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On small deformations of paracomplex manifolds
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Abstract. A paracomplex structure on a manifold M is an endomorphism K of the tangent
bundle TM such thatK2 D I , whose ˙1-eigenspaces have the same dimension and are invo-
lutive. By using the theory of differential graded Lie algebras, we describe small deformations
of paracomplex structures. We also compute the space of invariant small deformations of
4-dimensional nilmanifolds endowed with a fixed paracomplex structure.
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Introduction

Let M be a 2n-dimensional manifold. An almost paracomplex structure on M is an
endomorphism K of the tangent bundle TM of M such that K2 D ITM and the two
distributions

T˙M D fX ˙KX j X 2 �.M; TM/g
have the same rank (see [11]). An almost paracomplex structure K is said to be
a paracomplex structure if these two distributions are involutive (this condition is
equivalent to the vanishing of the torsion tensor ofK). In fact, a paracomplex structure
on a manifold can be given by a pair of transverse foliations of the same dimension.
If the paracomplex manifold .M;K/ admits a pseudo-Riemannian metric g such
that g.KX;KY / D �g.X; Y / and the fundamental form !.X; Y / D g.X;KY / is
closed, then the datum .K; g; !/ is a para-Kähler structure on M . It turns out that a
para-Kähler structure onM gives rise to a pair of involutive Lagrangian distributions
T �M and TCM such that TM D TCM ˚ T �M , called bi-Lagrangian structure
(see [3]). Conversely, starting from a symplectic manifold .M;!/ whose tangent
bundle TM is the direct sum of two Lagrangian involutive distributions T˙M , one
can define a para-Kähler structure on M , setting

KjT˙M D ˙I and g.X; Y / D !.X;KY /:

�This work was supported by the Project M.I.U.R. “Geometric Properties of Real and Complex Mani-
folds” and by G.N.S.A.G.A. of I.N.d.A.M.
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In this paper we study small deformations of a paracomplex structure on a com-
pact manifold. In order to do this, as in the theory of small deformations of complex
structures (see [13]) or CR-structures (see [7]), we introduce a differential graded
Lie algebra .A; ŒŒ ; ��; N@K/ (see Section 5). Then it turns out that small paracomplex
deformations ofK are parametrized by degree 1 elements of A D L

p2Z Ap satisfy-
ing the Maurer–Cartan equation. First of all we show that every almost paracomplex
structure yK close to K can be written as

yK D .I C L/K.I C L/�1;

whereL 2 End.TM/ anticommutes withK and det.ICL/ ¤ 0 (see Proposition 3.1).
Then we prove the following (see Theorem 4.2).

Theorem. Let .M;K/ be a compact paracomplex manifold. Then the map between

fL 2 �.M;End.TM// j LK CKL D 0; N@KLC 1
2
ŒŒL;L�� D 0; det.I C L/ ¤ 0g

and

f yK 2 ��
M;End.TM/

� j yK2 D I; N yK D 0g;
given by

L 7! yK D .I C L/K.I C L/�1;

is a bijection between a neighborhood of 0 2 �.M;End.TM// and a neighborhood
of K.

The paper is organized as follows. In Section 1we recall some general definitions
and results on paracomplex geometry.

Section 2 is devoted to the construction of the differential graded Lie algebra
governing the small deformation theory of a paracomplex structure. In particular, we
give explicit formulas for the bracket ŒŒ ; �� and for the N@K-operator without using local
coordinates.

In Section 3 we consider curves of paracomplex structures through a paracomplex
structure K, characterizing almost paracomplex structures close to K (see Proposi-
tion 3.1) and finding obstructions in order that an endomorphism L anticommuting
with K gives rise to a curve of paracomplex structures (see Corollary 3.3).

In Section 4 we give the proof of the main result (Theorem 4.2). A key tool is
given by Proposition 4.1.

