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Universal suspension via noncommutative motives
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Abstract. In this article we further the study of noncommutative motives, initiated in [5], [6],
[28]. Our main result is the construction of a simple model, given in terms of infinite matrices,
for the suspension in the triangulated category of noncommutative motives. As a consequence,
this simple model holds in all the classical invariants such as Hochschild homology, cyclic
homology and its variants (periodic, negative, : : : ), algebraic K-theory, topological Hochschild
homology, topological cyclic homology, etc.
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1. Introduction

Noncommutative motives. A differential graded (dg) category over a commuta-
tive base ring k is a category enriched over complexes of k-modules (morphisms
sets are such complexes) in such a way that composition satisfies the Leibniz rule:
d.f B g/ D .df / B gC .�1/deg.f /f B .dg/. Dg categories enhance and solve many
of the technical problems inherent to triangulated categories; see Keller’s ICM ad-
dress [16]. In noncommutative algebraic geometry in the sense of Bondal, Drinfeld,
Kaledin, Kapranov, Kontsevich, Toën, Van den Bergh, and others [2], [3], [7], [10],
[17], [18], [31], they are considered as dg-enhancements of derived categories of
(quasi-)coherent sheaves on a hypothetic noncommutative space.

All the classical (functorial) invariants, such as Hochschild homology HH, cyclic
homology HC, (non-connective) algebraic K-theory K, topological Hochschild ho-
mology THH, and topological cyclic homology TC, extend naturally from k-algebras
to dg categories. In order to study all these classical invariants simultaneously the
author introduced in [28] the notion of localizing invariant. This notion that we now
recall makes use of the language of Grothendieck derivators [9], a formalism which
allows us to state and prove precise universal properties. Let L W HO.dgcat/ ! D
be a morphism of derivators from the derivator associated with the derived Morita

�The author was partially supported by the Estimulo à Investigação Award 2008 - Calouste Gulbenkian
Foundation and by the FCT-Portugal grant PTDC/MAT/098317/2008.
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model structure on dg categories (see §2.2) to a triangulated derivator. We say that
L is a localizing invariant if it preserves filtered homotopy colimits as well as the
terminal object, and sends exact sequences of dg categories (see §2.3)

A ! B ! C 7! L.A/ ! L.B/ ! L.C/ ! L.A/Œ1�

to distinguished triangles in the base category D.e/ of D. Due to the work of Keller
[15], [13], Thomason–Trobaugh [30], Schlichting [22], and Blumberg–Mandell [1]
(see also [29]) all the mentioned invariants satisfy localization1, and so give rise to
localizing invariants. In [28], the author constructed the universal localizing invariant

Uloc
dg W HO.dgcat/ ! Motloc

dg ;

i.e., given any triangulated derivator D, we have an induced equivalence of categories

.Uloc
dg /

� W HomŠ.Motloc
dg ;D/ ��!� Homloc.HO.dgcat/;D/; (1.1)

where the left-hand side denotes the category of homotopy colimit preserving mor-
phisms of derivators, and the right-hand side denotes the category of localizing in-
variants. Because of this universality property, which is a reminiscence of motives,
Motloc

dg is called the localizing motivator, and its base category Motloc
dg .e/ the category

of noncommutative motives. We invite the reader to consult [5], [6], [28] for several
applications of this theory of noncommutative motives.

Universal suspension. The purpose of this article is to construct a simple model for
the suspension in the triangulated category of noncommutative motives.

Consider the k-algebra � of N � N-matrices A which satisfy the following two
conditions: (1) the set fAi;j j i; j 2 Ng is finite; (2) there exists a natural number
nA such that each row and each column has at most nA non-zero entries; see Defini-
tion 3.5. Let† be the quotient of� by the two-sided ideal consisting of those matrices
with finitely many non-zero entries; see Definition 3.1. Alternatively, take the (left)
localization of � with respect to the matrices SIn, n � 0, with entries .SIn/i;j D 1 for
i D j > n and 0 otherwise; see Proposition 3.11. The algebra † goes back to the
work of Karoubi and Villamayor [11] on negative K-theory. Recently, it was used by
Cortiñas and Thom [4] in the construction of a bivariant algebraic K-theory. Given
a dg category A, we denote by †.A/ the tensor product of A with †; see §2.1. The
main result of this article is the following.

Theorem 1.2. For every dg category A we have a canonical isomorphism

Uloc
dg .†.A// ��!� Uloc

dg .A/Œ1�:

The proof of Theorem 1.2 is based on several properties of the category of non-
commutative motives (see Section 6), on an exact sequence relating A and†.A/ (see
Section 4), and on the flasqueness of � (see Section 5). Let us now describe some
applications of Theorem 1.2.

