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Comonoidal W*-Morita equivalence for
von Neumann bialgebras
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Abstract. A theory of Galois co-objects for von Neumann bialgebras is introduced. This
concept is closely related to the notion of comonoidal W*-Morita eguivalence between von
Neumann bialgebras, which is a Morita equivalence taking the comultiplication structure into
account. We show that the property of ‘being a von Neumann algebraic quantum group’
(i.e. *having invariant weights’) is preserved under this equivalence relation. We also introduce
the notion of a projective corepresentation for a von Neumann bialgebra, and show how it leads
to a construction method for Galois co-objects and comonoidal W*-Morita equivalences.
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I ntroduction

In the literature, there are several equivalent ways of introducing the concept of
a W*-Morita equivalence between von Neumann algebras, for example by means
of the categorical formalism ([23], [5], [13]), Connes’ correspondences ([5], [22]),
Paschke’s Hilbert W*-modules ([21], [13], called rigged modules in [23]), or linking
von Neumann algebras ([5], [13]).

Let us state the definition of W*-Morita equivalence in terms of linking von
Neumann algebras.

Definition 0.1 ([5], [24]). Let P and M be two von Neumann algebras. A linking
von Neumann algebra between P and M consists of a von Neumann algebra QO
together with a self-adjoint projection e € Q and *-isomorphisms P — e¢Qe and
M — (1 —e)Q(1 — e) such that both e and (1 — e) are full projections (i.e., have
central support equal to 1).

Two von Neumann algebras P and M are called W¥-Morita equivalent if there
exists a linking von Neumann algebra between them.

*Supported in part by the ERC Advanced Grant 227458 OACFT “Operator Algebras and Conformal
Field Theory”.
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In this paper, we will introduce a notion of comonoidal W*-Morita equivalence
between von Neumann bialgebras. Let us first recall the definition of the latter
structure.

Definition 0.2. A von Neumann bialgebra (M, Ajs) consists of a von Neumann
algebra M and a faithful normal unital *-homomorphism Ay : M — M @ M
satisfying the coassociativity condition

(Ap @AM = (R Ap)Ap.

Remark. In the literature, von Neumann bialgebras appear under the name ‘Hopf-
von Neumann algebras’. We prefer to use the above terminology since it is in better
correspondence with the purely algebraic nomenclature.

Our proposal for a notion of comonoidal W*-Morita equivalence between von
Neumann bialgebras is the following.

Definition 0.3. Let (P,Ap) and (M, Ayr) be two von Neumann bialgebras. A
linking weak von Neumann bialgebra between (P, Ap) and (M, Ajs) consists of a
linking von Neumann algebra (Q, ¢) between P and M, together with a (non-unital)
coassociative normal *-homomorphism Ag: QO — O ® O satisfying

Agle)=e®e, Apg(l—e)=(1—-e)R(1—e)
and, with 011 =eQe and 0xn=(0-¢e)0( —e),

(011, (A9)g,,) = (P, Ap),
(022, (A0)10,,) = (M, Ay)

by the isomorphisms appearing in the definition of a linking von Neumann algebra.

Two von Neumann bialgebras (P, Ap) and (M, Ayy) are called comonoidally
W*-Morita equivalent if there exists a linking weak von Neumann bialgebra between
them.

We will give some more information on the terminology we use at the beginning
of the second section.

In contexts where linking structures appear, one often has a ‘unilateral version’
accompanying it. This one-sided version should then arise as the corner of some
linking structure. For von Neumann algebras, we will call this structure a Morita (or
imprimitivity) Hilbert W*-module.

Definition 0.4 ([21]). Let M be a von Neumann algebra. A self-dual (right) Hilbert
W*-module for M consists of a right M -module N, together with a (non-degenerate)
M -valued Hermitian inner product (-, - }as, such that for any bounded M -module
map T from N to M there exists x € N for which T'(y) = (x, y)p forall y € N.
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When the self-dual Hilbert W*-module is full (or saturated), in the sense that the
linear span of all (x, y)ar, with x,y € N, is o-weakly dense in M, we call N a
(right) Morita Hilbert W*-module for M (or a Morita Hilbert M -module).

The following definition will then correspond to the unilateral version of a linking
weak von Neumann bialgebra.

Definition 0.5. A right Galois co-object for a von Neumann bialgebra (M, Ajy)
consists of a Morita Hilbert W*-module N for M, together with a coassociative
normal and faithful linearmap Ay : N — N ® N for which the following conditions
are satisfied:

(1) forx e Nandm € M, we have Ay (xm) = Ayx(x)Ap(m);

(2) forx,y € N,we have Ay ({x, y)m) = (AN(X), ANO)) g

(3) thelinearspan of {Ax (x)(m;®m>3) | x € N, my, mp € M }iso-weakly dense
inN®N.

So the first two conditions give compatibility relations between Apx, Ay and
(-, -)m, while the final one is a non-degeneracy condition.

Remark. It would also be interesting to see if one can define this concept without
mentioning M at all, by putting an appropriate coalgebra structure on a W*-TRO-
algebra NV ([32]). This should be a von Neumann algebraic equivalent of Grunspan’s
quantum torsors ([14]).

Given a notion of Morita equivalence, it is important to consider what properties
are invariant under it. The main theorem of this paper will consist of establishing one
such an invariant. Let us first introduce the relevant terminology.

Definition 0.6 ([19], [30]). Let (M, Ajr) be a von Neumann bialgebra. We call
(M, Aypr) a von Neumann algebraic quantum group if there exist nsf (normal semi-
finite faithful) weights ¢,s and ¥5, on M such that for all normal states w on M and
all x € M+ we have

om (0 ® DA (x)) = ppr(x)  (left invariance),
Y ((t ® w)Apr(x)) = Yar(x)  (right invariance).

Note that ‘being a von Neumann algebraic quantum group’ is introduced as a
property of a von Neumann bialgebra. However, since the weights ¢ and ¥y
above turn out to be unique up to scaling with a positive constant, it is customary to
consider them as part of the given data.

Suchvon Neumann algebraic quantum groups turn out to have a very rich structure,
and seem to form the right framework in which to study the theory of locally compact
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guantum groups. See for example [16], [19], [27], [17], [29] and [28] for some
generalizations to this setting of a large part of the theory of locally compact groups.
The following is the main result of the present paper which we alluded to.

Theorem 0.7. If (P, Ap) and (M, Ajs) arecomonoidally W*-Morita equivalent von
Neumann bialgebras, then (M, A,s) isavon Neumann algebraic quantum group iff
(P, Ap) isavon Neumann algebraic quantum group.

The proof of this theorem will consist in making the connection with the theory
of [8]. Indeed, there a notion of Galois objects was introduced. Although one can
in fact obtain a complete duality theory between Galois objects (for a von Neumann
algebraic quantum group) and Galois co-objects (for the dual von Neumann algebraic
guantum group), we have refrained from carrying out this discussion in full here, as
the details are somewhat technical (in essence, the details of the duality construction
can be found in [6], but one first needs to prove Theorem 0.7 of the present paper to
be able to use those results).

An essential ingredient which allows us to use the theory of [8] will be the notion
of a projective corepresentation of a von Neumann bialgebra. This notion was also
introduced in [8], but only for von Neumann algebraic quantum groups.

