowledgements. I would like to thank Ryszard Nest for his continuous support
and many helpful comments. Furthermore, I would like to thank Jerome Kaminker for
the nice talk we had at the U.C. Davis on the subject of the paper. I am also grateful
to Max Karoubi for giving me some valuable indications related to his geometric
viewpoint. Finally, I would like to thank the referee for some good suggestions that
allowed me to improve the paper on some important points.

2. A preliminary on various product structures in homology

2.1. The exterior shuffle product. Let A and B be unital Banach algebras. We let
A y̋ B denote the projective tensor product of A and B in the sense of Grothendieck,
[12]. The definition of the simplicial sets Rp.A/ can be found in Section 3.

For each p; q 2 N we fix an isomorphism ' W Ap ˝Z Bq ! .A ˝Z B/pq of
.A ˝Z B/-bimodules. We then have the associated group homomorphisms

˝' W GLp.A/ � GLq.B/ ! GLpq.A ˝Z B/

and
y̋ ' D � B ˝' W GLp.A/ � GLq.B/ ! GLpq.A y̋ B/:

Here � W GLpq.A ˝Z B/ ! GLpq.A y̋ B/ is induced by the “canonical” homomor-
phism � W A ˝Z B ! A y̋ B .

A pointwise version of the completed tensor product yields a map of simplicial
sets

y̋ ' W Rp.A/ � Rq.B/ ! Rpq.A y̋ B/; .�; �/ 7! .t 7! �.t/ y̋ ' �.t//:

Composition with the shuffle map [23]

sh W C�.Rp.A// ˝ C�.Rq.B// ! C�.Rp.A/ � Rq.B//

therefore equips us with a chain map

�' D y̋ ' B sh W C�.Rp.A// ˝ C�.Rq.B// ! C�.Rpq.A y̋ B//:

The notation C�.X/ refers to the chain complex with integer coefficients associated
to any simplicial set X . The formal sum of smooth maps

� �' � D P
.�;�/2†n;m

sgn.	; 
/s�.m�1/ : : : s�.0/.�/ y̋ ' s�.n�1/ : : : s�.0/.�/
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will be called the exterior shuffle product of � 2 Rp.A/n and � 2 Rq.B/m. Here
†.n;m/ � †nCm denotes the set of .n; m/-shuffles. We will show in Lemma 3.9 that
the induced map on homology

�W Hn.Rp.A// ˝ Hm.Rq.B// ! HnCm.Rpq.A y̋ B//

is independent of the choice of isomorphism ' W Ap ˝Z Bq ! .A ˝Z B/pq .

2.2. The exterior wedge product in Lie algebra homology. Let A and B be unital
Banach algebras. For each n � 2 we let

^
n A denote the Banach spaceV

n A ´ A y̋ : : : y̋ A„ ƒ‚ …
n

=ker.S/:

Here the closed subspace ker.S/ � A
y̋ n is the kernel of the continuous map

S W A
y̋ n ! A

y̋ n; S.a1 ˝ � � � ˝ an/ D P
�2†n

sgn.�/a��1.1/ ˝ � � � ˝ a��1.n/:

For n D 1 we let
^

1 A D A. Observe that the Banach space
^

n A identifies with the

quotient of A
y̋ n by the usual signed action of the symmetric group. The reason for

using the above description is, that it becomes clear that
^

n A is actually a Banach
space for each n 2 N. This will turn out to be important for us in the sequel.

By the continuous Lie algebra homology of the unital Banach algebra A we will
then understand the homology of the chain complex .ƒ�A; ı/. Here ı W ^

n A !
ƒn�1A is the Chevalley–Eilenberg boundary map of A regarded as a Banach Lie
algebra.

We let

� ˝ 1B W V
� A ! V

�.A y̋ B/ and 1A ˝ � W V
� B ! V

�.A y̋ B/

denote the chain maps obtained by functoriality from the continuous algebra homo-
morphisms

a 7! a ˝ 1B and b 7! 1A ˝ b:

We then have a chain map

^E W V
� A ˝ V

� B ! V
�.A y̋ B/

defined by

x ˝ y 7! .x ˝ 1B/ ^ .1A ˝ y/; x 2 V
n A; y 2 V

m B:

For each x 2 ^
n A and each y 2 ^

m B we will refer to the element

x ^E y ´ .x ˝ 1B/ ^ .1A ˝ y/ 2 V
nCm A y̋ B
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as the exterior wedge product of x and y. We let

^E W HLie
n .A/ ˝ HLie

m .B/ ! HLie
nCm.A y̋ B/

denote the induced map on continuous Lie algebra homology. The exterior wedge
product, thus defined, is seen to be associative and graded commutative at the level
of complexes.

2.3. The exterior product of degree one in cyclic homology. Let A and B be unital
Banach algebras. We let

�W C�.A/ ˝ C�.B/ ! C�.A y̋ B/

denote the exterior shuffle product on the continuous Hochschild complex, [21],
Section 4.2. Furthermore, we let .C �� .A/; b/ denote the continuous cyclic complex.
Thus in each degree n 2 N [ f0g we have a Banach space C �

n .A/, [9], [17]. Observe

that the image Im.1 � t / � A y̋ A
y̋ n is closed since it coincides with the kernel of

the norm operator N W A y̋ A
y̋ n ! A y̋ A

y̋ n.
By the exterior product of degree one in continuous cyclic homology we will

understand the map

�W C �
n .A/ ˝ C �

m.B/ ! C �
nCmC1.A y̋ B/

defined by
x � y D x � .sNy/; x 2 C �

n .A/; y 2 C �
m.B/: (2.1)

Here N W Cm.B/ ! Cm.B/ is the norm operator N D 1 C t C � � � C tm and
s W Cm.B/ ! CmC1.B/ is the extra degeneracy.

We will need to show that the product is well defined. For this, consider the map

E W Cn.A/ ! V
nC1 MnC1.A/; .a0; : : : ; an/ 7! E12.a0/ ^ � � � ^ E.nC1/1.an/;

where Eij .a/ denotes the matrix with a 2 A in position .i; j / and zeros elsewhere,
[22], [30].

From Theorem 4.4 and Theorem 4.5 we then get the equality

x � y D .TR B"/.E.x/ ^E E.y//; x 2 Cn.A/; y 2 Cm.B/;

where " W ^
� Mk.A/ ! C ���1.Mk.A// and TR W C �� .Mk.A// ! C �� .A/ denote the

antisymmetrization map and the generalized trace on continuous cyclic homology
respectively. It follows that the product is well defined and that it is associative and
graded commutative at the level of complexes.

Lastly, the Hochschild boundary is a (shifted) graded derivation with respect to
the product

b.x � y/ D .bx/ � y C .�1/deg.x/C1x � .by/:
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It follows that our multiplication descends to an exterior product of degree one on
continuous cyclic homology

�W HCn.A/ ˝C HCm.B/ ! HCnCmC1.A y̋ B/:

It should be remarked that if the operator sN W Cm.B/ ! CmC1.B/ is replaced by
the Connes boundary B D .1 � t /sN W Cm.B/ ! CmC1.B/ in (2.1), we get the
same exterior product of degree one on cyclic homology. However, using the Connes
boundary, the product does not become associative at the level of complexes.

In the case where the unital Banach algebra A is commutative we get an interior
product

�W HCn.A/ ˝C HCm.A/ ! HCnCmC1.A/

by composition of the exterior product with the map induced by the multiplication
r W A y̋ A ! A.

For further details on the constructions given in this section we refer to [14], [21],
[31].

3. An exterior product on the relative K-theory of Banach algebras

Let A be a unital Banach algebra. Before giving the construction of the exterior prod-
uct, we recall the definition of the relative K-groups, as introduced by M. Karoubi,
[17].

For each n 2 N0 we let �n denote the presentation

�n D
´

¹.t1; : : : ; tn/ 2 Rn j ti � 0;
Pn

iD1 ti � 1º; n � 1;

¹0º 2 R; n D 0;

of the standard n-simplex. The vertices v0; : : : vn 2 �n are given by

vi D
´

.0; : : : ; 1; : : : ; 0/; i 2 ¹1; : : : ; nº;

.0; : : : ; 0/; i D 0:

Notice that we do not use the standard presentation of the standard n-simplex. The
reason for our alternative choice is, that we want to emphasize the special role of the
zeroth vertex v0 2 �n, see the formulas below.

