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Abelian and derived deformations in the presence of
Z-generating geometric helices
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Abstract. For a Grothendieck category C which, via a Z-generating sequence .O.n//n2Z,
is equivalent to the category of “quasi-coherent modules” over an associated Z-algebra a, we
show that under suitable cohomological conditions “taking quasi-coherent modules” defines an
equivalence between linear deformations of a and abelian deformations of C . If .O.n//n2Z is
at the same time a geometric helix in the derived category, we show that restricting a (deformed)
Z-algebra to a “thread” of objects defines a further equivalence with linear deformations of
the associated matrix algebra.
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1. Introduction

Deformation theoretic ideas have always been important in noncommutative geom-
etry. Some of the basic noncommutative algebras “of geometric nature”, like Weyl
algebras or quantum planes, naturally appear as free algebras with “deformed” com-
mutativity relations. When we think in terms of affine (noncommutative) geometry,
Gerstenhaber’s deformation theory of algebras makes these ideas precise. In this non-
commutative affine setup, module categories over noncommutative algebras naturally
take over the role of categories of quasi-coherent sheaves, and thanks to homological
criteria for geometric notions, these categories harbour a certain geometric side of the
picture. In the development of noncommutative projective geometry (see for exam-
ple [14]), a similar story, inspired by Serre’s theorem, unfolds. This time, algebraic
objects like (noncommutative) graded rings are represented by categories of “quasi-
coherent graded modules” replacing categories of quasi-coherent sheaves, and these
categories are considered to be the primary geometric objects. In fact, since homolog-
ical algebra really lives on the level of the derived categories, a related point of view
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2The second author acknowledges the support of the European Union for the ERC grant No 257004-
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goes further and proposes triangulated categories, or rather suitable enhancements
thereof, as primary geometric objects.

In the classification of specific noncommutative projective varieties, different
types of deformation theoretic arguments have been used. The basic idea is that
“noncommutative deformations of a certain type of commutative space should be
noncommutative spaces of that same type”. The question is then: what exactly do
we deform? In the different reasonings leading to definitions of, for example, non
commutative projective planes, the “abelian approach” of [1], [15] and the “derived
approach” of [3] both eventually lead to the same answer.

In the mean time, a deformation theory for abelian categories has been developed
in [10], [9], [7] with as one of the motivations to provide a theoretical framework for
some of the ad hoc deformation theoretic arguments in these different approaches.

In this paper, we apply this theory under homological conditions that typically
occur for Fano varieties. The abelian categories we are interested in are categories
replacing quasi-coherent sheaves. The most natural framework to define such cate-
gories, especially in the deformation context, is that of Z-algebras, i.e., linear cate-
gories whose object set is isomorphic to Z.

Since our approach makes use of linear topologies and sheaves, we collect some
preliminary results in §2. In particular, in Theorem 2.8 we characterize, for a given
linear topology T and linear functor a ! C landing in a Grothendieck category, the
situation when C Š Sh.a; T /, the category of linear sheaves for T . This refinement
of the main theorem of [6] is a T -local version of the characterization of module
categories using finitely generated projective generators.

In §3 we investigate categories of quasi-coherent modules over Z-algebras. For
an arbitrary Z-algebra, the category of quasi-coherent modules is defined to be
Qmod.a/ D Sh.a; Ttails/ for a certain tails topology on a. If for a Z-algebra a,
the category of torsion modules Tors.a/ is localizing, then we have Qmod.a/ Š
Mod.a/= Tors.a/ (see §3.3). In general, the topology Ttails is the “closure under glue-
ings” of a covering system Ltails which is very easy to describe: it has the covers
a.�; n/�m as a basis. If Tors.a/ is localizing, taking the closure under glueings is
not necessary, i.e., Ttails D Ltails. In particular, this is the case for finitely generated
Z-algebras which we define in §3.3. Although the notion is modeled on finite gen-
eration for Z-graded algebras, the term can be deceiving because it actually involves
infinitely many generators. For connected, positively graded Z-algebras, finite gen-
eration is weaker than the classical noetherian hypothesis on a, and even weaker than
the “coherence” hypothesis introduced in [11] in order to be able to tackle analytic
examples.

In §3.4 we characterize Grothendieck categories C that are equivalent to the cate-
gory of quasi-coherent modules over a certain associated Z-algebra. More precisely,
we construct a starting from a sequence .O.n//n2Z of objects in C by putting

a.n; m/ D
´

C.O.�n/; O.�m// if n � m;

0 otherwise.
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If C Š Qmod.a/, we call .O.n//n2Z a Z-generating sequence. We now suppose
that Ttails D Ltails on a. Our characterization in Theorem 2.8 is obtained from Theo-
rem 3.15 by considering the topology Ttails. If we restrict our attention to sequences of
finitely presented objects in locally finitely presented Grothendieck categories, we re-
cover the familiar geometric condition of ampleness, combined with Ttails-projectivity
(Corollary 3.16, see also [11]).

Let .O.n//n2Z be a Z-generating sequence in a Grothendieck category C , with
associated Z-algebra a. In §4, applying the results of [10] and using the topology Ttails,
we prove that under the additional assumption that Ext1;2

C
.O.m/; X ˝k O.n// D 0

for m � n and X 2 mod.k/, there is an equivalence

Deflin.a/ ! Defab.C/ W b 7! Qmod.b/

between linear deformations of a and abelian deformations of C (Theorem 4.5).
In §5 we look at the situation in which a Z-generating sequence .O.n//n2Z in C

is at the same time a geometric helix in the derived category, and investigate the com-
patibility with deformation (Theorem 5.13). Therefore, we necessarily define all the
relevant notions, in particular mutations, over an arbitrary commutative ground ring.
If .O.n//n2Z is a geometric .l; d/-helix (Definition 5.12), then D.C/ Š D.aŒi�l;i�/

for every i , where aŒi�l;i� is the restriction of a to the objects i � l; : : : ; i � 1; i . We
construct a further equivalence

Deflin.a/ ! Deflin.aŒi�l;i�/ W b 7! bŒi�l;i�

between linear deformations of a and linear deformations of aŒi�l;i� (Theorem 5.15).
The basic example where these results apply is C D Qch.Pn/ with the standard

sequence .O.n//n2Z. Hence, this explains the equivalence of the abelian and the
derived approach to noncommutative P2’s. It is our intention to apply these results
to some concrete geometric helices of sheaves on Fano varieties. This is work in
progress.

Acknowledgement. The authors are very grateful to Michel Van den Bergh for
the original idea of using Z-algebras to capture abelian deformations of projective
schemes, and for other interesting ideas. They also thank Louis de Thanhoffer de
Völcsey for interesting discussions.

2. Comparison of linear topologies

In [6], functors u W a ! C from a small linear category into a Grothendieck category
realizing C as a localization of Mod.a/ were characterized intrinsically using linear
topologies and sheaves. More precisely, under suitable conditions, a representation
C Š Sh.a; TC / was obtained for a certain topology TC on a (Theorem 2.4). If
the functor u is fully faithful, this is an instance of the Gabriel–Popescu theorem.
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However, many natural representations occur where this is not the case, and the
conditions “full” and “faithful” have to be replaced by TC -local versions. In this
section we extend Theorem 2.4 to the situation where an additive topology T is
specified in advance, and the question is whether C Š Sh.a; T /. The characterization
we obtain in Corollary 2.8 is a T -local version of the well-known characterization of
module categories as having a finitely generated projective generator. This result is
applied in Theorem 3.15 to characterize categories of quasi-coherent modules over a
Z-algebra.

2.1. Linear topologies. Let k be a commutative groundring. Let a be a k-linear
category and

Mod.a/ D k � Lin.aop; Mod.k// Š Add.aop; Ab/

the category of right a-modules. Then the localizations of Mod.a/ are in 1-1 cor-
respondence with linear topologies on a. For a detailed exposition, we refer to [6].
Definitions 2.1 and 2.3 were made in [8] using different terminology. For the conve-
nience of the reader, we recall the main points.