Definition 0.8. Let (M, Ajs) be a von Neumann bialgebra. A (unitary) projective
(left) corepresentation of (M, Apr) onaHilbert space H is a left coaction of (M, Aar)
on B(H), i.e. anormal faithful unital *-homomorphism

o: B(H) = M ® B(K)
satisfying the coaction property
(R®a)a=(Ay R a.

In the third section, we will show that from any projective corepresentation for
a von Neumann bialgebra, one can construct from it a Galois co-object for this von
Neumann bialgebra. This will generalize the construction of a 2-cocycle function
from a projective representation of a (locally compact) group.

As linking von Neumann bialgebras between von Neumann algebraic quantum
groups turn out to have a lot of extra structure, such as an associated C*-algebraic
description (see again [6]), we prefer to use the following terminology in this case.

Definition 0.9. Let (M, Ays) and (P, Ap) be von Neumann algebraic quantum
groups. Then a linking weak von Neumann bialgebra (Q, e, Ap) between (P, Ap)
and (M, Apr) will be called a von Neumann algebraic linking quantum groupoid.

Indeed, it is intuitively very helpful to see such a von Neumann algebraic linking
guantum groupoid between (P, Ap) and (M, Ayy) as akind of L°°-space on a ‘quan-
tum groupoid’ having a classical object space consisting of two objects, for which
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the (M, Aps) and (P, A p) then play the role of “‘group von Neumann algebras of the
isotropy groups’, and for which the off-diagonal corners eQ(1 — e) and (1 — e) Qe
play the role of a certain topological linearization of ‘the space of arrows between the
two objects’. See the first section of [7] for some more information (and, for a similar
interpretation in a more algebraic setting, see [1]). We note that such von Neumann
algebraic linking quantum groupoids then fit into the theory of ‘measured quantum
groupoids’ as introduced in [20].

The concrete structure of this paper is as follows.

In thefirst section, we will give some more preliminary information on the notions
of linking von Neumann algebras and Hilbert W*-modules.

In the second section, we will show how any linking weak von Neumann bialgebra
gives rise to a Galois co-object, and, conversely, how any Galois co-object can be
completed to a linking weak von Neumann bialgebra. We also show that comonoidal
W*-Morita equivalence is indeed an equivalence relation. We end by introducing,
in the setting of Galois co-objects for von Neumann algebraic quantum groups, an
analogue of the right regular corepresentation.

In the third section, we prove the main result concerning projective corepresen-
tations which we mentioned above, and use it to give a proof of Theorem 0.7.

In the short fourth section we will consider again the special situation of unitary
2-cocycles for avon Neumann bialgebra, which was also treated partly in [8]. Such 2-
cocycles correspond precisely to those linking weak von Neumann bialgebras whose
underlying linking von Neumann algebra is trivial. We note that, in the operator
theoretic framework, these 2-cocycles were introduced in [11].

1. W*-Morita equivalence

The results in this section are well-known, and most of them are essentially rephras-
ings of the results in [21], [23] and [26] (Section 1X.3). We therefore refrain from
giving detailed proofs but will mostly simply point to the relevant statements in these
references.

1.1. MoritaHilbert W*-modules. In Definition 0.1, we already recalled what we
mean by a linking von Neumann algebra (Q, e) between two von Neumann algebras
P and M. Let us give some more information on the notation we will use for this
concept. First of all, we will always simply identify P and M with their parts inside
a linking von Neumann algebra, thus neglecting the identifying maps. We will also
write Qij = eiierj withe;; =eandey; =1 —¢, and

0= Oun Qi
021 O2n)
This matrix algebra notation is very convenient in practice. Note that this decom-
position makes sense for any projection e € Q, but the special (and characterizing)
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property of linking von Neumann algebras is that Q15 - Q»; is o-weakly dense in
011 (by definition of fullness for 1 — ¢), while Q51 - Q15 is o-weakly dense in Q»,
(by definition of fullness for ¢).

We will further talk simply of “a linking von Neumann algebra’ (without specifying
what the corners are) or of ‘a linking von Neumann algebra for the von Neumann
algebra M’ (without specifying the von Neumann algebra in the upper left corner;
admittedly, this puts the lower left corner in a privileged position terminology-wise).
In fact, this terminology dictates the strongness of the isomorphism one is interested in
(keeping none, one or both of the diagonal entries pointwise fixed). The same remark
then applies to more general morphisms: if for example M, and M, are two von
Neumann algebras, (Q1, ¢) and (Q», f) linking von Neumann algebras for resp. M,
and M,, and ¢: M; — M, a normal unital *-homomorphism, then a ¢-compatible
unital morphism between (Q1,e) and (Q,, f) is a normal unital *-homomorphism
®: Q1 — O sending e to f, whose restrictiontoamap Q1220 = M1 — Q222 =
M, coincides with ¢.

We also defined already the notion of a Morita Hilbert W*-module (Definition 0.4).
We introduce the following terminology concerning maps between Morita Hilbert
W*-modules.

Definition 1.1. When M, M, are two von Neumann algebras, ¢: My — M- a
unital normal *-homomorphism, and N; and N, Morita Hilbert W*-modules for
resp. M; and M,, we call a linear map ®: N; — N, a ¢-compatible morphism
when @(xm) = ®(x)$(m) and (®(x). D(y))ar, = ((x.y)a,) forall x,y € Ny
and m € M;.

When M is a von Neumann algebra, and N; and N, two Morita Hilbert M-
modules, then we call N1 and N, isomorphic if there exists a bijective t5,-compatible
morphism N — N,, where 137 : M — M is the identity map.

Let us recall from [21], Proposition 3.10, that if M is a von Neumann algebra,
and N a right (Morita) Hilbert M-module, then any bounded right M -module map
N — N isadjointable, and the *-algebra of all such maps is a von Neumann algebra.
We then introduce the following concept (see [23]).

Definition 1.2 ([23]). If M and P are von Neumann algebras, a P-M -equivalence
bimodule is a P-M -bimodule N which is at the same time a right Morita Hilbert
M -module and left Morita Hilbert P-module, and such that

x-{y,z)m = {x,y)p-z forallx,y,zeN.

The following lemma makes the connection between Morita Hilbert W*-modules
and linking von Neumann algebras concrete.
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Lemma 1.3. (1) Let (Q,e) be a linking von Neumann algebra between the von
Neumann algebras P and M. Then Q1,, together with the M -valued inner product

(x. )M =x"y, x,y€Qn2
and the P-valued inner product

(x,y)p =xy*, x,y € Q12,

isa P-M -equivalence bimodule.

(2) If N isaright Morita Hilbert M -module, there exists a linking von Neumann
algebra (Q, ¢) and an isomorphism 5 of right Hilbert W*-modules from N to Q5.
Moreover, (Q, e) isthen unique up to isomor phism of linking von Neumann algebras
for M.

