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Hopf action and Rankin–Cohen brackets
on an Archimedean complex
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Abstract. The Hopf algebra H1 of “codimension 1 foliations”, generated by operators X , Y
and ın, n � 1, satisfying certain conditions, was introduced by Connes and Moscovici in [1].
In [2], it was shown that, for any congruence subgroup � of SL2.Z/, the action of H1 on the
“modular Hecke algebra” A.�/ captures classical operators on modular forms. In this paper,
we show that the action of H1 captures the monodromy and Frobenius actions on a certain
module B�.�/ that arises from the Archimedean complex of Consani [4]. The object B�.�/

replaces the modular Hecke algebra A.�/ in our theory. We also introduce a “restricted”
version B�

r .�/ of the module B�.�/ on which the operators ın, n � 1, of the Hopf algebra
H1 act as zero. Thereafter, we construct Rankin–Cohen brackets of all orders on B�

r .�/.
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1. Introduction

The Hopf algebra H1 of “codimension 1 foliations” was introduced by Connes and
Moscovici in [1]. As an algebra, H1 is the universal enveloping algebra of the Lie
algebra generated by a family fX; Y; fıngn�1g satisfying the relations

ŒY; X� D X; ŒY; ın� D nın; ŒX; ın� D ınC1; Œık; ıl � D 0 for all k; l 2 N;

while the coproducts on H1 are given by

�.X/ D X ˝ 1C 1˝X C ı1 ˝ Y;

�.Y / D Y ˝ 1C 1˝ Y;

�.ı1/ D ı1 ˝ 1C 1˝ ı1:

It was shown in [1] that the action of H1 on a certain crossed product algebra captures
several important operators in the theory of foliations. It was discovered in [2] that
this has an analogue in the following arithmetic situation.

Let N � 1 and let � D �.N/ be a congruence subgroup of SL2.Z/. Let
M denote the “modular tower” consisting of the direct limit of modular forms (of
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all weights) over all levels �.N/. In [2], Connes and Moscovici have defined the
“modular Hecke algebra” A.�/ which is an extension of the usual algebra of Hecke
operators and shown that there is an action of the same Hopf algebra H1 on A.�/.
The modular Hecke algebra A.�/ is defined as the set of functions of finite support
from �n GLC

2 .Q/ to the modular tower M satisfying a certain covariance condition
(see Definition 2.1). Once again, the action of H1 on A.�/ captures well-known
classical operators on modular forms. Moreover, the action of the Hopf algebra H1

on A.�/ is “flat”, i.e.,

h.a � b/ D P
h.1/.a/ � h.2/.b/; �.h/ D P

h.1/ ˝ h.2/;

where h 2 H1, a; b 2 A.�/ and h.a/ denotes the action of h 2 H1 on a 2 A.�/.
Further, it was shown in [2], [3] that the Hopf algebra H1 may be used to extend
Rankin–Cohen brackets of all orders to the modular Hecke algebra A.�/.

In [4], Consani has introduced the Archimedean bi-complex which computes the
cohomology of the “fibre at infinity” of an arithmetic variety. For a modular curve
X.�.N //, we will define the bi-complex .K��

N ; d 0; d 00/ (see (3.1)) whose terms K��
N

are obtained by tensoring the terms in Consani’s complex by modular forms of certain
weight. We let .K��; d 0; d 00/ denote the direct limit of .K��

N ; d 0; d 00/ over allN � 1.
Then, by replacing the modular tower M by the direct limit K��, we define B��.�/ to
be the set of functions of finite support from �n GLC

2 .Q/ to the tower K�� satisfying
a certain covariance condition. We let B�.�/ denote the total complex associated to
B��.�/.

In this paper, our purpose is to show that the Hopf algebra H1 has an action on
B�.�/ that captures the Frobenius and monodromy operators on the Archimedean
complex .K��; d 0; d 00/. We also show that B�.�/ has the structure of a module over
an algebra AT .�/ŒT �, which is a slight variant of the modular Hecke algebra A.�/

that we describe in Section 3. Further, the action of H1 on the system .AT .�/;B�.�//
is flat, in the sense that

h.a �m/ D P
h.1/.a/ � h.2/.m/; �.h/ D P

h.1/ ˝ h.2/; (1.1)

where h 2 H1, a 2 AT .�/, m 2 B�.�/.
Finally, in Section 4, we show that the product on AT .�/ can be “restricted” (see

(4.1)) in a natural manner so that the action of the operators ın 2 H1 becomes zero.
With this “restricted” product structure, we refer to the algebra AT .�/ as Ar

T .�/.
Then H1 has a natural flat action on the algebra Ar

T .�/ such that the action of the
elements ın 2 H1 is zero. Further, B�.�/ becomes a module over Ar

T .�/ and with
this module structure, we refer to B�.�/ as B�

r .�/. Since the action of each of the
operators ın 2 H1 is zero, the flat action of H1 on the system .Ar

T .�/;B
�
r .�//

reduces to an action of the smaller Hopf algebra h1 D U.l1/, which is the universal
enveloping algebra of the unique two dimensional nonabelian Lie algebra l1. The
action of h1 is then used to define Rankin–Cohen brackets of all orders on B�

r .�/,
which naturally extend the classical Rankin–Cohen brackets on modular forms (see
Proposition 4.3).
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2. Modular Hecke algebras and the Archimedean complex

In this section, we shall briefly recall the background theory leading to modular Hecke
algebras and toArchimedean cohomology. The theory of modular Hecke algebras and
the action of the Hopf algebra H1 due to Connes and Moscovici [3], [2] is presented
in Section 2.1. Thereafter, in Section 2.2, we recall the Archimedean cohomology
developed by Consani [4]. We also show that the commutation relations between
monodromy and Frobenius operators on the Archimedean complex are identical to
relations between certain generators of H1.

2.1. Modular Hecke algebras and the Hopf algebra H1. For the convenience of
the reader, we shall briefly recall the construction of the modular Hecke algebra of
Connes and Moscovici from [2].

We will start by fixing some notation. Throughout this paper, we will use �.N/
to denote the congruence subgroup of SL2.Z/ of level N � 1. The group SL2.Z/
has a well-known left action on the upper half plane H D fz 2 Cj im.z/ > 0g. For
any congruence subgroup �.N/ of SL2.Z/, we set Y.�.N // D �.N/nH. Then
Y.�.N // can be compactified in a standard manner by adding a finite number of
points. The compactification is referred to as the modular curve X.�.N // of level
N . The finitely many points in X.�.N //nY.�.N // are known as cusps. We will
often denote X.�.N // simply by X.N/.