A covering system on a consists of collections T .A/ of subfunctors of a.�; A/ 2
Mod.a/ for every A 2 a. The subfunctors R 2 T .A/ are called coverings of A.
The covering system T is called a (k-linear) topology if the coverings satisfy the
k-linearized axioms for a Grothendieck topology. In this case, the corresponding
category Sh.a; T / � Mod.a/ of k-linear sheaves defines a localization of Mod.a/.

Definition 2.1. Let T be a covering system on a and let f W M ! N be a morphism
in Mod.a/.

(1) f is a T -epimorphism if the following holds: for every y 2 N.A/ there is an
R 2 T .A/ such that N.g/.y/ 2 N.Ag/ is in the image of fAg

W M.Ag/ ! N.Ag/

for every g W Ag ! A in R.
(2) f is a T -monomorphism if the following holds: for every x 2 M.A/ with

fA.x/ D 0 2 N.A/, there is an R 2 T .A/ such that M.g/.x/ D 0 2 M.Ag/ for
every g W Ag ! A in R.

If T is a topology on a, we have the following

Lemma 2.2. Let T be a topology on a and a W Mod.a/ ! Sh.a; T / the sheafification
functor. Let f W M ! N be a morphism in Mod.a/.

(1) f is a T -epimorphism if and only if a.f / is an epimorphism.
(2) f is a T -monomorphism if and only if a.f / is a monomorphism.

Consider an adjoint pair i W C ! Mod.a/ with left adjoint a W Mod.a/ ! C

induced by u W a ! Mod.a/ ! C . Let TC be the covering system for which a
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subfunctor r W R � a.�; A/ is in TC .A/ if and only if a.r/ is an epimorphism, in
other words if and only if L

f 2R.Af /

u.Af / ! u.A/

is an epimorphism in C . We will call such a subfunctor C -epimorphic.
The fact whether .a; i/ is a localization (i.e., i is fully faithful and a is exact) is

entirely encoded in the functor u W a ! C .

Definition 2.3. Consider a functor u W a ! C as above and a covering system T

on a.
(1) u is generating if the images u.A/ for A 2 a are a collection of generators

for C .
(2) u is T -full if the canonical morphism a.�; A/ ! C.u.�/; u.A// is a T -epi-

morphism for every A 2 a.
(3) u is T -faithful if the canonical morphism a.�; A/ ! C.u.�/; u.A// is a

T -monomorphism for every A 2 a.

Theorem 2.4 ([6]). Let u W a ! C be as above and let

i W C ! Mod.a/ W C 7! C.u.�/; C /

be the induced functor with left adjoint a W Mod.a/ ! C extending u. The following
are equivalent:

(1) .a; i/ is a localization.

(2) u is generating, TC -full and TC -faithful.

In this situation, TC is a topology on a and i factors through an equivalence C Š
Sh.a; TC /.

2.2. A comparison result. Let a be a k-linear category, C a k-linear Grothendieck
category and u W a ! C a k-linear functor. Let T be a covering system on a. In
this section we investigate the relation between T and TC . In particular, in Corol-
lary 2.8, we obtain a variant of Theorem 2.4 in which, for a given topology T on a,
we characterize when u gives rise to a localization with TC D T (and hence, with
C Š Sh.C ; T /). This characterization is a T -local version of the well-known char-
acterization of module categories as Grothendieck categories with a set of finitely
generated projective generators.

Definition 2.5. Consider u W a ! C as above and let T be a covering system on a.
(1) u is T -projective if for every C -epimorphism c W X ! Y , the morphism

i.c/ W C.u.�/; X/ ! C.u.�/; Y /
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is a T -epimorphism.
(2) u is T -finitely presented if for every filtered colimit colimi Xi in C the canon-

ical morphism

� W colimi C.u.�/; Xi / ! C.u.�/; colimi Xi /

is a T -epimorphism and a T -monomorphism.
(3) u is T -ample if for every R 2 T .A/, the canonical morphismL

f 2R.Af /

u.Af / ! u.A/

is a C -epimorphism.

Lemma 2.6. Consider u W a ! C as above and suppose that u induces a localization
.i; a/. Then u is TC -projective, TC -finitely presented and TC -ample.

Proof. For (1), it suffices to note by Lemma 2.2 that a.i.c// Š c is an epimorphism.
For (2), we similarly note that a.�/ is an isomorphism since a commutes with the
filtered colimit. Finally (3) is obvious by definition of TC .

Proposition 2.7. Consider u W a ! C as above and let T be a covering system on a.
(1) Consider the following:

(a) TC � T .

(b) u is T -full, T -faithful, T -projective and T -finitely presented.

We have:

(i) if u induces a localization, then (a) implies (b);

(ii) if T is a topology, then (b) implies (a).

(2) The following are equivalent:

(a) T � TC .

(b) u is T -ample.

(3) The following are equivalent:

(a) u induces a localization and TC D T .

(b) T is a topology and u is generating, T -full, T -faithful, T -projective, T -finitely
presented and T -ample.

Proof. (2) is a tautology by definition of TC . (1,i) immediately follows from Lem-
ma 2.6 and Theorem 2.4. Let us show (1,ii). Consider R 2 TC .A/, so the canonical
morphism

c W L
f 2R/

u.Af / ! u.A/
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ia an epimorphism in C . Since u is T -projective, the induced i.c/ is a T -epimorphism.
In particular, looking at 1u.A/ 2 C.u.A/; u.A//, there is a T -covering g W Ag ! A

such that for every g, we have u.g/ D cbg for some bg W u.Ag/ ! L
f 2R u.Af /.

Since u is T -finitely presented, there is a T -covering h W Bgh ! Ag for every g so
that for every h the composition bgu.h/ factors through

agh W u.Bgh/ ! L
f 2R0

u.Af /

for a finite subset R0 � R. Writing pf for the projections of
L

f 2R0 u.Af /, we now
have

u.gh/ D P
f 2R0

u.f /pf agh:

Since u is T -full, we can find for each f; g; h a T -covering w W Wghw ! Bgh for
which pf aghu.w/ D u.tfghw/. We thus have

u.ghw/ D u.
P

f 2R0 f tfghw/:

Finally, since u is T -faithful, we can find further T -coverings v W Vghwv ! Wghw

for which
ghwv D P

f 2R0

f tfghwv;

whence the maps ghwv belong to the TC -covering R. Glueing all the T -coverings
together, we thus find a T -covering T 2 T .A/ with T � R. It follows that R 2 T .A/,
as desired.

Theorem 2.8. Consider u W a ! C as above and let T be a topology on a. The
following are equivalent:

(1) u induces a localization and i W C ! Mod.a/ factors through an equivalence
C Š Sh.a; T /.

(2) u is generating, T -full, T -faithful, T -projective, T -finitely presented and T -
ample.

Proof. This immediately follows from Proposition 2.7.

Remark 2.9. If we take T D Ttriv the trivial topology on a, for which the only
coverings are the representable functors, then in Corollary 2.8 we obtain the well-
known equivalence:

(1) u induces an equivalence C Š Mod.a/.

(2) u is the fully faithful inclusion of a set of finitely generated projective generators.

Remark 2.10. In [8], Theorem 2.22, related ideas were used in order to characterize
stacks of sheaves over a fibered category on a topological space.
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3. Quasi-coherent modules over Z-algebras

Z-algebras were introduced as a convenient generalization of Z-graded algebras (see
[3]). The category Gr.A/ of graded modules over a Z-graded algebra A is replaced
by the category Mod.a/ of modules over a Z-algebra a, and most notions can be
immediately generalized by using their categorical incarnations. An exception is the
notion of finite generation as a Z-algebra, which we define in §3.2.

For geometric applications, one is interested in a quotient category Qgr.A/ of
Gr.A/ for a Z-graded algebra A, to be considered as the (category of quasicoherent
sheaves on the) noncommutative scheme Proj.A/. The reason for this is Serre’s
theorem [13], and its noncommutative generalization [2]. As stated in [14], the
Artin–Zhang theorem has an analogue for Z-algebras. Classically, these theorems
are formulated in terms of the small abelian categories of finitely generated objects
under a noetherian assumption. Motivated by analytic applications like [12], a version
of the theorem under weaker “coherence” hypotheses was given in [11].