Finally, in the last section we apply the results previously obtained to describe
small deformations on 4-dimensional nilmanifolds endowed with a fixed paracom-
plex structure. By classification, there are two (non-abelian) nilpotent Lie algebras,
whose (compact) nilmanifolds associated are either primary Kodaira–Thurston sur-
faces or have first Betti number b1 D 2. We fix a paracomplex structure on these
two nilmanifolds and we determine the invariant small paracomplex deformations of
them. We show that such spaces depend on six and four real parameters, respectively.
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It has to be remarked that a nilmanifold with b1 D 2 cannot have any complex struc-
ture (see Remark 5.2). For small deformations of left invariant complex structures
on nilmanifolds see [4] in the case of abelian complex structures and [15] in the
general case. We also construct a family of para-Kähler structures on the primary
Kodaira–Thurston surface.

The authors would like to thank Vicente Cortés and the anonymous referee for
useful comments.

1. Generalities on paracomplex manifolds

We recall some basic definitions of paracomplex geometry (see e.g [6], [5], [1]).
Let V be a 2n-dimensional real vector space. A paracomplex structure on V is an
endomorphism K W V ! V such that

i) K2 D IV ,

ii) the eigenspaces V C, V � of K with eigenvalues 1, �1, respectively, have the
same dimension.

The pair .V;K/ will be called a paracomplex vector space.

Definition 1.1. An almost paracomplex structure on a 2n-dimensional manifold M
is the datum of a section K of End.TM/ such that

i) K2 D ITM ,

ii) the two eigendistributions T˙M ´ ker.I �K/ have the same rank.

A almost paracomplex structure K is said to be integrable if the distributions T˙M
are involutive. In such a case K is called a paracomplex structure. A manifold M
endowed with an (almost) paracomplex structureK is called an (almost) paracomplex
manifold.

The Nijenhuis tensorNK of an almost paracomplex structureK is the .1; 1/-tensor
field defined by

NK.X; Y / D ŒX; Y �C ŒKX;KY � �KŒKX; Y � �KŒX;KY �
for every pair of vector fields X , Y on M . As in the complex case, an almost
paracomplex structure K is integrable if and only if NK D 0 (see e.g. [5]).

A basic example of a paracomplex manifold is given by R2n, with coordinates
.x1; : : : ; xn; y1; : : : ; yn/, endowed with the standard paracomplex structure Kn de-
fined as

Kn

�
@

@xj

�
D @

@yj
; Kn

�
@

@yj

�
D @

@xj
; j D 1; : : : ; n:

We recall that the set of paracomplex numbers

C D fz D x C ey j x; y 2 R; e2 D 1g
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is endowed with the natural operations of sum, (distributive) product and multiplica-
tion by a real number. Then C is a ring and a vector space over R. Note that C is not
an integral domain and z D xC ey 2 C is invertible if and only if x2 � y2 ¤ 0. Let
.M;K) be an almost para-complex manifold. Set T CM D C ˝R TM and extend the
endomorphism K to a C -linear endomorphism of T CM . Then, for every p 2 M ,

T C
pM D T 1;0p M ˚ T 0;1p M;

where

T 1;0p M D fZ 2 T C
p M j KZ D eZg D fX C eKX j X 2 TpM g;

T 0;1p M D fZ 2 T C
p M j KZ D �eZg D fX � eKX j X 2 TpM g

are the “eigenspaces” of K with “eigenvalues” ˙e, being T C
p M a C -module.