Proof. Thefirst part of this lemma can be deduced from Theorem 6.5 of [23], choosing
a concrete representation of Q. As for the second part, we can construct the (Q, e)
associated with N in a natural way as the von Neumann algebra of right M -module
maps on the direct sum right Hilbert W*-module (4) over M, together with the
projection e onto N. The fact that this is then a linking von Neumann algebra follows
from the proof of Corollary 7.10 in [23], which shows that N is a P-M -equivalence
bimodule. Finally, the uniqueness statement follows from Proposition 7.6 of [23],
which shows that in any linking von Neumann algebra (Q, e¢), the von Neumann
algebra Q1; can be identified with the set of bounded right Q,>-module maps on
Q12. This then easily allows one to identify this linking von Neumann algebra with
the canonical one we constructed above. O

In the following, we will always regard a Morita Hilbert W*-module as the upper
right corner of its associated linking von Neumann algebra. Thisallows usto introduce
a lot of operations for Morita Hilbert W*-modules in a straightforward way. For
example, if N is a Morita Hilbert W*-module, and (Q, ) the associated linking von
Neumann algebra, then the predual of N, whose existence was proven in [21], may be
identified with the space of normal functionals on QO which vanish on all Q;; except
Q12. The o-weak topology of N as the dual of its predual then coincides with the
restriction of the o-weak topology on N € Q. This allows us to talk about normal
maps between Morita Hilbert W*-modules without any ambiguity.

The following lemma shows how to complete maps which are only defined on a
subspace of a Morita Hilbert W*-module.

Lemma 1.4. Let M, M, bevon Neumann algebras, equipped with a unital normal
*-homomorphism¢: My — M,. Let Ny and N, beright Morita Hilbert W*-modules
over resp. M, and M,. Supposethat N, isao-weakly dense M -submoduleof N, and
suppose that there exists a linear map 7 : Ny — N, suchthat 7w (xm) = 7 (x)¢(m)
and (7(x), 7 (y))m, = ¢((x,y)m,) for al x,y € Nyandm € M. Then = hasa
unigue extension to a normal ¢-compatible morphismW: Ny — N,. If ¢ isfaithful,
then & will befaithful. If ¢ isbijective, and = haso-denseimage, then W isbijective.
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Proof. As N isa linear space, it is also o-strongly dense in N;. Further, from the ¢-
compatibility condition on 7z, we easily get that if a net x,, € Ny converges a-strongly
to 0, then also m(x,) — 0 in the o-strong topology. From these two observations,
it follows that 7z can be uniquely extended to a normal map W: N; — N,, which is
then of course still M -linear and ¢-compatible.

If ¢ is faithful, then W(x) = 0 for x € N; would imply ¢({y,x)m,) = 0 for
all y € Ny, hence x = 0; thus also W is faithful. If further ¢ is bijective and = has
o-dense image, then, as the range W(N,) is o-weakly closed, it must equal N, and
hence W is bijective. O

The next lemma provides a further weakening of the conditions in the previous
lemma.

Lemma 1.5. Let M, M, bevon Neumann algebras, ¢ : M; — M, aunital normal
*-homomorphism. Let Ny, N, beright Morita Hilbert W*-modules for resp. M; and
M,. Let I beanindex set, and supposethat x; € Ny and y; € N, are elements such
that ¢ ((x;, xj)am,) = (vi.yj)m, for all i, j € I, and suppose that the M;-linear
span of the x; is o-weakly dense in N;. Then there exists a unique ¢-compatible
morphismz: Ny — N, of Hilbert W*-modules such that z(x;) = y;.

Proof. Let N be the right M;-module spanned by the x;. Then the map

n n

a7: Ny — Nat Y ximp — Y yip(m;), m;j € M,
i=1 i=1

is a well-defined ¢-intertwining map since, by the compatibility between the x; and

vi, we have

(S wme, 3 xmadu, =0 = (3 3igms). 3 v

i=1 i=1

The lemma then follows immediately by the previous one. O

The way in which linking von Neumann algebras most frequently appear is the fol-
lowing (see also Theorem 8.15 and its footnote in [23]). The proof of the proposition
essentially follows by Proposition 1.3 and Proposition 1.1 (2) of [23].

Proposition 1.6. Let Z beavon Neumannalgebra, and let H; and H, betwo Hilbert
spaces equipped with faithful normal *-representations =; and =, of Z. Denote
M = n5,(Z) and P = 71(Z)’. Thenthe space N of 1-m,-intertwinersisaright
Morita Hilbert M-module, and the commutant Q of the direct sum representation
1 @ 7y, together with the projection e on Hy, is a linking von Neumann algebra
between P and M.
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In particular, this shows that the notion of ‘linking algebra’ which was used in [8]
coincides with the terminology of the present paper.

Another way to create Morita Hilbert W*-modules is the following. Itis essentially
a concrete, spatial approach to ternary W*-algebras.

Proposition 1.7. Let H and X betwo Hilbert spaces, andlet N € B(HH, X) beao-
weakly closed linear space for which the linear span of theset {xy*z | x,y,z € N}
equals N. Then with M denoting the o-weak closure of the linear span of {x*y |
x,y € N}, wehavethat M isavon Neumann algebraand N aright Morita Hilbert
M -module for the M -valued inner product (x, y)a = x*y.

Proof. Denote O = N*, the set of adjoints of elements in N. By the condition that
linear span of {xy*z | x,y,z € N} equals N, we havethat O - N = {} /_, x*y; |
n € No, x;,y; € N}and N - O are *-algebras. Hence their respective o-weak
closures M and P are von Neumann algebras (possibly with different units than
130y and 1p(x)). As N is o-weakly closed, N is a P-M-bimodule, and then it is
immediate that (£ &) isavon Neumann algebra. By the way M and P were defined,
it is a linking von Neumann algebra between P and M. In particular, N is a right
Morita Hilbert M -module. O

We also record the following lemma for further use.

Lemma 1.8. Let M; and M, be von Neumann algebras, and N, and N, Morita
Hilbert W*-modulesfor resp. M and M,. Let 155 M1 — M, beanormal unital *-
homomorphism, and 71, : Ny — N, am,,-compatible normal morphism. If (Q1, e)
and (Q,, f) arethelinking von Neumann algebras associated with respectively Ny
and N,, then there exists a unique m,,-compatible, not necessarily unital morphism
w:(0Q1,e) = (Qz, f)suchthat w(e) < f, n(l —e) = 1— f, and such that the
restriction to N; coincides with 5.

If the right M,-module generated by 712(Ny) is o-weakly dense in N,, then
7(e) = f,and hence = unital.

Proof. The uniqueness of x is immediate. Also the existence of 7: (Q1,e) —
(02, f) as a normal *-homomorphism follows from basic von Neumann algebraic
techniques. If w1, (N1) - M5 is o-weakly dense in N,, then 7 (e) acts as a unit on N,
by left multiplication, and hence equals f. O

1.2. Tensor productsand composition. Suppose that My, M,, Py, P, are von Neu-
mann algebras, and that (Q1, e), resp. (Q2, f), is a linking von Neumann algebra
between P; and My, resp. P, and M,. Then we denote QO * Q, for the corner of
01 ® Q5 by the projectione ® f + (1—¢e) ® (1— f). The reason for this notation is
that this can (easily) be shown to be a special case of a fibred product of von Neumann
algebras (i.e., fibred over C2); see [12], Sections 2.3 and 2.4.
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It is easy to see that (Q1 * Q2,e ® f) will be a linking von Neumann algebra
between P; ® P, and M; ® M,. The operation * is an associative operation on
linking von Neumann algebras.

