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Abstract. We provide a family of group-measure space II1 factors for which all finite index
subfactors can be explicitly listed. In particular, the set of all indices of irreducible subfactors
can be computed. Concrete examples show that this index set can be any set of natural numbers
that is closed under taking divisors and least common multiples.
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1. Introduction and statement of main results

Recall that the Jones index [Jo83] of an inclusion of II1 factorsN � M is defined as
the Murray–von Neumann dimension ŒM W N� ´ dim.L2.M/N /. The astonishing
main result of [Jo83] says that the index ŒM W N� can only take values in � [ fC1g
where � ´ f4 cos.�=n/2 j n D 3; 4; 5; : : : g [ Œ4;C1/. Conversely, Jones showed
that all these values do arise as the index of a subfactor of the hyperfinite II1 factor
R. For general II1 factors, Jones defines

�.M/ ´ fŒM W N� j N � M a finite index subfactorg:
For concrete II1 factors M , determining �.M/ is extremely hard. Popa’s defor-
mation/rigidity theory (see [Po06b] for a survey) has made it possible to compute
invariants for several families of II1 factors. This has been successfully applied to the
fundamental group (see e.g. [Po01], [Po03], [PV08a]) and the outer automorphism
group (see e.g. [IPP05], [PV06], [Va07], [FV07]). In this paper, we apply Popa’s
theory to provide computations of �.M/.

Although it is known that �.R/ D �, it is a major open problem to compute the
irreducible counterpart C.R/, defined for arbitrary II1 factors M as

C.M/ ´ fŒM W N� j N � M an irreducible finite index subfactorg:
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Recall that a subfactor N � M is said to be irreducible if N 0 \M D C1.
In [Va06], [Va07], examples of II1 factors M without non-trivial finite index

subfactors were given. For these examples, C.M/ D f1g and �.M/ D fn2 j n 2 Ng.
In this paper, we produce concrete II1 factors M for which C.M/ and �.M/

can be computed. In particular, given any set P0 of prime numbers, we provide
examples where �.M/ consists of the positive integers having all prime divisors in
P0. We prove that C.M/ ranges over all sets of natural numbers with the property
of being closed under taking divisors and least common multiples. Our examplesM
are group-measure space II1 factors L1.X;�/ Ì � associated with a free, ergodic,
probability measure-preserving (p.m.p.) action � Õ .X;�/ satisfying a number of
conditions. To explain these conditions, we need the following concepts.

Cocycle superrigidity. Given a p.m.p. action � Õ .X;�/ and a Polish group
G , a 1-cocycle for � Õ .X;�/ with values in G is a Borel map ! W � � X ! G

satisfying !.gh; x/ D !.g; h � x/!.h; x/ almost everywhere. A 1-cocycle is said to
be cohomologous to a group morphism, if there exists a group morphism ı W � ! G

and a measurable map ' W X ! G such that !.g; x/ D '.g � x/ı.g/'.x/�1 almost
everywhere. A p.m.p. action � Õ .X;�/ is said to be G -cocycle superrigid if every
1-cocycle with values in G is cohomologous to a group morphism.

Bimodules. A P -Q-bimodule (or correspondence) between von Neumann alge-
bras P andQ is a Hilbert space H equipped with a normal representation of P and a
normal anti-representation ofQ having commuting images. If P andQ are tracial, a
bimodule PHQ is said to be of finite index if the Murray–von Neumann dimensions
dim.HQ/ and dim.PH / are both finite.

Weak mixing. A p.m.p. action � Õ .X;�/ is called weakly mixing if C1 is
the only non-zero finite dimensional �-invariant subspace of L2.X/. Equivalently,
� Õ .X;�/ is weakly mixing if and only if there exists a sequence gn in � such that
�.gn � U \ V/ ! �.U/�.V/ for all measurable subsets U;V � X .

Condition 1.1. We say that the action � Õ .X;�/ satisfies Condition 1.1 if � Õ
.X;�/ is free, weakly mixing and p.m.p. and if, denoting A D L1.X/ and M D
A Ì � , the following conditions are satisfied.

� Every non-zero finite index M -M -bimodule admits a non-zero finite index A-
A-subbimodule.

� If G is a countable or a compact second countable group and if �1 < � is a
finite index subgroup, then every 1-cocycle for �1 Õ .X;�/ with values in G

is cohomologous to a group morphism �1 ! G .

When � Õ .X;�/ satisfies Condition 1.1 and M D L1.X/ Ì � , we explicitly
determine, up to unitary conjugacy, all finite index subfactors ofM . In particular, we
compute the invariants �.M/ and C.M/. When N � M is a finite index subfactor,
NL2.M/M is a finite indexN -M -bimodule. In general, we call II1 factors P andQ
commensurable if there exists a non-zero finite indexP -Q-bimodule. We determine,
up to isomorphism, all II1 factors that are commensurable with M D L1.X/ Ì � .
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Due to Sorin Popa’s deformation/rigidity theory, it is possible to give examples of
group actions satisfying the strong conditions in 1.1. Popa proved in [Po05], [Po06a]
cocycle superrigidity theorems with arbitrary countable or arbitrary compact second
countable target groups, providing many group actions that satisfy the second part of
Condition 1.1. On the other hand, the first part of Condition 1.1 can be considered as
a strengthening of the assumption that every automorphism ofM preserves globally
(and up to unitary conjugacy) the Cartan subalgebra A. Examples of group-measure
space II1 factors satisfying such conditions were obtained in [Po01], [Po04], [IPP05],
[PV06], [Va07], [OP07], [PV09].

More concretely, we get the following examples of group actions satisfying both
conditions in 1.1. All of them are (generalized) Bernoulli actions: given the action
� Õ I of� on the countable set I and given a probability space .X0; �0/, we consider
� Õ .X0; �0/

I given by .g �x/i D xg�1�i . In all of the following examples, cocycle
superrigidity is provided by Popa’s [Po05], Theorem 0.1 and Proposition 3.6.

� By [PV09], Theorem 7.1, the generalized Bernoulli actions � Õ .X0; �0/
I

associated with the following � Õ I satisfy Condition 1.1: � D SL.n;Z/ �†
.† � ƒ/, where n � 3, ƒ is an arbitrary non-trivial group and † Š Z is
generated by a hyperbolic element A 2 SL.n;Z/ such that † � i is infinite for
all i 2 I .
More generally, let � D �1 �† �2 be an amalgamated free product, where †
is an infinite amenable group. Let � Õ I . Among other examples, [PV09],
Theorem 7.1, implies that, under the following assumptions, � Õ .X0; �0/

I

satisfies Condition 1.1.

– �1 has a normal, non-amenable subgroupH with the relative property (T)
such that H � i is infinite for all i 2 I .

– † is a proper normal subgroup of �2 and † � i is infinite for all i 2 I .

– � admits a subgroupG of infinite index such that g†g�1 \† is finite for
all g 2 � �G.

� By [Va07], Theorem 2.2, the generalized Bernoulli actions � Õ .X0; �0/
I

associated with the following � Õ I satisfy Condition 1.1: PSL.n;Z/ Õ
P.Qn/ for n � 3 and SL.n;Z/Ë Zn Õ Zn for n � 2. For more examples, see
[Va07], Examples 2.5.

In order to state the main result of this paper, we need the following concepts.
Stable isomorphism of II1 factors. Recall that M t denotes the amplification

of a II1 factor M by t > 0: up to isomorphism, M t D p.Mn.C/ ˝ M/p for
some orthogonal projection p 2 Mn.C/ ˝ M satisfying .Tr ˝�/.p/ D t . We
say that the II1 factors M and N are stably isomorphic if there exists t > 0 and
an isomorphism � W N ! M t . Associated with � , is the natural M -N -bimodule
MH�

N given by M .M1;n.C/˝ L2.M//p�.N/. We can equivalently define a stable
isomorphism between M and N as an M -N -bimodule MKN with the property that
the right N -action on K equals the commutant of the left M -action on K . Every
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stable isomorphism MKN is unitarily equivalent with MH�
N for an isomorphism

� W N ! M t that is uniquely determined up to unitary conjugacy.
Commensurate subgroups and commensurators. Recall that subgroups �;G < G

are called commensurate if � \ G has finite index in both � and G. If � < G , the
commensurator of� inside G is defined as the group of all g 2 G such that g�g�1\�
has finite index in both � and g�g�1.