In our approach, we define a category Qmod.a/ of “quasi-coherent modules” for
a Z-algebra a in complete generality, using a certain topology Ttails. If the category
Tors.a/ of torsion modules is localizing, our definition generalizes the classical one.
In §3.3 we investigate some situations in which the topology Ttails has a very easy
description. In particular, we show that this is the case for a positively graded,
connected, finitely generated Z-algebra, or for a noetherian Z-algebra.

Finally, in §3.4, based on the results of §2.2, we give a characterization of
Grothendieck categories that are equivalent to the category of quasi-coherent modules
over a certain associated Z-algebra a (Theorem 3.15).

3.1. From Z-graded algebras to Z-algebras. By definition, a Z-algebra is simply
a k-linear category a with an isomorphism Ob.a/ Š Z. Z-algebras naturally occur
when expressing the category Gr.A/ over a Z-graded k-algebra A as a module cate-
gory. Let A be a Z-graded k-algebra and let Gr.A/ be the category of Z-graded right
A-modules. Let .1/ be the shift to the left on Gr.A/, .n/ D .1/n, and consider the
shifted objects .A.n//n2Z in Gr.A/. For any M 2 Gr.A/, we have

Gr.A/.A.n/; M/ Š M�n;

and consequently the objects A.n/ constitute a set of finitely generated projective
generators of Gr.A/. Let a D a.A/ be the full subcategory of Gr.A/ spanned by the
.A.n//n2Z. Then a becomes a Z-algebra by renaming the object A.�n/ by n, and
we have

a.n; m/ D Gr.A/.A.�n/; A.�m// D An�m:

There is an induced equivalence of categories

Gr.A/ Š Mod.a/ W M 7! Gr.A/.A.�‹/; M/ D M‹:



Abelian and derived deformations in the presence of Z-generating geometric helices 485

3.2. Finitely generated Z-algebras. Most definitions are easily given for (modules
over) a Z-algebra: they are simply the categorical notions in the category Mod.a/.
This holds for example for finitely generated, finitely presented, coherent and noethe-
rian modules, and the associated notions of a being coherent or noetherian. However,
it is worthwhile to make some things explicit, in particular in order to obtain a good
notion of finite generation of a as a Z-algebra.

A Z-algebra a is called positively graded if a.m; n/ D 0 for m < n. From now
on, we consider a positively graded Z-algebra a.

Concretely, an a-module M is given by k-modules .Mn/n2Z and actions

Mm ˝ a.n; m/ ! Mn W .x; a/ 7! xa (1)

for n � m. Consequently, for every a-module M and m 2 Z, there is a truncated
submodule M�m of M with

.M�m/n D
´

Mn if n � m;

0 otherwise.

A corresponding quotient module M<m is defined by

0 ! M�m ! M ! M<m ! 0:

Of particular interest are the representable modules a.�; m/ for m 2 Z, whose non-
zero values are a.m; m/; a.mC1; m/; : : : . In the case where a D a.A/ for a Z-graded
algebra A, this is precisely the shifted object A.�m/.

Although a is not quite an algebra, it can be useful to think in terms of ideals
in a. A right ideal I in a is a collection of submodules I.n; m/ � a.n; m/ such that
for x 2 I.n; m/ and a 2 a.k; n/ we have xa 2 I.k; m/. Left and two sided ideals
are defined similarly. Defining a right ideal I in a is equivalent to simultaneously
defining submodules

Im D I.�; m/ � a.�; m/

of all the representable functors. Examples of right ideals are a itself, and a�n defined
through the submodules

a.�; m/�n � a.�; m/:

We also have a right ideal aC defined through the submodules

a.�; m/�mC1 � a.�; m/

which excludes all the pieces a.m; m/. If M is an a-module and we are given arbitrary
subsets Xn � Mm, and I is a right ideal in a, then we can form the submodule

XI D ˚ Pk
iD0 xiai j xi 2 X; ai 2 I

� � M:

A module M is finitely generated if there exists an epimorphism
Lk

iD1 a.�; mk/ !
M , or equivalently, if there exist elements x1; : : : ; xk in M with M D fx1; : : : ; xnga.
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We will say that a right ideal I in a is finitely generated if each of the corresponding
submodules Im � a.�; m/ is finitely generated.

Now we want to formulate what it means for a to be finitely generated as a Z-
algebra. To do so, we define the degree of an element a 2 a.n; m/ to be jaj D n�m.
Hence, the elements of degree d are precisely the elements inS

n2Z

a.n C d; n/:

We say that a collection of elements X � a (given by subsets X.n; m/ � a.n; m/)
generates a if every element in a can be written as a (finite) k-linear combination
of (finite) products of elements in X and elements 1m 2 a.m; m/. We say that a
is finitely generated (by X ) if it is generated by a collection X such that for every
m 2 Z, the set

Xm D S
d2N

X.m C d; m/

is finite. Further, a is called locally finite if all the a.n; m/ are finitely generated
k-modules, and connected if moreover a.n; n/ D k for every n 2 Z.

Lemma 3.1. If a is finitely generated and connected, then a is locally finite.

Proof. Suppose that a is finitely generated by X � aC. Consider the k-module
a.n; m/. Then the only elements in X that can appear in a product a D xil : : : xi1 2
a.n; m/ are elements xi 2 X.ni ; mi / with n � ni > mi � m. Clearly, the total
number of such products is finite as soon as every X.ni ; mi / is finite.

For a positively graded, connected Z-algebra a, we have the following character-
izations of a being finitely generated.

Proposition 3.2. Let a be a positively graded, connected Z-algebra. The following
are equivalent:

(1) a is finitely generated as a Z-algebra.

(2) The ideals a�n are finitely generated for all n 2 Z, i.e., the modules a.�; m/�n

are finitely generated for all n; m 2 Z.

(3) The ideal aC is finitely generated, i.e the modules a.�; m/�mC1 are finitely
generated for all m 2 Z.

Proof. Let us first show that (1) implies (2). Suppose that a is finitely generated by
X � aC. The module a.�; m/�n has non zero entries a.n; m/; a.n C 1; m/; : : : .
Any word w D xil : : : xi1 in one of these k-modules contains a letter x 2 a.n0; m0/
with m � m0 < n � n0. Since

S
d2N X.m0 C d; m0/ is finite for each of the finitely

many m0, the total number of such letters x is finite. Now we can write w D w0xw00
with w0x 2 a.n0; m/, so a.�; m/�n is generated by the words w0x. Again since a is
finitely generated by X , there are only finitely many possibilities for w0. Since (2)
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trivially implies (3), it remains to show that (3) implies (1). Take for every m a finite
generating set Xm D fxm1

; : : : ; xmkm
g with jxmi

j � 1 and a.�; m/�mC1 D Xma.
We claim that X D S

m2Z Xm generates a. It is then clear from the definition of X

that the generation is finite. Now every f 2 a.n; m/ with n > m can be written as
f D Pkm

iD1 xmi
ai for ai 2 a.n; li / with li > m and hence jai j < jf j. The proof is

finished by induction on jf j.
The following shows that finite generation of a Z-algebra is a reasonable term, in

spite of the fact that it involves an infinite number of generators.

Proposition 3.3. Let A be a positively graded, connected Z-graded algebra with
associated Z-algebra a. Then A is finitely generated as an algebra if and only if a
is finitely generated as a Z-algebra.

Proof. Suppose that Y D fy1; : : : ; yng with yi 2 Adi
, di � 1 is a finite collection of

generators for A. Put Xm D fxm
1 ; : : : ; xm

n g with xm
i D yi 2 Adi

D a.m C di ; m/.
Then X D S

m2Z Xm finitely generates a. Suppose conversely that X D S
m2Z Xm

finitely generates a and write X0 D fx0
1 ; : : : ; x0

ng. We claim that Y D fy1; : : : ; yng
with yi D x0

i 2 a.di ; 0/ D Adi
generates A. To this end we introduce the sets

Ym D fym
1 ; : : : ; ym

n g with ym
i D yi 2 Adi

D a.m C di ; m/. To prove that Y

generates A, it is clearly sufficient that
S

m2Z Ym generates a. Now consider an
element a 2 a.n; m/. Then the translated element a0 2 a.n � m; 0/ can be written as
a sum of words x 0̨

1
: : : x 0̨

l
with x 0̨

1
2 X0 D Y0, whence a can be written as a sum

of words x˛1
: : : x˛l

with x˛1
2 Ym. The proof is finished by induction on jaj.

