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On small defor mations of paracomplex manifolds
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Abstract. A paracomplex structure on a manifold M is an endomorphism K of the tangent
bundle TM such that K2 = I, whose = 1-eigenspaces have the same dimension and are invo-
lutive. By using the theory of differential graded Lie algebras, we describe small deformations
of paracomplex structures. We also compute the space of invariant small deformations of
4-dimensional nilmanifolds endowed with a fixed paracomplex structure.

Mathematics Subject Classification (2010). 53C15, 32G07.
Keywords. Paracomplex structure, deformation, differential graded Lie algebra, nilmanifold.

I ntroduction

Let M be a 2n-dimensional manifold. An almost paracomplex structure on M is an
endomorphism K of the tangent bundle TM of M such that K? = I3 and the two
distributions

T*M ={X + KX | X e (M, TM)}

have the same rank (see [11]). An almost paracomplex structure K is said to be
a paracomplex structure if these two distributions are involutive (this condition is
equivalent to the vanishing of the torsion tensor of K). Infact, a paracomplex structure
on a manifold can be given by a pair of transverse foliations of the same dimension.
If the paracomplex manifold (M, K) admits a pseudo-Riemannian metric g such
that g(K X, KY) = —g(X,Y) and the fundamental form w(X,Y) = g(X,KY) is
closed, then the datum (K, g, w) is a para-Kahler structureon M. It turns out that a
para-Kéhler structure on M gives rise to a pair of involutive Lagrangian distributions
T~M and T™M such that TM = T™M & T~M, called bi-Lagrangian structure
(see [3]). Conversely, starting from a symplectic manifold (M, w) whose tangent
bundle TM is the direct sum of two Lagrangian involutive distributions T+M, one
can define a para-Kahler structure on M, setting

Klpey ==+I and g(X,Y)=o(X,KY).

*This work was supported by the Project M.1.U.R. “Geometric Properties of Real and Complex Mani-
folds” and by G.N.S.A.G.A. of .N.d.A.M.
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In this paper we study small deformations of a paracomplex structure on a com-
pact manifold. In order to do this, as in the theory of small deformations of complex
structures (see [13]) or CR-structures (see [7]), we introduce a differential graded
Lie algebra (+4, [[.]). k) (see Section 5). Then it turns out that small paracomplex
deformations of K are parametrized by degree 1 elements of A = @pez A satisfy-
ing the Maurer—Cartan equation. First of all we show that every almost paracomplex
structure K close to K can be written as

K=(+L)KU+L)",

where L € End(TM ) anticommutes with K and det(/ + L) # 0 (see Proposition 3.1).
Then we prove the following (see Theorem 4.2).

Theorem. Let (M, K) be a compact paracomplex manifold. Then the map between

{L e T(M.End(TM)) | LK + KL =0, 0x L + 3[[L, L]} = 0,det(I + L) # 0}
and
{K € T(M,End(TM)) | K> = I, Np = 0},
given by
L—K={+LKU+L)",

is a bijection between a neighborhood of 0 € I'(M, End(TM')) and a neighborhood
of K.

The paper is organized as follows. In Section 1 we recall some general definitions
and results on paracomplex geometry.

Section 2 is devoted to the construction of the differential graded Lie algebra
governing the small deformation theory of a paracomplex structure. In particular, we
give explicit formulas for the bracket [[ , ]] and for the 9 x-operator without using local
coordinates.

In Section 3 we consider curves of paracomplex structures through a paracomplex
structure K, characterizing almost paracomplex structures close to K (see Proposi-
tion 3.1) and finding obstructions in order that an endomorphism L anticommuting
with K gives rise to a curve of paracomplex structures (see Corollary 3.3).

In Section 4 we give the proof of the main result (Theorem 4.2). A key tool is
given by Proposition 4.1.

Finally, in the last section we apply the results previously obtained to describe
small deformations on 4-dimensional nilmanifolds endowed with a fixed paracom-
plex structure. By classification, there are two (non-abelian) nilpotent Lie algebras,
whose (compact) nilmanifolds associated are either primary Kodaira—Thurston sur-
faces or have first Betti number b, = 2. We fix a paracomplex structure on these
two nilmanifolds and we determine the invariant small paracomplex deformations of
them. We show that such spaces depend on six and four real parameters, respectively.
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It has to be remarked that a nilmanifold with »; = 2 cannot have any complex struc-
ture (see Remark 5.2). For small deformations of left invariant complex structures
on nilmanifolds see [4] in the case of abelian complex structures and [15] in the
general case. We also construct a family of para-Ké&hler structures on the primary
Kodaira—Thurston surface.