Projective representations. Recall that a map � W G ! U.K/ from a countable
groupG to the unitary group of a Hilbert space K is called a projective representation
if �.g/�.h/ D �.g; h/�.gh/ for some map � W G � G ! T . We call � the
obstruction 2-cocycle of � . The group of 2-cocycles � W G �G ! T is denoted by
Z2.G;T /.

Cocycle crossed products. Whenever G Õ .X;�/ and � 2 Z2.G;T /, one
constructs the cocycle crossed product L1.X/ Ì� G, generated by L1.X/ and
unitaries .ug/g2G satisfying

u�
gaug D a.g � /; uguh D �.g; h/ugh and �.aug/ D

´R
X
ad� if g D e;

0 if g ¤ e;

for all a 2 L1.X/ and g; h 2 G.
Connes tensor product. When PHQ and QKN are bimodules between the tracial

von Neumann algebras P , Q and N , we denote by H ˝Q K the Connes tensor
product, which is a P -N -bimodule.

Theorem 1.2. Suppose that the action � Õ .X;�/ satisfies Condition 1.1. Put
A D L1.X/ and M D A Ì � .

(1) Up to stable isomorphism, the II1 factors that are commensurable with M
are precisely given as A Ì� G, where G � Aut.X;�/ is commensurate with �
and � 2 Z2.G;T / is a 2-cocycle that arises from a finite dimensional projective
representation of G.

(2) With .G;�/ and .H; !/ as in 1, put P D A Ì� G and Q D A Ì! H . Every
irreducible finite index P -Q-bimodule PHQ is unitarily equivalent with

PH .�; �/Q ´ L2.P /˝P0
K.�; �/˝Q0

L2.Q/;

where P0 � P and Q0 � Q are the finite index subfactors defined by

P0 D A Ì� .G \ �H��1/ and Q0 D A Ì! .H \ ��1G�/

for some � 2 Aut.X;�/ in the commensurator of � , and where the bimodule
P0

K.�; �/Q0
D  � .P0/.L

2.Q0/ ˝ K/Q0
is given by a finite dimensional irre-

ducible projective representation � W G \ �H��1 ! U.K/ with obstruction 2-
cocycle �! B Ad ��1 and corresponding inclusion

 � W P0 ! Q0 ˝ B.K/ W  �.aug/ D a.� � /u��1g� ˝ �.g/:
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Remark 1.3. In order to deduce from Theorem 1.2 an entirely explicit list of all com-
mensurable II1 factors, we need to know the commensurator of � inside Aut.X;�/.
Usually, this is a hard problem. But, when � Õ I has the property that .Stab i/ � j is
infinite for all i ¤ j , then the commensurator of � inside Aut

�
.X0; �0/

I
�

has been
computed in [PV09], Lemma 6.15 (see also [PV06], proof of Theorem 5.4). It is gen-
erated by the following two types of elementary commensurating automorphisms.
Firstly, whenever 	 is a permutation of I that commensurates � , we have
 given by
.
.x//i D x��1.i/. Secondly, for every orbit � � i and every 
0 2 Aut.X0; �0/, we
have 
 given by .
.x//j D 
0.xj / for j 2 � � i and .
.x//j D xj for j 62 � � i .

For a given II1 factor M , the finite index M -M -bimodules form a C�-tensor
category Bimod.M/. More generally, one can build the so-called C�-bicategory
Comm.M/ of commensurable II1 factors: the objects (or 0-cells) in this category are
the II1 factors N that are commensurable with M , the morphisms (or 1-cells) from
N1 toN2 are the finite indexN1-N2-bimodules with composition given by the Connes
tensor product and finally, the morphisms between two morphisms (or 2-cells) are
given by the bimodular bounded operators between two bimodules. In Section 4, we
reinterpret Theorem 1.2 and prove that for the II1 factorsM given by Theorem 1.2, the
bicategory Comm.M/ is equivalent with a bicategory Hecke.� < G / associated with
the Hecke pair � < G , where G denotes the commensurator of � inside Aut.X;�/.

In particular, we get an explicit description of Bimod.M/ as C�-tensor category;
a problem that was left open in [Va07], although all finite index bimodules could be
described up to unitary equivalence.

WheneverN � M is a finite index subfactor,ML2.M/N is a finite index bimodule
of left dimension 1 and right dimension ŒM W N�. Hence, whenever � Õ .X;�/

satisfies Condition 1.1, Theorem 1.2 provides a complete description of all finite index
subfactors of L1.X/ Ì � , up to unitary conjugacy. We can make this description
more concrete in the following way.

Corollary 1.4. Suppose that the action � Õ .X;�/ satisfies Condition 1.1. Put
A D L1.X/ and M D A Ì � . Up to unitary conjugacy, all finite index subfactors
of M are provided by the following construction.

The data for the construction consists of a subgroup G < Aut.X;�/ that is
commensurate with � , a 2-cocycle � 2 Z2.G;T /, elements �1; : : : ; �n in the com-
mensurator of � inside Aut.X;�/ and finite dimensional projective representations

�i W � \ �iG��1
i ! U.Ki / with obstruction 2-cocycle � B Ad ��1

i .
Given these data, put `i D ŒG W G \ ��1

i ��i � and ri D Œ� W � \ �iG�
�1
i �.

Amplifying

.AÌ� G/
1=`i

tunnel construction

inclusion with index `i

�� AÌ�BAd ��1
i
.� \ �iG�

�1
i
/

aug 7!aug˝�.g/inclusion with index ri dim.�i /2

��

a. � /ug 7!a.�i � /u
��1

i
g�i

inclusion with index `i

�� AÌ� G

.AÌ �/˝ B.Ki /
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yields an inclusion A Ì� G ! M `i dim.�i / of index `iri dim.�i /2. Reducing the
diagonal product of these inclusions, provides a subfactor

.A Ì� G/1=` � M

of index `r , where ` D Pn
iD1 `i dim.�i / and r D Pn

iD1 ri dim.�i /.

When the group � has no non-trivial finite dimensional unitary representations
(hence no non-trivial finite dimensional projective representations either and no non-
trivial finite index subgroups), the formulation becomes easier and we get the follow-
ing result. Concrete examples of the invariants C.M/ and �.M/ are provided by
Corollary 3.2, yielding II1 factorsM such that C.M/ is any prescribed set of natural
numbers with the property of being stable under taking divisors and least common
multiples.

Corollary 1.5. Suppose that the action � Õ .X;�/ satisfies Condition 1.1 and
that the group � has no non-trivial finite dimensional unitary representations. Put
M D L1.X/ Ì � and denote by G the normalizer of � inside Aut.X;�/. Then

C.M/ D fjGj j G is a finite subgroup of G=�g;
�.M/ D fn2jGj j G is a finite subgroup of G=� and n 2 N n f0gg:

2. Proof of Theorem 1.2 and its corollaries

In order to make our proofs more readable, we split it up into a several independent
lemmas. We start with a more precise version of the first part of [Va07], Theorem 6.4.

Lemma 2.1. Let G Õ .X;�/ be a free, p.m.p. action such that for every finite
index subgroup G1 < G, the action G1 Õ .X;�/ is ergodic and cocycle superrigid
with arbitrary compact second countable target groups. Let � 2 Z2.G;T / and put
A D L1.X/. LetQ be a II1 factor and  W AÌ�G ! Q an irreducible finite index
embedding, with corresponding bimodule  .AÌ�G/L

2.Q/Q.
There exists a finite index subgroup G1 < G, a finite dimensional projective

representation � W G1 ! U.K/ with obstruction 2-cocycle �� , a projection p 2
Q \  .A/0 of trace .ŒG W G1� dim �/�1 and, writing �1 ´ ��� , a finite index
inclusion  1 W AÌ�1

G1 ! pQp such that  1.a/ D  .a/p for all a 2 A,  1.A/ is
maximal abelian in pQp and

 .AÌ�G/L
2.Q/Q Š

AÌ� G
.L2.A Ì� G/˝AÌ�G1

.p L2.Q/˝K//
Q

with left module action of aug 2 AÌ�G1 onp L2.Q/˝K given by 1.aug/˝�.g/.
Moreover, p can be chosen such that spanf .ug/p .ug/� j g 2 Gg is finite

dimensional.