For every Z D X C eY 2 T C
p M denote, as usual, the conjugate of Z by xZ D

X � eY . Then T 0;1p M D xT 1;0p M .
The almost para-complex structure K acts naturally on .T C /�M by

K�˛.X/ D ˛.KX/:

We have a decomposition

.T C /�M D ^1;0
K .M/˚ ^0;1

K .M/;

where
^1;0
K .M/ ´ f˛ C eK�˛ j ˛ 2 T �M g;

^0;1
K .M/ ´ f˛ � eK�˛ j ˛ 2 T �M g

are eigenspaces for K� with eigenvalues ˙e. The last decomposition induces a
splitting of the bundle

^r
.T C /�M of para-complex r-forms on .M;K/ given by
^r
.T C /�M D L

pCqDr
^p;q
K .M/:

The sections of
^p;q
K .M/ are the .p; q/-forms on the almost paracomplex manifold

.M;K/.
A para-Hermitian metric on an almost paracomplex manifold .M;K/ is the datum

of pseudo-Riemannian metric g of signature .n; n/ such that

g.KX;KY / D �g.X; Y /
for every pair of vector fieldsX , Y inM . The fundamental form of the para-Hermitian
g is the 2-form ! defined by

!.X; Y / D g.X;KY /:

The para-Hermitian metric g is said to be para-Kähler if NK D 0 and d! D 0.
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2. Paracomplex structures and DGLA

Let .M;K/ be an n-dimensional paracomplex manifold. We are going to define the
differential graded Lie algebra, shortly DGLA, governing the small deformations of
K (for a general theory of deformations see e.g. [9]). Let �0;pK .M/ be the space
of sections of the bundle of .0; p/-forms on .M;K/. Denote by �.M;

^0;p
K .M/ ˝

T 1;0M/ the space of sections of the vector bundle
^0;p
K .M/˝ T 1;0.M/. Set

Ap D
´
�.M;

^0;p
K .M/˝ T 1;0M/ if 0 � p � n;

0 otherwise;

and define
A D L

p2Z

Ap:

Note that the real vector space A is a module over the paracomplex numbers. Now
we introduce a bracket ŒŒ ; �� and a N@K-operator on the C -module A. Namely,

Definition 2.1. The bracket

ŒŒ ; �� W Ap � Aq ! ApCq

is defined in the following way:

� For every pair Z;W 2 A0 set

ŒŒZ;W �� D ŒZ;W �;

where Œ ; � is the usual bracket between complex vector fields.

� For every ' 2 A1 and Z 2 A0, define ŒŒ';Z�� D �ŒŒZ; '�� 2 A1 as

ŒŒ';Z��. xW / D Œ'. xW /;Z�C 1
2
'.ŒZ; xW � � eKŒZ; xW �/:

� For every ' 2 A1, define ŒŒ'; '�� 2 A2 as

ŒŒ'; '��. xZ; xW / D 2Œ'. xZ/; '. xW /� � 2'.Œ'. xZ/; xW �C Œ xZ; '. xW /�/:
� For every '; 2 A1, define ŒŒ';  �� 2 A2 as

ŒŒ';  �� D 1
2
.ŒŒ.' C  /; .' C  /�� � ŒŒ'; '�� � ŒŒ ;  ��/:

� For every ˛ 2 �0;pK .M/, ˇ 2 �0;qK .M/, '; 2 A1, set

ŒŒ˛ ^ '; ˇ ^  �� D .�1/q˛ ^ ˇ ^ ŒŒ';  ��C .�1/p.È ˛/ ^ ˇ ^ '
C ˛ ^ .È'ˇ/ ^  ;
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where È' is the skew-symmetric derivation of degree 1 of�0;�.M/ such that, for
every smooth function f , .È'f /. xZ/ D '. xZ/.f /, and, for every ˛ 2 �0;1K .M/,

.È'˛/. xZ; xW / D '. xZ/.˛. xW // � '. xW /.˛. xZ// � ˛.Œ'. xZ/; xW �C Œ xZ; '. xW /�/:
� Finally, extend ŒŒ ; �� by bilinearity to any pair of elements of A.