The authors would like to thank Vicente Cortés and the anonymous referee for
useful comments.

1. Generalitieson paracomplex manifolds

We recall some basic definitions of paracomplex geometry (see e.g [6], [5], [1]).
Let V' be a 2rn-dimensional real vector space. A paracomplex structure on V' is an
endomorphism K: V' — V such that

i) K2 =1y,
i) the eigenspaces V', V'~ of K with eigenvalues 1, —1, respectively, have the
same dimension.
The pair (V, K) will be called a paracomplex vector space.

Definition 1.1. An almost paracomplex structure on a 2r-dimensional manifold M
is the datum of a section K of End(7M ) such that

i) K* = Iy,
i) the two eigendistributions 7*M := ker(I F K) have the same rank.

A almost paracomplex structure K is said to be integrable if the distributions 7+M
are involutive. In such a case K is called a paracomplex structure. A manifold M
endowed with an (almost) paracomplex structure K is called an (almost) paracompl ex
manifold.

The Nijenhuistensor Nx of an almost paracomplex structure K isthe (1, 1)-tensor
field defined by

Nk(X.Y)=[X.Y]+[KX.KY]— K[KX.Y] — K[X.KY]

for every pair of vector fields X, ¥ on M. As in the complex case, an almost
paracomplex structure K is integrable if and only if Nx = 0 (see e.g. [5]).

A basic example of a paracomplex manifold is given by R?", with coordinates
(X1,...5Xn, Y1, ..., ¥Yn), endowed with the standard paracomplex structure K,, de-

fined as
&lag) =0 ®lay) =5 1=
— )= —, — = —, =1,...,n.
" axj 8yj " 3yj ax]' /

We recall that the set of paracomplex numbers

C={z=x+ey|x.yeR e* =1}
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is endowed with the natural operations of sum, (distributive) product and multiplica-
tion by a real number. Then € is aring and a vector space over R. Note that € is not
an integral domain and z = x + ey € € is invertible if and only if x> — y2 # 0. Let
(M, K) be an almost para-complex manifold. Set 7€M = € ®g TM and extend the
endomorphism K to a €-linear endomorphism of 7€M . Then, for every p € M,

€ _ 1,0 0,1
M =T,"M&T,” M,
where
, — € — _

T)'M ={Z e T{M | KZ =eZ}={X +eKX | X € T,M},

TO'M ={Z e TSM | KZ = —eZ} ={X —eKX | X € T,M}
are the “eigenspaces” of K with “eigenvalues” +e, being TIFM a €-module.

Forevery Z = X +¢eY € TIFM denote, as usual, the conjugate of Z by Z =

X —eY.ThenT)'M = T,°M.
The almost para-complex structure K acts naturally on (7€)*M by

K*a(X) = a(KX).
We have a decomposition
(TE)"M = \g"(M) & N\g' (M),
where
A’ (M) :={a +eK*a | a € T*M},
AR (M) = {o —eK*a |0 € T*M}

are eigenspaces for K* with eigenvalues +e. The last decomposition induces a
splitting of the bundle A" (7€)* M of para-complex r-forms on (M, K) given by

N(TE*M = @ NgI(M).

p+q=r

The sections of /\ﬁ’q(M ) are the (p, g)-forms on the almost paracomplex manifold
(M, K).

A para-Hermitian metric on an almost paracomplex manifold (M, K) is the datum
of pseudo-Riemannian metric g of signature (n, n) such that

g(KX,KY)=—g(X.,Y)

for every pair of vector fields X, Y in M. The fundamental formof the para-Hermitian
g is the 2-form w defined by

w(X,Y)=g(X,KY).

The para-Hermitian metric g is said to be para-Kéhler if Ny = 0 and dw = 0.
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2. Paracomplex structuresand DGLA

Let (M, K) be an n-dimensional paracomplex manifold. We are going to define the
differential graded Lie algebra, shortly DGLA, governing the small deformations of
K (for a general theory of deformations see e.g. [9]). Let Q%’”(M) be the space

of sections of the bundle of (0, p)-forms on (M, K). Denote by I'(M, /\%”(M) ®
T M) the space of sections of the vector bundle \%? (M) ® T'°(M). Set

A TN On @ TOM) o< p <.
27 o otherwise,
and define

A= @ Ap.
peEZ

Note that the real vector space + is a module over the paracomplex numbers. Now
we introduce a bracket [[, ]] and a dg-operator on the €-module 4. Namely,