Classification of all finite index subfactors of a class of II1 factors 529

Proof. Put P D A Ì� G. Since  .P / � Q has finite index, also  .P /\ .A/0 �
Q \  .A/0 has finite index (see e.g. [Va07], Lemma A.3). Put B D Q \  .A/0.
Since  .A/ � B has finite index, B is of finite type I. Also,  .A/ � Z.B/ has
finite index. Moreover, .Ad .ug//g2G defines an ergodic action of G on Z.B/. It
follows that we can take a �-isomorphism � W Z.B/ ! L1.X � f1; : : : ; mg/ such
that �. .a// D a˝ 1 for all a 2 A. Hence, � conjugates the action .Ad .ug//g2G
on Z.B/ with the action G Õ X � f1; : : : ; mg given by

g � .x; i/ D .g � x; !.g; x/i/
where ! W G � X ! Sm is a 1-cocycle with values in the symmetric group Sm.
By cocycle superrigidity, we may assume that G Õ f1; : : : ; mg transitively and that
g �.x; i/ D .g �x; g � i/. DefineG1 D Stab 1, p0 D ��1.�X�f1g/ andP0 D AÌ�G1.
Define  0 W P0 ! p0Qp0 as  0.d/ D p0 .d/ for all d 2 P0. By construction,

 .P/L
2.Q/Q Š L2.P /˝P0

. .P0/p0 L2.Q/Q/:

Put Q0 D p0Qp0 and B0 D Q0 \  0.A/
0. By construction, Z.B0/ D  0.A/ and

.Ad 0.ug//g2G1
defines an ergodic action of G1. Since B0 is finite and of type I,

we can take a finite dimensional Hilbert spaceK and a �-isomorphism � W B0 ! A˝
B.K/ such that �. .a// D a˝ 1 for all a 2 A and such that � conjugates the action
.Ad .ug//g2G on B0 with the action .˛g/g2G1

on A ˝ B.K/ D L1.X;B.K//
given by

.˛g�1.a//.x/ D ˇ.g; x/�1.a.g � x// for a 2 L1.X;B.K//; g 2 G1; x 2 X;
whereˇ W G1�X ! Aut.B.K// Š PU.K/ is a 1-cocycle. By cocycle superrigidity,
we may assume thatˇ.g; x/ D Ad �.g/ for some projective representation� W G1 !
U.K/.

Define unitaries vg 2 Q0 as vg D  0.ug/�
�1.1˝ �.g/�/. Put �1 D ��� 2

Z2.G1;T /. Let q1 2 B.K/ be a minimal projection and put p1 D ��1.1 ˝ q1/.
For all g 2 G1 n feg, we have EB0

. 0.ug// D 0. Hence, also EB0
.vg/ D 0.

By construction, vg commutes with p1 and we obtain a well-defined finite index
inclusion

 1 W A Ì�1 G1 ! p1Qp1 W  1.aug/ D avgp1:

This inclusion satisfies all desired properties.

The next lemma is almost literally contained in [PV09], Lemma 7.3 and proof
of Theorem 7.1. We repeat it here for the convenience of the reader. We call a
measurable map 
 W X ! Y between probability spaces .X;�/ and .Y; 	/ a local
isomorphism if, up to measure zero, we can partition X into non-negligible subsets
Xn, n 2 N, such that the restriction
jXn

is a non-singular isomorphism betweenXn
and a non-negligible subset of Y . If moreover all 
jXn

are measure-preserving, we
call 
 a local m.p. isomorphism.
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Lemma 2.2. Let G Õ .X;�/ be a free, p.m.p. action. Assume that all finite index
subgroups ofG act ergodically on .X;�/ and thatG Õ .X;�/ is cocycle superrigid
with arbitrary countable target groups. LetH Õ .Y; 	/ be an arbitrary free, ergodic,
p.m.p. action.

If
 W X ! Y is a local isomorphism satisfying
.G � x/ � H �
.x/ for almost
all x 2 X , there exists

� a finite group ƒ acting freely on .X;�/ and satisfying gƒg�1 D ƒ for all
g 2 G,

� an isomorphism of probability spaces ‰ W X=ƒ ! Y ,

� a group homomorphism ı W G ! H with Ker ı D G \ƒ,

such that  .g � x/ D ı.g/ � .x/ and
.x/ 2 H �‰.x/ for all g 2 G and almost all
x 2 X .

Proof. Define ! W G � X ! H such that 
.g � x/ D !.g; x/ �
.x/ almost every-
where. Then ! is a 1-cocycle and cocycle superrigidity provides a measurable map
' W X ! H such that, defining‰.x/ ´ '.x/ �
.x/, we have‰.g �x/ D ı.g/ �‰.x/
almost everywhere for some group morphism ı W G ! H . By construction,‰ is still
a local isomorphism.

Define the equivalence relation R D f.x; y/ 2 X � X j ‰.x/ D ‰.y/g. Since
‰ is a local isomorphism and �.X/ < 1, almost every x 2 X has a finite R-
equivalence class. Moreover, the function x 7! #fy 2 X j xRyg is G-invariant
and hence, almost everywhere equal to a constant that we denote by m. Denote by
Y0 � Y the essential range of‰. It follows that, up to measure zero, we can partition
X into X1; : : : ; Xm such that ‰i ´ ‰jXi

is an isomorphism between Xi and Y0.
By construction, all ‰i scale the involved measures by the same constant. Hence,
Ti ´ ‰�1

i B‰ is a local m.p. isomorphism. Denote by Sm the permutation group of
f1; : : : ; mg. The formula

Ti .g � x/ D g � T�.g;x/�1i .x/

defines a 1-cocycle 	 W G�X ! Sm. By cocycle superrigidity, we find a measurable
� W X ! Sm and a group morphism � W G ! Sm such that, writing Ri .x/ D
T�.x/i .x/, we have Ri .g � x/ D g �R�.g/�1i .x/. By construction, Ri is a local m.p.
isomorphism. Since the essential range of Ri is globally invariant under the finite
index subgroup Ker � < G, we conclude that Ri 2 Aut.X;�/. By construction,
the equivalence relation R is the union of the graphs of R1; : : : ; Rm. Since almost
every R-equivalence class has m elements, we deduce that the graphs of the Ri are
essentially disjoint. For all i , j , we find k such that fx 2 X j Ri .Rj .x// D Rk.x/g
is non-negligible. But this last set is globally invariant under Ker � , showing that
Ri B Rj D Rk almost everywhere. Hence, ƒ ´ fR1; : : : ; Rmg is a subgroup of
Aut.X;�/, that defines an essentially free action ƒ Õ .X;�/ and that satisfies all
desired properties.
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Lemma 2.3. Let G Õ .X;�/ be a free, weakly mixing, p.m.p. action. Let ƒ be a
non-trivial finite group acting freely and p.m.p. on .X;�/. Assume that gƒg�1 D ƒ

for all g 2 G. Then G admits a finite index subgroup G1 such that the action

G1

G1 \ƒ Õ X

ƒ

is not cocycle superrigid with arbitrary countable target groups.

Proof. Take G1 < G of finite index such that G1 and ƒ commute inside Aut.X;�/.
Define G as the subgroup of Aut.X;�/ generated byG1 andƒ. Sinceƒ is finite and
ƒ Õ .X;�/ is free, choose a measurable  W X ! ƒ such that  .
 � x/ D 
 .x/

for all 
 2 ƒ and almost all x 2 X . Define

! W G1 �X ! G W !.g; x/ D  .g � x/�1g .x/:
Since G1 and ƒ commute, it is easy to check that ! is actually a 1-cocycle

! W G1

G1 \ƒ � X

ƒ
! G :

If this 1-cocycle were to be cohomologous to a group morphism, we would find a
group morphism ı W G1 ! G and a ƒ-invariant measurable map ' W X ! G such
that

 .g � x/�1g .x/ D '.g � x/ı.g/'.x/�1:
Define F.x/ D  .x/'.x/. It follows that F.g � x/ D gF.x/ı.g/�1. Hence, the set

U D f.x; y/ 2 X �X j F.x/ D F.y/g
is invariant under the diagonal G1-action. Since F takes only countably many val-
ues, U is non-negligible. By weak mixing of G Õ .X;�/, it follows that U has
complement of measure zero. Hence, F is constant almost everywhere. But then  
follows ƒ-invariant, which is a contradiction.