For any holomorphic function f W H ! C and any � 2 GLC
2 .Q/, we set (for

k � 0)

f j2k� D f .z/.cz C d/�2k if � D
�
a b

c d

�
:

For given N � 1, set q D e2�iz=N and suppose that f W H ! C is such that
f j2k� D f for each � 2 �.N/. Then, for any choice of log q, there exists a
well-defined function f1 W fq 2 C j 0 < jqj < 1g ! C such that

f1.q/ D f
�
N

log q
2�i

�
:

Then if f1 can be continued holomorphically at q D 0 (for each choice of log q),
we say that f is a modular form of weight 2k and level N . Further, if f1.0/ D 0,
we say that f is a cuspidal form of weight 2k and level �.N/.

Given any congruence subgroup� D �.N/, the space of modular (resp. cuspidal)
forms of level � and weight 2k will be denoted by M2k.�/ (resp. M0

2k
.�/) and we

set
M.�/ D L

k�0

M2k.�/; M0.�/ D L
k�0

M0
2k
.�/:
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If N 0 is a multiple of N , we have an inclusion morphism M.�.N // ! M.�.N 0//
(resp. M0.�.N // ! M0.�.N 0//) . We define M (resp. M0) to be the direct limit

M D lim�! M.�.N //; M0 D lim�! M0.�.N //;

and we refer to M as the “modular tower”.

Definition 2.1 (see [2]). Let � D �.N/ be a congruence subgroup of SL2.Z/. A
Hecke operator form of level � is a function

F W �n GLC
2 .Q/ ! M; �˛ 7! F˛ 2 M;

of finite support satisfying the covariance condition

F˛j� D F˛� for all ˛ 2 GLC
2 .Q/; � 2 �:

The Hecke operator form is said to be cuspidal if

F˛ 2 M0 for all ˛ 2 GLC
2 .Q/:

The Hecke operator forms of level � form an associative algebra A.�/ (see [2],
1.9) under the product

.F 1 � F 2/˛ D P
ˇ2�n GLC

2
.Q/

F 1
ˇ

� F 2
˛ˇ�1 jˇ for all F 1; F 2 2 A.�/; (2.1)

where the summation ranges over all the cosets of � in GLC
2 .Q/. The usual Hecke

algebra H .�/ is the algebra of functions from the set of double cosets of� in GLC
2 .Q/

to C having finite support. Then H .�/ embeds into A.�/ as

j W H .�/ ,! A.�/; j.h/˛ D h.�˛�/; ˛ 2 GLC
2 .Q/:

The cuspidal Hecke operators form an ideal in A.�/, which is denoted by A0.�/.
Finally, we recall the definition of the Hopf algebra H1 that acts on the algebra

A.�/. This Hopf algebra H1 belongs to the family of algebras fHngn�1 defined
by Connes and Moscovici in [1], where it is interpreted as the “Hopf algebra of
codimension one foliations”. As an algebra, H1 is the universal enveloping algebra
of the Lie algebra L1 with generators X , Y , ın, n � 1, satisfying the relations

ŒY; X� D X; ŒY; ın� D nın; ŒX; ın� D ınC1; Œık; ıl � D 0 for all k; l 2 N;
(2.2)

along with the coproducts

�.X/ D X ˝ 1C 1˝X C ı1 ˝ Y;

�.Y / D Y ˝ 1C 1˝ Y;

�.ı1/ D ı1 ˝ 1C 1˝ ı1
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and the antipode

S.Y / D �Y; S.X/ D �X C ı1Y; S.ı1/ D �ı1:

For any f 2 Mk , the operator X is defined as

X.f / D 1
2�i

�
d
dz
f � .1=6/ d

dz
.log�/Y.f /

�
;

where Y is the grading operator Y.f / D k
2
f and �.z/ is the modular discriminant

�.z/ D .2�/12q
1Q

nD1

.1 � qn/24; q D e2�iz;

which is a modular form of weight 12 and level �.1/ D SL2.Z/. It may be checked
that X defines an operator X W Mk ! MkC2. We set

zX.f / D .2�i/ �X.f /:
Moreover, the operator X (and hence zX ) determines a derivation on M. Now, given
F 2 A.�/, H1 acts on A.�/ as follows: for ˛ 2 GLC

2 .Q/ and F 2 A.�/ we have

X.F /˛ D X.F˛/; Y.F /˛ D Y.F˛/; ı1.F /˛ D �˛ � F;

where �˛ D .1=12�i/ d
dz

�
log �j˛

�

�
. Note that �˛ measures the difference

�˛ � Y.f / D X.f / �X.f jk˛�1/jkC2˛; (2.3)

whence it follows directly that �˛ D 0 for all ˛ 2 SL2.Z/. For the sake of conve-
nience, set

Q�˛ D .2�i/ � �˛ for all ˛ 2 GLC
2 .Q/:

2.2. Archimedean cohomology and the fibre at infinity. The cohomology of the
“fibre at infinity” of an arithmetic variety has been studied by Consani in [4] by
means of an Archimedean bicomplex with monodromy and Frobenius operators N
and ˆ, respectively. The fibre at infinity is a complex manifold and we shall deal
with the case where it is a modular curve X.N/. The terms K��

N of this bicomplex

.K��
N ; d 0; d 00/ can be expressed as a direct sum of termsKi;j

N D L1
iD0K

i;j;k
N , where

the Ki;j;k
N are modules of real differential forms twisted with an appropriate power

of .2�i/, defined by (for any i , j , k 2 Z)

K
i;j;k
N D

8̂
<̂
ˆ̂:

L
aCbDj C1
aCbDj C1

ja�bj�2k�i

�
a;b
X.N /;R

�
1Cj �i

2

�
; k � maxf0; ig;

0 otherwise:

(2.4)
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Here�a;b
X.N /;R is the abelian group of real differential forms of type .a; b/C .b; a/ on

X.N/ and, for any p 2 Z, �a;b
X.N /;R.p/ refers to the p-th Tate twist of �a;b

X.N /;R, i.e.,

�
a;b
X.N /;R.p/ D .2�i/p�

a;b
X.N /;R. The differentials are as follows: given ! 2 Ki;j;k

N ,
we set

d 0 W Ki;j;k
N ! K

iC1;j C1;kC1
N ; ! 7! .@C N@/.!/;

d 00 W Ki;j;k
N ! K

iC1;j C1;k
N ; ! 7! p�1.N@ � @/.!/:

The complex .K��
N ; d 0; d 00/ is equipped with a “monodromy operator” N and “a

Frobenius operator ˆ”, defined (see [5], 3.2) by

N W Ki;j;k
N ! K

iC2;j;kC1
N ; ! 7! .2�i/�1!;

ˆ W Ki;j;k
N ! K

i;j;k
N ; ! 7! 1Cj �i

2
!:

We note that these operators satisfy the relation Œ�ˆ;N � D N . For more details on
the complex .K��

N ; d 0; d 00/, see [6], [5], [4].