1In the case of algebraic K-theory we consider its non-connective version.
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Applications. A realization of the category of noncommutative motives is a trian-
gulated functor R W Motloc

dg .e/ ! T . An important aspect of a realization is the fact
that every result which holds on Motloc

dg .e/ also holds on T . In particular, given a dg
category A, Theorem 1.2 gives us a canonical isomorphism

.R B Uloc
dg /.†.A// ��!� .R B Uloc

dg /.A/Œ1�:

Due to the above equivalence (1.1) every localizing invariant gives rise to a realization.
Hence we obtain the canonical isomorphisms

HH.†.A// ' HH.A/Œ1�; HH�C1.†.A// ' HH�.A/; (1.3)

HC.†.A// ' HC.A/Œ1�; HC�C1.†.A// ' HC�.A/; (1.4)

K.†.A// ' K.A/Œ1�; K�C1.†.A// ' K�.A/; (1.5)

THH.†.A// ' THH.A/Œ1�; THH�C1.†.A// ' THH�.A/; (1.6)

TC.†.A// ' TC.A/Œ1�; TC�C1.†.A// ' TC�.A/: (1.7)

Negative cyclic homology HC� and periodic cyclic homology HP are not examples
of localizing invariants since they do not preserve filtered (homotopy) colimits. Nev-
ertheless, as explained in [6], Examples 8.10 and 8.11, they factor through Motloc

dg
thus giving rise to realizations. We obtain then the canonical isomorphisms:

HC�.†.A// ' HC�.A/Œ1�; HC��C1.†.A// ' HC�� .A/; (1.8)

HP.†.A// ' HP.A/Œ1�; HP�C1.†.A// ' HP�.A/: (1.9)

Note that since HP is 2-periodic, the homologies of†.A/ and A can be obtained from
each other by simply switching the degrees. To the best of the author’s knowledge
the isomorphisms (1.3)–(1.9) are new. They show us that †.A/ is a simple model
for the suspension in all these classical invariants.2

We would like to mention that Kassel constructed an isomorphism related to (1.4),
but for ordinary algebras over a field and with cyclic homology replaced by bivariant
cyclic cohomology; see [12], Theorem 3.1. Instead of � , he considered the larger
algebra of infinite matrices which have finitely many non-zero entries in each line
and column.

Now letX a quasi-compact and quasi-separated scheme. It is well known that the
category of perfect complexes in the (unbounded) derived category of quasi-coherent
sheaves on X admits a dg-enhancement perfdg.X/; see for instance [2], [20] or [6],
Example 4.5. Due to [1], Theorem 1.3, [13], §5.2, and [22], §8, Theorem 5, the
algebraic K-theory and the (topological) cyclic homology3 of the scheme X can
be obtained from the dg category perfdg.X/ by applying the corresponding invariant.
Therefore, when A D perfdg.X/, the above isomorphisms (1.3)–(1.9) suggest that the
dg category†.perfdg.X// should be considered as the “noncommutative suspension”

2Recall that all these invariants take values in arbitrary degrees.
3In fact we can consider any variant of (topological) cyclic homology.
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or “noncommutative delooping” of the scheme X . This will be the subject of future
research.

Acknowledgments. Theorem 1.2 answers affirmatively a question raised by Maxim
Kontsevich in my Ph.D. thesis defense [26]. I deeply thank him for his insight. I am
also grateful to Bernhard Keller, Marco Schlichting and Bertrand Toën for useful
conversations and/or references.

Convention. Throughout the article k will denote a commutative base ring with unit 1.
Given a dg algebra H we will denote by H the dg category with a single object �
and with H as the dg algebra of endomorphisms.

2. Background on dg categories

In this section we collect some notions and results on dg categories which will be
used throughout the article.

Let C.k/ be the category of (unbounded) complexes of k-modules; we use coho-
mological notation. A differential graded (dg) category is a category enriched over
C.k/ and a dg functor is a functor enriched over C.k/; consult Keller’s ICM address
[16] for a survey on dg categories. The category of dg categories will be denoted by
dgcat.

Notation 2.1. Let A be a dg category. The category Z0.A/ has the same objects
as A and morphisms given by Z0.A/.x; y/ ´ Z0.A.x; y//. The category H0.A/
has the same objects as A and morphisms given by H0.A/.x; y/ ´ H0.A.x; y//.
The opposite dg category Aop of A has the same objects as A and complexes of
morphisms given by Aop.x; y/ ´ A.y; x/.

2.1. (Bi)modules. Let A be a dg category. A right A-module M is a dg functor
M W Aop ! Cdg.k/with values in the dg category Cdg.k/ of complexes of k-modules.
We will denote by C.A/ the category of right A-modules; see [16], §2.3. As explained
in [16], §3.1, the differential graded structure of Cdg.k/ makes C.A/ naturally into
a dg category Cdg.A/. Recall from [16], Theorem 3.2, that C.A/ carries a standard
projective C.k/-model structure. The derived category D.A/ of A is the localization
of C.A/ with respect to the class of objectwise quasi-isomorphisms.