Lemma 2.4. Let G Õ .X;�/ be a free, weakly mixing, p.m.p. action that is cocycle
superrigid with compact second countable target groups. Assume that� 2 Z2.G;T /
is the obstruction 2-cocycle of a finite dimensional projective representation and that
! W G �X ! T is a measurable map satisfying

!.gh; x/ D �.g; h/ !.g; h � x/!.h; x/
almost everywhere.

Then there exists a measurable map ' W X ! T and a map � W G ! T such that

!.g; x/ D '.g � x/ �.g/ '.x/
almost everywhere. In particular, � is cohomologous to the trivial 2-cocycle.
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Proof. Assume that � D �� for a finite dimensional projective representation
� W G ! U.K/. Consider U.K/ as a compact group and define z! W G�X ! U.K/

by z!.g; x/ D !.g; x/�.g/. Then ! is a 1-cocycle and cocycle superrigidity gives a
measurable map ' W X ! U.K/ and a homomorphism �1 W G ! U.K/ such that

!.g; x/�.g/ D '.g � x/��1.g/'.x/:
In the quotient PU.K/, we get the equality '.g � x/ D �1.g/'.x/�.g/

� almost
everywhere. Weak mixing of G Õ .X;�/ implies that ' is almost everywhere
constant in PU.K/ (see e.g. [PV08b], Lemma 5.4). Replacing '. � / by u'. � / for
the appropriate u 2 U.K/ and replacing �1 by .Ad u�/ B �1, we may assume that
' takes values in T � U.K/. Then �1.g/ D �.g/�.g/ for some map � W G ! T ,
proving the lemma.

Fix a group action � Õ .X;�/ satisfying Condition 1.1. Put A D L1.X/ and
M D A Ì � .

Define G � Aut.X;�/ as the commensurator of � inside Aut.X;�/. By [Va07],
Lemma 6.11, every � 2 G n feg acts essentially freely on .X;�/. So, whenever
G < G is a subgroup commensurate with � , the action G Õ .X;�/ is free and
weakly mixing.

Whenever G < G is commensurate with � , the action G Õ .X;�/ is cocycle
superrigid with countable or with compact second countable groups. Indeed, by
the assumption in Condition 1.1, we have cocycle superrigidity of G \ � acting on
.X;�/. Since G \ � acts weakly mixingly, cocycle superrigidity of G Õ .X;�/

follows from [Po05], Proposition 3.6.
If G < G is commensurate with � and if � 2 Z.G;T / is the obstruction 2-

cocycle of the finite dimensional projective representation � on K, the II1 factor
A Ì� G is commensurable with M . Indeed, the embedding A Ì� G ! .A ÌG/˝
B.K/ W aug 7! aug ˝ �.g/ proves the commensurability of A Ì� G and A Ì G.
The latter is commensurable with its finite index subfactor A Ì .G \ �/, which is in
turn commensurable with A Ì � D M .

Proof of Theorem 1.2 (2). Let G;H < G be subgroups that are commensurate with
� . Take � 2 Z2.G;T / and ! 2 Z2.H;T /, both being obstruction 2-cocycles for
finite dimensional projective representations. Put P D A Ì� G and Q D A Ì! H .
Let PHQ be an irreducible finite index P -Q-bimodule.

We first prove that H is a direct sum of finite index A-A-subbimodules. In the
paragraph preceding this proof, we constructed non-zero finite index bimodulesMKP

and QLM . By construction, K and L can be taken as a direct sum of finite index
A-A-subbimodules. Consider now the M -M -bimodule H 0 ´ K ˝P H ˝Q L.

Condition 1.1 implies that every finite index M -M -bimodule H 0 is a direct sum
of finite index A-A-subbimodules. Indeed, it suffices to consider irreducible H 0. By
Condition 1.1, we find a non-zero finite indexA-A-subbimodule H 00 � H 0. But then
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all ug � H 00 � uh, g; h 2 � , are finite index A-A-subbimodules. By irreducibility of
H 0, they densely span H 0.

So H 0 is a direct sum of finite indexA-A-subbimodules. Then the same is true for
the P -Q-bimodule xK ˝M H 0 ˝M

xL. By construction, this last P -Q-bimodule con-
tainsPHQ. We have proved that H is a direct sum of finite indexA-A-subbimodules.

Take the irreducible finite index inclusion  0 W P ! p.Mm.C/˝Q/p such that
PHQ is isomorphic with  0.P /p.C

m ˝ L2.Q//Q. We denote by Dm � Mm.C/
the subalgebra of diagonal matrices. By [Va07], Lemma 6.5, we may assume that
 0.A/ � .Dm ˝A/p.

Lemma 2.1 yields now the following data:

� a finite index subgroup G1 < G,

� a finite dimensional projective representation � W G1 ! U.K/with obstruction
2-cocycle �� ,

� using the notations �1 D ��� and P1 D A Ì�1
G1, a finite index inclusion

 W P1 ! q.Mn.C/ ˝ Q/q with  .A/ D .Dn ˝A/q for some projection
q 2 Dn ˝ A.

Therefore, PHQ Š L2.P / ˝P2
H 0, where P2 D A Ì� G1 and where the P2-Q-

bimodule H 0 is defined as

P2
H 0
Q D �.P2/.q.C

n ˝ L2.Q//˝K/Q (1)

with � W P2 ! q.Mn.C/˝Q/q˝B.K/ W �.aug/ D  .aug/˝�.g/. Take the non-
negligible subset U � f1; : : : ; ng � X such that q D �U and take the isomorphism

 W X ! U such that  .a/ D a B
�1 for all a 2 A. Denote by 
1 W X ! X the
composition of 
 and .i; x/ 7! x. It follows that 
1 is a local isomorphism, locally
multiplying the measure by .Tr ˝�/.q/ and satisfying 
1.G1 � x/ � H � 
1.x/
almost everywhere. By Lemma 2.2, we find an m-to-1 quotient map 
2 W X ! X

and a group homomorphism ı W G1 ! H such that 
2.g � x/ D ı.g/ � 
2.x/ and

2.x/ 2 H �
1.x/ almost everywhere. Moreover, Lemma 2.2 provides a subgroup
ƒ < Aut.X;�/ of order m, with gƒg�1 D ƒ for all g 2 G1 and such that 
2
induces a conjugacy between the actions

G1

G1 \ƒ Õ X

ƒ
and H1 Õ X

with H1 D ı.G1/. Since 
2.x/ 2 H � 
1.x/ and since 
2 is an m-to-1 quotient
map, it follows that .Tr ˝�/.q/ D m and that there exists a W 2 q.Mn;m.C/˝Q/

satisfying WW � D q, W �W D 1 and, writing  1. � / D W � . � /W ,  1.a/ D
1 ˝ a B 
�1

2 for all a 2 L1.X=ƒ/ � A. Since 
2.g � x/ D ı.g/ � 
2.x/, it
then follows that  1.ug/ 2 .Mm.C/ ˝ A/uı.g/ for all g 2 G1. In particular,
 1.P1/ � Mm.C/˝ .AÌ!H1/. Since 1.P1/ � q.Mn.C/˝Q/q has finite index,
this implies that H1 < H has finite index.

Since H1 < H has finite index, the action H1 Õ .X;�/ is cocycle superrigid.
But H1 Õ X is conjugate with G1=.G1 \ƒ/ Õ X=ƒ. Hence Lemma 2.3 implies
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that m D 1, ƒ D feg. This means that 
2 2 Aut.X;�/ and 
2g
�1
2 D ı.g/ for

all g 2 G1. Hence, 
2 2 G . Put � D 
�1
2 . So we may from now on assume that

n D 1, q D 1 and that  1 W P1 ! Q is given by

 1.a/ D a.� � / and  1.ug/ D a��1g�u��1g�

for some unitaries .ah/h2H1
2 U.A/.