To each p 2 N [ f1g we associate a simplicial set Rp.A/. In degree n 2 N0 it
is given by the set of normalized smooth maps

� W �n ! GLp.A/; �.v0/ D 1p:

Here the word “smooth” means that � D Q� j�n is obtained as the restriction of some
smooth map with compact support Q� 2 C 1

c .Rn; Mp.A//.
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The face operators and degeneracy operators are given by

di .�/.t1; : : : ; tn�1/ D
´

�.1 � Pn�1
j D1 tj ; t1; : : : ; tn�1/ � �.v1/�1 for i D 0;

�.t1; : : : ; ti�1; 0; ti ; : : : ; tn�1/ for i 2 ¹1; : : : ; nº;

sj .�/.t1; : : : ; tnC1/ D
´

�.t2; : : : ; tnC1/ for j D 0;

�.t1; : : : ; tj �1; tj C tj C1; : : : ; tnC1/ for j 2 ¹1; : : : ; nº:
(3.1)

Notice the extra factor �.v1/�1 in the expression for d0 W Rp.A/n ! Rp.A/n�1. We
will often refer to the simplicial set R1.A/ by R.A/.

Remark 3.1. The simplicial set Rp.A/ is isomorphic to the simplicial set
GLp.A�/=GLp.A/ which is applied by M. Karoubi in his definition of relative K-
theory. See [17], §6.18. The isomorphism is given by the quotient map.

It can be proved that the simplicial set Rp.A/ is a pointed Kan complex with
fundamental group

�1.Rp.A// D Rp.A/1=	:

Here 	 denotes the equivalence relation of smooth homotopies with fixed end points.
The group structure is given by pointwise multiplication. Furthermore, for each
p 2 f3; 4; : : : g [ f1g let

.Fp.A/1=	/ � �1.Rp.A//:

denote the normal closure of the subgroup generated by the elementary matrices

eij .�/ 2 Rp.A/; � 2 C 1.Œ0; 1�; Mp.A//; �.0/ D 0:

The group Fp.A/1=	 is seen to be perfect and when p D 1 it coincides with the
commutator subgroup of �1.R1.A//; see [17], §6.18. We can thus apply the plus
construction to the geometric realization of Rp.A/ for all p 2 f3; 4; : : : g [ f1g.

Definition 3.2 ([17]). By the relative K-groups of the unital Banach algebra A we
will understand the homotopy groups of the pointed topological space jR.A/jC,

Krel
n .A/ ´ �n.jR.A/jC/; n � 1:

It is then proved in [17], §§6.15–6.18, that the relative K-groups relate the alge-
braic K-groups and topological K-groups through the long exact sequence

: : : i �� K
top
nC1.A/

v �� Krel
n .A/

� �� Kn.A/

i

��
: : : Kn�1.A/

i�� Krel
n�1.A/

��� K
top
n .A/.

v��

(3.2)
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Here the map � W Krel
n .A/ ! Kn.A/ is induced by the map of simplicial sets

� W Rp.A/ ! BGLp.A/; � 7! .�.v1/�1; �.v1/�.v2/�1; : : : ; �.vn�1/�.vn/�1/:

3.1. A calculation of the second relative K -group. In this section we show that
the second relative K-group is isomorphic to the second homology group of a certain
simplicial set. The result is thus similar to the result in [20], [25], [26]. Here the
second algebraic K-group of a unital ring (using Quillen’s definition) is shown to
agree with the second homology group of the elementary matrices over the unital
ring. The present calculation is relevant for our explicit definition of the exterior
product on the relative K-groups.

Let A be a unital Banach algebra. Let F.A/1 � R.A/1 denote the smallest
subgroup of R.A/1 such that

����1��1 2 F.A/1

for all �; � 2 R.A/1 which are constant on neighborhoods of the vertices v0; v1 2
�1 � R. Notice that F.A/1 is perfect and normal in R.A/1.

For n � 2 we then define the n-simplices of a simplicial set F.A/ by the recursive
formula:

� 2 F.A/n () � 2 R.A/n and .di .�/ 2 F.A/n�1for all i 2 f0; 1; : : : ; ng/:
The face and degeneracy operators are induced by the corresponding operators on the
simplicial set R.A/. It can be proved that F.A/ is a Kan complex also.

Now let 	F denote the equivalence relation on R.A/ which is defined degreewise
by

x 	F y () there exists � 2 F.A/n W x � � D y:

Here the elements x; y 2 R.A/n are assumed to be of degree n � 1. We define the
simplicial set Q.A/ ´ R.A/= 	F as the quotient of R.A/ by the above equivalence
relation.

Theorem 3.3. The quotient map � W R.A/ ! Q.A/ is a Kan fibration.

Proof. Suppose that x0; : : : ; xk�1; xkC1; : : : ; xn 2 R.A/n�1 are compatible and sup-
pose that there exist an n-simplex y 2 R.A/n and .n � 1/-simplices �0, …, �k�1,
�kC1, …, �n 2 F.A/n�1 such that

dj .y/�j D xj for all j ¤ k:

Using the compatibility of the simplices x0; : : : ; xk�1; xkC1; : : : ; xn 2 R.A/n�1 we
obtain that

di .�j / D
´

dj �1.�i / for all 0 < i < j � n; i; j ¤ k;

y.v1/�1dj �1.�0/y.v1/ for all 0 D i < j � n; i; j ¤ k:
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The .n � 1/-simplices

y.v1/�1 � �0 � y.v1/; �1; : : : ; �k�1; �kC1; : : : ; �n 2 F.A/n�1

are thus compatible. Since F.A/ is a Kan complex there exists an n-simplex � 2
F.A/n such that

dj .�/ D
´

�j for all j ¤ 0; k;

y.v1/�1�0y.v1/ forj D 0; j ¤ k:

The n-simplex z ´ y � � 2 R.A/n then satisfies the properties

dj .z/ D xj for all j ¤ k and �.z/ D �.y/:

This proves that � W R.A/ ! Q.A/ ´ R.A/= 	F is a Kan fibration.

The Kan complex F.A/ is the fiber of the Kan fibration � W R.A/ ! Q.A/. The
next result on the homotopy groups of the fiber can then be proved without too much
effort.

Lemma 3.4. The inclusion i W F.A/ ! R.A/ induces an isomorphism

�n.i/ W �n.F.A// ! �n.R.A// for all n � 2:

The fundamental group of the fiber F.A/ coincides with the commutator subgroup
of �1.R.A// and the induced map

�1.i/ W Œ�1.R.A//; �1.R.A//� ! �1.R.A//

is the inclusion.

The existence of the long exact sequence of homotopy groups associated with the
fibration

F.A/
i�! R.A/

��! Q.A/

then allows us to calculate the homotopy groups of the quotient.

Corollary 3.5. The homotopy groups of Q.A/ are given by

�n.Q.A// D
´

0 for n � 2;

�1.R.A//=Œ�1.R.A//; �1.R.A//� for n D 1:

The induced map �1.�/ W �1.R.A// ! �1.Q.A// is the quotient map.

Let �C W jR.A/jC ! jQ.A/j be a representative for the homotopy class of con-
tinuous maps obtained from the quotient map � W R.A/ ! Q.A/ by universality of
the plus-construction.

Let F denote the homotopy fiber of �C W jR.A/jC ! jQ.A/j.
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Theorem 3.6. The inclusion i W F.A/ ! R.A/ gives rise to a homotopy equivalence

f C W jF.A/jC ! F :

Proof. This follows from [1] since �1.Q.A// is abelian. Notice that the maximal
perfect subgroups of both �1.F.A// and �1.R.A// are given by the commutator
subgroups.

With this precise description of the homotopy fiber F in hand, we are able to
obtain the desired calculation of the second relative K-group.

Corollary 3.7. The space jF.A/jC is simply connected and the map

iC W jF.A/jC ! jR.A/jC

induced by the inclusion i W F.A/ ! R.A/ yields an isomorphism

�n.iC/ W �n.jF.A/jC/ ! �n.jR.A/jC/ D Krel
n .A/

for all n � 2.