Notation 2.2. We denote by perf.A/, resp. by perfdg.A/, the full subcategory of
C.A/, resp. full dg subcategory of Cdg.A/, whose objects are the cofibrant right A-
modules that are compact ([21], Definition 4.2.7) in the triangulated category D.A/.

Given dg categories A and B their tensor product A ˝ B is defined as follows:
the set of objects is the cartesian product and given objects .x; z/ and .y; w/ in A˝B,
we set .A ˝ B/..x; z/; .y; w// ´ A.x; y/ ˝ B.z; w/. An A-B-bimodule X is a
dg functor X W Aop ˝ B ! Cdg.k/, i.e., a right Aop ˝ B-module.
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2.2. Derived Morita equivalences. A dg functor F W A ! B is a called a derived
Morita equivalence if its derived extension of scalars functor LFŠ W D.A/ ��!� D.B/

(see [31], §3) is an equivalence of triangulated categories. Due to [25], Theorem 5.3
(and [27]), the category dgcat carries a (cofibrantly generated) Quillen model structure
whose weak equivalences are the derived Morita equivalences. We denote by Hmo
the homotopy category hence obtained.

The tensor product of dg categories can be derived into a bifunctor � ˝L � on
Hmo. Moreover, due to [31], Theorem 6.1, the bifunctor � ˝L � admits an internal
Hom-functor rep.�;�/.4 Given dg categories A and B, rep.A;B/ is the full dg
subcategory of Cdg.A

op ˝L B/ spanned by the cofibrant A-B-bimodules X such
that, for every object x in A, the right B-module X.x;�/ is compact in D.B/. The
set of morphisms in Hmo from A to B is given by the set of isomorphism classes of
the triangulated category H0.rep.A;B//.

2.3. Exact sequences. A sequence of triangulated categories

0 ! R
I�! �

P�! T ! 0

is called exact if the composition is zero, the functor I is fully faithful and the induced
functor from the Verdier quotient �=R to T is cofinal, i.e., it is fully faithful and every
object in T is a direct summand of an object of �=R; see [21], §2. A sequence

0 ! A
X�! B

Y�! C ! 0

in Hmo is called exact if the induced sequence of triangulated categories

0 ! D.A/
�˝L

A
X�����! D.B/

�˝L
B
Y�����! D.C/ ! 0

is exact; see [16], §4.6.

3. Infinite matrix algebras

In this section we introduce the matrix algebras used in the construction of the uni-
versal suspension.

Definition 3.1. Given n 2 N, we denote by Mn the k-algebra of n�n-matrices with
coefficients in k. Let

M1 ´
1S
nD1

Mn

4Denoted by R Hom.�;�/ in loc. cit.
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be the k-algebra of finite matrices, where Mn � MnC1 via the map

A 7!
�
A 0

0 0

�
:

Note that M1 does not have a unit object. Moreover, transposition of matrices gives
rise to an isomorphism of k-algebras

.�/T W .M1/op ��!� M1: (3.2)

Notation 3.3. Given k; l 2 N, we denote by Ekl 2 M1 the matrix

.Ekl/i;j ´
´

1 if i D kand j D l;

0 otherwise:

Note that given k; l;m; n 2 N, the productEkl �Enm equalsEkm if l D n and is zero
otherwise. Given a non-negative integer n � 0, we denote by In 2 M1 the matrix

.In/i;j ´
´

1 if i D j � n;

0 otherwise:

In particular, I0 stands for the zero matrix.

Lemma 3.4. The k-algebra M1 has idempotent local units, i.e., for each finite
family As , s 2 S , of elements in M1 there exists an idempotent E 2 M1 such that
E � As D As �E D As for all s 2 S .

Proof. Since the matrices As; s 2 S , have only a finite number of non-zero entries
there exist natural numbers ms , s 2 S , such that .As/i;j D 0 when i or j is greater
than ms . Let m ´ maxfms j s 2 Sg. If E is the idempotent matrix Im we observe
that Im � As D As � Im D As for all s 2 S .

Definition 3.5. Let � be the k-algebra of .N � N/-matrices A with coefficients in k
and satisfying the following two conditions:

(1) the set fAi;j j i; j 2 Ng is finite;

(2) there exists a natural number nA (which depends on A) such that each row and
each column has at most nA non-zero entries.

The k-module structure is defined entrywise and the multiplication is given by the
ordinary matrix multiplication law; note that if A;B 2 � we can take nA � nB as the
natural number nA�B . In contrast to M1, � does have a unit object

Ii;j ´
´

1 if i D j;

0 otherwise:
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Moreover, transposition of matrices induces an isomorphism of k-algebras

.�/T W �op ��!� �

which extends isomorphism (3.2).