Define the measurable map 	 W H1 � X ! T W 	.h; x/ D ah.h � x/. It follows
that

	.hk; x/ D .! �1 B Ad �/.h; k/ 	.h; k � x/ 	.k; x/:
Lemma 2.4 yields a unitary b 2 U.A/ and a map � W G1 ! T such that, replacing
 1 by Ad b B 1, we have  1.a/ D a.� � / for all a 2 A and  1.ug/ D �.g/u��1g�

for all g 2 G1.
Replacing the projective representation � W G1 ! U.K/ by the projective repre-

sentation G1 ! U.K/ W g 7! �.g/�.g/, we may assume that  .ug/ D u��1g� for

all g 2 G1. In particular, �� D �! B Ad ��1.

Put G0 D G \ �H��1 and H0 D H \ ��1G� . The 2-cocycle �! B Ad ��1
makes sense on G0 and hence is the obstruction 2-cocycle of an induction of � to a
projective representation Q� ofG0 (see e.g. [Va07], Definition 6.8). PutP0 D AÌ�G0
andQ0 D AÌ!H0. From (1) and the isomorphism H Š L2.P /˝P1

H 0, one deduces
that

PHQ Š L2.P /˝P0
K.�; Q�/˝Q0

L2.Q/;

where K.�; Q�/ is as in the formulation of Theorem 1.2 (2). Since H was assumed to
be irreducible, it follows that Q� is irreducible.

Proof of Theorem 1.2 (1). Put M D A Ì � . Let Q be a II1 factor and MKQ a non-
zero finite index bimodule. Define H D K ˝Q

xK . Denote by G the commensurator
of � inside Aut.X;�/. Since H is a non-zero finite index M -M -bimodule, point
(2) of Theorem 1.2 yields a finite dimensional Hilbert space K and a finite index
inclusion  0 W M ! B.K/˝M such thatMHM Š  0.M/.K˝ L2.M//M and such
that the restriction  0jA has the special form

 0.a/ D
nP
iD1

pi ˝ a.�i � /; (2)

where �1; : : : ; �n 2 G and p1; : : : ; pn are projections with sum 1. After a unitary
conjugacy and a regrouping of the pi and �i , we may assume that �1�; : : : ; �n� are
mutually disjoint. By construction, we find an intermediate subfactor 0.M/ � P �
B.K/˝M such thatP andQ are stably isomorphic. For the rest of the proof, we only
retain the information that Q is stably isomorphic with an intermediate subfactor of
a finite index inclusion  0 W M ! B.K/˝M , where  0jA is of the special form (2).
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Put D D  0.A/
0 \ .B.K/ ˝ M/. Since G acts freely on .X;�/, we have

D D L
i B.piK/˝A. Denote by �0 < � a finite index subgroup with the property

that ��1
i �0�i � � for all i D 1; : : : ; n. For every g 2 �0, define

vg ´
nP
iD1

pi ˝ u��1
i
g�i
:

A direct computation shows that 0.ug/v�
g commutes with .A/ and hence, 0.ug/ 2

Dvg for all g 2 �0. Write  0.ug/ D Pn
iD1 	i;g.pi ˝ u��1

i
g�i
/ for some unitaries

	i;g 2 B.piK/˝A. For a fixed i , these unitaries can be reinterpreted as a 1-cocycle
for the action�0 Õ X with values in U.piK/. As a result, we can unitarily conjugate
 0 and assume that  0.ug/ D Pn

iD1 �i .g/pi ˝ u��1
i
g�i

for all g 2 �0. Since the

action of ��1
i �0�i on .X;�/ is weakly mixing, it follows that

 0.M/0 \ .B.K/˝M/ � L
i

.B.piK/˝ 1/:

We replace  0.M/ by  0.M/q where q is a minimal projection in P \ 0.M/0. So
 0jA still has the special form (2) and also the  0.ug/, g 2 �0, keep their special
form. We now have that  0.M/ � P is irreducible.

We apply Lemma 2.1 to the irreducible inclusion  0.M/ � P . We find a finite
index subgroup �1 < � , a projection p 2 P \ .A/0, an obstruction 2-cocycle� 2
Z2.�1;T / of a finite dimensional projective representation and a finite index inclusion
 W A Ì� �1 ! pPp such that  .a/ D  0.a/p for all a 2 A and  .A/ � pPp

is maximal abelian. Moreover, we can take p such that spanf 0.ug/p 0.ug/� j
g 2 �g is finite dimensional. Since � Õ .X;�/ is weakly mixing, we conclude that
p 2 L

i .B.piK/˝ 1/.
ReplaceP bypPp andK bypK. We have found a finite index inclusion W AÌ�

�1 ! B.K/ ˝ M such that P is an intermediate subfactor  .A Ì� �1/ � P �
B.K/˝M with .A/ � P being maximal abelian and such that jA is of the special
form (2).

Define the group

G D f� 2 G j there exists a unitary w 2 U.P / such that

w� .a/w D  .a.� � // for all a 2 Ag:
By construction �1 < G. Also, since G acts freely on .X;�/, if � 2 G � �1 and
w 2 U.P / satisfiesw� .a/w D  .a.� � // for all a 2 A, thenE .AÌ��1/.w/ D 0.
Because  .A Ì� �1/ � P has finite index, it follows that �1 < G has finite index.
Hence G and � are commensurate groups inside Aut.X;�/. Making �1 smaller if
necessary, we may assume that �1 is a normal subgroup of G.

Let � 2 G. Take a unitary w 2 U.P / satisfying w� .a/w D  .a.� � // for all
a 2 A. As such,w is determined up to multiplication by a unitary in .A/. We claim
that w can be chosen in such a way that w� .ug/w 2 T .u��1g� / for all g 2 �1.
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To prove this claim, first observe that w� .ug/w .u��1g� /
� commutes with  .A/

and hence, belongs to  .A/. We find unitaries .ag/g2�1
in A such that

w� .ug/w D  .a��1g� u��1g� / for all g 2 �1:
Lemma 2.4 yields a unitary b 2 U.A/ such that, replacing w by w .b/, the claim is
proven.

By weak mixing of�1 Õ .X;�/, the unitaryw satisfying the claim in the previous
paragraph, is uniquely determined up to multiplication by a scalar. So, for every
g 2 G, choose wg satisfying the claim. Make this choice such that wg D  .ug/

for all g 2 �1. By uniqueness of the w, we get wgwh D �.g; h/wgh for all
g; h 2 G and for some � 2 Z2.G;T / that extends the given � 2 Z2.�1;T /. Since
E .A/.wg/ D 0 when g ¤ e, the formula

� W A Ì� G ! P W �.a/ D  .a/ for a 2 A and  .ug/ D wg for g 2 G;
is a well-defined finite index inclusion. Since �j�1

was the obstruction 2-cocycle of
a finite dimensional projective representation, the same is true for � 2 Z2.G;T / by
considering the induced projective representation.

It remains to prove that � is surjective. Denote P0 D �.A Ì� G/, which equals
the von Neumann subalgebra of P generated by  .A/ and the unitaries wg , g 2 G.
Choose i , j , an operator T 2 pi B.K/pj , b 2 A, g 2 � . Define d D EP .T ˝bug/.
It suffices to prove that d 2 P0. We may assume that d ¤ 0. Denote � D �ig�

�1
j .

It follows that  .a/d D d .a.� � // for all a 2 A. Let d D vjd j be the polar
decomposition of d . Then jd j 2  .A/ � P0, while v is a non-zero partial isometry
satisfying  .a/v D v .a.� � // for all a 2 A. Let U � X be the non-negligible
subset such that v�v D  .�U/. Put �2 D �1 \ ��1�1� . Since �2 acts ergodically
on .X;�/, we can find subsets Un � U and group elements gn 2 �2 such that
the sets g�1

n � Un form a partition of X , up to measure zero. We may assume that
U0 D U and g0 D e. It is then easy to check that

w ´ P
n

 .u�gn��1/� v  .�Un
ugn

/

is a unitary in P satisfying  .a/w D w .a.� � // for all a 2 A. It follows that
� 2 G and w 2 P0. Since v D w .�U/, we also get v 2 P0. Hence d 2 P0,
ending the proof of the theorem.