Definition 2.2. The N@K-operator is the map

N@K W Ap ! ApC1

defined by:

i) For Z 2 A0, set

.N@KZ/. xW / D 1
2
.Œ xW ;Z�C eKŒ xW ;Z�/

for vector field xW of type .0; 1/.

ii) For ' 2 A1, set

.N@K'/. xZ; xW / D .N@K'. xW // xZ � .N@K'. xZ// xW � '.Œ xZ; xW �/
for every pair of vector fields xZ; xW of type .0; 1/.

iii) Extend N@K to Ap by Leibniz rule, i.e.,

N@K.˛ ^ '/ D N@K˛ ^ ' C .�1/deg.˛/˛ ^ N@K'
for every ˛ 2 �0;pK .M/, ' 2 A1.

Note that, for any ' 2 Ap ,  2 Aq , � 2 Ar , it can be checked that

1) ŒŒ';  �� D �.�1/deg.'/ deg. /ŒŒ ; '��,

2) ŒŒ'; ŒŒ ; ��� �� D ŒŒ ŒŒ';  ��; ���C .�1/deg.'/ deg. /ŒŒ ; ŒŒ'; ��� �� ,

3) N@2K D 0,

4) N@K ŒŒ';  �� D ŒŒN@K'; ��C .�1/deg.'/ŒŒ'; N@K ��.
Therefore, .A; ŒŒ ; ��; N@K/ is a DGLA.

Now we note that the theory can be set in real terms. To this purpose, define

AR
p D f' 2 �.M;^p

.M/˝ TM/ j '.X1; : : : ; KXj ; : : : ; Xp/
D �K'.X1; : : : ; Xp/ for all j D 1; : : : ; pg;

e.g., AR
0 is the space of smooth vector fields and

AR
1 D fL 2 End.TM/ j LK CKL D 0g:
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Let m W TM ! T 1;0M be defined as

m.X/ D 1
2
.X C eKX/;

with inverse m�1 defined by m�1.R/ D RC xR.
Then every element L 2 AR

p can be identified with m.L/ 2 Ap by setting

m.L/ D 1
2
.LC eKL/:

In particular, for every pair of vector fields X , Y , we have

ŒŒX; Y �� D m�1ŒŒm.X/;m.Y /�� D 1
2
.ŒX; Y �C ŒKX;KY �/;

.N@KX/.Y / D 1
2
.ŒY;X� �KŒKY;X�/; (1)

and, for every L 2 AR
1 ,

.N@KL/.X; Y / D .N@KLY /.X/ � .N@KLX/.Y / � LŒŒX; Y ��;
where we used the identification N@K D m�1 B N@K Bm.

By formula (1), it follows immediately that

.N@KKX/.Y / D �.N@KX/.KY /: (2)

Finally, in a similar way, for every L 2 AR
1 we have

ŒŒL;L��.X; Y / D 2ŒŒLX;LY ��C 2L..N@KX/.LY / � .N@KY /.LX//:
Indeed, a direct computation yields

ŒŒL;L��.X; Y /

D ŒLX;LY �C ŒKLX;KLY �

� 1
2

fL.ŒLX; Y � � ŒKLX;KY �/CKL.ŒKLX; Y � � ŒLX;KY �/g
� 1
2

fL.ŒX;LY � � ŒKX;KLY �/CKL.ŒX;KLY � � ŒKX;LY �/g:

3. Curves of paracomplex structures

We consider the space of linear paracomplex structures on R2n:

X.n/ D fP 2 GL.2n;R/ j P 2 D I; tr.P / D 0g:
Let Kn be the standard linear paracomplex structure on R2n, namely,

Kn D
�
0 In
In 0

�
:
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Set

h.n/ D fX 2 gl.2n;R/ j XKn �KnX D 0g;
s.n/ D fX 2 gl.2n;R/ j XKn CKnX D 0g:

Then gl.2n;R/ D h.n/˚ s.n/ and there are defined two projections

R W gl.2n;R/ ! h.n/X 7! 1
2
.X CKnXKn/;

S W gl.2n;R/ ! s.n/X 7! 1
2
.X �KnXKn/:

We have the following

Proposition 3.1. There exists a neighborhood U of Kn in X.n/ such that every
P 2 U can be written in a unique way as

P D .I C L/Kn.I C L/�1;

where LKn CKnL D 0 and det.I C L/ ¤ 0.