In Section 3, we shall tensor the objectsKi;j;k
N with modular forms of appropriate

weights to define modules K
i;j;k
N (see (3.1)) and consider the direct limit

K i;j;k D lim�!N
K

i;j;k
N :

Then, by replacing the modular tower M in Definition 2.1 by the direct limit K� DL
i;j;k2Z K i;j;k , we define an object B�.�/ that replaces the modular Hecke algebra

A.�/ in our theory.
Our basic motivation is to compare the relation Œ�ˆ;N � D N between the

monodromy and Frobenius operators on the Archimedean complex to the relation
ŒY; X� D X (see (2.2)) between the generators of the Hopf algebra H1. As described
in Section 2.1, the generators Y andX act as operators on the modular Hecke algebra
A.�/. Therefore, we shall describe an action of H1 on B�.�/ such that Y 2 H1 acts
as (the negative of) the Frobenius ˆ on B�.�/ and X 2 H1 acts as the monodromy
N on B�.�/.

3. The Archimedean complex with Hopf algebra action

In this section we will maintain all the notation introduced in Section 2. Let X.N/,
N � 1 denote the N -th modular curve. For any nonnegative integers a, b and any
r 2 Z, we denote by �a;b

X.N /;R the module of real differentials of type .a; b/C .b; a/

onX.N/ and for any r 2 Z,�a;b
X.N /;R.r/ refers to the r-th Tate twist of�a;b

X.N /;R, i.e.,

�
a;b
X.N /;R.r/ D .2�i/r�

a;b
X.N /;R. We set (for any i; j; k 2 Z)

K
i;j;k
N D � L

l�i�j �1

Ml.�.N //
� ˝R

L
a�b

aCbDj C1
ja�bj�2k�i

�
a;b
X.N /;R

�
1Cj �i

2

�
: (3.1)
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Then, in the notation of Section 2.2, K
i;j;k
N D L

l�i�j �1 Ml.�.N // ˝R K
i;j;k
N .

We define the two differentials on K
i;j;k
N as follows: given f ˝ ! 2 K

i;j;k
N , with

f 2 L
l�i�j �1 Ml.�.N // and ! 2 Ki;j;k

N , we set

d 0 W K
i;j;k
N ! K

iC1;j C1;kC1
N ; .f ˝ !/ 7! f ˝ .@C N@/.!/;

d 00 W K
i;j;k
N ! K

iC1;j C1;k
N ; .f ˝ !/ 7! f ˝ p�1.N@ � @/.!/:

For any integersN;N 0 � 1, the projectionsp W X.NN 0/ ! X.N/ induce morphisms
(for each l � i � j � 1)

Ml.�.N //˝�
a;b
X.N /;R.

1Cj �i
2

/ ! Ml.�.NN
0//˝�

a;b
X.NN 0/;R.

1Cj �i
2

/

by tensoring pullback mapsp� on differential forms with the inclusions Ml.�.N // ,!
Ml.�.NN

0//. We define K i;j;k to be the colimit

K i;j;k D lim�!N
K

i;j;k
N

of this system and set K i;j D L
k K i;j;k , K� D L

iCj D� K i;j .

Remark 3.1. We have already noted that K
i;j;k
N D L

l�i�j �1 Ml.�.N //˝RK
i;j;k
N .

The term K
i;j;k
N is defined by tensoring the termK

i;j;k
N in the Archimedean complex

for the modular curve X.�.N // with modular forms of level �.N/. Further, from
(2.4), we know that the Tate twist appearing in the term K

i;j;k
N of the Archimedean

complex for the modular curveX.N/ is .1Cj �i
2

/. We view the Tate twist as indicating

the “weight” of the term K
i;j;k
N , which suggests that the term K

i;j;k
N be tensored

with modular forms of weight �.1 C j � i/ and above to form the term K
i;j;k
N DL

l�i�j �1 Ml.�.N //˝RK
i;j;k
N , thus forming an “enriched Archimedean complex”.

We shall now define the module B�.�/which replaces the modular Hecke algebra
A.�/ in our theory.

Definition 3.2. For a congruence subgroup� � SL2.Z/ and any integers i; j; k 2 Z,
define Bi;j;k.�/ to be the set of all functions of finite support

F W �n GLC
2 .Q/ ! K i;j;k

satisfying the following covariance condition: If F˛ D Pm
lD1 fl ˝!l 2 K i;j;k , then

F˛� D
mP

lD1

fl j� ˝ !l for all � 2 �;



408 A. Banerjee

where F˛ denotes the function F evaluated on the coset �˛ for each ˛ 2 GLC
2 .Q/.

Again, we can make Bi;j;k.�/ into a complex by defining differentials

d 0 W Bi;j;k.�/ ! BiC1;j C1;kC1.�/; d 0.F /˛ D d 0.F˛/;

d 00 W Bi;j;k.�/ ! BiC1;j C1;k.�/; d 00.F /˛ D d 00.F˛/:

Define Bi;j .�/ D L
k Bi;j;k.�/ for each pair of integers i , j , and let B�.�/ DL

iCj D� Bi;j .�/. This gives us a complex .B�.�/; d 0 C d 00/.

For the sake of simplicity, we shall frequently use the expression f˛ ˝ !˛ to
denote the sum F˛ D Pk

lD1 fi ˝ !i for any F 2 B�.�/ and any ˛ 2 GLC
2 .Q/.

Our next step is to define an algebra AT .�/ which is a variant of the modular
Hecke algebra A.�/ of Connes and Moscovici [2]. We will show that B�.�/ is a
module over AT .�/ and that H1 acts on both AT .�/ and B�.�/, and that the action
is well behaved (or “flat”) in a sense we will make precise in Definition 3.11.

Definition 3.3. Let � � SL2.Z/ be a congruence subgroup and let RŒT � denote the
polynomial ring in one variable over R. Denote by AT .�/ the set of all functions of
finite support

G W �nGC
2 .Q/ ! M ˝R RŒT �

satisfying the following covariance condition: IfG˛ D Pm
lD1 gl ˝"l 2 M ˝R RŒT �,

then

G˛� D
mP

lD1

gl j� ˝ "l

for any � 2 � . For simplicity, we will forgo the summation signs and write the sum
G˛ D Pm

lD1 gl ˝ "l simply as g˛ ˝ "˛ . Also we define the submodule A0
T .�/ of

all functions in AT .�/ whose values lie in the cuspidal part M0 ˝ RŒT �.

Remark 3.4. Although the algebra AT .�/ is isomorphic to A.�/ŒT �, the polynomial
ring in one variable over A.�/, we maintain the separate notation AT .�/. This is
done in order to avoid the following confusion: the action of the algebra H1 on A.�/

extends naturally to the polynomial ring A.�/ŒT �; for instance the action ofX 2 H1

extends to A.�/ŒT � since

X
� NP

kD1

GkT
k
� D

NP
kD1

X.Gk/T
k; Gk 2 A.�/; 1 � k � N: (3.2)

However, the action (3.2) is not the action of X 2 H1 that we intend to use (see
(3.4)).