If Ny, resp. N,, is a Morita Hilbert W*-module for a von Neumann algebra M,
resp. M,, we can define N; ® N, to be the right hand corner of Q; * Q,, with
(Q1,e) and (Q», f) the linking von Neumann algebras associated with respectively
N; and N,. We then have a natural injection Ny ©® N, — N; ® N,, where & denotes
the algebraic tensor product, and this allows us also to see Ny ® N, as a concrete
realization of the ‘self-dual completion’ of the pre-Hilbert W*-module N; ® N, for
M, ® M, (see Theorem 3.2 of [21], and also Proposition 8.5 in [23]). Moreover,
(01 % Qz,e ® f) will then be a linking von Neumann algebra associated with the
Morita Hilbert W*-module N; ® N, over M; ® M,. In the same way, we can take
the tensor product of the lower left corners of Q; and Q,, and thus, if we write

0 = (S{ ﬁ’) we can write
1 l

_(Pi®P, Ni®N,
Q1*Q2—(01®02 M1<§_§>M2)'

Finally, if Ny, N, and N3 are Morita Hilbert W*-modules, and ¢: Ny — N, is
a normal map, it is clear, by passing again to the enveloping linking von Neumann
algebra picture, that one can define aslicemap ¢ ® t: N1 ® N3 — N, ® N3, uniquely
determined by the property that it is normal and satisfies (¢ @ ) (x R y) = ¢p(x) ® y
for elementary tensors x ® y € Ny ® Ns.

Let us also comment on how Morita Hilbert W*-modules can be composed, which
will show in particular that W*-Morita equivalence is an equivalence relation. Let
M, M, and M3 be von Neumann algebras, and let N, be an M;-M,-equivalence
bimodule, and N,3 an M,-M3-equivalence bimodule. Consider the associated linking
von Neumann algebras, which we will denote by

0, = M; Ni» 0, = M; Nj;3
N21 Mz ’ N32 M3 '

N
Then we can consider the direct sum right Hilbert W*-module (Mlzz) for M5. Let O

N3
be the von Neumann algebra of bounded right M,-linear maps on this module (using

again Proposition 3.10 of [21]). Then we can decompose Q as

M; Niz Nis
O =N My N
N3 Ni3p M;

As then Ni3 D Nip - Nps and Nz; D N3y - Npp, We see that N3 - N3 contains
N3y - (N21 . le) - Np3. As Nop - Nia is O"Weakly dense in M, and N3 - Np3 is
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o-weakly dense in M3, we get that N3; - N13 is o-weakly dense in M3. Similarly,
Ni3 - N3p is o-weakly dense in M. This implies that

M; Nis

N31 M;
isalinking von Neumann algebra between M, and M3, which we call the composition
of Q1 and Q,. The Ny3-part, considered as a M;-M3-equivalence bimodule, is called
the composition of the equivalence bimodules N1, and N,3. One could also call the

total structure Q, together with the units of its diagonal components, a ‘(3 x 3) linking
von Neumann algebra’.

1.3. Compatibility with weight theory. Let us now comment on the relation with
weight theory for von Neumann algebras (see [26], and especially Chapter IX, Sec-
tion 3, for a discussion of material closely related to ours).

Let M be a von Neumann algebra, and let v be an nsf (i.e., normal semi-finite
faithful) weight on M. We denote by N3y, the space of elements x € M for which
Y(x*x) < oo, by M+ the space of elements x € M for which ¥ (x) < oo, and

by M, we denote the linear span of J\@ which also coincides with N3, - Na,y.
Then one can linearly extend v to M, and we will use the same notatlon for this
extension.

Now suppose that N is a right Morita Hilbert M-module. Then we can also
form the space Ny, of elements x € N for which ¥ ({(x,x)s) < oo. Clearly,
this space is o-weakly dense in N as it contains the set N - Ny, (in fact, it equals
this set by a polar decomposition argument). We can then turn Ny, into a pre-
Hilbert space by the scalar product (x, y) = v ({x, y)ar) (we will take the scalar
product in our Hilbert spaces conjugate linear in the first variable since this is the
most natural thing to do in this context). We denote by L2(N, ) its completion,
and by T'y,y the natural embedding map Ny, < L2(N,y). Applying the same
construction to M considered as a right Morita M -module, we obtain the ordinary
GNS-construction associated with . The latter however also comes with a normal
left representation ras,y Of M on L2(M), uniquely determined by the property that
My () () = Ty (xy) fory € Ny andx € M. Asimilar left representation
can then be obtained for N, but it will not act on one Hilbert space, but as linear
operators between two different Hilbert spaces. Namely, for x € N and y € Naz,y,,
we have | Ty (x»)|| < [1(x, x)ar |12 | Tar.y (»)|, SO that one can define 7y, (x)
as the unique bounded linear operator

TNy (X): L2 (M ) — L2(N, ¥)

such that g (x)Tary () — Iy (xy) forall y € Nagy. Then zy 4 will be a
normal map of N into B(L2(M, ), L2(N,¥)), and clearly

Ny (xy) = Ny (xX)mapy(y) forallx e Nandy e M.
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It is also easily computed that

ANy () TNy (V) = Ty ((x, y)m) forx,y € N.

If (Q, e) is the linking von Neumann algebra associated with NV, we can represent

it in a faithful, normal and unit-preserving way on (2228‘;3))) again essentially by

extending the left multiplication operation on (§Z$) In particular, we have a unital

faithful normal *-representation of P on £2(N). The above constructions can further
be brought in connection with the theory of GNS-representations for Q, and one could
also develop a theory of ‘standard’ representations. However, in this paper, we will
not need this further structure, so we refrain from making these further elaborations.

Since we will only need one nsf weight at any particular moment, we will in the
following unburden the notation somewhat by dropping the symbol v in the notation
for the GNS-construction.

Let us now give some comments on the tensor product theory of weights. If M,
and M, are von Neumann algebras, and v; an nsf weight on M;, then one can define
the tensor product weight /1 ® ¥, on M; ® M. In Definition VI11.4.2 of [26], this
is introduced by using the language of (left) Hilbert algebras. Alternatively, v; ® ¥,
can also be introduced using operator-valued weights: one can consider (t® v,) asan
(nsf) operator-valued weight from M; ® M, to M,, while (¥/; ® ¢) can be considered
an (nsf) operator-valued weight from M; ® M, to M;. Then v; o (t ® ¥») and
Vs o (Y1 ® t) are well-defined nsf weights on M; ® M,, and they can be shown to
be equal to each other (for example, by using that an nsf weight can be written as the
pointwise limit of a net of increasing positive functionals). It can then be shown that
this agrees with the nsf weight vy ® v, as defined in the first way.

Let now Ny and N, be right Morita Hilbert W*-modules for respective von Neu-
mann algebras M; and M», and v; an nsf weight on M;. Then one can identify
L2(N; ® N3) unitarily with £2(N;) ® L2(N,) by the unique unitary which sends
Ly en, (x ® ) into Iy, (x) ® T, (y) for x € Ny, 4, and y € Ny, y,. In the
following, we will then always use £2(N;) ® L2(N,) for the GNS-space of v; ® V2,
but we will then write the associated GNS-map as I'y, ® I'y,. Of course, the as-
sociated representation of Ny ® N, then becomes the tensor product representation
TN, ® TN, into B(L2 (M) ® L2(M3), L2(Ny) ® L2(N2)).