Proof. First of all, we observe that GL.2n;R/ acts transitively on the space X.n/ of
paracomplex structures on R2n by the following:

P 7! APA�1

for every P 2 X.n/ and A 2 GL.2n;R/. The isotropy subgroup at Kn is given by

H.n/ D fA 2 GL.2n;R/ j AKn �KnA D 0g:
Therefore, X.n/ D GL.2n;R/=H.n/. Consequently, GL.2n;R/

���! X.n/ is an
H.n/-principal bundle and �.A/ D AKnA

�1. By the local triviality, there exists a
local section � W U ! GL.2n;R/ such that

�.Kn/ D I; �.P /Kn�.P /
�1 D P for all P 2 U:

By definition of the projection R, we immediately have that R.�.Kn// D I ; hence,
if U is small enough, R.�.P // 2 H.n/, for every P 2 U . Therefore,

O�.P / D �.P /.R.�.P ///�1

is a section over U with R. O�.P // � I . The section O� is determined by the two
conditions

O�.Kn/ D I; R. O�.P // � I:

Therefore, for every paracomplex structure P , we have

P D .R. O�.P //C S. O�.P ///Kn.R. O�.P //C S. O�.P ///�1
D .I C S. O�.P ///Kn.I C S. O�.P ///�1:
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Setting
S. O�.P // D L;

we obtain that P can be written in a unique way as

P D .I C L/Kn.I C L/�1;

where LKn CKnL D 0.

Let Kt , for �" < t < ", be a curve of almost paracomplex structures on M such
that K0 D K. In view of Proposition 3.1, Kt can be uniquely written as

Kt D .I C Lt /K.I C Lt /
�1;

where
Lt D tLC o.t/ and LtK CKLt D 0:

Note that
d

dt
Kt

ˇ̌̌
tD0 D 2LK:

Indeed, by definition,

d

dt
Kt

ˇ̌̌
tD0 D d

dt
.I C Lt /K.I C Lt /

�1
ˇ̌̌
tD0 D LK �KL D 2LK:

The next proposition allows us to give an obstruction to the integrability of a curve
of almost paracomplex structures.

Proposition 3.2. Let Kt be a curve of almost paracomplex structures, defined for
�" < t < ", such that K0 D K. Then

d

dt
NKt

.X; Y /
ˇ̌̌
tD0 D 4.N@KL/.X; Y / �NK.LX; Y / �NK.X;LY /:

Proof. Let
Kt D .I C Lt /K.I C Lt /

�1;

where
Lt D tLC o.t/ and LtK CKLt D 0:

Then, setting PK0 D d
dt
Kt

ˇ̌̌
tD0, we obtain

d

dt
NKt

.X; Y /
ˇ̌̌
tD0 D Œ PK0X;KY �C ŒKX; PK0Y � � PK0ŒKX; Y �

�KŒ PK0X; Y � � PK0ŒX;KY � �KŒX; PK0Y �:
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Since PK0 D 2LK, we get

d

dt
NKt

.X; Y /
ˇ̌̌
tD0

D 2f�ŒKLX;KY � � ŒKX;KLY �CKLŒKX; Y �

CKŒKLX; Y �CKLŒX;KY �CKŒX;KLY �g
D 2fKLŒKX; Y �CKLŒX;KY �C ŒLX; Y �C ŒX;LY �

�KŒLX;KY � �KŒKX;LY � �NK.LX; Y / �NK.X;LY /g:
On the other hand, a direct computation gives

4.N@KL/.X; Y / D 2ŒX;LY � � 2KŒKX;LY �CNK.LY;X/

� 2ŒY; LX�C 2KŒKY;LX� �NK.LX; Y /
C 2KLŒKX; Y �C 2KLŒX;KY �:

The proof of the proposition follows from the last two equalities.