We will show that B�.�/ is a module over AT .�/, that H1 acts on both AT .�/

and B�.�/, and that the action is well behaved (or “flat”) in the sense of (1.1).
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Consider the module M˝R RŒT � and the following maps: given g 2 M, " 2 RŒT �
and 	 2 GLC

2 .Q/, we define functions

 g˝" W M ˝ RŒT � ! M ˝ RŒT �; f 0 ˝ "0 7! g � f 0 ˝ ""0;
T� W M ˝ RŒT � ! M ˝ RŒT �; f 0 ˝ "0 7! f 0j	˝ "0;

for any f 0 ˝ "0 2 M ˝R RŒT �. Let G 2 AT .�/, with G� D g� ˝ "� for each
	 2 GLC

2 .Q/. If g� ˝ "� D G� denotes the finite sum
Pk

iD1 gi ˝ "i in M ˝R RŒT �

with gi 2 M, "i 2 RŒT �, we use  g�˝"�
to denote the sum

Pk
iD1  gi ˝"i

.

Proposition 3.5. Let � � SL2.Z/ be a congruence subgroup. Then:
(1) AT .�/ is an associative algebra: GivenG;G0 2 AT .�/, withG� D g� ˝ "�

and G0
� D g0

� ˝ "0
� for each 	 2 GLC

2 .Q/, the product structure is given by

.G �G0/˛ D P
ˇ2�n GLC

2
.Q/

.gˇ � g0
˛ˇ�1 jˇ/˝ "ˇ"

0
˛ˇ�1 : (3.3)

(2) The Hopf algebra H1 acts on AT .�/ as follows:

X.G/˛ D zX.g˛/˝ T � "˛;

Y.G/˛ D Y.g˛/˝ "˛;

ı1.G/˛ D Q�˛ � g˛ ˝ T � "˛:

(3.4)

Moreover, the action of H1 on AT .�/ is flat in the sense that, given G,G0 2 AT .�/

and h 2 H1, with �.h/ D P
h.1/ ˝ h.2/, we have

h.G �G0/ D P
h.1/.G/ � h.2/.G

0/:

Proof. (1) We choose any G;G0 2 AT .�/, with G� D g� ˝ "� and G0
� D g0

� ˝ "0
�

for each 	 2 GLC
2 .Q/. Then, from (3.3), we have

.G �G0/�˛ D P
ˇ2�n GLC

2
.Q/

.gˇ � g0
�˛ˇ�1 jˇ/˝ "ˇ"

0
�˛ˇ�1

D P
ˇ2�n GLC

2
.Q/

 gˇ˝"ˇ
B Tˇ .g

0
�˛ˇ�1 ˝ "0

�˛ˇ�1/

D P
ˇ2�n GLC

2
.Q/

 gˇ˝"ˇ
B Tˇ .g

0
˛ˇ�1 ˝ "0

˛ˇ�1/

D .G �G0/˛

for any � 2 � . It follows that

.g�ˇ � g0
˛ˇ�1��1 j�ˇ/˝ "�ˇ"

0
˛ˇ�1��1 D  g�ˇ˝"�ˇ

B T�ˇ .g
0
˛ˇ�1��1 ˝ "0

˛ˇ�1��1/

D  gˇ˝"ˇ
B T�ˇ B T��1.g0

˛ˇ�1 ˝ "0
˛ˇ�1/

D .gˇ � g0
˛ˇ�1 jˇ/˝ "ˇ"

0
˛ˇ�1
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for any ˇ 2 GLC
2 .Q/ and � 2 � . Hence the expression for .G �G0/˛ in (3.3) is well

defined and independent of the choice of coset representatives. Finally, we check the
covariance condition:

.G �G0/˛� D P
ˇ2�n GLC

2
.Q/

.gˇ � g0
˛�ˇ�1 jˇ/˝ "ˇ"

0
˛�ˇ�1

D P
ı2�n GLC

2
.Q/

.gı� � g0
˛ı�1 jı�/˝ "ı�"

0
˛ı�1 .ˇ D ı�/

D P
ı2�n GLC

2
.Q/

 gı� ˝"ı�
B Tı� .g

0
˛ı�1 ˝ "0

˛ı�1/

D P
ı2�n GLC

2
.Q/

.gı � g0
˛ı�1/j� ˝ "ı"

0
˛ı�1 :

(2) We check this on the generators. It is easy to check the Lie algebra relations
ŒY; X� D X , ŒY; ı1� D ı1 and Œık; ıl � D 0 8 k; l 2 N between the operators on
AT .�/. We check the coproduct relations. We know that�X D X ˝ 1C 1˝X C
ı1 ˝ Y . Choose G, G0 2 AT .�/. Then

X.G �G0/˛ D P
ˇ2�n GLC

2
.Q/

zX.gˇ � g0
˛ˇ�1 jˇ/˝ T � "ˇ"

0
˛ˇ�1

D P
ˇ2�n GLC

2
.Q/

zX.gˇ / � g0
˛ˇ�1 jˇ ˝ T � "ˇ"

0
˛ˇ�1

C P
ˇ2�n GLC

2
.Q/

gˇ � zX.g0
˛ˇ�1 jˇ/˝ T � "ˇ"

0
˛ˇ�1

D .X.G/ �G0/˛ C P
ˇ2�n GLC

2
.Q/

.gˇ � zX.g0
˛ˇ�1/jˇ/˝ T � "ˇ"

0
˛ˇ�1

� P
ˇ2�n GLC

2
.Q/

.gˇ . Q�ˇ�1 � Y.g0
˛ˇ�1//jˇ/˝ T � "ˇ"

0
˛ˇ�1

D .X.G/ �G0/˛ C .G �X.G0//˛
C P

ˇ2�n GLC
2

.Q/

. Q�ˇ � gˇ / � Y.g0
˛ˇ�1/jˇ ˝ T � "ˇ"

0
˛ˇ�1

.as Q�ˇ�1ˇ D 0 D Q�ˇ�1 jˇ C Q�ˇ /

D .X.G/ �G0/˛ C .G �X.G0//˛ C .ı1.G/ � Y.G0//˛:

Further, we know that�Y D Y ˝ 1C 1˝ Y and�ı1 D ı1 ˝ 1C 1˝ ı1. It can be
checked that both Y and ı1 are derivations on the algebra AT .�/, and so the action
of H1 on AT .�/ is flat.

Corollary 3.6. (1) A0
T .�/ is an ideal in AT .�/, which we shall refer to as the

cuspidal ideal.
(2) The cuspidal ideal A0

T .�/ is invariant under the action of H1.
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Proof. (1) follows directly from the definition of the product in (3.3).
(2) From [2], we know that zX preserves cuspidal modular forms. From the

expression (3.4) for the actions of the generators X , Y and ı1 on AT .�/, it is now
clear that A0

T .�/ is preserved by the action of H1.