Definition 2.1. The bracket
[, 1]: Ap x Ay — Apig

is defined in the following way:
e Forevery pair Z, W € Ay set

[z W] =12 W],

where [, ] is the usual bracket between complex vector fields.
e Forevery ¢ € A1 and Z € Ay, define [[¢, Z]] = —[[Z, ¢]] € +; as

o, ZIW) = [p(W), Z] + %w([Zy W1 —eK[Z,W]).
e Forevery ¢ € 41, define [[p, ¢]] € A, as
o, ol(Z. W) = 2[p(Z), o(W)] = 2¢([p(Z), W] + [Z, o(W))).

o Forevery ¢,y € Ay, define [[p, ¥]] € A, as

llo. vl = %([[(90 +9). (¢ + W = lle. ¢l = [V, ¥1D.

« Forevery a € Qp?(M), B € QRl(M), ¢,V € A, set

o ng. BAY]=(DianBAlle. ¥+ (EDPCya) A Ag
+anh)AY,
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where T, is the skew-symmetric derivation of degree 1 of %* (M) such that, for
every smooth function f, (T, f)(Z) = ¢(Z)(f), and, foreverya € Q%' (M),

(Tea)(Z, W) = o(Z)(@(W)) — 9W)(@(Z)) = a([p(Z), W] + [Z,p(W))).
 Finally, extend [[, ]] by bilinearity to any pair of elements of .
Definition 2.2. The dx-operator is the map
O dhy — Apti
defined by:
i) For Z € Ay, set
0k Z)(W) = 5(W . Z) + eK[W ., Z])
for vector field W of type (0, 1).
ii) For g € A, set
@xp)(Z, W) = @xeW)Z — @xp(Z))W - ¢(Z, W])
for every pair of vector fields Z, W of type (0, 1).
iii) Extend dx to #, by Leibniz rule, i.e.,
(@ A @) =dga A+ (1)@ y A dge
forevery @ € Q%7 (M), ¢ € A,
Note that, for any ¢ € A,, ¥ € A4, p € A,, it can be checked that

1) llo, ¥l = —(=1)* 9@ LW [y, o],

2) lle. [[v. pll 1 = [l w1, pll + (—1)0@ WD [y [[gp, p]1 ],
3) 32 =0,

4) 3xlle, v]l = [Bx e, ¥]I + (=1 [[p, dx y]].
Therefore, (+4, [[. ]|, 9x) is a DGLA.
Now we note that the theory can be set in real terms. To this purpose, define

AN ={p e (M, \P(M) ® TM) | (X1.....KXj..... Xp)
=—Ko(Xi,...,Xp)forall j =1,..., p},

e.g., A4S is the space of smooth vector fields and

AR = (L € End(TM) | LK + KL = 0}.
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Letm: TM — T'°M be defined as
m(X) = %(X 1 eKX),

with inverse m~! defined by m~'(R) = R + R.
Then every element L € AR can be identified with m (L) € 4, by setting

m(L) = %(L +eKL).
In particular, for every pair of vector fields X, Y, we have
(X, Y]] = m™ [m(X),m(Y)]] = %([X’ Y]+ [KX. KY]).
Bk X)(¥) = 2(1¥, X] - K[KY, X)), (1)
and, for every L € AR,
(IxL)(X.Y) = 0k LY)(X) = (9x LX)(Y) - L[X. Y],

where we used the identification 9x = m™! o dg o m.
By formula (1), it follows immediately that

Ok KX)(Y) = —(9x X)(KY). (2
Finally, in a similar way, for every L € A% we have
[L.LI(X.Y) = 2[[LX,LY]] + 2L((Bx X)(LY) — (9k ¥ )(LX)).
Indeed, a direct computation yields

[(L, LNI(X,Y)
= [LX,LY]+[KLX,KLY]

- %{L([LX, Y] —[KLX,KY])+ KL(KLX,Y]—[LX,KY])}

- %{L([X, LY]—[KX.KLY]) + KL([X,KLY] — [KX,LY))}.

3. Curvesof paracomplex structures

We consider the space of linear paracomplex structures on R?”:
X(n) ={P € GL2n,R) | P2 =1, tr(P) = 0}.

Let K,, be the standard linear paracomplex structure on R?”, namely,

(0 I,
K,,_(In 0).
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Set

h(n) ={X € gl(2n,R) | XKy — Kx X = 0},
s(n) ={X € gl(2n,R) | XK, + K, X = 0}.