3. Concrete computations of the index sets C .M/ and � .M/

Theorem 3.1. Consider Q � K where K is a countable field of characteristic zero
and Q ¤ K. Define �1 D SL.3;Q/ and �2 D SL.3;K/. Let q 2 Q n f0; 1;�1g
and define

† ´ AZ where A D
�
1 0 0
1 q 0

1 0 q�1

�
:
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We consider † as a common subgroup of �1, �2 and put � D �1 �† �2. Finally,
consider the subgroup ƒ ´ ƒ1 �ƒ2 < � , where both ƒi are given byn �

1 a b
0 1 c
0 0 1

�
j a; b; c 2 Z

o
:

For any atomic probability space .X0; �0/with unequal weights�0.fxg/, we consider
the II1 factor

M ´ L1.X�=ƒ0 / Ì �:
Then C.M/ D fjGj j G < Gal.K/ is a finite subgroupg.
Corollary 3.2. Let N � N be a subset of the natural numbers that is closed under
taking divisors and least common multiples. There exists a countable field K of
characteristic zero such that the associated II1 factorM constructed in Theorem 3.1
satisfies C.M/ D N .

Proof of Theorem 3.1. We denote .X;�/ ´ .X0; �0/
�=ƒ. Note that � has no non-

trivial finite dimensional unitary representations. In particular, � has no non-trivial
finite index subgroups.

Throughout the proof, we use the following notation: wheneverH1;H2 < G are
subgroups, we writeH1 �G H2 if there exists a g 2 G such thatH1 \ g�1H2g has
finite index in H1. In other words, a finite index subgroup of H1 can be conjugated
into H2.

Also note that wheneverH < �i is a subgroup such thatH 6��i
† andH 6��i

ƒi ,
thenH acts with infinite orbits on�=ƒ and hence,H acts weakly mixingly on .X;�/.
This applies to H D SL.3;Z/ and its finite index subgroups. It also applies to
H D Eij .Q/, where Eij .x/ D 1C eij .x/ with eij .x/ being the obvious elementary
matrix with a single non-zero entry given by x.

We call reduced expression every product of elements alternatingly from �1 �†
and �2 � †. Every g 2 � � † admits a reduced expression. We refer to the first
factor of such an expression as the first letter of g. The first letter of g is uniquely
determined up to right multiplication by an element from†. The length of a reduced
expression for g is denoted by jgj. By convention jgj D 0 when g 2 †.

We also have that† acts with infinite orbits on �=ƒ. If not, we would find a finite
index subgroup †0 < † and a g 2 � such that g†0g�1 � ƒ. Since † \ƒ D feg,
we have g 62 ƒ†. Hence, we can write g D g0g1 : : : gn with g0 2 ƒ and g1 : : : gn
being a reduced expression with g1 2 �i � ƒi†. Since g1 : : : gn conjugates †0
into ƒ and g1 2 �i �ƒi†, we conclude that .gk : : : gn/†0.gk : : : gn/�1 � †, first
for k D n, then for k D n � 1, until k D 2. Let h be a non-trivial element in
.g2 : : : gn/†0.g2 : : : gn/

�1. Then h 2 † and g1hg�1
1 2 ƒ and so g1hg�1

1 2 ƒi .
The spectrum of every element in ƒi is f1g and hence, the spectrum of h equals f1g.
This is a contradiction with h 2 † � feg.

Part 1. The action � Õ .X;�/ D .X0; �0/
�=ƒ is cocycle superrigid for arbitrary

countable or compact second countable target groups. This is, as follows, a direct
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consequence of results in [Po05]. Assume that ! W � � X ! G is a 1-cocycle with
values in the discrete or compact second countable group G . We first claim that both
restrictions !j�i

, i D 1; 2, are cohomologous to a group morphism. We prove this
claim for i D 2, the case i D 1 being analogous. Since SL.3;Z/ has property (T),
[Po05], Theorem 0.1, allows us to assume that !jSL.3;Z/ is a group morphism. Since
SL.3;Z/ acts with infinite orbits on �=ƒ, [Po05], Proposition 3.6, implies that ! is
a group morphism on SL.3;Q/. Since Eij .Q/ acts with infinite orbits on �=ƒ, the
same [Po05], Proposition 3.6, implies that ! is a group morphism on Eij .K/. Since
the Eij .K/ generate �2, it follows that ! is a group morphism on �2.

So we have proven the claim and may assume that!.g; x/ D ı1.g/when g 2 �1,
while !.g; x/ D '.g �x/ı2.g/'.x/�1 when g 2 �2. Since† acts with infinite orbits
on �=ƒ, it follows that ' is essentially constant (see e.g. [PV08b], Lemma 5.4) and
hence, ! is a group morphism, concluding the proof of part 1.

Part 2. Every finite index M -M -bimodule contains a non-zero finite index
L1.X/-L1.X/-subbimodule. This is a consequence of [PV09], Theorem 7.1. De-
note by Di the normalizer of † inside �i . We start with the following observation:
wheneverg 2 �i such thatg†g�1\† ¤ f1g, we haveg 2 Di . Indeed, ifh 2 †�f1g
and ghg�1 2 †, consider the spectrum of h and conclude that ghg�1 equals either h
or h�1. This moreover implies that gAg�1 equals eitherA orA�1 and hence g 2 Di .
The observation implies that g†g�1 \ † D f1g whenever g 2 � �D1 �† D2. So
[PV09], Theorem 7.1, yields the result.

Part 3. The normalizer of � inside Aut.X;�/ is generated by � and the group
Aut.ƒ < �/ ´ fı 2 Aut.�/ j ı.ƒ/ D ƒg which acts on .X;�/ by .ı � x/gƒ D
xı�1.g/ƒ. Part 3 follows from [PV09], Lemma 6.15, once we have shown that ƒ
acts with infinite orbits on �=ƒ � feƒg. It is easy to check that ƒgƒ is an infinite
subset of �=ƒ whenever g 2 � �†ƒ. If � 2 †� feg and ifƒ�ƒ would be a finite
subset of �=ƒ, we find a finite index subgroup ƒ0 < ƒ such that ��1ƒ0� � ƒ.
In particular, ��1.ƒ0 \ ƒ1/� � ƒ1. Hence, � is upper triangular (with arbitrary
diagonal elements). So the standard basis vector e1 is an eigenvector of � . But all
non-trivial elements of † have the same set of eigenvectors, namely the non-zero
multiples of the vectors .1� q/e1 C e2 � qe3, e2 and e3. The vector e1 is not in this
set, yielding the required contradiction.

Part 4. Every automorphism ı 2 Aut.�/ is of the form ı D .Ad g/ B .ı1 � ı2/
where g 2 � and ıi 2 Aut.�i / satisfy ıi .†/ D † and .ı1/j† D .ı2/j†.

We start the proof of part 4 with the following preliminary statement on general
amalgamated free products � D �1 �† �2. Whenever G < � is a subgroup, denote
jGj ´ supfjgj j g 2 Gg. One can easily show that jGj < 1 if and only if there
exists g 2 � and i 2 f1; 2g such that gGg�1 � �i . One direction being obvious,
assume thatG < � is a subgroup and jGj < 1. Take g 2 � minimizing the function
g 7! jgGg�1j. Replace G by gGg�1. We show that G < �i for some i 2 f1; 2g.
If jGj 	 1, we get G � �1 [ �2. Since G is a subgroup, one easily checks that G
actually sits in one of the �i . So assume that jGj � 2. We will produce an element h1
such that jh�1

1 Gh1j < jGj, which contradicts our minimal choice of g. Take h 2 G



Classification of all finite index subfactors of a class of II1 factors 539

with jhj D jGj. Write h in reduced form and denote by h1 the first letter of h. Assume
that h1 2 �1 �†. We claim that every element k 2 G either belongs to �1 or admits
a reduced expression starting with h1 and ending with h�1

1 . Let k 2 G and k 62 �1.
If the first letter of k cannot be chosen to be h1, then jk�1hj > jhj D jGj, which is
absurd. If the last letter of k cannot by chosen to be h�1

1 , we have jkhj > jGj. This
proves the claim and hence, jh�1

1 Gh1j < jGj.
We now return to the actual proof of part 4. Whenever 0 < � < 1, the function

'�.g/ D �jgj is positive definite. If � ! 1, the functions '� tend to 1 pointwise.
Consider SL.3;Z/ as a subgroup of �2. By property (T), '� converges uniformly
to 1 on ı.SL.3;Z//. This means that jı.SL.3;Z//j < 1. So, after replacing ı by
Ad g B ı, we may assume that ı.SL.3;Z// is a subgroup of either �1 or �2. We
assume that ı.SL.3;Z// < �2 and explain later why the other option is impossible.