For any ˛ 2 GLC
2 .Q/ and the element g˝ T l 2 M ˝ RŒT �, we define functions


g˝T l W K i;j;k ! K iC2l;j;kCl ; f ˝ ! 7! g � f ˝ T l � ! ´ f ˝ .2�i/�l!;

T˛ W K i;j;k ! K i;j;k; f ˝ ! 7! f j˛ ˝ !; (3.5)

for any f ˝! 2 K i;j;k . Here it is understood that the image of 
g˝T l in (3.5) is zero
if K iC2l;j;kCl D 0. Let G 2 AT .�/, with G� D g� ˝ "� for each 	 2 GLC

2 .Q/. If

g� ˝ "� D G� denotes the finite sum
Pk

iD1 gi ˝ T li
in M ˝R RŒT � with gi 2 M,

li 2 Z, we use 
g�˝"�
to denote the sum

Pk
iD1 
gi ˝T li .

Proposition 3.7. Let � be a congruence subgroup of SL2.Z/ and let G 2 AT .�/,
F 2 B�.�/. Let G˛ D g˛ ˝ "˛ for any ˛ 2 GLC

2 .Q/. Let F 2 Bi;j;k.�/ for some
i; j; k 2 Z and let F˛ D f˛ ˝ !˛ for each ˛ 2 GLC

2 .Q/. Then we have a module
action of AT .�/ on B�.�/ defined as

.G � F /˛ D P
ˇ2�n GLC

2
.Q/


gˇ˝"ˇ
B Tˇ .f�˛ˇ�1 ˝ !�˛ˇ�1/

D P
ˇ2�n GLC

2
.Q/

.gˇ � f˛ˇ�1 jˇ/˝ "ˇ � !˛ˇ�1 ;
(3.6)

where the right-hand side of (3.6) belongs to the direct sum
L1

lD0 BiC2l;j;kCl.�/. (It
is understood that if any of the summands BiC2l;j;kCl.�/ vanishes, the corresponding
term on the right-hand side is taken to be zero.)

Proof. To prove that the module action is well defined, we check that, for � 2 � ,

.G � F /�˛ D P
ˇ2�n GLC

2
.Q/

.gˇ � f�˛ˇ�1 jˇ/˝ "ˇ � !�˛ˇ�1

D P
ˇ2�n GLC

2
.Q/


gˇ˝"ˇ
B Tˇ .f�˛ˇ�1 ˝ !�˛ˇ�1/

D P
ˇ2�n GLC

2
.Q/


gˇ˝"ˇ
B Tˇ .f˛ˇ�1 ˝ !˛ˇ�1/

D P
ˇ2�n GLC

2
.Q/

gˇ � f˛ˇ�1 jˇ ˝ "ˇ � !˛ˇ�1 D .G � F /˛:
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This action is also independent of the choice of coset representatives ˇ, i.e.,

.g�ˇ � f˛ˇ�1��1 j�ˇ/˝ "�ˇ � !˛ˇ�1��1 D .gˇ � f˛ˇ�1��1 j�ˇ/˝ "ˇ � !˛ˇ�1��1

D 
gˇ˝"ˇ
B T�ˇ .f˛ˇ�1��1 ˝ !˛ˇ�1��1/

D 
gˇ˝"ˇ
B T�ˇ B T��1.f˛ˇ�1 ˝ !˛ˇ�1/

D 
gˇ˝"ˇ
B Tˇ .f˛ˇ�1 ˝ !˛ˇ�1/

D gˇ � f˛ˇ�1 jˇ ˝ "ˇ � !˛ˇ�1 :

Finally, we check the covariance condition, for � 2 � ,

.G � F /˛� D P
ˇ2�n GLC

2
.Q/

.gˇ � f˛�ˇ�1 jˇ ˝ "ˇ � !˛�ˇ�1/

D P
ı2�n GLC

2
.Q/

.gı� � f˛ı�1 jı� ˝ "ı� � !˛ı�1/ .ˇ D ı�/

D P
ı2�n GLC

2
.Q/


gı� ˝"ı�
.f˛ı�1 jı� ˝ !˛ı�1/

D P
ı2�n GLC

2
.Q/

.gı � f˛ı�1 jı/j� ˝ "ı � !˛ı�1 :

It follows from (3.5) and (3.6) that the product lies entirely in the direct sumL1
lD0 BiC2l;j;kCl.�/.

Proposition 3.8. The Hopf algebra H1 acts on the module B�.�/ as follows: Let
F 2 Bi;j;k.�/ be such that F˛ D f˛ ˝ !˛ for any ˛ 2 GLC

2 .Q/. Then

X W Bi;j;k.�/ ! BiC2;j;kC1.�/; X.F /˛ D zX.f˛/˝ .2�i/�1!˛;

Y W Bi;j;k.�/ ! Bi;j;k.�/; Y.F /˛ D Y.f˛/˝ !˛;

ı1 W Bi;j;k.�/ ! BiC2;j;kC1.�/; ı1.F /˛ D Q�˛ � f˛ ˝ .2�i/�1!˛:

(3.7)

Proof. From (3.7) it follows that

YX.F /˛ D Y. zX.f˛//˝ .2�i/�1!˛;

XY.F /˛ D zX.Y.f˛//˝ .2�i/�1!˛:
(3.8)

Since ŒY; zX� D zX on the modular tower M, it follows from (3.8) that ŒY; X� D X

as operators on B�.�/. Similarly, we can check that ŒY; ı1� D ı1. The action of the
operators ın for n > 1 is determined by the relation ŒX; ın� D ınC1. Note that the
relation

ın.F˛/ D P zXn�1. Q�˛/ � f˛ ˝ .2�i/�n!˛ 2 BiC2n;j;kCn.�/ (3.9)
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holds for n D 1. If (3.9) holds for n, then

ınC1.F /˛ D Xın.F /˛ � ınX.F /˛

D X. zXn�1. Q�˛/ � f˛ ˝ .2�i/�n!˛/

� . zXn�1. Q�˛/ � zX.f˛/˝ .2�i/�n�1!˛/

D zXn. Q�˛/ � f˛ ˝ .2�i/�n�1!˛;

which proves the result for all n by induction. From the expression (3.9), it is now
obvious that Œık; ıl � D 0 for all k; l 2 N. Hence B�.�/ carries an action of the Hopf
algebra H1.

Remark 3.9. Note that the operatorX of Proposition 3.8 is a “composite” of the mon-
odromy operator N on the Archimedean complex and the derivation X on modular
forms. Further, we have explained in Remark 3.1 that the weight of the modular forms
appearing in the expression K

i;j;k
N D L

l�i�j �1 Ml.�.N //˝R K
i;j;k
N is related to

the Tate twist .1Cj �i
2

/ appearing in Ki;j;k
N . On the term K

i;j;k
N of the Archimedean

complex , the Frobenius operator ˆ is defined to be ˆ.x/ D .1Cj �i
2

/x. Moreover,
the grading operator on modular forms acts on the module Mi�j �1.�.N // (which ap-

pears in the first term of the direct sum K
i;j;k
N D L

l�i�j �1 Ml.�.N //˝R K
i;j;k
N )

by multiplication with �.1Cj �i
2

/. Hence, the definition of the operator Y reflects
both the grading operator on modular forms and �ˆ on the Archimedean complex.
One can check that the operators ˆ and N on the Archimedean complex satisfy the
relation Œ�ˆ;N � D N , which leads to the comparison with the commutator relation
ŒY; X� D X for operators X and Y on modular forms as explained above.