2. Comonoidal W*-Morita equivalence

Suppose that P and M are von Neumann algebras which also have some extra struc-
ture. One would then like an appropriate kind of W*-Morita equivalence which takes
this structure into account. This leads quite naturally to the notion of comonoidal W*-
Morita equivalence between von Neumann bialgebras, introduced in Definition 0.1.
Letus remark that the notion of a linking weak von Neumann bialgebra (Q, e, Ag) can
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also be defined more succinctly using the operation « introduced above in Section 1.2.
Indeed, then it becomes simply a linking von Neumann algebra (Q, ¢) equipped
with a coassociative normal unital morphism Ag: (Q.,e) — (Q.,e) * (Q,e) =
(0 * 0, e ® e). We will further use the following simplifying notation:

Ajj: Qij — Qij ® Q5

denotes the restriction of Ap to Q;;. We also follow the same conventions as for
linking von Neumann algebras, and will talk about ‘a linking weak von Neumann
bialgebra’ or “a linking weak von Neumann bialgebra for (M, Aar)’.

Let us comment now on the terminology we use. The term ‘weak von Neumann
bialgebra’ is a straightforward analogue of the notion of a ‘weak bialgebra’, as intro-
duced in [3]. (Although the terminology von Neumann weak bialgebra would then
be more accurate, this seems more awkward to use.) The terminology ‘von Neumann
algebraic linking quantum groupoid’ (Definition 0.9) has already been motivated
somewhat in the introduction. Finally, to explain the terminology ‘comonoidal’,
let us suppose for the moment that we are in the finite-dimensional setting, and
that we do not consider the associated *-structure. Then it is not difficult to show
that if (Q.e, Ap) is a ‘linking weak bialgebra’, we have an equivalence functor
M-Mod — P-Mod by taking the balanced tensor product on the left with pNy,.
This equivalence functor is naturally endowed with a weak comonoidal structure F.
Namely, if V, W € M-Mod, we have

F - Ny VOW)> (NQuV)® (N yu W),
X ®u (VW) (x1) Oum V) ® (X2) Om W),

where we have used the Sweedler notation for Ay . In case the corners of Q are
Hopf algebras, this weak comonoidal structure can be shown to be strong. A similar
discussion then holds in the analytic setting: for a general linking weak von Neumann
bialgebra, we will get a weakly comonoidal *-equivalence between the monoidal cat-
egories Rep* of normal unital *-representations of the corner von Neumann algebras
on Hilbert spaces, and this will be strongly comonoidal if these corners are von Neu-
mann algebraic quantum groups (see again [6] for details). In any case, we have seen
that it is the comonoidal structure which appears most naturally, hence we use it to
designate the structure.

In the introduction, we also introduced the notion of a Galois co-object (Def-
inition 0.5). Let us remark that one may drop the assumption of faithfulness and
normality of the map A in that definition, as they are a consequence of the second
compatibility condition.

The following proposition provides the connection between Galois co-objects and
linking weak von Neumann bialgebras.

Proposition 2.1. Let (N, Ay) be aright Galois co-object for a von Neumann bial-
gebra (M, Ayps), and let (Q, e) be a linking von Neumann algebra associated with
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N. Then there exists a unique linking weak von Neumann bialgebra structure A g on
(0, e) such that the restriction of Ap to N coincideswith A .

Conversely, if (Q.e, Ap) is a linking weak von Neumann bialgebra for a von
Neumann bialgebra (M, Ayr), then the upper right hand corner (Q12, A12) isa
Galois co-object for (M, Apy).

Proof. Let (N, Ayx) be a right von Neumann algebraic Galois co-object, and let
(Q.e) = (£ &) be the linking von Neumann algebra associated with N as in
Lemma 1.3. Then we can apply Lemma 1.8 with respect to Ay and A, to obtain a
faithful normal *-homomorphism Ag: 0 - 0%« Q € 0 ® Q with Ap(1 —e) =
1 —e. By the uniqueness statement in that lemma, we have that A is coassociative,
since (Ap ® 1)Ag and (1t ® Ap)Ap coincide when restricted to N and M. As
AN(N)(M ® M) is o-weakly dense in N ® N by definition of a Galois co-object,
the ‘non-degeneracy’ condition in that lemma is satisfied, sothat Ag: O — QO * O
is unital. Hence (Q, e, Ap) is a linking weak von Neumann bialgebra.

Conversely, suppose that (Q = (5 &) .Ap) is a linking weak von Neumann
bialgebra. Then it is clear that (N, Ay ) satisfies the first two conditions of a Galois
co-object. Suppose that Ay (N)(M ® M) is not o-weakly dense in N ® N. Since
the former space is a non-trivial right M ® M -module, we can find a non-zero
x € P ® P suchthat xAy(y) = 0forall y € N. (Indeed, the o-weak closure of
An(N)(O ® 0) will be a non-trivial right ideal inside P ® P, hence there exists a
non-zero projection x € P ® P which annihilates it by left multiplication.) But then
xAp(yz) =0forall y € N,z € O. Since the space N - O is o-weakly dense in P,
also xAp(w) =0forall w e P. Since Ap(lp) = 1p ® 1p, wefindthatx =0, a
contradiction. Hence Ay (N)(M ® M) is o-weakly dense in N @ N. O

Remark. If (M, Aypr) is a von Neumann algebraic quantum group, we know that
Ay (M)(1 ® M) is o-weakly dense in M ® M (this follows from Corollary 6.11
of [18], applied to the associated reduced C*-algebraic quantum group)). Hence in
this case, we may relax the density condition for a von Neumann algebraic Galois
co-objectto ‘Ax (N)(1 ® M) being o-weakly dense in N ® N’. This is more in line
with the way Galois co-objects are defined in the setting of Hopf algebras (see [25],
Section 4, although the terminology of Galois co-object is not used there).

The following proposition is mandatory to prove if we want to use the terminology
introduced.

Proposition 2.2. Comonoidal W*-Morita equivalence induces an equivalence rela-
tion between von Neumann bialgebras.

Proof. It is clear that if (M, Ayr) is a von Neumann bialgebra, then it is como-
noidally W*-Morita equivalent with itself by the linking weak von Neumann bialgebra
(Q.Ap) whichhas Q = M ® M,(C), and with A;; = Apr on Q;; = M. Further,
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if (P, Ap)and (M, Ajs) are comonoidally W*-Morita equivalent by a linking weak
von Neumann bialgebra (Q,e, Ap), then also (M, Ay) and (P, Ap) are, by the
linking weak von Neumann bialgebra (Q,1 —e, Ap).