By definition, a Z-algebra a is coherent if the category Mod.a/ is locally coherent,
equivalently if all the representable modules a.�; n/ are coherent. In [11], this notion
is called weak coherence and a stronger notion, which we will call strong coherence,
is considered. Namely, a is strongly coherent if the objects a.�; n/ and the objects
a.�; n/<nC1 are coherent.

Proposition 3.4. Let a be a positively graded connected Z-algebra. If the objects
a.�; n/<nC1 are coherent, then a is finitely generated. In particular, this is the case
if a is strongly coherent.

Proof. Consider the exact sequence

0 ! a.�; m/�mC1 ! a.�; m/ ! a.�; m/<mC1 ! 0:

Since a.�; m/<mC1 is coherent and a.�; m/ is finitely generated, it follows that the
kernel a.�; m/�mC1 is finitely generated. Proposition 3.2 implies the result.

Remark 3.5. There exist finitely generated graded algebras, and hence Z-algebras,
that are not coherent (see for example [11]).
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3.3. Quasi-coherent modules over a Z-algebra. In this section we define the cat-
egory of quasicoherent modules over an arbitrary Z-algebra using the additive “tails
topology”. If the category of torsion modules is localizing, our definition generalizes
the classical one.

A module M over a is called right bounded if Mn D 0 for n >> 0, and torsion
if it is a directed colimit of right bounded modules. The category of torsion modules
is denoted by Tors.a/.

Lemma 3.6. The following are equivalent for M 2 Mod.a/:

(1) M is torsion.

(2) For every x 2 Mm, there is an n0 2 N such that for all n � n0 and for all
a 2 a.n; m/ we have 0 D xa 2 Mn.

(3) M is a union of finitely generated torsion submodules.

(4) M is a directed union of finitely generated torsion submodules.

(5) Every finitely generated submodule of M is torsion.

Moreover, if M is finitely generated and torsion, then M is right bounded.

Proof. Easy.

Clearly, the category of right bounded modules is Serre (i.e., closed under subquo-
tients and extensions), and Tors.a/ is closed under coproducts. We are most interested
in situations where Tors.a/ is localizing (i.e., closed under subquotients, extensions
and coproducts).

Lemma 3.7. If all the modules a.�; m/�n are finitely generated, then Tors.a/ is a
localizing subcategory.

Proof. It is not hard to see that for any a, Tors.a/ is closed under subquotients, and
it is obviously closed under coproducts. Let us look at an extension

0 ! K �!
f

M �!
g

Q ! 0;

in which K and Q are torsion. Take x 2 Mm. We have g.x/a.�; m/�n0
D 0 for

some n0. Consequently, K 0 D xa.�; m/�n0
is a submodule of K. Since a.�; m/�n0

is finitely generated, so is K 0, and consequently K 0 is right bounded. But then xa is
right bounded too, which finishes the proof.

By Lemma 3.7 and Proposition 3.2, Tors.a/ is localizing in each of the following
situations:

� a is positively graded, connected and finitely generated.

� a is noetherian.
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If Tors.a/ is localizing, we define the category of quasicoherent modules over a
to be the quotient category Qmod.a/ D Mod.a/= Tors.a/. According to §2.1, this
category can equivalently be described as a subcategory Sh.a; T / � Mod.a/ of linear
sheaves. In the corresponding linear topology T on a, a submodule R � a.�; m/ is
covering if and only if the quotient a.�; m/=R is torsion. More precisely, the exact
quotient functor

� W Mod.a/ ! Qmod.a/

has a fully faithful right adjoint

! W Qmod.a/ ! Mod.a/

whose essential image is precisely Sh.a; T /. Recall that B � T is a basis for the
topology if for every R 2 T there exists a B 2 B with B � R. If B is a basis for T , it
is sufficient to check the sheaf property with respect to B, and perform sheafification
using B.

Lemma 3.8. A basis for T is given by the subobjects a.�; m/�n � a.�; m/ for
m � n 2 Z.

Proof. Obviously, a.�; m/=a.�; m/�n D a.�; m/<n is right bounded. Now con-
sider an arbitrary subobject R � a.�; m/ for which a.�; m/=R is torsion. Then since
a.�; m/=R is finitely generated, it is right bounded. Consequently, a.�; m/�n � R

for some n.

For an arbitrary Z-algebra a, we define the covering system Ltails for which
R 2 Ltails.m/ if and only if a.�; m/�n � R for some m � n 2 Z. Then Tors.a/

is localizing if and only if Ltails defines a topology, and in this situation we have
Sh.a; Ltails/ Š Qmod.a/. We will use this fact to define a category Qmod.a/ in
complete generality.

Proposition 3.9. Let a be an arbitrary Z-algebra. The covering system Ltails satisfies
the identity axiom and the pullback axiom.

Proof. Obviously, a.�; n/ D a.�; n/�n is in Ltails. Consider a pullback diagram

P 0 ��

��

a.�; n/�m

��
P ��

��

R

��
a.�; n0/

a� �� a.�; n/.

Clearly a.�; n0/�m � P 0 which finishes the proof.
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Definition 3.10. Let a be an arbitrary Z-algebra. The tails topology Ttails is the
smallest topology containing Ltails. The category of quasi-coherent modules over a
is by definition Qmod.a/ D Sh.a; Ttails/.

Remark 3.11. The tails topology Ttails is the intersection of all the topologies contain-
ing Ltails. It can be obtained from Ltails by “adding glueings” of covers in a transfinite
induction process. In order to define sheaves, one only needs the covers in Ltails, in
other words Sh.a; Ttails/ D Sh.a; Ltails/.

Example 3.12. Consider A D kŒx1; : : : ; xn; : : : �, the polynomial ring in countably
many variables and let a be the associated Z-algebra with a.n; m/ D An�m. Let
S � a.�; 0/ be generated by

S1
iD1 xia.�; 1/�i . Hence, S contains all monomials

of degree i containing xi , but it does not contain xi
iC1. Consequently, S does not

contain a.�; 0/�i for any i , so it is not in Ltails. However, if we consider the covering
a.�; 0/�1, then for all the generators xi , the pullback x�1

i S does contain the covering
a.�; 1/�i . It easily follows that arbitrary pullbacks are coverings, so S is “glued
together” from coverings but fails to be a covering itself. Hence, Ltails fails to be a
topology.

3.4. The characterization. Let C be Grothendieck category and let .O.n//n2Z be
a collection of objects in C . We define a Z-algebra a with Ob.a/ D Z and

a.n; m/ D
´

C.O.�n/; O.�m// if n � m;

0 otherwise;

so that we obtain a natural functor

u W a ! C W n 7! O.�n/:

Lemma 3.13. The functor u W a ! C is Ttails-full and Ttails-faithful.

Proof. The functor u is faithful by construction, whence certainly Ttails-faithful. Con-
sider the canonical maps

'n;m W a.n; m/ ! C.O.�n/; O.�m//:

For n � m, 'n;m is an isomorphism by construction and nothing needs to be checked.
So take n < m and consider a map c W O.�n/ ! O.�m/ in C . Consider the Ttails-
covering a.�; n/�m. For every x 2 a.k; n/�m, with consequently k � m, we look
at the composition

cu.x/ W O.�k/ ! O.�m/:

Since k � m, we have cu.x/ in the image of 'k;m, as desired.



Abelian and derived deformations in the presence of Z-generating geometric helices 491

Definition 3.14. If for a collection .O.n//n2Z of objects in C the associated functor
u W a ! C induces an equivalence C Š Qmod.a/, we call .O.n//n2Z a Z-generating
sequence and we call u a Z-generating functor.

Theorem 3.15. Let C be Grothendieck category, .O.n//n2Z a collection of objects in
C , and u W a ! C as defined above. Suppose that Ltails D Ttails on a. The following
are equivalent:

(1) .O.n//n2Z is a Z-generating sequence in C .

(2) The following conditions are fulfilled:

(a) The objects O.n/ generate C , i.e., for every C 2 C there is an epimorphism

L
i

O.ni / ! C:

(b) u is Ltails-ample, i.e., for every m � n, there is an epimorphism

L
i

O.�ni / ! O.�m/

with ni � n for every i .