Corollary 3.10. The action of the operators X; Y; ın 2 H1, n � 1, on B�.�/
commutes with the differentials d 0 and d 00.

Proof. For any i; j; k 2 Z, take F 2 Bi;j;k.�/ with F˛ D f˛ ˝ !˛ for any ˛ 2
GLC

2 .Q/. Then

.d 0X.F //˛ D d 0.X.F /˛/ D zX.f˛/˝ .2�i/�1d 0.!˛/ D X.d 0.F //˛;

with both sides lying in BiC3;j C1;kC2.�/ and similarly for the differential d 00. The
same commutation relations hold for Y and ın, n � 1.

Definition 3.11. Let M be a module over an algebra A. Suppose that H is a Hopf
algebra acting on both A and M . Then the action of H on A is said to be flat if

h.a1a2/ D P
h.1/.a1/h.2/.a2/; �.h/ D P

h.1/ ˝ h.2/

for all h 2 H , a1; a2 2 A. The action of H on the system .A;M/ is said to be flat if

h.am/ D P
h.1/.a/h.2/.m/; �.h/ D P

h.1/ ˝ h.2/

for all h 2 H , a 2 A, m 2 M .
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In Proposition 3.8 we have already shown that the Hopf algebra H1 acts on B�.�/.
We know from Proposition 3.5 that the Hopf algebra H1 has a flat action on the Hecke
algebra AT .�/ and we proved in Proposition 3.7 that B�.�/ is a module over AT .�/.
We will now show that the action of H1 on the system .AT .�/;B�.�// is flat, in the
sense of Definition 3.11.

Proposition 3.12. The action of H1 on the system .AT .�/;B�.�// is flat.

Proof. For any i; j; k 2 Z, choose F 2 Bi;j;k.�/ and let G 2 AT .�/. Let F˛ D
f˛ ˝ !˛ and G˛ D g˛ ˝ "˛ for each ˛ 2 GLC

2 .Q/. By definition,

X.G�F /˛ D P
ˇ2�n GLC

2
.Q/

zX.gˇ �f˛ˇ�1 jˇ/˝.2�i/�1"ˇ �!˛ˇ�1 2
1L

lD1

BiC2l;j;kCl.�/:

(3.10)
Since zX is a derivation on M, the right-hand side of (3.10) is equal to

P
ˇ2�n GLC

2
.Q/

zX.gˇ / � f˛ˇ�1 jˇ ˝ .2�i/�1"ˇ � !˛ˇ�1

C P
ˇ2�n GLC

2
.Q/

.gˇ � zX.f˛ˇ�1 jˇ//˝ .2�i/�1"ˇ � !˛ˇ�1

D .X.G/ � F /˛ C P
ˇ2�n GLC

2
.Q/

.gˇ � zX.f˛ˇ�1/jˇ/˝ .2�i/�1"ˇ � !˛ˇ�1

� P
ˇ2�n GLC

2
.Q/

.gˇ � . Q�ˇ�1 � Y.f˛ˇ�1//jˇ/˝ .2�i/�1"ˇ � !˛ˇ�1

D .X.G/ � F /˛ C .G �X.F //˛
C P

ˇ2�n GLC
2

.Q/

.. Q�ˇ � gˇ / � Y.f˛ˇ�1/jˇ/˝ .2�i/�1"ˇ � !˛ˇ�1

D .X.G/ � F /˛ C .G �X.F //˛ C .ı1.G/ � Y.F //˛:
The result follows easily for the coproducts�.Y / D Y ˝1C1˝Y and�.ı1/ D

ı1 ˝ 1C 1˝ ı1.

4. Rankin–Cohen brackets and the restricted modular Hecke algebra

In this section we show that, by “restricting” the expression (3.3) for the product on
AT .�/ as defined in Proposition 3.5 to coset representatives in SL2.Z/ instead of in
GLC

2 .Q/, we can define a “restricted algebra” Ar
T .�/. We show that Ar

T .�/ carries
a flat action of the Hopf algebra H1 such that the action of each ın 2 H1, n � 1, is
zero. We can make B�.�/ into a module over Ar

T .�/ and with this module structure,
we will refer to B�.�/ as B�

r .�/. Further, we show that H1 has a flat action on the
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system .Ar
T .�/;B

�
r .�//. We conclude by constructing Rankin–Cohen brackets of

all orders on B�
r .�/.

Proposition 4.1. (1) LetF ,F 0 2 AT .�/. Suppose thatF˛ D f˛ ˝"˛ ,F 0̨ D f 0̨ ˝"0̨
for each ˛ 2 GLC

2 .Q/. Then AT .�/ becomes an algebra with the product

.F � F 0/˛ D P
ˇ2�n SL2.Z/

.fˇ � f 0
˛ˇ�1 jˇ/˝ "ˇ"

0
˛ˇ�1 : (4.1)

Whenever we use the product of (4.1), we will refer to the algebra AT .�/ as Ar
T .�/.

(2) The Hopf algebra H1 has a flat action on Ar
T .�/ defined by ( for all ˛ 2

GLC
2 .Q/)

X.F /˛ D zX.f˛/˝ T � "˛; Y.F /˛ D Y.f˛/˝ "˛; ı1.F /˛ D 0:

Proof. (1) follows in the exact same manner as the proof of Proposition 3.5 (1).
To prove (2), we note that for any ˇ 2 SL2.Z/, �ˇ�1 D 0 and hence it follows

from (2.3) that X.f jˇ/ D X.f /jˇ for any f 2 M. We know that �.X/ D X ˝
1C 1˝X C ı1 ˝ Y . We check that

X.F � F 0/˛ D P
ˇ2�n SL2.Z/

zX.fˇ � f 0
˛ˇ�1 jˇ/˝ T � "ˇ"

0
˛ˇ�1

D P
ˇ2�n SL2.Z/

zX.fˇ / � f 0
˛ˇ�1 ˝ T � "ˇ"

0
˛ˇ�1

C P
ˇ2�n SL2.Z/

fˇ � zX.f 0
˛ˇ�1 jˇ/˝ T � "ˇ"

0
˛ˇ�1

D P
ˇ2�n SL2.Z/

zX.fˇ / � f 0
˛ˇ�1 ˝ T � "ˇ"

0
˛ˇ�1

C P
ˇ2�n SL2.Z/

fˇ � zX.f 0
˛ˇ�1/jˇ ˝ T � "ˇ"

0
˛ˇ�1

D .X.F / � F 0/˛ C .F �X.F 0//˛
D .X.F / � F 0/˛ C .F �X.F 0//˛ C .ı1.F / � Y.F 0//˛;

where the last equality follows from the fact that the action of ı1 on AT .�/ has been
defined to be zero. We can also check directly that Y is a derivation on Ar

T .�/. Since
�.Y / D Y ˝ 1C 1˝ Y and the action of ı1 (and hence that of any ın D ŒX; ın�1�,
n > 1) on Ar

T .�/ is zero, it follows that H1 has a flat action on Ar
T .�/.