Now let (Q1,e, Ag,) and (Q2, f, Ag,) be two linking weak von Neumann bial-
gebras. As explained in the second part of Section 1.2, we can combine (Q1, ¢) and
(02, f) into a global (3 x 3)-linking von Neumann algebra

011 Q12 Q13
O0=|021 Q2 0],
Q31 Q3 033

with (Q1, e) isomorphic to the upper left hand block, and (Q»,, f) isomorphic to the
lower right hand block. We then have an obvious extension of * to such (3 x 3)-linking
von Neumann algebras (which is then a fibred product over C3), and we can write

0u1®011 Q128012 Q13® Q13
00 =|0210021 022® 02 0238 023 ).
031 ® 031 032® 03 (33Q 033

Transporting the comultiplication structuresfrom (Q,e, Ag,)and (Q2, f. Ag,),
we then have maps A;;: Q;; — Q;; ® Q;; for |i — j| < 1. Now denote by 015 the
set Q12 - O23, Which will then be a o-weakly dense subset of Q3 (because, if not, it
would have, being a right Q33-module, a non-zero left annihilator in Q11, which is
clearly impossible since Q12 - Q23+ Q32+ Q21 is o-weakly dense in 0 11). Applying
Lemma 1.5 to the elements xy and A12(x)Ax3(y) for x € Q12,y € Qa3, We see
that we can find a normal faithful linear map Ay3: Q13 — Q13 ® Q13, which will
then be A11-A3z3-compatible and coassociative. Defining

Azr: Q31 = 031 ® 031: x — (A3(x™))*,

((Qu Q13) (An Als))
031 033) \Az1 Ass

is a linking weak von Neumann bialgebra between (Q11, A1) and (Q33, Aszz). From
this it follows immediately that comonoidal W*-Morita equivalence is a transitive
relation, which finishes the proof. O

we get that

We now construct, in the setting of Galois co-objects for von Neumann algebraic
guantum groups, an analogue of the right regular corepresentation for a von Neumann
algebraic group.

Proposition 2.3. Let (M, Ajys) be a von Neumann algebraic quantum group with a
rightinvariant nsf weight v3,. Let (N, Ay ) bearight Galoisco-object for (M, Ayy).



562 K. De Commer

Then, for all x € Nyy,, and y € Ny y,,, the element Ay (x)(1 ® y) liesin
NN&N,ypy @y, AN there exists a unitary element V' € B(L?(N)) ® N such that

VIn@) ® Ty (y) = (T ® Ty)(Ax(x)(1® ).

Furthermore, if x € Ny y,, andw € Ny, then (1 ® w)(An(x)) € Nn,y,, and
(®w)(V)Txy(x) = Tn((t ® 0)An(x)).

Proof. The proof that ¥ is a well-defined isometry is completely the same as in
the case of von Neumann algebraic quantum groups, by the simple observation that
AN(xX)*An(y) = Ay (x*y)forx, y € N,andthe fact that (Vs ®1)(Apy (x*y)) =
Ym (x*y)1p forx, y € Nuy,,, by (polarization and) definition of right-invariance.

But in this case also the proof that I/ is a unitary is easy. Indeed, since Ay (xy) =
An(x)Ap(y) forx € N and y € M, we have

VIn(xy) ® Tn(z) = An(x) (T ® Tar) (A (7)(1 ® 2))

forx e Nandy,z € N y,,. Nowelements of the form (I'ysy @ T ) (Am (¥)(1®2))
have dense linear spanin £2(M)®L2(M). Hence the range of I contains the closure
ofthe set Ay (N) - L2(M) ® L2(M). As Ay (N)(M ® M) is o-weakly dense in
N ® N by definition of a Galois co-object, we see that indeed the range of V equals
L2(N) ® L2(N), so that V is in fact a unitary.

We prove that V € B(L2(N)) ® N. Using that B(L2(N)) ® N is a corner of
B(L2(N)) ® Q, it follows that it is sufficient to show that (w ® ¢)(V) € N for each
w € B(L?(N))«. We may further simplify by taking w of the form (I'y (), - Tn ())
for y,z € Nn,y,, as the linear span of such elements is dense in B(L?(N)). But
then it follows from the definition of ¥ and a Fubini type argument that

(@® (V)= Yu @)((*®1)AN(y)) €N,

where we remark that (z* ® 1)An (y) lies in the domain My,, &) Of the operator-
valued weight Wy, @ from M ®@Q 10 Q =~ 18 Q,since Ay (¥)*An(y) = Ay (y™*y)
and (z*z ® 1) are inside My, o,
Finally, if x € Nyy,, and ® € N, S Q. we have the Cauchy-Schwarz

inequality
(® ) (AN ()" (t ® @) (AN (X)) = [lo] ¢ ® [w])(Ap (x*x)),

where || is the absolute value of . It follows that (1 ® w)(An(x)) € Ny, -
If there further exist y € Ny ,y,, and z € Npsy,, such that » is of the form
(Tar(2), - Tw (), it follows from the definition of ¥ that

(®0)(V)Ty(x) = Tn((t ® 0)An(x)).

By the closedness of 'y and the density of the linear span of such functionals in N,
it follows that this formula holds for any @ € N.. O
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Definition 2.4. Let (N, A ) be aGalois co-object for a von Neumann algebraic quan-
tum group (M, Ajpr). We call the unitary V the right regular (N, A y)-corepresen-
tation of (N, Ay).

Similarly, one can define a left such corepresentation 17/, such that W* will then
be an element of N @ B(L?(N)). _
The following proposition is an easy consequence of the definition of V.

Proposition 2.5. Let (N, Ay) be a Galois co-object for a von Neumann algebraic
quantumgroup (M, Ays). Let V betheregular right corepresentation for (M, Ax),
and let V betheright regular (N, A y)-corepresentation for (N, Ay).

(1) Forany x € N, we have
Vix @ HV* = Ay (x).
(2) The following pentagonal equation holds:
V12Vi3Vas = Va3 V1.

Proof. Choose y € Nasy,, and x € N. Then xy € Ny, and I'n(xy) =
xIp(y). From this it is immediately seen, using the definition of V and V, that
V(x®1) = Ayx(x)V,and hence V*(x ® )V = Ay (x).

Since V € B(L2(N)) ® N, and since we can implement Ay by V' and V by
means of the first point, the pentagon identity for V canberewrittenas (@ Ay ) (V) =
Vi, V1. Itis then enough to prove that, for any w1, w, € Ny, we have

(t® (01 ® ) o AN)(V) = (1 ® ) (V)1 ® w2) (V).

But this follows immediately by applying these operators to a vector I'y (x) with
x € Np,y,,, and using the final part of the previous proposition together with the
coassociativity of Ay. O

3. Projective corepresentations

In order to prove Theorem 0.7, we will use the notion of a projective corepresentation
of avon Neumann bialgebra. This is not the most natural way of proving the theorem,
but the more direct manner would require a lot of the arguments which are very similar
to the ones of [8], some of which are quite technical and subtle. We therefore thought
it better to avoid this, and to actually use the results of [8].

The notion of a projective corepresentation was already introduced in Defini-
tion 0.8. Let us however state clearly here what we mean by an isomorphism between
projective corepresentations.
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Definition 3.1. Let (M, Ajps) be a von Neumann bialgebra. We call two projective
corepresentations «; and a, of (M, Ajr) on respective Hilbert spaces 3, and 3,
unitary equivalent if there exists an isomorphism y: B(H;) — B(3H>) such that
o = (y ® Y.

The crucial property of a projective corepresentation will be that it can be imple-
mented, in the same way as ordinary projective representations of a locally compact
group can be implemented by choosing a (measurable) section U(H)/S! — U(H),
with U the (Polish) group of unitaries of a (separable) Hilbert space. The notion we
need for this is the following.

Definition 3.2. Let (M, Ajs) beavon Neumann bialgebra, and (N, A x) a (right) Ga-
lois co-object for (M, Apr). A (unitary) projective (left) (N, Ay )-corepresentation
of (M, Ayy) consists of a unitary § € N ® B(H) (i.e., unitary as a map from
L2(M) ® H to L2(N) ® H), satisfying the corepresentation property

(AN ® )G = §13G23.