(c) u is Ltails-projective, i.e., for every C -epimorphism c W X ! Y and mor-
phism f W O.�m/ ! Y , there is an n0 � m such that every composition
O.�n/ ! O.�m/ ! Y with n � n0 factors through c.

(d) u is Ltails-finitely presented, i.e., for every filtered colimit colimi Xi in C

and morphism f W O.�m/ ! colimi Xi , there is an n0 � m such that for
every n � n0 every composition O.�n/ ! O.�m/ ! colimi Xi factors
through O.�n/ ! O.�m/ ! Xi for some i . Moreover if a morphism
f W O.�m/ ! Xi becomes zero when extended to colimi Xi , then there
is an n0 � m such that for every n � n0 every composition O.�n/ !
O.�m/ ! Xi becomes zero when composed with a suitable Xi ! Xj .

Proof. This follows from Theorem 2.8 and Lemma 3.13.

When we restrict the situation a bit, we recover the classical geometric notion of
ampleness (condition (ab)):

Corollary 3.16. Let C be a locally finitely presented Grothendieck category, let
.O.n//n2Z be a collection of finitely presented objects in C , and u W a ! C as
defined above. Suppose that Ltails D Ttails on a. The following are equivalent:

(1) .O.n//n2Z is a Z-generating sequence in C .

(2) The following conditions are fulfilled:
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(ab) .O.n//n2Z is ample, i.e., for every finitely presented object C 2 C , there
is an n0 such that for every n � n0, there is an epimorphismL

i

O.�ni / ! C

with ni � n for every i .

(c) u is Ltails-projective, i.e., for every C -epimorphism c W X ! Y and mor-
phism f W O.�m/ ! Y , there is an n0 � m such that every composition
O.�n/ ! O.�m/ ! Y with n � n0 factors through c.

Proof. Since the objects O.n/ are finitely presented, condition (d) in Theorem 3.15
is automatically fulfilled. It suffices to show the equivalence of (ab) and (a)^(b).
First, suppose (a) and (b) hold and take a finitely presented C . By (a), there is an
epimorphism

L
i O.�ni / ! C and we may suppose that the number of ni ’s is

finite. Put n0 D maxfnig and take n � n0. Since ni � n for all i , by (b) we
get an epimorphism

L
j O.�nij / ! O.�ni / for every i with nij � n for all j .

Consequently, we get an epimorphism
L

i;j O.�nij / ! C with nij � n for all i ,
j . Conversely, suppose (ab) holds. For (b), put C D O.�m/ and let n0 be as in
(ab). For a given m � n, put n0 D maxfn0; ng. Then (ab) yields an epimorphismL

i O.�ni / ! O.�m/ with ni � n0 � n for every i . For (a), take an arbitrary
C 2 C . There is a set of finitely presented generators Ci with an epimorphismL

i Ci ! C . Then by (ab), we can take further epimorphisms
L

j O.�nij / ! Ci

to finish the proof.

4. Abelian deformations and Z-algebras

Let .O.n//n2Z be a Z-generating sequence in a Grothendieck category C , and let a be
the associated Z-algebra. Using [10], we show that, under the additional assumption
that Ext1;2

C
.O.m/; X ˝k O.n// D 0 for m � n and X 2 mod.k/, “taking quasi-

coherent modules” defines an equivalence between linear deformations of a and
abelian deformations of C (Theorem 4.5).

4.1. Abelian deformations. In [10], [7], a deformation theory of abelian categories
was established with as one of the motivations to provide a theoretical framework for
some of the ad hoc deformation theoretic arguments in [3] and [15]. Let us recall the
main points.

First, we need some notions for a k-linear abelian category C , where k is a coherent
commutative ground ring. We have natural actions HomR.�; �/ W mod.R/˝D ! D

and �˝R�W mod.R/˝D ! D . We call an object C 2 C flat if �˝kC W mod.k/ !
C is exact and we call C coflat if Homk.�; C / W mod.k/ ! C is exact. To obtain
a good deformation theory, we use an intrinsic notion of flatness ([10]) for abelian
categories, which is such that a k-linear category a is flat (in the sense of having k-flat
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hom-modules) if and only if the abelian category Mod.a/ is flat in the new abelian
sense.

Throughout, R ! k is a surjection between coherent, commutative rings such
that k is finitely presented over R and the kernel I D Ker.R ! k/ is nilpotent. Let
D be an abelian R-linear category. We put

Dk D fD 2 D j ID D Im.I ˝R D ! D/ D 0g � D :

For a flat k-linear abelian category C , an abelian R-deformation is a flat R-linear
abelian category D with an equivalence C ! Dk . Thus, an abelian category C “sits
inside” its deformations D , and the inclusion map C ! D has the functors k ˝R �
as a left adjoint and HomR.k; �/ as a right adjoint.

In contrast, for a flat k-linear category a, a linear R-deformation is a flat R-linear
category b with an equivalence k ˝R b ! a (where the tensor product is taken
hom-module by hom-module, the object set remaining fixed).

We have the following basic result, relating the resulting abelian deformation
theory to Gerstenhaber’s deformation theory of algebras.

Proposition 4.1 ([10]). For a flat k-linear category a, there is an equivalence of
deformation functors

Deflin.a/ ! Defab.Mod.a// W b 7! Mod.b/: (2)

Here Deflin stands for linear deformations and Defab stands for abelian deformations.

From now on, when speaking about deformations, the suitable flatness hypothesis
will always be implicitly understood.

4.2. Deformation and localization. The relation between deformation and local-
ization is summarized in the following

Theorem 4.2 ([10]). Let C � D be an abelian R-deformation. Then the maps

s.D/ ! s.C/ W � 7! � \ C

and

s.C/ ! s.D/ W � 7! h�iD D fD 2 D j k ˝R D 2 �g
are inverse bijections between the sets of Serre subcategories in C and D . If C

is Grothendieck, they restrict to inverse bijections between the sets of localizing
subcategories.

For a given localizing L in s.C/, the quotient D=hLiD is a deformation of C=L.
We thus obtain a map

Defab.C/ ! Defab.C=L/: (3)
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Let ' W b ! a be an R-deformation of a k linear category a, and denote by
k ˝R �W Mod.b/ ! Mod.a/ the left adjoint of the corresponding abelian defor-
mation Mod.a/ � Mod.b/. We will now translate the bijections between localizing
subcategories of Theorem 4.2 in terms of bijections between topologies. We first
define maps between covering systems

cov.b/ ! cov.a/ W T 7! '.T /

and

cov.a/ ! cov.b/ W T 7! '�1.T /:

For a subfunctor S � b.�; B/, we define '.S/ as the subfunctor of a.�; f .B//

containing precisely the maps '.f / for f W Bf ! B in S . Alternatively, '.S/ is the
image of k ˝R .S ! b.�; B//. Now we put

'.T / D f'.S/ j S 2 T g
and

'�1.T / D fS j '.S/ 2 T g:

Proposition 4.3 ([8]). The maps we just defined restrict to bijections between topolo-
gies that fit into commutative squares

top.b/

��

�� L.Mod.b//

��
top.a/ �� L.Mod.a//,

in which the horizontal bijections are the standard ones.

Proof. Let T be a topology on a. All we have to do is determine the corresponding
topology on b by going first to the right (obtaining �), then up (obtaining h�iMod.b/)
and then to the left (yielding T 0) in the diagram. A subfunctor T � b.�; B/ is in T 0
if and only if the quotient b.�; B/=T in h�iMod.b/. From the exact sequence

k ˝R T ! a.�; A/ ! k ˝R .b.�; B/=T / ! 0

and the definition of h�iMod.b/ we deduce that this is equivalent to '.T / 2 T . To
construct the inverse bijection, first note that every subfunctor T � a.�; A/ can be
written as '.P / where P is the pullback of T along b.�; NA/ ! a.�; A/ for an
arbitrary lift NA of A. For a topology T on B, we are looking for a topology T 0 on a
with '�1.T 0/ D T . Obviously T 0 has to contain all the subfunctors '.S/ for S in
T . By the previous remark, this is all it can contain.
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4.3. Deformations of Z-algebras. Let a be a Z-algebra. Consider the canonical
map

� W Deflin.a/ ! Defab.Qmod.a//;

which is the composition of (2) and (3). Next we show that it has the desirable
prescription.