Proposition 4.2. (1) Let G 2 Ar
T .�/ and F 2 B�.�/. Let G˛ D g˛ ˝ "˛ and

F˛ D f˛ ˝ !˛ for each ˛ 2 GLC
2 .Q/. We set

.G � F /˛ D P
ˇ2�n SL2.Z/


gˇ˝"ˇ
B Tˇ .f�˛ˇ�1 ˝ !�˛ˇ�1/

D P
ˇ2�n SL2.Z/

.gˇ � f˛ˇ�1 jˇ/˝ "ˇ � !˛ˇ�1 ;
(4.2)
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where the functions 
gˇ˝"ˇ
and Tˇ are as in (3.5). This makes B�.�/ a module over

Ar
T .�/. With the module action of (4.2), we will refer to B�.�/ as B�

r .�/.

(2) Given i; j; k 2 Z, for F 2 Bi;j;k
r .�/ � B�

r .�/, define an action of H1 on
B�

r .�/ by ( for all ˛ 2 GLC
2 .Q/)

X.F /˛ D zX.f˛/˝ .2�i/�1!˛; Y.F /˛ D Y.f˛/˝ !˛; ı1.F /˛ D 0;

with the right-hand side lying in the direct sum
L1

lD0 BiC2l;j;kCl
r .�/. This defines a

flat action of H1 on the system .Ar
T .�/;B

�
r .�//.

Proof. The proof of (1) is analogous to that of Proposition 4.1 (1).
(2) also follows just as in the proof of Proposition 4.1 (2), using again the fact that

zX.f jˇ/ D zX.f /jˇ for any ˇ 2 SL2.Z/ and any f 2 M.

It follows from Proposition 4.1 and Proposition 4.2 that the operators ın 2 H1,
n � 1, vanish in the action of H1 on the algebra Ar

T .�/ as well as on the pair
.Ar

T .�/;B
�
r .�//. Consider, therefore, the smaller Hopf algebra h1, which is the

universal enveloping algebra of the Lie algebra l1 with two generators X and Y
satisfying the relation

ŒY; X� D X:

The Lie algebra l1 has been treated extensively in literature (see, for instance, [7]).
It is well known that, up to isomorphism, l1 is the only non abelian Lie algebra of
dimension 2 over C. A basis fe1; e2g for the Lie algebra l1 can be given in terms of
the matrices

e1 D
�
0 1

0 0

�
; e2 D

�
1 0

0 0

�
;

which then satisfy Œe2; e1� D e2e1 � e1e2 D e1. The universal enveloping algebra
h1 D U.l1/ is obtained from H1 by setting the operators ın 2 H1, n � 1, to zero.
Hence, Proposition 4.1 shows that there is a flat action of h1 on the algebra Ar

T .�/,
and Proposition 4.2 shows that there is a flat action of h1 on the pair .Ar

T .�/;B
�
r .�//.

From (2.1) in Section 2.1, we know that for any congruence subgroup � and
elements F 1; F 1 2 A.�/, the product on the modular Hecke algebra A.�/ is given
by

.F 1 � F 2/˛ D P
ˇ2�n GLC

2
.Q/

F 1
ˇ

� F 2
˛ˇ�1 jˇ for all F 1; F 2 2 A.�/: (4.3)

The sum in (4.3) is taken over all right cosets of � in GLC
2 .Q/. By restricting only

to those right cosets of � that lie in SL2.Z/, we can define a product on A.�/ as

.F 1 � F 2/˛ D P
ˇ2�n SL2.Z/

F 1
ˇ

� F 2
˛ˇ�1 jˇ for all F 1; F 2 2 A.�/: (4.4)

Whenever we use the product of (4.4), we shall refer to the algebra A.�/ as Ar.�/.
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Our final aim is to define “Rankin–Cohen brackets” RCn of any order n � 1 on
B�

r .�/:
RCn W B�

r .�/˝ B�
r .�/ ! Ar.�/.1/;

where Ar.�/.1/ D Ar.�/.2�i/. The construction of the Rankin–Cohen bracket will
combine the Rankin–Cohen brackets of [3], 1.5, with the pairing on the Archimedean
complex used by Consani [4]. We start with the definition of the first Rankin–Cohen
bracket. If f and g are modular forms of weight k and l respectively, the first
Rankin–Cohen bracket can be expressed as

RC1.f; g/ D X.f /Y.g/ � Y.f /X.g/:
In [2], Connes and Moscovici have shown that the extension of the first Rankin–
Cohen bracket to the modular Hecke algebra A.�/ is defined by the generator of
the transverse fundamental class ŒF � 2 HC 2.H1/, which is a class in Hopf cyclic
cohomology. Here, the class F is given by (see [3], 0.3)

F D X ˝ Y � Y ˝X � ı1Y ˝ Y: (4.5)

However, on the algebra Ar
T .�/, the action of ı1 is zero, and hence the expression

(4.5) for the first Rankin–Cohen bracket reduces to X ˝ Y � Y ˝X . It follows that,
forF1, F2 in Ar

T .�/, the natural extension of the first Rankin–Cohen bracket is given
by

RC1.F1; F2/ D X.F1/ � Y.F2/ � Y.F1/ �X.F2/: (4.6)

In [4], 4.6, Consani has defined a pairing on the terms of theArchimedean complex
taking values in R.1/. We will now generalize this pairing to define a “Rankin–Cohen
bracket” on B�

r .�/ taking values in the twisted module Ar.�/.1/.
For any m 2 Z, let

�.m/ D .�1/m.mC1/
2 ;

and, for a differential form ! of type .a; b/, we set

C.!/ D .
p�1/a�b:

Combining [4], 4.6, with (4.5), we have a pairing

RC1;0 W B�i�2;�j;k�1
r .�/˝ Bi;j;kCi

r .�/ ! Ar.�/.1/;

which is defined as follows. Let F 2 B�i�2;�j;k�1
r .�/ and F 0 2 Bi;j;kCi

r .�/ with
F� D f� ˝!� and F 0

� D f 0
� ˝!0

� for any 	 2 GC
2 .Q/. Then, for any ˛ 2 GLC

2 .Q/,
the pairing is defined by (compare (4.6)):

RC1;0.F; F
0/˛

D ��.1 � j /.�1/k�1.2�i/�2
X

ˇ2�n SL2.Z/

. zX.fˇ /2Y.f
0

˛ˇ�1/jˇ/ �
Z
!ˇ ^ C!0

˛ˇ�1

C �.1 � j /.�1/k�1.2�i/�2
X

ˇ2�n SL2.Z/

.2Y.fˇ / zX.f˛ˇ�1/jˇ/ �
Z
!ˇ ^ C!0

˛ˇ�1 :
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The integral in the expression above is well defined on the direct limit of the modular
curves X.N/, N � 1 since the integral of a top dimensional differential form is left
unchanged by pullback maps. We can also define a pairing