If §; and &, are two (N, Ay )-corepresentations on respective Hilbert space 3,
and J,, we call §; and &, unitary equivalent if there exists a unitary u: H; — H>,
suchthat 6(1 @ u) = (1 ® u)g;.

If H is a Hilbert space, a: B(H) — M ® B(H) a projective representation
of (M, Apr) on H, and (N, Ay) a Galois co-object for (M, Apr), we say that a
projective (N, A y)-corepresentation € implements « if

a(x) =9*(1®x)g forall x € B(H).

Itis easy to see that any projective (N, A y)-corepresentation § on a Hilbert space
H implements in a unique way a projective corepresentation o on 3, precisely by the
formula a(x) = €*(1 ® x)¢. The fact that this is a coaction follows immediately
by the relation between & with A .

We next want to show that any projective corepresentation is implemented by
an (N, A y)-projective corepresentation (for some (N, Ay )), but we first establish a
uniqueness result. It will make use of the following lemma.

Lemma 3.3. Let (N, Ay) be a Galois co-object for a von Neumann bialgebra
(M, Apr), and let ¢ be an (N, A y)-projective corepresentation on a Hilbert space
H. Thenthe M -linear span of thespace{(t ® w)& | w € B(H)«} iso-weakly dense
inN.

Proof. Let N be the o-weak closure of the space {(1 ® ®)()m | @ € B(H)s, m €
M}, and suppose that N # N. If O is the linking von Neumann algebra associated
with N, there exists a non-zero annihilator x € Q1 of N, again since this space
is a non-trivial right M -submodule of N. But this means that x(t ® w)(§) = 0
forall w € B(H)«, and hence (x ® 1)§ = 0. As g is a unitary, we get x = 0, a
contradiction. Hence N = N. O
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Proposition 3.4. Let (M, Apr) be a von Neumann bialgebra, and a: B(H) —
M ® B(JH) a projective corepresentation of (M, A,y) on a Hilbert space .

If (Ni,Apn,) and (N, Ay,) are two Galois co-objects for (M, Aus), both
equippedwitha (N;, A y, )-projective corepresentation &; implementing «, then there
exists an isomorphism : (N1, An,) — (N2, An,) of Galois co-objects such that
(T ®0)5 = 5.

Here the notion of isomorphism for Galois co-objects is of course an isomorphism
of Morita Hilbert W*-modules intertwining the comultiplication structures.

Proof. For &, n vectors in I, denote wg , = (£, - n), and write 6 ,, for the finite rank
operator y — (n, x)€. If &1, &, n1, 02 are vectors in JH, it is easily seen that

t® wflam)(gi)*(t ® we, ) (i) = (L ® wm,flz)(gi*(] ® b, ,)%i)
= (1 @ Wy, n,)((bg, &,))

for both i € {1, 2}.
The proposition then follows immediately by the previous lemmaand Lemma 1.5.
O

However, this does not imply that if (V, A n) is a Galois co-object, and §; and &,
two projective (N, A y)-corepresentations implementing the same projective corep-
resentation, that they are isomorphic. The reason is that for projective (N, Ay)-
corepresentations with fixed (N, Ay ), the notion of isomorphism is stronger. The
concrete situation is the following.

Proposition 3.5. Let (N, Ay) be a Galois co-object for a von Neumann bialgebra,
and let (Q, Ap) be the associated linking weak von Neumann bialgebra. Suppose
that ¢, and g, are two projective (N, A y)-corepresentations on a Hilbert space H
such that

a(x) =8 (1®x)5 =9,(1®x)5, foralx e B(H).
Then there exists a group-like unitary u € P suchthat ;, = (v ® 1)%,.

We recall that the group-like property means that Ap(v) = v ® v.

Proof. As
6195 € P ® B(H) C B(L*(N)) ® B(H)

commutes with all (1 ® x) with x € B(H), there exists a unitary v € P such that
g9 = (v ® 1)§. We must show that v is group-like. This follows by plugging
in the above equality in the identities (Axy ® 1)(§;) = (§i)13(&i)23, using that
An(xy) = Ap(x)An(y)forx e Pand y € N. O
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Of course, it is still possible that (v ® 1)& and g are isomorphic, but this will not
always be the case.

Let us now prove that any projective corepresentation is implemented. In [8], we
proved this for von Neumann algebraic quantum groups, but in a very roundabout
way. Here we give a rather elementary proof, which is valid in the more general
setting of von Neumann bialgebras. Nevertheless, we will later on actually need the
result as it appears in [8] because it contains some more information.

Proposition 3.6. Let (M, Ajr) beavon Neumann bialgebra, H a Hilbert space, and
a: B(H) - M ® B(H) a projective corepresentation of (M, Aps) on H. Then
there exists a Galois co-object (N, Ay) for (M, Aypr), together with a projective
(N, Ay)-corepresentation § on H which implements «.

Proof. Choose an index set / with cardinality dim(3), and let O be a distinguished
element of 7. Choose a basis {¢; | i € I} of J{, and denote by e;; the matrix units
in B(HH) with respect to this basis. Let further X be a Hilbert space on which M is
faithfully and normally represented, and denote J = a(egg) (K ® H).

We can then define a unitary

G KOH->ITRH, & > (x(epi)f) ®ei,
iel
the adjoint being
G IQH ->KQH, ERe > aleio)k.

For any x € B(H), we have
9*(1 ® x)§ = a(x),

which follows most easily if one takes x a matrix unit for example.
Denote then by N the o-weakly closed linear span of

{(L® woj)(E)m | j €I, me M} C B(X.J).

By definition, this is a right M -module. Moreover, just as in Proposition 3.4 one has,
denoting w;; = (e;, -e;), that

(t ® @0;)(9)* (L ® wor)(§) = (L ® wji)(a(eoo)), Jj.l €1
Hence N becomes a Hilbert W*-module by the formula (x, y)ar = x*y.
Now for j, k,l € I, we have
(t ® wjk)(¥) = (1 @ wor)((1 ® €g;)E (1 ® exr))

= (L ®@ wor)(Fa(eo;)(1 ® ex;))
=2 (1 ®woi)(9)(t ® wir)((eo) (1 ® exr)).

iel
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Hence, each (1 ® w;x)(¥) liesin N,and thus § € N ® B(H).
In particular, we have (1t ® wio)(¥) € N. Since

(L ® wi0) ()" (1t ® wio)(§) = (1 ® woo)((e;i))

fori € I,weseethatthe linearspanoftherangeof (-, - )as contains (t®wge) (@ (1)) =

1p7,and so N is a full Hilbert M -module. As it arises as a o-weakly closed subspace

of B(XK,J), we have that N is a Morita Hilbert M -module by Proposition 1.7.
Denote

Xij = (1 @ w;ij)(§) €N,
and
yij = (1 Q1 ® wij)($13523) € N ® N,

with i, j € I. Since x;“jxkl = (t ® wj;)(a(eix)), while

Viivie = (®1® wj)((t ® @)a(eir)) = Ay (x]jxx1),

by an easy computation we can apply Lemma 1.5 to obtain a As-compatible mor-
phism Ay: N — N ® N such that (Ay ® 1)§ = §136,3. The proposition will
then be proven if we can show that (N, A ) is a Galois co-object.