Then gl(2n, R) = h(n) & s(n) and there are defined two projections
R: gl(2n,R) = h(n)X > %(X + K, XK,),
St gl2n,R) — s(n)X > %(X — K. XKp).
We have the following

Proposition 3.1. There exists a neighborhood U of K, in X (n) such that every
P € U can bewritten in a unique way as

P=(+L)K,(I+L)",
where LK, + K,L = 0 and det(/ + L) # 0.

Proof. First of all, we observe that GL(2n, R) acts transitively on the space X (n) of
paracomplex structures on R?" by the following:

P> APA™!
forevery P € X (n) and A € GL(2n, R). The isotropy subgroup at K, is given by
H(n) ={A € GL2n,R) | AK,, — K, A = 0}.

Therefore, X (n) = GL(2n, R)/H(n). Consequently, GL(2n, R) N X (n) is an
H (n)-principal bundle and 7(4) = AK,A~!. By the local triviality, there exists a
local section o: U — GL(2n, R) such that

o(Ky,) =1, o(P)K,o(P)"'=P forall P eU.

By definition of the projection R, we immediately have that R(o(K},)) = I; hence,
if U is small enough, R(o(P)) € H(n), for every P € U. Therefore,

G(P) = o(P)(R(a(P)™"

is a section over U with R(6(P)) = I. The section ¢ is determined by the two
conditions
6(K,)=1, R(G(P)) =1.

Therefore, for every paracomplex structure P, we have
P = (R(G(P)) + S(G(P)Kn(R(E(P)) + SG(P))™!
= (I +S@P))Kn(I +S@E(P))™"
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Setting
S@(P)) =L,

we obtain that P can be written in a unique way as
P=(+L)K,(I+L)!,
where LK, + K,L = 0. O

Let K,, for —e < t < ¢, be a curve of almost paracomplex structures on M such
that Ko = K. In view of Proposition 3.1, K; can be uniquely written as

Ki=(+L)K(UI + L),

where
Note that J
—K =2LK.
dt tli=o
Indeed, by definition,
4 g —d(1+L)K(I+L)_1‘ — LK — KL =2LK
dt 'li=o ~ dt ! ! =0 B ’

The next proposition allows us to give an obstruction to the integrability of a curve
of almost paracomplex structures.

Proposition 3.2. Let K, be a curve of almost paracomplex structures, defined for
—& <t < ¢, suchthat Ko = K. Then

d _
TNk (X.Y)| =40k L)(X.Y) = N (LX.Y) = Nk (X. LY).
t=

Proof. Let
Ki=+L)K(I + L))",

where
LtZtL+0(t) and LtK+KLt:0

Then, setting Ko = 4K,

, We obtain
t=0

d . . .
ENK’(X’Y)‘ O=[KOX,KY]+[KX,K0Y]—K0[KX,Y]
t=

— K[KoX.Y] - Ko[X,KY] - K[X, KoY].
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Since Ko = 2LK, we get

d
ar N
=2{—[KLX,KY]—[KX,KLY]+ KL[KX.Y]
+ K[KLX,Y]+ KL[X.KY]+ K[X,KLY]}
=2{KL[KX,Y]+ KL[X,KY]+[LX,Y]+[X,LY]
— K[LX,KY]—K[KX,LY]— Ng(LX,Y)— Ng(X,LY)}.
On the other hand, a direct computation gives
4(0gL)(X,Y) =2[X,LY] —2K[KX,LY] + Ng(LY, X)
—2[Y,LX]+2K[KY,LX] — Nxg(LX.Y)
+2KL[KX,Y] +2KL[X,KY].
The proof of the proposition follows from the last two equalities. O

As a direct consequence, we have the following

Corollary 3.3. If K, isa curve of paracomplex structures, then dx L = 0.

4. Deformations of paracomplex structures

Let M be a compact manifold endowed with a paracomplex structure K. We are
going to characterize small deformations of K € I'(M, End(TM)), using the DGLA
(A, [[, ]I, 9k) introduced in Section 5.

On the space I'(M, End(TM)) of €°°-sections of the vector bundle End(TM ) =
TM* ® TM we will consider the usual topology.

In view of Proposition 3.1, every almost paracomplex structure K close to K can
be written in a unique way as

K=(U+L)KU+L)",

with LK + KL = 0,det(/ + L) # 0.
The following proposition describes the behavior of the Nijenhuis tensor of the
deformed almost paracomplex structure K.