Observe that whenever G < �i such that G 6��i
† and whenever g 2 � satisfies

gGg�1 � �i , then g 2 �i .
Wheneverg 2 SL.3;Q/viewed as a subgroup of�2,g quasi-normalizes SL.3;Z/.

So ı.g/ quasi-normalizes the subgroup ı.SL.3;Z// of �2. By the observation in the
previous paragraph, ı.g/ 2 �2. So, ı.SL.3;Q// � �2. For all i ¤ j , we have that
ı.Eij .K// commutes with ı.Eij .Q// < �2. Again applying the observation in the
previous paragraph, we get that ı.Eij .K// � �2. We have shown that ı.�2/ � �2.

Similarly, we find h 2 � and i 2 f1; 2g such that ı.�1/ � h�ih
�1. Since ı.�1/

and ı.�2/ together generate � , we get that i D 1 and h 2 �2�1. Replacing ı by
Ad h0 B ı for some h0 2 �2, we have found that ı.�i / < �i for both i D 1; 2. Since
ı is surjective, we finally find that ı.�i / D �i for both i D 1; 2. It automatically
follows that ıi .†/ D † and .ı1/j† D .ı2/j†.

If in the beginning ı.SL.3;Z// would belong to a conjugate of �1, the argument
would go through in exactly the same way and end up with finding an isomorphism
between SL.3;K/ and SL.3;Q/. Since Q ¤ K, this is impossible.

Part 5. We have Aut.ƒ < �/ D Adƒ� Gal.K/, where ˛ 2 Gal.K/ defines the
automorphism �˛ 2 Aut.�/ that is the identity on �1 and the pointwise application
of ˛ on �2.

Let ı 2 Aut.ƒ < �/. By part 4, take g 2 � and ıi 2 Aut.�i / such that
ıi .†/ D †, .ı1/j† D .ı2/j† and ı D Ad g B .ı1 � ı2/. Since ƒi 6��i

† and
ıi .†/ D †, also ı.ƒi / 6��i

†. Hence, the fact that gıi .ƒi /g�1 � ƒ, forces
g 2 ƒ�i for both i D 1; 2. So, g 2 ƒ†. Making the appropriate replacements, we
may assume that ıi .†/ D † and ıi .ƒi / D ƒi . It remains to prove that ı1 D id and
ı2 D �˛ for some ˛ 2 Gal.K/.

Denote by ˇ the automorphism of SL.3;K/ given by the composition of the
inverse and the transpose: ˇ.g/ D .gT /�1. As an automorphism of SL.3;K/, we
either have ı2 D AdB�1B�˛ or we have ı2 D AdB�1B�˛Bˇ for someB 2 GL.3;K/
and ˛ 2 Gal.K/. In the latter case, it would follow that B�1ˇ.†/B D † and
B�1ˇ.ƒ2/B D ƒ2. The formula B�1ˇ.ƒ2/B D ƒ2 implies that B is of the form�
0 0 1
0 1 0
1 0 0

� �� � �
0 � �
0 0 �

�
D

�
0 0 �
0 � �� � �

�
. We only retain that B12 D 0.
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The non-trivial elements of † all have the same eigenvectors, namely the non-
zero multiples of the vectors .1 � q/e1 C e2 � qe3 (with eigenvalue 1), and e2, e3
(with eigenvalue a non-zero power of q). On the other hand, the non-trivial elements
of †T have as eigenvectors the non-zero multiples of e1 (with eigenvalue 1) and
e1 C .q � 1/e2; qe1 C .1� q/e3 (with eigenvalue a non-zero power of q). Whenever
� 2 † � feg, the formula B�1ˇ.†/B D † implies that B maps the eigenvectors of
� to eigenvectors of ˇ.�/ 2 †T with the same eigenvalue. Hence, Be2 must be a
non-zero multiple of either e1C .q�1/e2 or qe1C .1�q/e3. In both casesB12 ¤ 0,
yielding a contradiction.

Hence, ı2 D AdB�1 B �˛ for some B 2 GL.3;K/ and ˛ 2 Gal.K/. Thus,
B�1ƒ2B D ƒ2, implying that B is upper triangular. Also, B�1†B D †, implying
thatB�1AB D A orB�1AB D A�1. In the latter caseB must map e2 to a non-zero
multiple of e3, contradicting the fact thatB is upper triangular. SoA andB commute.
It follows that the eigenvectors .1� q/e1 C e2 � qe3, e2, e3 of A are all eigenvectors
ofB . SinceB is upper triangular, also e1 is an eigenvector ofB . Both together imply
that B is a scalar multiple of the identity matrix and hence, ı2 D �˛ .

The proof that ı1 D id is identical to the proof that ı2 D �˛ .
Conclusion. The group � has no non-trivial finite index subgroups, so that part

1 and 2 say that � Õ .X0; �0/
�=ƒ satisfies Condition 1.1. By parts 3 and 5, the

normalizer of � inside Aut.X;�/ is given by � Ì Gal.K/. So Corollary 1.5 provides
the required formula for C.M/.

Proof of Corollary 3.2. We mimic the construction of [We06], Theorem 4.7.1. When-
ever p and q are prime numbers with p jq � 1, denote by �q a primitive q-th root of
unity and choose a subgroup G of order .q � 1/=p in Gal.Q.�q// Š F �

q Š Z
.q�1/Z .

Define Kp;q to be the fixed subfield Q.�q/G of Q.�q/. By the fundamental theorem
of Galois theory, Gal.Kp;q/ Š Z

pZ .
Denote by P the set of prime numbers, and, for every p 2 P , put f .p/ D

supfk 2 N j pk 2 N g. By convention, we set f .p/ D 0 if p 62 N and we put
f .p/ D C1 if pk 2 N for all k.

Let pn be a finite or infinite sequence of prime numbers with every prime number
p appearing f .p/ times. Observe that N consists of those natural numbers that
divide p0 : : : pn for n large enough.

We can inductively choose distinct prime numbers qn such that qn D 1 mod pn.
DefineK as the subfield of C generated by all theKpn;qn

. As e.g. in [We06], Theorem
4.7.1, one easily checks that Gal.K/ is isomorphic with the compact group

Q
n

Z
pnZ .

Define Gn D Q
k�n Z

pkZ and denote by �n W Gal.K/ ! Gn the natural quotient
map. Whenever G < Gal.K/ is a finite subgroup, there exists an n such that �n is
injective onG. Hence, jGj divides p0 : : : pn. Conversely, ifm divides p0 : : : pn, one
easily defines a subgroup G < Gal.K/ with jGj D m.
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4. The C�-tensor category Bimod.M/ and the C�-bicategory of commensurable
II1 factors

Whenever G Õ .X;�/ satisfies Condition 1.1, Theorem 1.2 provides a description
of all II1 factors that are commensurable with L1.X/ Ì G and moreover gives a
description of all finite index bimodules between these commensurable II1 factors.

Given a II1 factorM , we denote by Comm.M/ the C�-bicategory of commensu-
rable II1 factors. The objects in this category (also called 0-cells) are all II1 factors
that are commensurable with M . The morphisms (1-cells) are given by the finite
index bimodules and their composition is defined by the Connes tensor product. The
morphisms between the morphisms (2-cells) are given by the bimodular bounded
Hilbert space operators. The bicategory Comm.M/ in particular encodes the C�-
tensor category Bimod.M/ of all finite index M -M -bimodules equipped with the
Connes tensor product.

The aim of this section is to reinterpret Theorem 1.2 and to provide an explicit
description of the C�-bicategory Comm.M/ when M D L1.X/ Ì G and G Õ
.X;�/ satisfies Condition 1.1.