Proposition 4.4. The canonical map � is given by �.b/ D Qmod.b/.

Proof. Consider ' W b ! a. By Proposition 4.3, it suffices to show that

'.Ttails;b/ D Ttails;a:

For the basic coverings b.�; m/�n, it is clear that we have '.b.�; m/�n D a.�; m/�n

since ' is full, and consequently '.Ltails;b/ � Ltails;a: Furthermore, for an arbitrary
subfunctor a.�; m/�n � T � a.�; m/, we consider the pullbacks P of T and
P 0 of a.�; m/�n along b.�; m/ ! a.�; m/. Then clearly P 0 D b.�; m/�n and
'.P / D T . This already shows that

'.Ltails;b/ D Ltails;a:

Consider the topology '�1Ttails;a on b which corresponds to Ttails;a under the bijection
of Proposition 4.3. Since Ltails;b � '�1Ttails;a we have Ttails;b � '�1Ttails;a. After
taking ', it follows that Ltails;a � 'Ttails;b � Ttails;a and hence 'Ttails;b D Ttails;a as
desired.

In the next theorem we give conditions under which � is an equivalence.

Theorem 4.5. Let C be a Grothendieck category with a Z-generating sequence
.O.n//n2Z and associated Z-generating functor a ! C W n 7! O.�n/. Suppose
that the objects O.n/ are flat and suppose that for m � n, i D 1; 2 and X 2 mod.k/

we have
Exti

C .O.m/; X ˝k O.n// D 0:

Then
� W Deflin.a/ ! Defab.C/ W b 7! Qmod.b/

is an equivalence of deformation functors. More precisely, for every deformation D

of C there is a linear deformation b of a and a functor b ! D satisfying the same
conditions as a ! C .

Proof. This is an application of [10], Theorem 8.14. Clearly, the relation n � m

on Ob.a/ satisfies the requirement in [10], Proposition 8.12, that n 6� m implies
that a.n; m/ D 0, and n � m implies that a.n; m/ ! C.O.�n/; O.�m// is an
isomorphism, by construction of a.

We sketch the construction of the inverse equivalence to � for further use. Consider
an abelian R-deformation C ! D along with its left adjoint k˝R �W D ! C . Since
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Ext1;2
C

.O.n/; I ˝k O.n// D 0 (where I D Ker.R ! k/), the objects O.n/ have
unique flat lifts NO.n/ 2 D along k ˝R � (see [7]). We then build up a linear category
b with a functor b ! D following the same principles of a ! C : we put

b.n; m/ D
´

D. NO.�n/; NO.�m// if n � m;

0 otherwise:

The conditions on a are used to prove that b is a linear deformation of a, and that we
thus obtain a map � W Defab.C/ ! Deflin.a/ inverse to �.

4.4. Finiteness conditions. Let a be a Z-algebra. According to §3.3, if a is noethe-
rian or positively graded, connected and finitely generated, then Ltails D Ttails. Al-
though this equality does not lift under deformation, the individual finiteness condi-
tions do.

Proposition 4.6. Let b be an R-linear deformation of a. The following conditions
lift from a to b:

(1) a is connected.

(2) a is positively graded.

(3) a is locally finite.

(4) a is finitely generated.

(5) a is noetherian.

Proof. (1) If the flat R-module b.n; n/ satisfies k ˝R b.n; n/ D k, then necessarily
b.n; n/ D R. (2) If k ˝R b.m; n/ D 0, then Ib.m; n/ Š b.m; n/ D 0. (3) Follows
from the exact sequences 0 ! I ˝k a.m; n/ ! b.m; n/ ! a.m; n/ ! 0 since I

is finitely generated. (4) Consider the abelian deformation Mod.b/ of Mod.a/. For
every b-module we have an exact sequence 0 ! IM ! M ! k ˝R M ! 0,
where IM is the image of I ˝k .k ˝R M/ D I ˝R M ! M . If k ˝R M is
a finitely generated (resp. noetherian) a-module, then so is IM and they are both
finitely generated (resp. noetherian) b-modules. It follows that M is too. For (4),
it suffices to apply the statement about finite generation to M D b.�; n/�m with
k ˝R b.�; n/�m D a.�; n/�m. For (5) we apply the statement about noetherian
modules to M D b.�; n/.

5. Derived deformations and matrix algebras

Let C be a Grothendieck category. In this section we look at a Z-generating sequence
.O.n//n2Z which is at the same time a geometric helix in the derived category (Defi-
nition 5.12), and we investigate this situation under deformation. If a is the Z-algebra
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associated to the sequence, and aŒi�k;i� the restriction to the objects i �k; : : : ; i �1; i

corresponding to a thread O.�i/; O.�i C 1/; : : : ; O.�i C k/ of the helix, then we
prove that “restriction to these objects” defines an equivalence between linear defor-
mations of a and of aŒi�k;i� (Theorem 5.15).

5.1. Derived actions. Let C be a flat k-linear Grothendieck category. Consider
the natural actions Homk.�; �/ W mod.k/ ˝ C ! C W .X; C / 7! Homk.X; C / and
� ˝k �W mod.k/ ˝ C ! C W .X; C / 7! X ˝k C .

Proposition 5.1. These actions extend to balanced derived actions

RHomk.�; �/ W D�.mod.k// ˝ DC.C/ ! DC.C/

and

� ˝L �W D�.mod.k// ˝ D�.C/ ! D�.C/:

Proof. These are classical balancedness arguments. Since C has enough injectives,
the first one is somewhat easier. Let us look at the second one. Here, after an
enlargement of universe, we first construct D�.C/ using the Pro-completion Pro.C/.
This new k-linear category has a natural action �˝k �W mod.k/˝Pro.C/ ! Pro.C/

which is easily seen to be the Pro-extension of the original action, i.e., M ˝k limi Ci D
limi .M ˝k Ci /. Now we consider D�.Pro.C/, with D�.C/ D D�

C
.Pro.C//. By

[10], Pro.C/ is again flat, whence projectives in Pro.C/ are flat objects. For M 2
D�.mod.k// and A 2 D�.Pro.C//, take projective resolutions PM ! M and
PA ! A. Since P i

M is a summand of a finite free module, P i
M ˝k � is an exact

functor. By flatness of Pro.C/, the functors � ˝k P i
A are exact as well. Now

PM ˝k A Š PM ˝k PA Š M ˝ PA

follows from the classical bicomplex argument. Finally, note that for C 2 D�.C/,
M ˝L C Š PM ˝ C 2 D�.C/.

Proposition 5.2. For C 2 C ,
(1) C is flat if and only if M ˝L

k
C Š M ˝k C for every M 2 D�.mod.k//;

(2) C is coflat if and only if RHomk.M; C / Š Homk.M; C / for every M 2
D�.mod.k//.

For an arbitrary complex D 2 C.C/, we define RHomk.�; D/ and � ˝L D as
the derived functors in the first argument X 2 D�.mod.k//. The resulting functor
is well defined on D.C/ too.

Proposition 5.3. For X 2 D�.mod.k//, C 2 Db.C/ and D 2 D.C/, we have

RHomC .C; RHomk.X; D// Š RHomk.X; RHomC .C; D//

Š RHomC .X ˝L
k C; D/

in D.Mod.k//.



498 O. De Deken and W. Lowen

Proof. We may suppose that X is a bounded above complex of finitely generated free
k-modules, and that D is homotopy injective. Then

RHomk.X; RHomC .C; D// D Homk.X; HomC .C; D//

D HomC .C; Homk.X; D//

D RHomC .C; Homk.X; D//

D RHomC .C; RHomk.X; D//;

where we have used Lemma 5.4 in the third step. The isomorphism between the first
and the last expression is similar.

Lemma 5.4. Let X be a bounded above complex of finite projective k-modules,
and D a homotopy injective complex of D-objects. Then Homk.X; D/ is homotopy
injective.