Proposition 4.1. Let K be a paracomplex structure on a manifold M and
K=U+L)KU+L)",
with LK + KL = 0, det(/ + L) # 0. Then

(I +L)'Ne(( + D)X, (I + L)Y) = 4(I — L2 (3 L + %[[L, L])(X.Y).
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Proof. The formula to prove is equivalent to
(I = L)Ng((I + L)X. (I + L)Y) = 4(3x L + 1L, L)) (x. v).
A straightforward computation, taking into account the integrability condition Nx =
0Oand LK 4+ KL = 0, gives
(I —=L)Np((I + L)X, (I + L)Y)
=[KX,LKY]|+[LKX,KY]|+[LKX,LKY]
+ [X, LY+ [LX,Y] 4+ [LX, LY]
— K([KX,LY]+[LKX,Y]+[LKX,LY))
— K([X,LKY]+[LX,KY]+[LX,LKY))
—L(KX,KY]|+[KX,LKY]+[LKX,KY])
— L([X, Y]+ [X.LY] +[LX.Y])
+ KL(KX, Y]+ [KX,LY]+ [LKX,Y]))
+ KL(X,KY]+[X,LKY]+[LX,KY])
= 4([X,LY]— K[KX,LY]—[Y,LX]+ K[KY,LX])
—2(L[X, Y]+ [KX,KY]|—[LX,LY]—[KLX,KLY]))
—L[LX,Y]|+ LIKLX,KY]—KL[KLX,Y]|+ KL[LX,KY]
—L[X,LY]+ LIKX,KLY]|—KL[X,KLY]|+ KL[KX,LY]

=40gL(X,Y) +4[[LX,LY] + 2L((0xk X)(LY) — (g Y )(LX))
+2L((0x KY)(KLX) — (0g KX)(KLY))

= 4(dk L+ J[[L. L])(X. Y),

where in the last equality we have used formula (2). O

Therefore, by Propositions 3.1 and 4.1, we obtain the following

Theorem 4.2. Let (M, K) be a compact paracomplex manifold. Then the map be-
tween
{L € "(M.End(TM)) | LK + KL =0, L + %[[L. L] = 0. det(/ + L) # 0}
and
{K e T(M,End(TM)) | K* = I, Ng = 0},
given by
L—K=(+LKU+L)",

is a bijection between a neighborhood of 0 € I'(M, End(7M)) and a neighborhood
of K.
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As an example, we consider the standard 2n-dimensional torus T?2" = R?"/Z?"
endowed with the standard paracomplex structure defined by

P P By U T R
dx; /) dy; dyj /- dx;

Let K, be a curve of paracomplex structures on T2” such that Ko = K, namely
K,=+L)K,(I +L;)™ "

Then the tangent vector V' = K, is a constant endomorphism of 7'(T2") which
anticommutes with K,,. Conversely, starting with such a constant V' € End(7 (T?2"))
and setting L = %VK,,, we construct a curve of almost paracomplex structures given
by

K= +tL)K,(I +tL)™,

which is in fact integrable since

D, (tL) + 31%([L, L] = 0.

5. Families of paracomplex structures on 4-dimensional nilmanifolds

In this section we consider 4-dimensional nilmanifolds endowed with a fixed para-
complex structure and we compute the invariant small paracomplex deformations
of it.

It is well known that there are only two real 4-dimensional nilpotent non-abelian
Lie algebras. According to the Malcev Theorem (see [12]) it turns out that the simply-
connected Lie groups associated with these two Lie algebras have compact quotients.

5.1. Four-dimensional nilmanifoldswith by = 3. Let §(3) be the 3-dimensional
real Heisenberg Liealgebraandn; = h(3)@R. Thenwecanfindabasis{ /', ..., /*}
of n} such that

df' =0, df2=—f'Af3 dfi=0, df*=o.

Therefore, denoting by { f1,..., f4} the dual basis of { f1,..., 4}, we obtain that
the only non-zero bracket is [ f1, f3] = f>.
Let Ny = H(3) x R be the simply-connected Lie group with Lie algebra n, where

o = = (1) 1 e

is the real 3-dimensional Heisenberg group, and let M = T"\ N; be any compact
quotient of N;. As an example, we can take a primary Kodaira—Thurston surface



On small deformations of paracomplex manifolds 519

'\ H(3) x $!, where ' C H(3) is the subgroup of H(3) given by the matrices with
integer entries.
Let K € End(TM) be the paracomplex structure defined as

Kfi=f3, Kfa=fa, Kfs=fi, Kfa= fa

Then, setting ¢ = (¢1.....t3) € R®, every invariant endomorphism of 7M anticom-
muting with K has the form

51 1) 13 I
Is le I7 I3
L, = . 3
! —t3 —t4 —1 —b )
—t7 —1g —15 —lg

A straightforward computation yields

GkL(fi. f2) = 5(~tafo + 12 fa)
and
(Le, Ll fis fo) = %{yzm fi + (tats+lats) fo — (12 +12) f5 — (a6 +lals) f2 ).
Therefore,

Ok Li + 3l[Le L]l = 0

if and only if
t, =14 =0.