Proof. This is immediate from the long exact sequence of homotopy groups arising
from the fibration jF.A/jC ! jR.A/jC ! jQ.A/j.
Corollary 3.8. The second relative K-group of the unital Banach algebra A is iso-
morphic to the second homology group of the simplicial set F.A/,

Krel
2 .A/ Š H2.F.A//:

Proof. Since jF.A/jC is simply connected the Hurewicz homomorphism

h2 W �2.jF.A/jC/ ! H2.jF.A/jC/ Š H2.jF.A/j/ Š H2.F.A//

is an isomorphism. But the group �2.jF.A/jC/ is isomorphic to Krel
2 .A/ by Corol-

lary 3.7.

3.2. An H -group structure on jR.A/jC. In this section we show that a pointwise
version of the direct sum on GL.A/ determines a commutative H -group structure on
jR.A/jC. Our exposition will follow [20], Section 1.2, and [32] closely.

Let A be a unital Banach algebra. We define the direct sum on the simplicial set
R.A/ as a pointwise version of the direct sum on GL.A/, thus

˚W R.A/ � R.A/ ! R.A/; .�; �/ 7! .t 7! �.t/ ˚ �.t//:

Let us choose a representative ˚C W jR.A/ � R.A/jC ! jR.A/jC for the homotopy
class obtained from ˚ by functoriality of the geometric realization and the plus-
construction. Furthermore, let

k�1 W jR.A/jC � jR.A/jC ! jR.A/ � R.A/jC
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denote some homotopy inverse of the homotopy equivalence given by the projection
onto each factor. We then define the sum on jR.A/jC as the composition

C D ˚C B k�1 W jR.A/jC � jR.A/jC ! jR.A/jC:

This will be the composition in our commutative H -group structure on jR.A/jC. The
neutral element will be given by the constant map 1 W �n ! GL.A/.

Now, to each injection u W N ! N there is a group homomorphism u W GL.A/ !
GL.A/ defined by

u.g/ij D
´

gkl for i D u.k/; j D u.l/;

ıij elsewhere:

We extend this construction to a pointwise version, associating a simplicial map

u W R.A/ ! R.A/; � 7! .t 7! u.�.t///;

to each injective map u W N ! N. We let uC W jR.A/jC ! jR.A/jC denote a
representative of the homotopy class obtained from u by functoriality. The above
constructions also applies to the case of the fiber F.A/.

Lemma 3.9. For each elementary matrix g 2 E.A/ the simplicial maps

Adg W R.A/ ! R.A/ and Adg W F.A/ ! F.A/

given by � 7! g�g�1 are homotopic to the identity.

Proof. We will only consider the fiber F.A/. Let g 2 E.A/ and let � 2 F.A/1

satisfy �.v0/ D 1 and �.v1/ D g. In degree n � 1, a simplicial homotopy between
conjugation by our elementary matrix g 2 E.A/ and the identity is then given by

hi .�/ D .sn : : : siC1si�1 : : : s0/.�/ � si .�/; i 2 f0; : : : ; ng:
Notice that the “extra” factor in the expression (3.1) for the zeroth face operator
ensures us that

d0.h0.�// D d0.sn : : : s1.�//�.v1/d0

�
s0.�/

�
�.v1/�1 D g�g�1:

Corollary 3.10. For each injection u W N ! N the associated simplicial maps

u W R.A/ ! R.A/ and u W F.A/ ! F.A/

induce the identity homomorphisms

u� D Id W H�.R.A// ! H�.R.A// and u� D Id W H�.F.A// ! H�.F.A//

on homology.
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Proof. With Lemma 3.9 in hand, the proof becomes similar to the proof of [32],
Lemma 1:3.

The results obtained in Section 3.1 together with the classical Whitehead theorem
now allow us to show that the monoid of injections u W N ! N acts on jR.A/jC by
homotopy equivalences.

Theorem 3.11. For each injection u W N ! N the induced map

uC W jR.A/jC ! jR.A/jC

is a homotopy equivalence.

Proof. We show that
uC W jR.A/jC ! jR.A/jC

is a weak equivalence and refer to Whitehead’s theorem.
For n D 1 we note that �1.jR.A/jC/ Š H1.R.A//, so �1.uC/ W �1.jR.A/jC/ !

�1.jR.A/jC/ is an isomorphism by Corollary 3.10.
For n � 2 we note that �n.jF.A/jC/ Š �n.jR.A/jC/ by Corollary 3.7. Since the

space jF.A/jC is simply connected, we will only need to show that uC W jF.A/jC !
jF.A/jC induces an isomorphism in homology. However, this is a consequence of
Corollary 3.10.

The commutative H -group properties of the sum CW jR.A/jC � jR.A/jC !
jR.A/jC and the neutral element 1 2 jR.A/jC can now be obtained by a rephrasing
of the arguments in [20], Section 1:2.

Corollary 3.12. For each injection u W N ! N the induced map

uC W jR.A/jC ! jR.A/jC

is homotopic to the identity.

Proof. This is a consequence of the Grothendieck group of the monoid of injections
u W N ! N being trivial; see [20], Lemma 1.2.8.

Theorem 3.13. The application CW jR.A/jC �jR.A/jC ! jR.A/jC and the neutral
element 1 2 jR.A/jC define a commutative H -group structure on jR.A/jC.

Proof. That the sum and the neutral element defines a homotopy associative and
homotopy commutative H -space structure follows from Corollary 3.12 since the
appropriate maps are homotopic up to composition with some uC W jR.A/jC !
jR.A/jC . The existence of a homotopy inverse is automatic since we are working
exclusively with connected CW-complexes, [28], Theorem 3.4.
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We end this section by considering the relationship between the H -group struc-
ture on jR.A/jC and the H -group structure on BGL.A/C. Let �C W jR.A/jC !
BGL.A/C denote a representative of the homotopy class induced by the simplicial
map

� W R.A/ ! BGL.A/; �.�/ D .�.v1/�1; �.v1/�.v2/�1; : : : ; �.vn�1/�.vn/�1/:

Theorem 3.14. The map �C W jR.A/jC ! BGL.A/C is an H -map.

Proof. This is essentially a matter of checking that the simplicial maps given by

� B ˚ and ˚ B.� � �/ W R.A/ � R.A/ ! BGL.A/

coincide.

3.3. Construction of the product in relative K-theory. In this section we show
that a pointwise version of the exterior Loday product, determines a multiplicative
structure on the relative K-groups. The exposition will follow [20, Section 2:1],
Section 2:1, closely.

Let A and B be unital Banach algebras.
Let p; q 2 f3; 4; : : : g be fixed and let ' W Ap ˝Z Bq ! .A˝Z B/pq denote some

isomorphism of .A ˝Z B/-bimodules. As in Section 2.1 we have a corresponding
map of simplicial sets

y̋ ' W Rp.A/ � Rq.B/ ! Rpq.A y̋ B/:

We choose some y̋ C
' W jRp.A/ � Rq.B/jC ! jRpq.A y̋ B/jC which represents the

homotopy class obtained from y̋ ' by functoriality. Furthermore, let

k�1 W jRp.A/jC � jRq.B/jC ! jRp.A/ � Rq.B/jC
denote some homotopy inverse to the map given by the projection onto each factor.
We then define the tensor product

y̋ C
p;q D iC B y̋ C

' B k�1 W jRp.A/jC � jRq.B/jC ! jR.A y̋ B/jC:

Here the map iC W jRpq.A y̋ B/jC ! jR.A y̋ B/jC is a representative of the
homotopy class determined by the inclusion i W Rpq.A y̋ B/ ! R.A y̋ B/.

Following the argumentation of Theorem 3.13 we see that the tensor product only
depends on the choice of isomorphism ' W Ap ˝Z Bq ! .A ˝Z B/pq of .A ˝Z B/-
bimodules up to homotopy. Furthermore, it is natural in A and B , bilinear, associative
and commutative up to homotopy. The last assertion means that the diagram

jRp.A/jC � jRq.B/jC
s

��

y̋ C

p;q �� jR.A y̋ B/jC

tC

��
jRq.B/jC � jRp.A/jC

y̋ C

q;p �� jR.B y̋ A/jC
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commutes up to homotopy. Both the map s W jRp.A/jC � jRq.B/jC ! jRq.B/jC �
jRp.A/jC and the continuous algebra homomorphism t W A y̋ B ! B y̋ A change
the order of the factors. See also [20], Section 2.1.2.