Definition of the C�-bicategory Hecke.G < G /. Suppose that G < G is a Hecke
pair, meaning that gGg�1\G has finite index inG for all g 2 G . We define the C�-
bicategory Hecke.G < G /. In the case whereG Õ .X;�/ satisfies Condition 1.1 and
M D L1.X/ ÌG, we will take G to be the commensurator of G inside Aut.X;�/.
Theorem 4.2 will provide an equivalence of bicategories between Comm.M/ and
Hecke.G < G /.

The objects (or 0-cells) of Hecke.G < G / are the pairs .G1; �1/ where G1 < G

is commensurate withG and�1 2 Z2.G1;T / is the obstruction 2-cocycle of a finite
dimensional projective representation.

The morphisms (or 1-cells) from .G1; �1/ to .G2; �2/ are called correspondences
and are defined as the set of tripletsC D .I;K; �/, where I � G is a subset which is
the union of finitely many cosetsG1y and also the union of finitely many cosets xG2,
and if .Kx/x2I is a family of finite dimensional Hilbert spaces, �.g; x; h/ W Kx !
Kgxh are unitary operators satisfying

�.g0; gxh; h0/ B �.g; x; h/ D �1.g
0; g/ �.gg0; x; hh0/�2.h; h0/:

The composition or tensor product of correspondences is defined as follows. As-
sume that C D .I;K; �/ is a correspondence from .G1; �1/ to .G2; �2/ and that
C 0 D .I 0;K 0; � 0/ is a correspondence from .G2; �2/ to .G3; �3/. We define the
tensor productC 00 D C˝C 0 asC 00 D .I 00;K 00; � 00/ given by the following formulae.

First define the set I�G2
I 0 as the set of orbits for the actionk �.x; y/ D .xk�1; ky/

ofG2 on I �I 0. For every orbitG2 � .x; y/ 2 I �G2
I 0, define1 the finite dimensional

1More canonically, LG2�.x;y/ is defined as the vector space consisting of families of vectors
.	z/z2G2�.x;y/, where 	k�.x;y/ 2 Kxk�1 ˝ K 0

ky
and 	k�.x;y/ D .�.e; x; k�1/˝� 0.k; x; e//	e for

all k 2 G2.
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Hilbert space LG2�.x;y/ D Kx ˝ K 0
y . Put I 00 ´ II 0. The map � W I �G2

I 0 !
I 00 W G2 � .x; y/ 7! xy is finite-to-one. So, for every r 2 I 00, we define the finite
dimensional Hilbert space K 00

r as the direct sum of all Ls , s 2 ��1.r/. Under the
appropriate identifications, we define � 00.g; r; h/ as the direct sum of the operators
�.g; x; e/˝ �.e; y; h/ when x 2 I , y 2 I 0, xy D r .

We call T a morphism (or 2-cell) between the correspondences .I;K; �/ and
.I 0;K 0; � 0/ if, for everyx 2 I\I 0, we haveTx 2 B.K 0

x;Kx/withTgxh� 0.g; x; h/D
�.g; x; h/Tx for all g 2 G1, x 2 I \ I 0, h 2 G2.

One checks that Hecke.G < G / is a C�-bicategory.

Bimodule functor from Hecke.G < G / to Comm.M/. Assume thatG Õ .X;�/

is a free, weakly mixing, p.m.p. action. Define G as the commensurator of G inside
Aut.X;�/. By [Va07], Lemma 6.11, G acts freely on .X;�/. Put A D L1.X;�/
andM ´ AÌG. We define the bifunctor Bim from Hecke.G < G / to Comm.M/.

Whenever C D .I;K; �/ is a correspondence between .G1; �1/ and .G2; �2/,
we define the .A Ì�1

G1/-.A Ì�2
G2/-bimodule Bim.C / given by

H D L
x2I

.Kx ˝ L2.X;�//;

.aug/ � .� ˝ d/ � .buh/ D �.g; x; h/� ˝ a�g.d/�gx.b/;
(3)

for all � 2 Kx . The left and right dimensions of the bimodule Bim.C / are given by

dim`.Bim.C // D P
x2G1nI

dim.Kx/ and dimr.Bim.C // D P
x2I=G2

dim.Kx/:

If T is a morphism between the correspondences .I;K; �/ and .I 0;K 0; � 0/, we
define the bimodular operator Bim.T / W Bim.I 0;K 0; � 0/ ! Bim.I;K; �/ given by
Bim.T / ´ L

x2I\I 0.Tx ˝ 1/. In this formula, it is understood that Bim.T / is zero
on Kx ˝ L2.X;�/ when x 2 I 0 n I .

Proposition 4.1. Suppose that G Õ .X;�/ is a free, weakly mixing, p.m.p. action
and that G denotes the commensurator ofG inside Aut.X;�/. PutM D L1.X/ÌG.

Then Bim is a bifunctor from Hecke.G < G / to Bim.M/. Moreover, Bim is
isomorphic on the level of 2-cells. More concretely, Bim defines a bijective isomor-
phism between the morphisms .I;K; �/ ! .I 0;K 0; � 0/ and the bounded bimodular
operators Bim.I;K; �/ ! Bim.I 0;K 0; � 0/.

Proof. It is straightforward to check that Bim is a bifunctor. So assume that S is a
bounded bimodular operator from Bim.I;K; �/ to Bim.I 0;K 0; � 0/. In particular,
for all x 2 I and y 2 I 0, Sy;x W Kx ˝ L2.X;�/ ! K 0

y ˝ L2.X;�/ is a bounded
operator satisfying

Sy;x..1˝ a/�.1˝ �x.b/// D .1˝ a/ Sy;x.�/ .1˝ �y.b//
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for all a; b 2 A ´ L1.X/. The commutation with a 2 A implies that Sy;x 2
B.Kx;Ky/˝ A. Since G acts freely on .X;�/, the commutation with b 2 A then
forces x D y, unless Sy;x D 0. We conclude that S is the direct sum of operators
Sx 2 B.Kx/˝ A, x 2 I \ I 0.

Observe that the finite dimensional subspace Kx ˝ 1 � Kx ˝ L2.X/ is globally
invariant under the unitary operators � 7! ug�u

�
x�1gx

, g 2 G1 \ xG2x�1. By weak
mixing, it follows that Sx.Kx ˝ 1/ � Kx ˝ 1. Thus, Sx D Tx ˝ 1 for some
Tx 2 B.Kx/.

We have found a morphism T from .I;K; �/ to .I 0;K 0; � 0/ such that S D
Bim.T /.

Equivalence of the bicategories Hecke.G < G / and Comm.M/. We then arrive
at a categorical reformulation of Theorem 1.2.

Theorem 4.2. Let G Õ .X;�/ satisfy Condition 1.1. Put M D L1.X/ Ì G and
denote by G the commensurator of G inside Aut.X;�/. Then Bim is an equivalence
between the bicategories Hecke.G < G / and Comm.G/.

More concretely,

� the II1 factors that are commensurable with M are, up to stable isomorphism,
precisely the II1 factorsAÌ�1

G1, where .G1; �1/ is a 0-cell of Hecke.G < G /;

� the finite index .AÌ�1
G1/� .AÌ�2

G2/-bimodules are, up to unitary equiva-
lence, precisely the bimodules Bim.C /, where C is a 1-cell of Hecke.G < G /;

� the bounded bimodular operators between Bim.C / and Bim.C 0/ are precisely
the operators Bim.T /, where T is a 2-cell of Hecke.G < G /.

Proof. Let C D .I;K; �/ be a correspondence between .G1; �1/ and .G2; �2/.
It suffices to clarify the relation between the bimodules Bim.C / and the bimodules
K.�; �/ appearing in the formulation of Theorem 1.2.

Put P D L1.X/ Ì�1
G1 and Q D L1.X/ Ì�2

G2. Choose �1; : : : ; �n 2 I

such that I is the disjoint union of the G1�kG2. Define Kk ´ K�k
and define the

map

�k W G1\�kG2��1
k ! U.Kk/ W �k.g/ ´ �2BAd ��1

k .g�1; g/ �.g; �k; ��1
k g�1�k/:

Then �k is a projective representation with obstruction 2-cocycle �1�2 B Ad ��1
k

.
One checks easily that

PBim.I;K; �/Q Š
nL
kD1

PK.�k; �k/Q:
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