As a direct consequence, we have the following

Corollary 3.3. If Kt is a curve of paracomplex structures, then N@KL D 0.

4. Deformations of paracomplex structures

Let M be a compact manifold endowed with a paracomplex structure K. We are
going to characterize small deformations ofK 2 �.M;End.TM//, using the DGLA
.A; ŒŒ ; ��; N@K/ introduced in Section 5.

On the space �.M;End.TM// of C1-sections of the vector bundle End.TM/ D
TM � ˝ TM we will consider the usual topology.

In view of Proposition 3.1, every almost paracomplex structure yK close toK can
be written in a unique way as

yK D .I C L/K.I C L/�1;

with LK CKL D 0, det.I C L/ ¤ 0.
The following proposition describes the behavior of the Nijenhuis tensor of the

deformed almost paracomplex structure yK.

Proposition 4.1. Let K be a paracomplex structure on a manifold M and

yK D .I C L/K.I C L/�1;

with LK CKL D 0, det.I C L/ ¤ 0. Then

.I C L/�1N yK..I C L/X; .I C L/Y / D 4.I � L2/�1
�N@KLC 1

2
ŒŒL;L��

�
.X; Y /:
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Proof. The formula to prove is equivalent to

.I � L/N yK..I C L/X; .I C L/Y / D 4
�N@KLC 1

2
ŒŒL;L��

�
.X; Y /:

A straightforward computation, taking into account the integrability conditionNK D
0 and LK CKL D 0, gives

.I � L/N yK..I C L/X; .I C L/Y /

D ŒKX;LKY �C ŒLKX;KY �C ŒLKX;LKY �

C ŒX;LY �C ŒLX; Y �C ŒLX;LY �

�K.ŒKX;LY �C ŒLKX; Y �C ŒLKX;LY �/

�K.ŒX;LKY �C ŒLX;KY �C ŒLX;LKY �/

� L.ŒKX;KY �C ŒKX;LKY �C ŒLKX;KY �/

� L.ŒX; Y �C ŒX;LY �C ŒLX; Y �/

CKL.ŒKX; Y �C ŒKX;LY �C ŒLKX; Y �/

CKL.ŒX;KY �C ŒX;LKY �C ŒLX;KY �/

D 4.ŒX;LY � �KŒKX;LY � � ŒY; LX�CKŒKY;LX�/

� 2.LŒX; Y �C ŒKX;KY � � ŒLX;LY � � ŒKLX;KLY �/
� LŒLX; Y �C LŒKLX;KY � �KLŒKLX; Y �CKLŒLX;KY �

� LŒX;LY �C LŒKX;KLY � �KLŒX;KLY �CKLŒKX;LY �

D 4 N@KL.X; Y /C 4ŒŒLX;LY ��C 2L..N@KX/.LY / � .N@KY /.LX//
C 2L..N@KKY /.KLX/ � .N@KKX/.KLY //

D 4
�N@KLC 1

2
ŒŒL;L��

�
.X; Y /;

where in the last equality we have used formula (2).

Therefore, by Propositions 3.1 and 4.1, we obtain the following

Theorem 4.2. Let .M;K/ be a compact paracomplex manifold. Then the map be-
tween˚
L 2 �.M;End.TM// j LK CKL D 0; N@KLC 1

2
ŒŒL;L�� D 0; det.I C L/ ¤ 0

�
and

f yK 2 �.M;End.TM// j yK2 D I; N yK D 0g;
given by

L 7! yK D .I C L/K.I C L/�1;

is a bijection between a neighborhood of 0 2 �.M;End.TM// and a neighborhood
of K.
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As an example, we consider the standard 2n-dimensional torus T 2n D R2n=Z2n

endowed with the standard paracomplex structure defined by

Kn

�
@

@xj

�
D @

@yj
; Kn

�
@

@yj

�
D @

@xj
; j D 1; : : : ; n:

Let Kt be a curve of paracomplex structures on T 2n such that K0 D Kn, namely

Kt D .I C Lt /Kn.I C Lt /
�1:

Then the tangent vector V D PK0 is a constant endomorphism of T .T 2n/ which
anticommutes withKn. Conversely, starting with such a constant V 2 End.T .T 2n//

and settingL D 1
2
VKn, we construct a curve of almost paracomplex structures given

by
Kt D .I C tL/Kn.I C tL/�1;

which is in fact integrable since

N@Kn
.tL/C 1

2
t2ŒŒL;L�� D 0:

5. Families of paracomplex structures on 4-dimensional nilmanifolds

In this section we consider 4-dimensional nilmanifolds endowed with a fixed para-
complex structure and we compute the invariant small paracomplex deformations
of it.

It is well known that there are only two real 4-dimensional nilpotent non-abelian
Lie algebras. According to the Malcev Theorem (see [12]) it turns out that the simply-
connected Lie groups associated with these two Lie algebras have compact quotients.

5.1. Four-dimensional nilmanifolds with b1 D 3. Let h.3/ be the 3-dimensional
real Heisenberg Lie algebra and n1 D h.3/˚R. Then we can find a basis ff 1; : : : ; f 4g
of n�

1 such that

df 1 D 0; df 2 D �f 1 ^ f 3; df 3 D 0; df 4 D 0:

Therefore, denoting by ff1; : : : ; f4g the dual basis of ff 1; : : : ; f 4g, we obtain that
the only non-zero bracket is Œf1; f3� D f2.

LetN1 D H.3/�R be the simply-connected Lie group with Lie algebra n, where

H.3/ D
n
A D

�
1 x z
0 1 y
0 0 1

�
j x; y; z;2 R

o

is the real 3-dimensional Heisenberg group, and let M D �nN1 be any compact
quotient of N1. As an example, we can take a primary Kodaira–Thurston surface
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�nH.3/ � S1, where � � H.3/ is the subgroup of H.3/ given by the matrices with
integer entries.

Let K 2 End.TM/ be the paracomplex structure defined as

Kf1 D f3; Kf2 D f4; Kf3 D f1; Kf4 D f2:

Then, setting t D .t1; : : : ; t8/ 2 R8, every invariant endomorphism of TM anticom-
muting with K has the form

Lt D

0
BB@

t1 t2 t3 t4
t5 t6 t7 t8

�t3 �t4 �t1 �t2
�t7 �t8 �t5 �t6

1
CCA : (3)

A straightforward computation yields

.N@KLt/.f1; f2/ D 1
2
.�t4f2 C t2f4/

and

ŒŒLt ; Lt ��.f1; f2/ D 1
2

˚
2t2t4f1 C .t2t8Ct4t6/f2 � .t22Ct24 /f3 � .t2t6Ct4t8/f4

�
:

Therefore,
N@KLt C 1

2
ŒŒLt ; Lt �� D 0

if and only if
t2 D t4 D 0:

Hence, for such Lt satisfying the above conditions and jtj < ", it follows that
Kt D .I C Lt/K.I C Lt/

�1 gives rise to a 6-parameter family of paracomplex
structures on M , with K0 D K.

Remark 5.1. Consider the pseudo-Riemannian metric on M defined by

g D �f 1 ˇ f 4 C f 2 ˇ f 3:

Then g is a para-Hermitian metric, whose fundamental form

! D �f 1 ^ f 2 C f 3 ^ f 4

is d -closed, so that g is a para-Kähler metric on .M;K/. Let

!t D 1C t28 � t26
t28 � .t6 C 1/2

f 1 ^ f 2 C 2t8

t28 � .t6 C 1/2
f 2 ^ f 3 C f 3 ^ f 4:

A straightforward computation shows that, for

t1 D t2 D t3 D t4 D 0; 1C t28 � t26 > 0; t28 � .t6 C 1/2 < 0;
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.Kt ; !t/ is a family of para-Kähler structures on M such that .K0; !0/ D .K; !/,
where