In fact, by the above compatibility with &, and the fact that the first leg of € gen-
erates N as a right M -module, it follows immediately that A 5 will be coassociative.
The only thing which remains to be seen is whether Ay (N)(M ® M) is o-weakly
dense in N ® N. But this follows precisely as in the proof of Lemma 3.3. O

Remark. In particular, the foregoing allows one to construct from a projective corep-
resentation of (M, Ayr) (i.e., a coaction on a type [-factor) a Galois co-object
(N, An), and hence, by Proposition 2.1, a linking weak von Neumann bialgebra
(Q, Ag), which contains in turn a (possibly) new von Neumann bialgebra (P, Ap)
in its upper left corner. In [7], we applied this construction to the action of SU,(2)
on the standard Podle$ sphere (whose associated von Neumann algebra is indeed a
type I-factor) to ‘rediscover’ Woronowicz’s quantum £ (2) group ([31]). In [9], we
applied it to the action of SU,(2) on a Z,-quotient of the equatorial Podle$ sphere
(which can be interpreted as a quantized projective plane, with again a type I-factor as
its associated von Neumann algebra), to ‘rediscover’ the extended quantum SU(1, 1)
group (as it appears in [15]). We hope in future work to obtain in this way some
interesting ¢g-deformations of higher-dimensional non-compact Lie groups.

The following proposition will be an immediate corollary of Proposition 3.4 and
the results of [8]. We first remark however that the object (Q , AQ) which appears
in the beginning of the first section of [8] is a linking weak von Neumann bialgebra
in the sense of the present paper. Indeed, Q is a linking von Neumann algebra
by the remark following Proposition 1.6 of the present paper, and since Ay was
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constructed in [8] as a unital map O — O * O, it will hence make O a linking weak
von Neumann bialgebra. In fact, as we showed in [8] that this specific linking von
Neumann bialgebra has von Neumann algebraic quantum groups at its corners, it is a
von Neumann algebraic linking quantum groupoid in the terminology of the present

paper.

Proposition 3.7. Let o be a projective corepresentation of a von Neumann algebraic
quantum group (M, A,r) on a Hilbert space H. Let (N, Ay ) be a Galois co-object
for which there exists a projective (N, A y)-corepresentation implementing «. Then
the linking weak von Neumann bialgebra associated with (N, A ) isavon Neumann
algebraic linking quantum groupoid.

Proof. In Theorem 6.2 of [8], we constructed a von Neumann algebraic linking quan-
tum groupoid (0, f, A o) such that the Galois co-object (012, A;») had a projective

(012, A1a)- corepresentatlon implementing «. If (Q,e, Ap) is the linking weak
von Neumann bialgebra associated with (N, Ax), we have, by Proposition 3.4 and
Lemma 1.3, an isomorphism 7 from (Q,e, Ag) to (0. f. AQ), which intertwines
A because the restriction to the 12-part does. Hence (Q11, A11) is a von Neumann
algebraic quantum group. O

Finally, we use the previous proposition to prove Theorem 0.7.

Proof of Theorem 0.7. Let (M, Aar) be a von Neumann algebraic quantum group,
and let (N, A ) be a Galois co-object for (M, Ayps). By Proposition 3.7, it is enough
to show that there exists a left (V, A y)-corepresentation. But it is easy to see that,
with X denoting the flip map and ¥ the regular rlght (N, Ay )-corepresentation as-
sociated with (N, Ay), we have that VS e N ® B(L?(N)) is a left (N, Ay)-
corepresentation by the pentagonal equation for V. This concludes the proof. O

Remark. The above proof is of course very sparse with information on how the
invariant weights on the comonoidally W*-Morita equivalent von Neumann bialgebra
(P, Ap) are obtained. The crucial point to observe is that in [8] we proved that there
exists a one-parameter-group of unitaries on £2(N) which implements the modular
one-parametergroup (of say the left invariant weight) on 7, (M), where &, is the
natural right representation of M on L2(N). A theorem due to Connes implies that
this one-parameter-family is in fact generated by the spatial derivative between (the
opposite of) the left invariant weight on M and a uniquely determined weight on P.
We then showed that this new weight is left invariant.

The way in which the above-mentioned one-parameter-group of unitaries was
constructed is in itself not so straightforward, and is heavily influenced by the way in
which all structures on a von Neumann algebraic quantum group interact with each
other. In any case, even though the intuition from [8] could in principle be used to
prove Theorem 0.7 without recourse to the (dual) theory in [8], we have deemed this
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task not worth the effort, as there seemed to be little gain in reiterating all technical
arguments.

4. 2-cocycles

Let us now briefly consider the special case of cleft Galois co-objects, which are those
Galois co-objects constructed from a unitary 2-cocycle ([10]). This discussion will
then supplement the one in the fifth section of [8].

Definition 4.1. Let (M, Ajps) be a von Neumann bialgebra and @ € M ® M a
unitary. We call € a unitary 2-cocycle if 2 satisfies the 2-cocycle identity

Qe D(Ar @1)(Q) = (1 ® ) ® Ap)(R).

Proposition 4.2. If Q isa unitary 2-cocycle for a von Neumann algebraic quantum
group (M, Ayyr), then
(N, AN) == (M, QAM()),

with (x, y)yr = x*y, for x,y € M, isaright Galois co-object for (M, Apy).

Proof. The fact that A is coassociative is immediate from the 2-cocycle identity.
Also the other properties of Galois co-objects are trivial to verify. O

The following propositions are quite trivial to prove, but it is important to note
them.

Proposition 4.3. If (N, Ay) is a Galois co-object for a von Neumann algebraic
quantumgroup, and N = M asright Hilbert W*-modules, then there existsa unitary
2-cocycle 2 suchthat (N, Ay) = (M, QApM(+)).

Proof. ldentifying N with M as a right Hilbert W*-module, we have that Q =
An (1) is a unitary, satisfying the 2-cocycle condition since Ay is coassociative
and Ay (x) = An(1p)Ap(x) for x € M. This final identity then also proves that
Ay = QAM (). O

Hence these Galois co-objects can be characterized as those for which the as-
sociated underlying W*-Morita equivalence (i.e., without the comonoidal structure)
is trivial. We note that for certain von Neumann bialgebras, there may well exist
non-cleft Galois co-objects (see [2]).

Proposition 4.4. Let 2, and 2, betwo unitary 2-cocyclesfor a von Neumann alge-
braic quantum group (M, Aps), and let (N, Ay, ) and (N2, Ay, ) bethe associated
Galois co-objects. Then (N, Ay, ) and (N,, Ay,) are isomorphic iff €, and 2,
are coboundary equivalent in the sense that there exists a unitary v € M with

Q= (" @v")QAN(v).
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Proof. If ©2; and 2, are coboundary equivalent by a unitary v, it is immediately
verified that left multiplication by v* provides an isomorphism between (N1, Ay, )
and (N2, Ap,).

Conversely, suppose that (M, 21 Apr(-)) and (M, Q5 Aps(-)) are isomorphic as
right N -Galois co-objects by a map ¢. Then ¢(134) is a unitary, whose adjoint we
denote by v. Then ¢ (m) = v*m forallm € M. As ¢ intertwines the coproducts, we
find that Q, A (v*) = (v ® v*)Q, so that 2 and 2, are coboundary equivalent.

O
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