Proof. For an acyclic complex E of D-objects, we have HomD.E; Homk.X; D// D
Homk.X; HomD.E; D//.

For some applications, it will be useful to extend the actions from mod.k/ to
Mod.k/. This is possible since C is a complete and cocomplete category. For example,
for C 2 C , we define �˝k C W Mod.k/ ! C as the unique colimit preserving functor
with k ˝k C D C . For C 2 C.C/, we obtain a derived functor � ˝L

k
C in the first

argument. It is easily seen that � ˝L
k

C preserves coproducts.

Proposition 5.5. For X 2 D�.Mod.k//, C; D 2 C.C/ with C compact, we have

X ˝L
k RHomC .C; D/ Š RHomC .C; X ˝L

k D/

in D.Mod.k//.

Proof. Clearly, the isomorphism holds for X D k. Now every X 2 D�.Mod.k// can
be obtained from k using cones, shifts and coproducts. By definition, both sides of
the isomorphism define triangulated functors in X . It then suffices to show that both
these functors preserve arbitrary coproducts. This easily follows using compactness
of C .

Finally, for a fixed X 2 C �.mod.k//, we will need the derived functors

RHomII
R .X; �// W D.C/ ! D.C/

and

X II˝L
R �W D.Pro.C// ! D.Pro.C//

defined using homotopy injective resolutions in C and homotopy projective resolu-
tions in Pro.C/, respectively. According to Proposition 5.1, these functors coincide
with RHomR.X; �/ and X ˝R � on DC.C/ and D�.C/, respectively.
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5.2. Deformations. Let C ! D be an abelian deformation of (flat) Grothendieck
categories with adjoints k ˝R � and HomR.k; �/. We obtain the derived functors

RHomII
R .k; D// W D.D/ ! D.C/

and

k II˝L
R �W D.Pro.D// ! D.Pro.C//

which are right and left adjoint to the functors D.C/ ! D.D/ and D.Pro.C// !
D.Pro.D// respectively.

Proposition 5.6 (Derived change of rings). Consider both D 2 D.D/ and X 2
C �.mod.k//. We have

(1) RHomII
k .X; RHomII

R .k; D// D RHomII
R .X; D/,

(2) X II˝L
k

.k II˝L
R D/ D X II˝L

R D.

Proof. It suffices to note that HomR.k; �/ maps a homotopy injective complex of
D-objects to a homotopy injective complex of C -objects, and that k ˝R � maps a
homotopy projective complex of Pro.D/-objects to a homotopy-projective complex
of Pro.C/-objects.

Proposition 5.7 (Derived Nakayama). If D 2 D.D/ satisfies RHomII
R .k; D/ D 0

or k II˝L
R D D 0, then D D 0

Proof. We have a triangle RHomII
R .k; D/ ! D ! RHomII

R .I; D/ !. Further-
more, by Proposition 5.6, RHomII

R .I; D/ D RHomII
k .I; RHomII

R .k; D// D 0.

Proposition 5.8. Consider G 2 D.D/ such that k II˝L
R G is compact in D.C/.

Then G is compact in D.D/.

Proof. For a collection D˛ in D.D/, consider the canonical morphismL
˛

RHomD.G; D˛/ ! RHomD.G;
L
˛

D˛/:

We are to show that this is a quasi-isomorphism. For the collection RHomII
R .I; D˛/,

and similarly for RHomII
R .k; D˛/, the corresponding map can be rewritten asL

˛

RHomC .kII˝L
RG; RHomII

R .I; D˛// ! RHomC .kII˝L
RG;

L
˛

RHomII
R .I; D˛//;

which is a quasi-isomorphism by compactness of k II˝L
R G in C . From the triangles

4˛ D RHomII
R .k; D˛/ ! D˛ ! RHomII

R .I; D˛/ !
we obtain a morphism of trianglesL

˛

RHomD.G; 4˛/ ! RHomD.G;
L
˛

4˛/;

whence the result follows.
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Proposition 5.9. Consider a collection g of objects of D�.D/ such that the collection
k II˝L

R g D fk II˝L
R G j G 2 gg compactly generates D.C/. Then g compactly

generates D.D/.

Proof. As kII˝L
Rg compactly generates D.C/, D.C/ is the smallest triangulated sub-

category of D.C/ which is closed under coproducts and contains k II˝L
R g. Now for

every object D 2 D.D/, the triangle RHomII
R .I; D/ ! D ! RHomII

R .k; D/ !
shows that D.D/ is the smallest triangulated subcategory of D.D/ containing
k II˝L

R g. By Proposition 5.8, the objects in g are compact in D.D/. The proof
will be finished if we can show that the objects in k II˝L

R g are in the smallest tri-
angulated subcategory of D.D/ closed under coproducts and containing g. To see
this, note that for G 2 D�.D/, k II˝L

R G D k ˝L
R G is computed using a reso-

lution of finite free R-modules of k. Using the extended derived tensor product on
D�.Mod.R//, and writing k as a homotopy colimit of cones of finite free R-modules,
we see that this is indeed the case.

In order to lift objects from Db.C/ to Db.D/, we need to impose the further
condition of finite flat dimension. For C 2 D�.C/,

fd.C / D minfn 2 N j Tork
i .M; C / D 0 for all M 2 mod.k/ and all ji j > ng

if such an n exists and fd.C / D 1 otherwise. We put D�
ffd.C/ � D�.C/ the full

subcategory of objects with finite flat dimension. Clearly, D�
ffd.C/ is a triangulated

subcategory and D�
ffd.C/ � Db.C/.

Proposition 5.10. Consider D 2 D�.D/ and suppose that C D k ˝L
R D 2 D.C/

has fd.C / � n. Then fd.D/ � n too. In particular, if C Š H 0.C / and H 0.C / is
flat, then D Š H 0.D/ and H 0.D/ is flat.

Proof. For any X 2 mod.k/, we have X ˝L
R D Š X ˝L

k
.k ˝L

R D/ D X ˝L
k

C , so
TorR

i .X; D/ D H i .X ˝L
R D/ D 0 for ji j > n. For an arbitrary Y 2 mod.R/, the

exact sequence 0 ! IY ! Y ! k ˝R Y ! 0 easily yields that TorR
i .Y; D/ D 0

for ji j > n.

5.3. Mutation and deformation. Let C be a k-linear Grothendieck category. In this
section we define mutations in the derived category D.C/. We will use the following
standard concepts (see [4], [5]):

(1) an object E 2 D.C/ is exceptional if RHomC .E; E/ Š k;

(2) a sequence of objects E0; E1; : : : ; Ek is exceptional if all the objects Ei are
exceptional and moreover RHomC .Ej ; Ei / D 0 for j > i ;

(3) a sequence of objects E0; E1; : : : ; Ek is strong exceptional if it is exceptional
and moreover RHomC .Ei ; Ej / Š D.C/.Ei ; Ej / for all i , j .
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Consider E; E0; : : : ; Ek; C 2 Db.C/. From Proposition 5.3 we obtain canonical
morphisms RHomC .E; C / ˝L

k
E ! C and C ! RHomC .C; E/ ˝L

k
E in D.C/.

(1) The left mutation of C through E is defined by the triangle

RHomC .E; C / ˝L
k E ! C ! LE .C / ! :

(2) The left mutation of C through .E0; : : : ; Ek/ is

L.E0;:::;Ek/.C / D LE0
LE1

: : : LEk
.C /:

(3) The right mutation of C through E is defined by the triangle

RE .C / ! C ! RHomk.RHomC .C; E/; E/ ! :

(4) The right mutation of C through .E0; : : : ; Ek/ is

R.E0;:::;Ek/.C / D REk
REk�1

: : : RE0
.C /:

For a collection of objects E � Db.C/, we put

?E D fC 2 Db.C/ j RHomC .C; E/ D 0 for all E 2 Eg;
E? D fC 2 Db.C/ j RHomC .E; C / D 0 for all E 2 Eg:

Proposition 5.11. Suppose that the objects E; E0; : : : ; Ek are exceptional and com-
pact in D.C/.

(1) We obtain inverse equivalences LE W ?E ! E? and RE W E? ! ?E.
(2)We obtain inverse equivalencesL.E0;:::;Ek/ W ?.E0; : : : ; Ek/ ! .E0; : : : ; Ek/?

and R.E0;:::;Ek/ W .E0; : : : ; Ek/? !? .E0; : : : ; Ek/.