Kt D

0
BBBBB@

0 0 1 0

�2 t5t8�t7t6�t7
�t2

6
C1Ct2

8

2 t8
�t2

6
C1Ct2

8

�2 �t5t6�t5Ct7t8
�t2

6
C1Ct2

8

� t2
8

�t2
6

�2t6�1
�t2

6
C1Ct2

8

1 0 0 0

�2�t5t6Ct5Ct7t8
�t2

6
C1Ct2

8

��t2
6

C2t6�1Ct2
8

�t2
6

C1Ct2
8

�2�t7t6Ct7Ct5t8
�t2

6
C1Ct2

8

�2 t8
�t2

6
C1Ct2

8

1
CCCCCA :

5.2. Four-dimensional nilmanifolds with b1 D 2. Let n2 be the 4-dimensional
real Lie algebra whose dual space is spanned by fe1; : : : ; e4g satisfying the following
Cartan structure equations:

de1 D 0; de2 D 0; de3 D e1 ^ e2; de4 D e1 ^ e3:
Denoting by fe1; : : : ; e4g the dual basis of fe1; : : : ; e4g, we obtain

Œe1; e2� D �e3; Œe1; e3� D �e4:
LetN2 be the simply-connected Lie group having Lie algebra g. LetM D �nN2 be
any compact quotient ofN2, i.e.,M is a compact 4-dimensional nilmanifold. Define
an N2-invariant almost paracomplex structure K on M , by setting

Ke1 D e1; Ke2 D �e2; Ke3 D �e3; Ke4 D e4:

Then, a direct computation shows that NK D 0, i.e., K gives rise to a paracomplex
structure onM . Now, using Theorem 4.2, we are going to compute the small deforma-
tions ofK corresponding to invariant endomorphisms L of TM , which anticommute
with K.

In order to perform the computation, it will be useful to make a change of basis
of forms, namely, we set

f 1 D e1 C e2; f 2 D e3 C e4; f 3 D e1 � e2; f 4 D �e3 C e4;

with dual basis

f1 D 1
2
.e1 C e2/; f2 D 1

2
.e3 C e4/; f3 D 1

2
.e1 � e2/; f4 D 1

2
.�e3 C e4/:

Then, we have

Kf1 D f3; Kf2 D f4; Kf3 D f1; Kf4 D f2:

Setting t D .t1; : : : ; t8/ 2 R8, any invariant endomorphism of TM anticommuting
with K is represented with respect to the basis ff1; : : : ; f4g by the matrix

Lt D

0
BB@

t1 t2 t3 t4
t5 t6 t7 t8

�t3 �t4 �t1 �t2
�t7 �t8 �t5 �t6

1
CCA :
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A tedious computation shows that the Maurer–Cartan equation

N@KLt C 1
2
ŒŒLt ; Lt �� D 0

holds if and only if

t1 D t3; t2 D t4 D 0; t6 D �t8:
In such a case,

Kt D .I C Lt/K.I C Lt/
�1

is a 4-parameter family of paracomplex structures on M , with K0 D K.

Remark 5.2. It has to be noted that any compact quotient M of N2 has no complex
structures for cohomological reasons (see e.g. [8]). Indeed, by Nomizu’s Theorem
(see [14]), we have that b1.M/ D 2. Furthermore, by a result of Kodaira (see [10],
Theorem 25), a complex surface is a deformation of an algebraic surface if and only
if its first Betti number is even. Therefore, if J were a complex structure onM , then
.M; J / should have a Kähler metric. But this is not possible since, by the theorem
of Benson and Gordon (see [2]), if M is a compact nilmanifold carrying a Kähler
structure, then M is diffeomorphic to a torus.

5.3. Four-dimensional tori. According to §4, any matrixLt as in (3), with jtj < ",
gives rise to a paracomplex structure on T 4.
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