Now, in order to get a map which descends to the smash product and which
behaves well when p and q tend to infinity we define

� rel
p;q W jRp.A/jC � jRq.B/jC ! jR.A y̋ B/jC;

.x; y/ 7! x y̋ C
p;q y � x y̋ C

p;q 1q � 1p y̋ C
p;q y:

Here the minus sign comes from the commutative H -group structure on jR.A y̋ B/jC
defined in Section 3.2. The elements 1p 2 jRp.A/jC and 1q 2 jRq.B/jC are given
by the constant maps 1p W �n ! GLp.A/ and 1q W �n ! GLq.B/.

It is immediate that the restriction � rel
p;q W jRp.A/jC _ jRq.B/jC ! jR.A y̋ B/jC

is homotopically trivial. Since jR.A y̋ B/jC is an H -group, we thus get a map

O� rel
p;q W jRp.A/jC ^ jRq.B/jC ! jR.A y̋ B/jC

on the smash product, which is unique up to homotopy and which makes the maps

O� rel
p;q B � and � rel

p;q W jRp.A/jC � jRq.B/jC ! jR.A y̋ B/jC

homotopic. Here � W jRp.A/jC � jRq.B/jC ! jRp.A/jC ^ jRq.B/jC denotes the
quotient map.

The argumentation presented in [20], p. 333–335, now ensures the existence of a
continuous map

O� rel W jR.A/jC ^ jR.B/jC ! jR.A y̋ B/jC;

which is natural in A and B , bilinear, associative and commutative up to weak ho-
motopies. Furthermore, for any p; q 2 f3; 4; : : : g the maps

O� rel
p;q and O� rel B .iC ^ iC/ W jRp.A/jC ^ jRq.B/jC ! jR.A y̋ B/jC

agree up to weak homotopy. This enables us to make the following definition.

Definition 3.15. By the exterior product in relative K-theory we understand the map

�rel W Krel
n .A/ � Krel

m .B/ ! Krel
nCm.A y̋ B/

given by the formula
Œf � �rel Œg� D Œ O� rel B .f ^ g/�

for each Œf � 2 �n.jR.A/jC/ and Œg� 2 �m.jR.B/jC/.

The naturality, bilinearity, associativity and commutativity up to weak homotopies
of the map O� rel W jR.A/jC ^ jR.B/jC ! jR.A y̋ B/jC imply the corresponding
properties for the exterior product.
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Theorem 3.16. The exterior product in relative K-theory

�rel W Krel
n .A/ � Krel

m .B/ ! Krel
nCm.A y̋ B/

is natural, bilinear and associative. It is also graded commutative in the sense that

y �rel x D .�1/nmt�.x �rel y/ for all x 2 Krel
n .A/; y 2 Krel

m .B/:

Here t� W Krel
nCm.A y̋ B/ ! Krel

nCm.B y̋ A/ is induced by the “flip” homomorphism
t W A y̋ B ! B y̋ A.

In the case where the unital Banach algebra A is commutative we get an interior
product

�rel W Krel
n .A/ � Krel

m .A/ ! Krel
nCm.A/

given by composition of the exterior product with the map induced by the continuous
unital algebra homomorphism r W A y̋ A ! A, a1 ˝ a2 7! a1 � a2. We are thus
able to equip the direct sum of relative K-groups

L1
kD1 Krel

k
.A/ with the structure

of a graded commutative ring. See also [20], Theorem 2:1:12.

3.4. Relations with the Loday product. Our task is now to compare the exterior
product of Loday in algebraic K-theory with the exterior product in relative K-theory.

Let A and B be unital Banach algebras. Recall that the Loday product

�W Kn.A/ � Km.B/ ! KnCm.A ˝Z B/

is uniquely determined by the continuous maps

�p;q W BGLp.A/C � BGLq.B/C ! BGL.A ˝Z B/C;

.x; y/ 7! x ˝C
p;q y � 1p ˝C

p;q y � x ˝C
p;q 1q:

Here the tensor product ˝C
p;q W BGLp.A/C � BGLq.B/C ! BGL.A ˝Z B/C is

induced by the group homomorphism

˝' W GLp.A/ � GLq.B/ ! GLpq.A ˝Z B/ � GL.A ˝Z B/

associated with an isomorphism ' W Ap ˝Z Bq ! .A ˝Z B/pq of .A ˝Z B/-
bimodules. The additive compositions come from the commutative H -group struc-
ture on BGL.A ˝Z B/C, [20].

Definition 3.17. By the completed Loday product in algebraic K-theory we will
understand the composition

O� D �� B �W Kn.A/ � Km.B/ ! KnCm.A y̋ B/

of the Loday product and the map induced by the canonical unital ring homomorphism
� W A ˝Z B ! A y̋ B .
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We can then show that the homomorphism � W Krel
n .A/ ! Kn.A/ respects the

exterior product structures.

Theorem 3.18. For each x 2 Krel
n .A/ and each y 2 Krel

m .B/ we have the equality

�.x �rel y/ D �.x/ O� �.y/

in KnCm.A y̋ B/. In particular, the map � W L
k�1 Krel

k
.A/ ! L

k�1 Kk.A/ is a
homomorphism of graded commutative rings whenever A is a commutative, unital
Banach algebra.

Proof. Let p; q 2 f3; 4; : : : g and let ' W Ap ˝Z Bq ! .A ˝Z B/pq denote some
isomorphism of .A ˝Z B/-bimodules. At the level of simplicial sets we then have
the equality

�.� y̋ ' �/ D �.�.�/ ˝' �.�// for all � 2 Rp.A/n; � 2 Rq.B/n:

This shows that the maps

�C B y̋ C
p;q and �C B ˝C

p;q B.�C ��C/ W jRp.A/jC �jRq.B/jC ! BGL.A y̋ B/C

are homotopic. By Theorem 3.14 the map �C W jR.A y̋ B/jC ! BGL.A y̋ B/C
respects the H -group structures up to homotopy, so the maps

�C B � rel
p;q and �C B �p;q B .�C � �C/ W jRp.A/jC � jRq.B/jC ! BGL.A y̋ B/C

are homotopic. The desired result now follows by uniqueness of the involved con-
structions.

4. On the multiplicative properties of the relative Chern character

Let A be a unital Banach algebra. Let us start by recalling the construction of the
relative Chern character as introduced by A. Connes and M. Karoubi, [9], [17]. By
definition, the relative Chern character is obtained as the composition of four maps

chrel W Krel
n .A/ ! HCn�1.A/; chrel D TR B" B L B hn:

We will give a brief description of each of the maps.
The first map is the Hurewicz homomorphism associated with the pointed topo-

logical space jR.A/jC,

hn W Krel
n .A/ D �n.jR.A/jC/ ! Hn.jR.A/jC/ Š Hn.R.A//:

The second map is the logarithm

L W Hn.R.A// ! lim
p!1 H Lie

n .Mp.A//;
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which is given by the chain map

L W � 7!
Z

�n

@�

@t1
� ��1 ^ � � � ^ @�

@tn
� ��1dt1 : : : dtn:

Here � W �n ! GLp.A/ is a smooth function; see [29]. Note that we are working
with the continuous Lie algebra complex .ƒ�.A/; ı/, thus in each degree we have a
Banach space, ƒn.A/, in the appropriate quotient norm. This is needed in order for
the above integral to make sense; see also Section 2.2.