RC1;1 W B�i;�j;k
r .�/˝ Bi�2;j;kCi�1

r .�/ ! Ar.�/.1/

as follows: given F 2 B�i;�j;k
r .�/ and F 0 2 Bi�2;j;kCi�1

r .�/ with F� D f� ˝ !�

and F 0
� D f 0

� ˝ !0
� for any 	 2 GC

2 .Q/, we have, for each ˛ 2 GLC
2 .Q/,

RC1;1.F; F
0/˛

D ��.1 � j /.�1/k.2�i/�2
X

ˇ2�n SL2.Z/

. zX.fˇ /2Y.f
0

˛ˇ�1/jˇ/ �
Z
!ˇ ^ C!0

˛ˇ�1

C �.1 � j /.�1/k.2�i/�2
X

ˇ2�n SL2.Z/

.2Y.fˇ / zX.f˛ˇ�1/jˇ/ �
Z
!ˇ ^ C!0

˛ˇ�1 :

Extending the pairings RC1;0 and RC1;1 by zero, we have a first Rankin–Cohen
bracket

RC1 W .B�i�2;�j;k�1
r .�/˚ B�i;�j;k

r .�//˝ .Bi�2;j;kCi�1
r .�/˚ Bi;j;kCi

r .�//

! Ar.�/.1/:

In general, for the n-th Rankin–Cohen bracket, we will have nC 1 distinct pairings
(p D 0; 1; 2; : : : ; n)

RCn;p W B�i�2.n�p/;�j;k�.n�p/
r .�/˝ Bi�2p;j;kCi�p

r .�/ ! Ar.�/.1/

and we will extend by zero to define the brackets:

RCn W
nL

pD0

B�i�2p;�j;k�p
r .�/˝

nL
pD0

Bi�2p;j;kCi�p
r .�/ ! Ar.�/.1/: (4.7)

The n-th Rankin–Cohen bracket RCn is defined as follows: choose any
p 2 f0; 1; 2; : : : ; ng, and letF 2 B�i�2.n�p/;�j;k�.n�p/

r .�/,F 0 2 Bi�2p;j;kCi�p
r .�/

such that F� D f� ˝ !�, F 0
� D f 0

� ˝ !0
� for any 	 2 GLC

2 .Q/. Then, for any
˛ 2 GLC

2 .Q/, we define the Rankin–Cohen brackets (compare [3], 1.5)

RCn;p.F; F
0/˛

D
X

ˇ2�n SL2.Z/

nX
lD0

�.1 � j /.�1/k�nCp.2�i/�n�1

��
.� zX/l
lŠ

.2Y C l/n�l.fˇ /

�
�
� zXn�l

.n � l/Š .2Y C n � l/l.f 0
˛ˇ�1/

�ˇ̌
ˇ

�

�
� Z

!ˇ ^ C!0
˛ˇ�1

�
;

(4.8)
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where .2Y C k/l D .2Y C k/.2Y C kC 1/ : : : .2Y C kC l � 1/ for any integers k,
l . Extending by zeroes, we can define the Rankin–Cohen brackets RCn for all n.

The Rankin–Cohen brackets defined in (4.7) can be related directly to the classical
Rankin–Cohen brackets on modular forms. Let f .z/ and g.z/ be two given modular
forms of level� 0 � SL2.Z/ and weightsk and l respectively. Using the normalization
in Zagier [8], let us denote by D the differential operator D ´ .2�i/�1 d

dz
. Then

the n-th Rankin–Cohen bracket of f and g can be expressed as

Œf; g�n D P
rCsDn

.�1/r�
nCk�1

r

��
nCl�1

s

�
Dr.f /Ds.g/:

Then Œf; g�n is a modular form of weight k C l C 2n. We can express the Rankin–
Cohen brackets defined in (4.7) more succinctly as follows.

Proposition 4.3. Let i; j; k 2 Z. For any given n, choose some p 2 f0; 1; 2; : : : ; ng
and let F 2 B�i�2.n�p/;�j;k�.n�p/

r .�/, F 0 2 Bi�2p;j;kCi�p
r .�/ such that F� D

f� ˝ !�, F 0
� D f 0

� ˝ !0
� for any 	 2 GLC

2 .Q/. Then, for any ˛ 2 GLC
2 .Q/, the

formula (4.8) defining the n-th Rankin–Cohen brackets may be expressed as

RCn;p.F; F
0/˛

D
X

ˇ2�n SL2.Z/

�.1 � j /.�1/k�nCp.2�i/�1Œfˇ ; f
0

˛ˇ�1 jˇ�n �
� Z

!ˇ ^ C!0
˛ˇ�1

�
:

Proof. From (4.8), we know that

RCn;p.F; F
0/˛

D
X

ˇ2�n SL2.Z/

nX
lD0

�.1 � j /.�1/k�nCp.2�i/�n�1

��
.� zX/l
lŠ

.2Y C l/n�l.fˇ /

�
�
� zXn�l

.n � l/Š .2Y C n � l/l.f 0
˛ˇ�1/

�ˇ̌
ˇ

�

�
� Z

!ˇ ^ C!0
˛ˇ�1

�
:

(4.9)

Since each coset representative ˇ in (4.9) lies in SL2.Z/, we have zX.gjˇ/ D zX.g/jˇ
for any element g in the modular tower M. Further, we know that .2�i/�1 zX D X
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and Y.gjˇ/ D Y.g/jˇ for any g 2 M. Therefore, we can rewrite (4.9) as

RCn;p.F; F
0/˛

D
X

ˇ2�n SL2.Z/

�.1 � j /.�1/k�nCp.2�i/�1

� nX
lD0

��
.�X/l
lŠ

.2Y C l/n�l.fˇ /

�
�
�
Xn�l

.n � l/Š .2Y C n � l/l.f 0
˛ˇ�1 jˇ/

���

�
� Z

!ˇ ^ C!0
˛ˇ�1

�
: (4.10)

On the other hand, we know from [3] that for any g, h 2 M, the Rankin–Cohen
brackets of order n may be recovered from the action of the operators X and Y as

Œg; hjˇ�n D
nX

lD0

��
.�X/l
lŠ

.2Y C l/n�l.g/

�
�
�
Xn�l

.n � l/Š .2Y C n � l/l.hjˇ/
��
:

Hence the expression in (4.10) may be rewritten as

RCn;p.F; F
0/˛

D
X

ˇ2�n SL2.Z/

�.1 � j /.�1/k�nCp.2�i/�1Œfˇ ; f
0

˛ˇ�1 jˇ�n �
� Z

!ˇ ^ C!0
˛ˇ�1

�
:
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