Hence, for such L, satisfying the above conditions and |¢| < ¢, it follows that
K; = (I + Ly)K(I + L;)™! gives rise to a 6-parameter family of paracomplex
structures on M, with Ky = K.

Remark 5.1. Consider the pseudo-Riemannian metric on M defined by
g=—floft+ror
Then g is a para-Hermitian metric, whose fundamental form
o=—f"NP+ NS
is d-closed, so that g is a para-Kéhler metric on (M, K). Let
1+ —12

1 2
W= 86 fLAf2y
! t§—(z6+1)2f 4

2tg

2 3 3 4
A=t T

A straightforward computation shows that, for

h=th=t3=14=0, 14+1Z—12>0, tZ—(ts+1)*<0,



520 C. Medori and A. Tomassini

(K¢, wy) is a family of para-Kahler structures on M such that (Ko, wg) = (K, w),
where

0 0 1 0
_pistg—tyle—ty 18 _p Tiste—istigly _tg—1g—216—1
—12+1+13 —12+1413 —12+1+13 —12+1+13
Kt =
1 0 0 0
_ A—tstettstizty —162+216—1+l§ _ n—tytettztisty 13
2 2 2 2 2 > 2 2
—tg+1+13 —tg+1+13 —tg+1+135 —tg+1+13

5.2. Four-dimensional nilmanifolds with 51y = 2. Let n, be the 4-dimensional
real Lie algebra whose dual space is spanned by {e!, ..., e*} satisfying the following
Cartan structure equations:

del =0, de? =0, de’=e' Ae?, de* =el ne3.
Denoting by {e1, ..., e4} the dual basis of {e!, ..., e*}, we obtain
le1,e2] = —e3, [e1,e3] = —eq.

Let N, be the simply-connected Lie group having Lie algebra g. Let M = I"\ N, be
any compact quotient of N, i.e., M is a compact 4-dimensional nilmanifold. Define
an N,-invariant almost paracomplex structure K on M, by setting

Kel = e, Kez = —€), K€3 = —es3, K€4 = é4.

Then, a direct computation shows that Ng = 0, i.e., K gives rise to a paracomplex
structure on M. Now, using Theorem 4.2, we are going to compute the small deforma-
tions of K corresponding to invariant endomorphisms L of TM , which anticommute
with K.

In order to perform the computation, it will be useful to make a change of basis
of forms, namely, we set

floel 4o 2o 4ot fioel—e?  fr=—od 4t
with dual basis
fi=3e+e) fi=ieste) fi=gler—e) fi=g(—es+e).
Then, we have
Kfi=fs, Kf2=fa, Kfs=/fi, Kfs= fo

Setting t = (¢1,...,t3) € R®, any invariant endomorphism of TM anticommuting
with K is represented with respect to the basis { f1, ..., f4} by the matrix

141 1) 13 ta
t t t t
Lt — 5 6 7 8
—13 —t4 -1 —I
—l7 —lg —Is —ls
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A tedious computation shows that the Maurer—Cartan equation

Ok Le + Lo Le]] = 0
holds if and only if
=1z, th=1=0, te=—Ig.

In such a case,
Ky =( + L)K(I + L)~

is a 4-parameter family of paracomplex structures on M, with Ky = K.

Remark 5.2. It has to be noted that any compact quotient M of N, has no complex
structures for conomological reasons (see e.g. [8]). Indeed, by Nomizu’s Theorem
(see [14]), we have that b, (M) = 2. Furthermore, by a result of Kodaira (see [10],
Theorem 25), a complex surface is a deformation of an algebraic surface if and only
if its first Betti number is even. Therefore, if J were a complex structure on M, then
(M, J) should have a K&hler metric. But this is not possible since, by the theorem
of Benson and Gordon (see [2]), if M is a compact nilmanifold carrying a Kéhler
structure, then M is diffeomorphic to a torus.

5.3. Four-dimensional tori. According to 84, any matrix L, as in (3), with |¢| < &,
gives rise to a paracomplex structure on T*.
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