The third map is the antisymmetrization

" W lim
p!1 H Lie

n .Mp.A// ! lim
p!1 HCn�1.Mp.A//;

which is given by the continuous map

" W x0 ^ x1 ^ � � � ^ xn�1 7! P
s2†n�1

sgn.s/x0 ˝ xs.1/ ˝ � � � ˝ xs.n�1/:

Again, we are working with the continuous cyclic complex .C �
n .A/; b/, thus in each

degree we have a Banach space, C �
n .A/, in the appropriate quotient norm; see [21],

[22].
The last map is the generalized trace on continuous cyclic homology

TR W lim
p!1 HCn�1.Mp.A// ! HCn�1.A/;

see [21] for example.
The relative Chern character fits in the (up to constants) commutative diagram

: : : i �� K
top
nC1.A/

v ��

ch
top
nC1

��

Krel
n .A/

� ��

chrel
n

��

Kn.A/
i ��

chn

��

K
top
n .A/

ch
top
n

��

v �� � � �

: : : I �� HPnC1.A/
S �� HCn�1.A/

B �� HNn.A/
I �� HPn.A/

S �� � � � ;

see [18] and [10]. Here the other columns are the continuous versions of the topo-
logical Chern character and the continuous version of the algebraic Chern character;
see [14], [33] for a definition of the algebraic Chern character. The bottom row is
the SBI-sequence in continuous cyclic homology. Observe that the relative Chern
character defined in this section differs from the one given in [9], [17] by a constant.
To be precise, for each n 2 N we have

chrel
n D .�1/n.n � 1/Š � chrel

n W Krel
n .A/ ! HCn�1.A/;

where chrel denotes the relative Chern character of [9], Section 3; see also the paper
[29]. This alternative definition is necessary for the relative Chern character to respect
the product structures.
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4.1. The multiplicative properties of the logarithm. Let A and B be unital Ba-
nach algebras. In this section we will show that the logarithm L W H�.Rp.A// !
H Lie� .Mp.A// respects the product structures on the homology of the simplicial sets
Rp.A/ and the Lie algebra homology of the Banach algebras Mp.A/. These exterior
products were introduced in Section 2.1 and Section 2.2.

For each n; p 2 N and each j 2 f1; : : : ; ng we define the operator


j W C 1.�n; GLp.A// ! C 1.�n; Mp.A//; 
j W � 7! @�
@tj

� ��1:

Furthermore we define the wedge product

� W C 1.�n; GLp.A// ! C 1.�n; ƒn.Mp.A///;

�.�/.t/ D 
1.�/.t/ ^ � � � ^ 
n.�/.t/:

Our first task is then to understand the behaviour of � with respect to the exterior
shuffle product. This is the content of Lemma 4.1. We will start by introducing some
convenient notation.

Let us fix to smooth maps � W �n ! GLp.A/ and � W �m ! GLq.B/ and let us
choose an isomorphism ' W Ap ˝Z Bq ! .A ˝Z B/pq of .A ˝Z B/-bimodules.
Furthermore we let .	; 
/ 2 †.n;m/ be a fixed .n; m/-shuffle. To ease the exposition
we will assume that 	.0/ D 0 and that 
.m � 1/ D n C m � 1.

Let fA0; A1; : : : ; A2kC1g denote the unique partition of f0; 1; : : : ; n C m � 1g
satisfying the conditions

kS
iD0

A2i D Im.	/;
kS

iD0

A2iC1 D Im.
/

and

i < j H) x < y for all x 2 Ai ; y 2 Aj :

Let ri denote the smallest element in Ai and let r2kC2 D n C m. We associate the
composition of degeneracies sAi

D s.riC1�1/ B � � � B sri
to each set Ai in the partition.

We then have the equality

s�.�/ y̋ ' s�.�/

D sA2kC1
: : : sA3

sA1
.�/ y̋ ' sA2k

: : : sA2
sA0

.�/ W �nCm ! GLpq.A y̋ B/:

For each l 2 f0; : : : ; kg we let

El D
lP

iD0

jA2i j D
lP

iD0

.r2iC1 � r2i / and Ol D
lP

iD0

jA2iC1j D
lP

iD0

.r2iC2 � r2iC1/:

We then define the smooth maps

!2l W �nCm ! V
jA2l j Mpq.A y̋ B/ and !2lC1 W �nCm ! V

jA2lC1j Mpq.A y̋ B/
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by the wedge products

!2l D s�.
El�1C1.� y̋ ' 1q/ ^ � � � ^ 
El
.� y̋ ' 1q//

and

!2lC1 D s�.
Ol�1C1.1p y̋ ' �/ ^ � � � ^ 
Ol
.1p y̋ ' �//:

Finally, let us recall the relations between the degeneracies and the partial differ-
ential operators,

@

@tj
B si D

´
si B @

@tj �1
for j > i > 0;

si B @
@tj

for j � i;

@

@tj
B s0 D

´
s0 B @

@tj �1
for j > 1;

0 for j D 1:

(4.1)
We can then prove the following technical result.

Lemma 4.1. Let � W �n ! GLp.A/ and � W �m ! GLq.B/ be a pair of smooth
maps. For each .n; m/-shuffle .	; 
/ 2 †.n;m/ we then have the equality

�.s�.�/ y̋ ' s�.�// D sgn.	; 
/s�.�.� y̋ ' 1q// ^ s�.�.1p y̋ ' �//

between smooth maps �nCm ! ^
nCm Mpq.A y̋ B/.

Proof. We will assume that 	.0/ D 0 and that 
.m � 1/ D n C m � 1. The other
cases can be proved using similar arguments.

We start by noting that

!0 ^ !1 ^ � � � ^ !2kC1

D sgn.	; 
/.!0 ^ !2 ^ � � � ^ !2k/ ^ .!1 ^ !3 ^ � � � ^ !2kC1/

D sgn.	; 
/s�.�.� y̋ ' 1q// ^ s�.�.1p y̋ ' �//:

It is therefore sufficient to prove the identity

�.s�.�/ y̋ ' s�.�// D !0 ^ � � � ^ !2kC1:

We will use induction to show that


1.s�.�/ y̋ ' s�.�// ^ � � � ^ 
ri
.s�.�/ y̋ ' s�.�// D !0 ^ � � � ^ !i�1

for each i 2 f1; : : : ; 2k C 2g. Thus, let j 2 f1; : : : ; r1g. By the identities in (4.1) we
get

@

@tj
.s�.�/ y̋ ' s�.�// D @

@tj
.s�.�// y̋ ' s�.�/ C s�.�/ y̋ '

@

@tj
.s�.�//

D s�. @�
@tj

/ y̋ ' s�.�/:
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By consequence we have that


j .s�.�/ y̋ ' s�.�// D s�.
j .�// y̋ ' 1q D s�.
j .� y̋ ' 1q//;

proving the induction start.
Now suppose that


1.s�.�/ y̋ ' s�.�// ^ � � � ^ 
ri
.s�.�/ y̋ ' s�.�// D !0 ^ � � � ^ !i�1

for some i 2 f1; : : : ; 2k C 1g. We will only consider the case of i D 2l being even.
The odd case can be proved by similar arguments. Thus, let j 2 fr2l C1; : : : ; r2lC1g.
By the identities in (4.1) we get

@

@tj
.s�.�/ y̋ ' s�.�// D sA2kC1

: : : sA2lC1

@

@tj
.sA2l�1

: : : sA1
.�// y̋ ' s�.�/

C s�.�/ y̋ ' sA2k
: : : sA2lC2

@

@tj
.sA2l

: : : sA0
.�//

D s�. @�
@tj �Ol�1

/ y̋ ' s�.�/ C s�.�/ y̋ ' s�. @	
@tr2l �El�1

/:

Noting that r2l � El�1 D Ol�1 we deduce the identity


j .s�.�/ y̋ ' s�.�// D s�.
j �Ol�1
.� y̋ ' 1q// C s�.
Ol�1

.1p y̋ ' �//:

But the term s�.
Ol�1
.1p y̋ ' �// already appears in the wedge product

!2l�1 D s�.
Ol�2C1.1p y̋ ' �/ ^ � � � ^ 
Ol�1
.1p y̋ ' �//:

Using the induction hypothesis we thus get that


1.s�.�/ y̋ ' s�.�// ^ � � � ^ 
r2lC1
.s�.�/ y̋ ' s�.�//

D .!0 ^ � � � ^ !2l�1

� ^ s�.
r2l �O.l�1/C1.� y̋ ' 1q/ ^ � � �
� � � ^ 
r.2lC1/�Ol�1

.� y̋ ' 1q//

D !0 ^ � � � ^ !2l ;

proving the induction step.

To continue further, we will need the following lemma which can be proved by a
direct but tedious computation,

Lemma 4.2. For any pair of continuous maps ˛ W �n ! A and ˇ W �m ! B we
have the identityX

.�;�/2†.n;m/

Z
�nCm

s�.˛/ ˝ s�.ˇ/ dt1 : : : dtnCm

D
� Z

�n

˛ dt1 : : : dtn

�
˝

� Z
�m

ˇ dt1 : : : dtm

�

in the unital Banach algebra A y̋ B .
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Denote by � W Mp.A/ y̋ Mq.B/ ! Mpq.A y̋ B/ the continuous algebra
homomorphism associated with the choice of the isomorphism ' W Ap ˝Z Bq !
.A ˝Z B/pq of .A ˝Z B/-bimodules. We are now ready for the main result of this
section.