Following [4], we define helices depending on two positive integers.

Definition 5.12. A sequence H D .Ei /i2Z in Db.C/ is an .n; d/-helix (for positive
integers n and d with d � 2) if:

(1) for each i 2 Z the corresponding thread .Ei ; EiC1; : : : ; EiCn�1/ is an excep-
tional collection of compact generators of D.C/;

(2) for each i 2 Z,

Ei�n D L.Ei�.n�1/;:::;Ei�1/.Ei /Œ1 � d�:

A helix is called strong if every thread is strong exceptional and geometric if
RHomC .Ei ; Ej / Š D.C/.Ei ; Ej / for all i < j .

Theorem 5.13. Let D be a ( flat) Grothendieck deformation of C and suppose that
H D .Ei /i2Z is an .n; d/-helix with Ei 2 D�

ffd.C/.
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(1) There is a unique .n; d/-helix xH D . xEi /i2Z with xEi 2 D�
ffd.D/ and

k ˝L
R

xEi D Ei for all i 2 Z.
(2) If Ei is a flat object in C , then xEi is a flat object in D with k ˝R

xEi Š Ei .
(3) If H is strong and D.C/.Ei ; Ej / is a flat k-module for i < j and j � i < n,

then xH is strong and D.D/. xEi ; xEj / is a flat R-module with k ˝R D.D/. xEi ; xEj / Š
D.C/.Ei ; Ej / for i < j and j � i < n.

(4) If H is geometric and D.C/.Ei ; Ej / is a flat k-module for i < j , then xH
is geometric and D.D/. xEi ; xEj / is a flat R-module with k ˝R D.D/. xEi ; xEj / Š
D.C/.Ei ; Ej / for i < j .

Proof. Since every Ei is compact and exceptional, we have RHomC .Ei ; I ˝L
k

Ei / Š
I ˝L

k
RHomC .Ei ; Ei / Š I . Thus according to [7], there is a unique derived lift

xEi 2 D�.D/ with k˝L
R

xEi Š Ei . By Proposition 5.10, the objects xEi have bounded
flat dimension. By Propositions 5.8 and 5.9, . xEi ; : : : ; xEiCn�1/ is a collection of
compact generators for D.D/. By Proposition 5.5 and adjunction, we have

k ˝L
R RHomD. xEi ; xEj / D RHomC .k ˝L

R Ei ; k ˝L
R Ej / D RHomC .Ei ; Ej /:

Looking at the abelian deformation Mod.R/ of Mod.k/, we then have the following
facts. By derived Nakayama, RHomC .Ei ; Ej / D 0 implies RHomD. xEi ; xEj / D 0. If
RHomC .Ei ; Ej / Š k, then necessarily RHomD. xEi ; xEj / D R, so . xEi ; : : : ; xEiCn�1/

is an exceptional collection. If RHomC .Ei ; Ej / is isomorphic to the flat k-module
D.C/.Ei ; Ej /, then by Proposition 5.10 RHomD. xEi ; xEj / is isomorphic to the flat
R-module D.D/. xEi ; xEj / and k ˝R D.D/. xEi ; xEj / Š D.C/.Ei ; Ej /. In particular,
strongness and geometricity of the helix lift. Finally, the helix condition (2) for xH
easily follows from Lemma 5.14.

Lemma 5.14. Let D be a flat Grothendieck deformation of C . Consider E; C 2
Db.D/ with E compact. Then

k ˝L
R LE .C / Š Lk˝L

R
E .k ˝L

R C /:

Proof. This easily follows from the following computation:

k ˝L
R ŒRHomD.E; C / ˝L

R E� D Œk ˝L
R RHomD.E; C /� ˝L

R E

D RHomC .k ˝L
R E; k ˝L

R C / ˝L
R E

D RHomC .k ˝L
R E; k ˝L

R C / ˝L
k .k ˝L

R E/

where we have used Propositions 5.5 and 5.6.

5.4. Z-algebras versus matrix algebras. Let C be a Grothendieck category with a
sequence of flat objects .O.n//n2Z in C . We are interested in the following situation:

(1) .O.n//n2Z is a Z-generating sequence in C ,
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(2) .O.n//n2Z is a geometric .k; d/-helix in D.C/.

In this situation, there are two natural associated algebraic objects:

(1) the Z-algebra a with

a.n; m/ D
´

C.O.�n/; O.�m// if n � m;

0 otherwise;

(2) the full subcategory aŒi�k;i� of a spanned by the objects i � k; : : : ; i � 1; i .

Under the listed conditions, we then have

C Š Qmod.a/ and D.C/ Š D.aŒi�k;i�/:

Theorem 5.15. There are equivalences of deformation functors

Defab.C/ �!
�

Deflin.a/ �!
�

Deflin.aŒi�k;:::;i�/:

(1) For D 2 Defab.C/, let .B.n//n2Z be the sequence of the unique flat lifts B.n/

of O.n/ along k ˝R �. Then .B.n//n2Z satisfies conditions (1) and (2) and �.D/ is
the Z-algebra b associated to this sequence. In particular, .B.n//n2Z is the unique
helix in D.D/ with k ˝L

R B.n/ Š O.n/.
(2) For b 2 Deflin.a/, �.b/ D bŒi�k;:::;i�, the full subcategory of b spanned by

the objects i � k; : : : ; i � 1; i .

Proof. We already know from Theorem 4.5 that � defines an equivalence of de-
formation functors, and that .B.n//n2Z satisfies condition (1). By Theorem 5.13,
.B.n//n2Z is the unique helix in D.D/ with k ˝L

R B.n/ Š O.n/, and it is a geomet-
ric helix.

In order to show that � is an equivalence too, we will construct an inverse equiv-
alence �. We start with a flat linear deformation bŒi�k;:::;i� of aŒi�k;:::;i�. Consider
the induced flat abelian deformation Mod.aŒi�k;i�/ ! Mod.bŒi�k;i�/ and let H D
.A.n//n2Z be the .k; d/-helix spanned by A.�i/; : : : ; A.�i C k/ in D.aŒi�k;:::;i�/.
The objects A.n/ all have bounded flat dimension. By the derived equivalence
D.C/ Š D.aŒi�k;i�/, H is a geometric helix and D.aŒi�k;:::;i�/.A.n/; A.m// is flat for
n � m. From Theorem 5.13, we thus obtain a unique .n; d/-helix xH D .B.n//n2Z

in D.bŒi�k;:::;i�/ which is geometric and such that D.bŒi�k;:::;i�/.B.n/; B.m// is a flat
R-module with k ˝R D.bŒi�k;:::;i�/.B.n/; B.m// Š D.aŒi�k;:::;i�/.A.n/; A.m// for
n � m. We now define the Z-algebra b with

b.n; m/ D
´

D.aŒi�k;:::;i�/.B.�n/; B.�m// if n � m;

0 otherwise;

and composition inherited from D.aŒi�k;:::;i�/. Then b is a Z-algebra deforming a,
and we put �.bŒi�k;:::;i�/ D b.
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Next we are to verify that � and � are inverse equivalences. It is clear that restricting
the Z-algebra b we just constructed to the objects i �k; : : : ; i yields back (an isomor-
phic copy of) the original bŒi�k;:::;i�, since the representable modules in Mod.aŒi�k;i�/

lift precisely to the corresponding representable modules in Mod.bŒi�k;i�/.
For the other direction, we may - because of the equivalence given by � - start

with a Z-algebra deformation b of a obtained from an abelian deformation D of C

by lifting the flat objects O.n/ 2 C to flat objects E.n/ 2 D . By Theorem 5.13,
.E.n//n2Z is the unique helix in D.D/ lifting .O.n//n2Z in D.C/. In particular,
for the restriction bŒi�k;:::;i�, we obtain an equivalence D.D/ Š D.bŒi�k;:::;i�/. If we
now use D.bŒi�k;:::;i�/ to construct �.bŒi�k;:::;i�/, then this equivalence of categories
yields the required isomorphism b Š �.bŒi�k;:::;i�/.
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