Theorem 4.3. For each pair of smooth maps � W �n ! GLp.A/ and � W �m !
GLq.B/ we have the equality

L.� �' �/ D ��.L.�/ ^E L.�//

in
^

nCm Mpq.A y̋ B/.

Proof. Using Lemma 4.1 and Lemma 4.2 we get that

L.� �' �/ D
X

.�;�/2†.n;m/

sgn.	; 
/

Z
�nCm

�.s�.�/ y̋ ' s�.�// dt1 : : : dtnCm

D
X

.�;�/2†.n;m/

Z
�nCm

s�.�.� y̋ ' 1q// ^ s�.�.1p y̋ ' �// dt1 : : : dtnCm

D L.� y̋ ' 1q/ ^ L.1p y̋ ' �/:

The desired result now follows by naturality of the logarithm.

4.2. The multiplicative properties of the antisymmetrization. Let A and B be
unital Banach algebras. We will now show that the antisymmetrization " W ^

� A !
C ���1.A/ respects the product structures on the continuous Lie algebra homology and
the continuous cyclic homology. The definition of the antisymmetrization is recalled
in the beginning of this section and the exterior products considered are defined in
Section 2.2 and Section 2.3.

Theorem 4.4. For each x 2 ^
n A and each y 2 ^

m B we have the equality

".x ^E y/ D ".x/ � ".y/

in C �
nCm�1.A y̋ B/.

Proof. Let x D x0^x1^� � �^xn�1 2 ^
n A and let y D y0^y1^� � �^ym�1 2 ^

m B .
For each i 2 f0; 1; : : : ; n C m � 1g, let

zi D
´

xi ˝ 1B for i 2 ¹0; : : : ; n � 1º;
1A ˝ yi�n for i 2 ¹n; : : : ; n C m � 1º:

By definition of the exterior wedge product and the antisymmetrization map we get

".x ^E y/ D P
s2†nCm�1

sgn.s/z0 ˝ zs.1/ ˝ � � � ˝ zs.nCm�1/:
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However, using the bijective correspondence

†.n�1;m/ � .†n�1 � †m/ ! †nCm�1; .	; .� � �// 7! 	 B .� � �/;

we recognize the right hand side as the exterior Hochschild shuffle product of the
elementsP
�2†n�1

sgn.�/x0˝x�.1/˝� � �˝x�.n�1/ and
P

	2†m

sgn.�/1B ˝y	.0/˝� � �˝y	.m�1/:

We therefore have

".x ^E y/ D ".x/ � ".1B ^ y/ D ".x/ � .sN"/.y/ D ".x/ � ".y/;

proving the desired result.

4.3. The multiplicative properties of the generalized trace. Let A and B be
unital Banach algebras. In this section we will show that the generalized trace
TR W C �� .Mp.A// ! C �� .A/ respects the exterior product of degree one in con-
tinuous cyclic homology.

Let � W Mp.A/ y̋ Mq.B/ ! Mpq.A y̋ B/ denote the continuous algebra ho-
momorphism induced by some isomorphism ' W Ap ˝Z Bq ! .A ˝Z B/pq of
.A ˝Z B/-bimodules.

Theorem 4.5. For each x 2 C �
n .Mp.A// and each y 2 C �

m.Mq.B// we have the
equality

TR.x/ � TR.y/ D .TR B��/.x � y/

in C �
nCmC1.A y̋ B/.

Proof. Let u 2 Mp.C/ and let v 2 Mq.C/. We start by noticing the identity
Tr.�.u ˝ v// D Tr.u/ Tr.v/. Here Tr W Mk.C/ ! C denotes the usual trace.

Using the formula of [21], Lemma 1.2.2, for the generalized trace we thus get that

.TR B��/.x � .sN /.y// D TR.x/ � .TR sN /.y/:

The result of the theorem then follows from the identity .TR sN /.y/ D .sN TR/.y/,
see [21], Lemma 2.2.8, for example.

4.4. The multiplicative properties of the Hurewicz homomorphism. Let A and
B be unital Banach algebras. In this section we will investigate the behaviour of the
Hurewicz homomorphism with respect to the exterior product in relative K-theory
and the exterior shuffle product on the homology of the simplicial sets Rp.A/. The
exterior product in relative K-theory was constructed in Section 3 and the exterior
shuffle product was defined in Section 2.1.
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For each n 2 N denote the class of 1 2 Z under the isomorphism Z Š Hn.Sn/

by 1n 2 Hn.Sn/. Furthermore, we let

sh W Hn.Sn/ ˝Z Hm.Sm/ ! HnCm.Sn � Sm/

denote the shuffle map in singular homology. Let � W Sn � Sm ! Sn ^ Sm denote
the quotient map. We then get the equality

.�� B sh/.1n ˝ 1m/ D 1nCm (4.2)

in HnCm.SnCm/ Š Z. For notational reasons we define

� ´ sh.1n ˝ 1m/ 2 HnCm.Sn � Sm/:

The next lemma is the first step needed in order to express the Hurewicz homomor-
phism of a product in terms of the Hurewicz homomorphism of the original elements.

Lemma 4.6. Let p; q 2 f3; 4; : : : g. Let f W Sn ! jRp.A/jC and g W Sm !
jRq.B/jC be continuous maps. We then have the equality

.f y̋ C
p;qg/�.�/ D i�.hn.f / � hm.g//

in HnCm.R.A y̋ B// Š HnCm.jR.A y̋ B/jC/. Here i W Rpq.A y̋ B/ ! R.A y̋
B/ denotes the inclusion.

Proof. Let us fix an isomorphism ' W Ap ˝Z Bq ! .A ˝Z B/pq of .A ˝Z B/-
bimodules.

Up to canonical identifications in homology we get that the compositions

. y̋ C
p;q/� B sh W Hn.jRp.A/jC/ ˝Z Hm.jRq.B/jC/

! HnCm.jRp.A/jC � jRq.B/jC/ ! HnCm.jR.A y̋ B/jC/

and

i� B . y̋ '/� B sh W Hn.Rp.A// ˝Z Hm.Rq.B//

! HnCm.Rp.A/ � Rq.B// ! HnCm.R.A y̋ B//

coincide; see Section 2.1 and Section 3.3.
By definition of the exterior shuffle product and the Hurewicz homomorphism we

thus have

i�.hn.f / � hm.g// D .. y̋ C
p;q/� B sh/.f�.1n/ ˝ g�.1m// D .. y̋ C

p;q/� B .f � g/�/.�/

proving the lemma.

The combination of the next lemma and Lemma 4.6 entails that the Hurewicz
homomorphism respects the product structures in an appropriate sense.
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Lemma 4.7. Suppose that the elements x 2 Krel
n .A/ and y 2 Krel

m .B/ are represented
by the continuous maps

f W Sn ! jRp.A/jC � jR.A/jC and g W Sm ! jRq.B/jC � jR.B/jC;

respectively. We then have the equality

hnCm.x �rel y/ D .� rel
p;q B .f � g//�.�/

in HnCm.jR.A y̋ B/jC/. Here � rel
p; q W jRp.A/jC � jRq.B/jC ! jR.A y̋ B/jC

denotes the product map constructed in Section 3.3.

Proof. By definition, the product x �rel y 2 Krel
nCm.A y̋ B/ is represented by the

map
O� rel
p;q B .f ^ g/ W Sn ^ Sm ! jR.A y̋ B/jC:

Using (4.2) we thus get that the Hurewicz homomorphism of the product is given by

hnCm.x �rel y/ D . O� rel
p; q B .f ^ g//�.1nCm/

D . O� rel
p; q B .f ^ g/ B �/�.�/

D . O� rel
p; q B � B .f � g//�.�/:

The result of the lemma now follows by noting that the maps

O� rel
p; q B � and � rel

p; q W jRp.A/jC � jRq.B/jC ! jR.A y̋ B/jC

are homotopic. See Section 3.3.

4.5. The relative Chern character respects the exterior products. Let A and B

be unital Banach algebras. We are now ready to prove the main result of this part
of the paper: The counterpart in continuous cyclic homology of the exterior product
in relative K-theory is given by the exterior product of degree one. The relevant
multiplicative structures are described in Section 3.3 and Section 2.3.

Let CW HC�.A/ ˚ HC�.A/ ! HC�.A/ denote the addition on the continuous
cyclic homology groups. Let � W H�.R.A/ � R.A// ! H�.R.A// ˚ H�.R.A// de-
note the map induced by the projection onto each factor. Furthermore, let ˚W R.A/�
R.A/ ! R.A/ denote the pointwise direct sum as introduced in Section 3.2. We will
need the following preliminary result on the additive structures.

Lemma 4.8. We have the equality

C B �
.TR B" B L/ ˚ .TR B" B L/

� B � D TR B" B L B ˚�

between maps Hn.R.A/ � R.A// ! HCn�1.A/.



A calculation of the multiplicative character 377

Proof. The result is a consequence of the naturality of the involved maps and the
behaviour of the generalized trace with respect to the direct sum operation.

Using the work accomplished in Sections 4.1, 4.2, 4.3 and 4.4 we are now able to
prove the first main theorem of this paper.

Theorem 4.9. For each x 2 Krel
n .A/ and each y 2 Krel

m .B/ we have the equality

chrel.x �rel y/ D chrel.x/ � chrel.y/

in HCnCm�1.A y̋ B/.

Proof. Suppose that x 2 Krel
n .A/ and y 2 Krel

m .B/ are represented by the maps
f W Sn ! jRp.A/jC � jR.A/jC and g W Sm ! jRq.B/jC � jR.B/jC, respectively.
By Lemma 4.7 we have

chrel.x �rel y/ D .TR B" B L B hnCm/.x �rel y/

D .TR B" B L/ B .� rel
p;q B .f � g//�.�/:

However it follows by definition of � rel
p;q W jRp.A/jC � jRq.B/jC ! jR.A y̋ B/jC

and by Lemma 4.6 and Lemma 4.8 that

.TR B" B L/ B .� rel
p;q B .f � g//�.�/

D .TR B" B L/.hn.f / � hm.g// C .TR B" B L/..V� B i�/.hn.1p/ � hm.g///

C .TR B" B L/..V� B i�/.hn.f / � hm.1q///:

Here V W jR.A y̋ B/jC ! jR.A y̋ B/jC denotes the homotopy inverse of the
H -group structure on jR.A y̋ B/jC, see Section 3.2. But the elements hn.1p/ 2
Hn.Rp.A// and hm.1q/ 2 Hm.Rq.B// are both trivial so we must have

chrel.x �rel y/ D .TR B" B L/.hn.f / � hm.g//:

The conclusion of the theorem now follows from a combination of the results in
Theorem 4.3, Theorem 4.4 and Theorem 4.5.

Remark 4.10. It is possible to regard the main result of this section on the multiplica-
tive properties of the relative Chern character from a different point of view. This
alternative approach was suggested to us by the referee.

In order to explain the ideas properly we will need to introduce some notation.
Let A� denote the simplicial unital Fréchet algebra that in degree n 2 N0 consists of
the smooth maps from the n-simplex �n to A,

An ´ C 1.�n; A/:
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The face and degeneracy operators are the standard ones. We define the Kan complex
KVtop.A/ as the diagonal of the bisimplicial set BGL.A�/. The homotopy groups of
KVtop.A/ agree with the topological K-groups of the unital Banach algebra A.

Now, regarding elements of the general linear group over A as constant smooth
maps we get a map of simplicial sets

� W BGL.A/ ! KVtop.A/:

By the universal property of the plus-construction there is a continuous map

�C W j BGL.A/jC ! jKVtop.A/j;
which is well defined up to homotopy. Let F A

�C denote the homotopy fiber of such
a representative. It can then be proved that the map � W jR.A/jC ! jBGL.A/jC
factorizes to a homotopy equivalence between jR.A/jC and the homotopy fiber F A

�C .
See [17], Proposition 6.17.

The multiplicative structure in relative K-theory which we have introduced in Sec-
tion 3 could now probably be seen in a different way. The map �C is going to respect
the completed Loday product at the level of spaces. The completed Loday product
will therefore induce a map between appropriate homotopy fibers. In particular, there
is a continuous map

Ǫ rel W F A
�C ^ F B

�C ! F A y̋ B

�C :

Under the homotopy equivalence jR.A/jC Š F A
�C , this map is likely to coincide

with the product map

O� rel W jR.A/jC ^ jR.B/jC ! jR.A y̋ B/jC

defined in Section 3.3.
The relative Chern character can be explained differently as well. Let B.A/,

B�.A/ and Bper.A/ denote the .b; B/-bicomplexes which define the continuous
versions of cyclic homology, negative cyclic homology and periodic cyclic homology;
see [21] for example. Furthermore, let


 W Chn�0 ! sAb

denote the covariant functor which by the Dold–Kan correspondence associates a
simplicial abelian group to a chain complex. This functor could be defined by one
of the explicit constructions in [19]. To ease the notation let us denote the simplicial
abelian group 
.Tot.B�.A/// by HN.A/ and the diagonal of the bisimplicial abelian
group 
.Tot.B�.A�/// by HN.A�/. It can then be proved that there exist continuous
maps

chalg W j BGL.A/jC ! j HN.A/j and chtop W jKVtop.A/j ! j HN.A�/jI
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see [24], [33]. In this setup the topological Chern character chtop is defined by the
same procedure as the algebraic Chern character chalg. These maps will therefore
make the diagram

j BGL.A/jC

chalg

��

�C
�� jKVtop.A/j

chtop

��
j HN.A/j j HN.�/j �� j HN.A�/j

commute up to homotopy. This implies the existence of a map between the homotopy
fibers

chrel W F A
�C ! F A

j HN.�/j:
The homotopy groups of the homotopy fiber Fj HN.�/j identify with the continuous
cyclic homology of A with a shift in degree. To be more precise, there is an isomor-
phism

�n.Fj HN.�/j/ Š HCn�1.A/:

This is proved in [10], Lemma 4.2.2. After taking homotopy groups we thus get a
homomorphism

chrel W Krel
n .A/ ! HCn�1.A/:

Up to constants this homomorphism agrees with the relative Chern character which
we have been discussing in Section 4; see [18], Théorème 4.4.

The multiplicative properties of the relative Chern character could now be inves-
tigated by looking at the multiplicative properties of the algebraic Chern character.
The completed Hood–Jones product in continuous negative cyclic homology induces
a continuous map

�W j HN.A/j ^ j HN.B/j ! j HN.A/ � HN.B/j ! j HN.A y̋ B/j:
Using the results of [11], [14], [24] it should then be proved that the diagram

j BGL.A/jC ^ j BGL.B/jC

chalg ^ chalg

��

O
 �� j BGL.A y̋ B/jC

chalg

��
j HN.A/j ^ j HN.B/j � �� j HN.A y̋ B/j

commutes up to homotopy. Since the topological Chern character is just a variant
of the algebraic Chern character the corresponding diagram would commute in the
topological setting as well. These results entail the commutativity of the homotopy
fiber diagram

F A
�C ^ F B

�C

chrel ^ chrel

��

Ǫ rel
�� F A y̋ B

�C

chrel

��
F A

HN.�/
^ F B

HN.�/
� �� F A y̋ B

HN.�/
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up to homotopy. The bottom row product is given by the completed Hood–Jones
product at the homotopy fiber level. After proper identifications this should provide
a different proof of Theorem 4.9. We would of course like to thank the referee for
this valuable remark.

5. A calculation of the multiplicative character

We start this section by briefly recalling the construction of the multiplicative character
as given in [9]. See also [16], [27].

Let n 2 N and let A be a unital Banach algebra. Let .F; H/ be an n-summable
Fredholm module over A. The parity of the Fredholm module is assumed to be the
same as the parity of the dimension, n�1. To ease the exposition we will assume that
the representation � W A ! L.H/ and the map a 7! ŒF; �.a/� 2 Ln.H/ are both
continuous. We will always suppress the representation. Remark that the conditions
on continuity are not necessary for the construction of the multiplicative character to
work. They are however convenient for our exposition. See [9].

The continuous linear map

�F W C �
n�1.A/ ! C; .a0; : : : ; an�1/ 7! cn�1 Tr.�nF ŒF; a0� : : : ŒF; an�1�/; (5.1)

determines a continuous cyclic cocycle and consequently a homomorphism

�F W HCn�1.A/ ! C:

Here cn�1 2 Q is the rational constant

cn�1 D
´

� 1
22m�.m�1/Š

for n D 2m;

.�1/mC1 mŠ
2�.2m/Š

for n D 2m C 1;

and � 2 L.H/ is the grading operator of the Fredholm module .F; H/. The con-
vention is to put � D Id in the odd case; see [7], [8]. The composition of this index
cocycle with the relative Chern character thus yields a homomorphism

AF ´ �F B chrel
n W Krel

n .A/ ! C:

This is the additive character of the Fredholm module.
The next step in the construction consists of showing that the image of the com-

position
�F B chrel

n Bv W K
top
nC1.A/ ! C

is contained in the additive subgroup .2�i/dn=2eZ � C. Here the map v W K
top
nC1.A/ !

Krel
n .A/ is the boundary map of the long exact sequence (3.2). This is accomplished

in [9], Section 4.10. By consequence the additive character descends to a homomor-
phism

MF W coker.v/ Š Im.�/ ! C=.2�i/dn=2eZ:



A calculation of the multiplicative character 381

This is the multiplicative character associated with the n-summable Fredholm module
.F; H/. With some further effort the multiplicative character can be extended to a
map on algebraic K-theory, however we will only need the restriction to the subgroup
Im.�/ � Kn.A/ for our calculations. We remark that the rational constants cn�1 2 Q
in the definition of the continuous cyclic cocycle (5.1) are chosen in such a way that
our definition of the multiplicative character agrees with the one given in [9].

5.1. The relative Chern character of a product of contractions. Let A be a com-
mutative, unital Banach algebra. In this section we will give a concrete formula for
the application of the relative Chern character to products of certain elements in rela-
tive K-theory. We will make use of the multiplicative properties of the relative Chern
character which we investigated in Section 4.

We let

�rel W Krel
k .A/ � Krel

m .A/ ! Krel
kCm.A/

and

�W HCk�1.A/ ˝C HCm�1.A/ ! HCkCm�1.A/

denote the (interior) products in relative K-theory and continuous cyclic homology.
Note that these products are only available by the commutativity assumption on A;
see Section 3.3 and Section 2.3.

Furthermore, for each a 2 M1.A/ we let �a 2 R.A/1 denote the smooth path
defined by

�a.t/ D e�ta for all t 2 Œ0; 1�:

Theorem 5.1. Let n 2 N and let a0; : : : ; an�1 2 M1.A/. The relative Chern
character of the product

Œ�� D Œ�a0
� �rel � � � �rel Œ�an�1

� 2 Krel
n .A/

is given by

chrelŒ�� D .�1/n
P

�2†n�1

sgn.	/ TR.a0/˝TR.a�.1//˝� � �˝TR.a�.n�1// 2 HCn�1.A/:

Proof. By Theorem 4.9 we have

chrelŒ�� D chrelŒ�a0
� � � � � � chrelŒ�an�1

� 2 HCn�1.A/:

Furthermore, the relative Chern character of the individual terms is given by

chrel.Œ�a�/ D .TR B " B L/.Œ�a�/ D TR
� Z 1

0

d�a

dt
� ��1

a dt

�
D � TR.a/

for each a 2 M1.A/. The desired result now follows by definition of the product of
degree one in continuous cyclic homology.



382 J. Kaad

5.2. An evaluation of the multiplicative character on higher Loday products.
We are now ready to prove our concrete formula for the application of the multiplica-
tive character to higher Loday products. This will accomplish the main purpose of
the paper.

Let .F; H/ be an n-summable Fredholm module over a commutative, unital Ba-
nach algebra A. We will suppose that the representation � W A ! L.H/ and the
linear map a 7! ŒF; �.a/� 2 Ln.H/ are continuous. We refer to the beginning of
Section 5 for a brief reminder on the construction of the multiplicative character.

Theorem 5.2. Let a0; : : : ; an�1 2 M1.A/. The multiplicative character of the
Loday product Œea0 � � � � � � Œean�1 � 2 Kn.A/ is then given by

MF .Œea0 � � � � � � Œean�1 �/

D .�1/n
P

�2†n�1

sgn.	/.q B �F /.TR.b0/ ˝ TR.b�.1// ˝ � � � ˝ TR.b�.n�1///

2 C=.2�i/dn=2eZ:

Here q W C ! C=.2�i/dn=2eZ is the quotient map and b0; : : : ; bn�1 2 M1.A/ are
any elements with

ebi D eai for all i 2 f0; : : : ; n � 1g:

Proof. Let b0; : : : ; bn�1 2 M1.A/ be any logarithms of ea0 ; : : : ; ean�1 2 GL.A/.
For each i 2 f0; : : : ; n � 1g we let �bi

2 R.A/1 denote the smooth path given by

�bi
W t 7! e�tbi :

We then have
�.Œ�bi

�/ D Œ�bi
.1/�1� D Œebi � D Œeai �:

By Theorem 3.18 the map � W L1
kD1 Krel

k
.A/ ! L1

kD1 Kk.A/ is a homomorphism
of graded rings, so we get that

�.Œ�b0
� �rel � � � �rel Œ�bn�1

�/ D Œea0 � � � � � � Œean�1 �:

By definition of the multiplicative character we then have

MF .Œea0 ��� � ��Œean�1 �/ D .qB�F Bchrel/.Œ�b0
��rel � � ��rel Œ�bn�1

�/ 2 C=.2�i/dn=2eZ:

But it follows from Theorem 5.1 that the right hand side is given by

.q B �F B chrel/.Œ�b0
� �rel � � � �rel Œ�bn�1

�/

D .�1/n
P

�2†n�1

sgn.	/.q B �F /.TR.b0/ ˝ TR.b�.1// ˝ � � � ˝ TR.b�.n�1///;

proving the desired result.
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Corollary 5.3. For any commutative unital Banach algebra the multiplicative char-
acter is computable on the subgroup of Kn.A/ generated by Loday products of
elements in the connected component of the identity, GL0.A/.

Proof. Since each element in GL0.A/ can be obtained as a product of exponentials,
the result follows by noting that the Loday product is multilinear and that the multi-
plicative character is a homomorphism of abelian groups.

In the case where the summability, n D 2m, of the Fredholm module .F; H/ is
even, it is possible to express the above result in terms of the higher Helton–Howe
trace form. Let E � L.H/ be the smallest C-algebra of operators such that

Lm.H/ � E and PaP 2 E for all a 2 A:

Here P D .F C1/=2 2 L.H/ is the projection onto the eigenvectors with eigenvalue
1 of the selfadjoint unitary F 2 L.H/. Since A is assumed to be commutative all
commutators between elements in E lie in the m-th Schatten ideal,

Œx; y� 2 Lm.H/ x; y 2 E:

The higher Helton–Howe trace form on E is then given by

h�; : : : ; �i W E2m ! C; hx1; : : : ; x2mi D Tr.
P

s2†2m
sgn.s/xs.1/ : : : xs.2m//I

see [13], part II §2. In the paper [7], A. Connes proves the following equality, which
relates the higher trace form to his index cocycle:P
�2†2m�1

sgn.	/�F .a0 ˝ a�.1/ ˝ � � � ˝ a�.2m�1// D � 1
mŠ

hPa0P; : : : ; P a2m�1P i:

Here a0; : : : ; a2m�1 2 A are any 2m elements in A. Combining this identity with
the above calculation we get a formula for the odd multiplicative character of Loday
products involving the fundamental Helton–Howe trace form.

Corollary 5.4. Let a0; : : : ; a2m�1 2 M1.A/. The odd multiplicative character of
the Loday product Œea0 � � � � � � Œea2m�1 � 2 K2m.A/ is then given by

MF .Œea0 � � � � � � Œea2m�1 �/ D �q
�

1
mŠ

hP TR.b0/P; : : : ; P TR.b2m�1/P i�
2 C=.2�i/mZ:

Here q W C ! C=.2�i/mZ is the quotient map and b0; : : : ; b2m�1 2 M1.A/ are
any elements with

ebi D eai for all i 2 f0; : : : ; 2m � 1g:
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