Now let us fix a bijection

� W N ��!� N � N; n 7! .�1.n/; �2.n//I
take for instance the inverse of Cantor’s classical pairing function. As in [23],
Lemma 19, we define a k-algebra homomorphism

� W � ! �; A 7! �.A/;

by

�.A/i;j ´
´
A�1.i/;�1.j / if �2.i/ D �2.j /;

0 otherwise:

Note that the non-zero elements in line i , resp. in column j , of the matrix �.A/ are
precisely the non-zero elements in line i , resp. in column j , of the matrix A.

Definition 3.6. Let W be the �-�-bimodule, which is � as a left �-module, and
whose right �-action is given by

� � � ! �; .B;A/ 7! B � �.A/:
Lemma 3.7. There exists a natural �-�-bimodule isomorphism � ˚W ��!� W .

Proof. Consider the elements

˛i;j ´
´

1 if �.j / D .i; 0/;

0 otherwise;

and

ˇi;j ´
´

1 if �.j / D �.i/C .0; 1/;

0 otherwise;

in � . Using ˛ and ˇ, we define maps

� ˚W ! W; .A;B/ 7! A � ˛ C B � ˇ; (3.8)

W ! � ˚W; B 7! .B � ˛T ; B � ˇT /: (3.9)

The map (3.8) is a left �-module homomorphism. The fact that it is also a right
�-module homomorphism follows from the equalities

ˇ � ˛T D 0; ˛ � ˛T D ˇ � ˇT D I; ˛T � ˛ C ˇT � ˇ D I:
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Moreover, since for every A 2 � we have

A � ˛ D ˛ � �.A/ and �.A/ � ˇ D ˇ � �.A/;
we conclude that the maps (3.8) and (3.9) are inverse of each other.

Notation 3.10. Clearly the k-algebra M1 forms a two-sided ideal in � . We denote
by † the associated quotient k-algebra �=M1.

Alternatively, we can describe the quotient k-algebra † as follows.

Proposition 3.11. The matrices

SIn ´ I � In
(see Notation 3.3) form a left denominator set S in � ([19], §4), i.e., I 2 S ,
S � S � S and

(i) given SIn 2 S andE 2 � , there are SIm 2 S andE 0 2 � such thatE 0�SIn D SIm�E;

(ii) if SIn 2 S and E 2 � satisfy E � SIn D 0, there is SIm 2 S such that SIm �E D 0.

Moreover, the localized k-algebra �ŒS�1�5 is naturally isomorphic to †.

Proof. In order to simplify the proof we consider the following block-matrix graphical
notation

E D k

l�
Ea Eb
Ec Ed

�
2 �;

where k; l 2 N,Ea is a .k�l/-matrix,Eb is a .k�N/-matrix,Ec is a .N�l/-matrix,
and Ed is a .N � N/-matrix. Under this notation we have, for n 2 N, the equalities

SIn � n
n�

Ea Eb
Ec Ed

�
D n

n�
0 0

Ec Ed

�
(3.12)

and

n

n�
Ea Eb
Ec Ed

�
� SIn D n

n�
0 Eb
0 Ed

�
: (3.13)

By definition I D SI0 2 S . Equalities (3.12) and (3.13), and the fact that SI0 D I ,
imply that

SIn � SIm D Imaxfn;mg; n � 0:

This shows that S � S � S .
5Since S is a left denominator set, this k-algebra is given by left fractions, i.e., equivalence classes of

pairs .SIn;E/ modulo the relation which identifies .SIn;E/ with . SIm;E
0/ if there are B;B 0 2 � such

that B � SIn D B 0 � SIm belongs to S and B �E D B 0 �E 0.
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(i) Note first that when n D 0 the claim is trivial. Since E belongs to � , there
exist natural numbersmj , 1 � j � n, such thatEi;j D 0 for i � mj and 1 � j � n.
Take m D maxfn;mj j 1 � j � ng. Then, we have the equality

SIm � m
n�

Ea Eb
Ec Ed

�
D m

n�
0 0

0 Ed

�
: (3.14)

Since m � n, the above equality (3.13) shows us that we can take for E 0 the above
matrix (3.14). This proves the claim.

(ii) When n D 0 the claim is trivial. IfE � SIn D 0 the above equality (3.13) shows
us that

E D n

n�
Ea 0

Ec 0

�
: (3.15)

SinceE belongs to � , there exist natural numbersmj ; 1 � j � n, such thatEi;j D 0

for i � mj and 1 � j � n. Take m D maxfmj j 1 � j � ng. Then the above
description (3.15) combined with equality (3.13) show us that SIm � E D 0. This
proves the claim.

We now show that the localized k-algebra �ŒS�1� is naturally isomorphic to †.
Since the matrices

In D I � SIn; n � 0;

belong to M1, we conclude that all the elements of the set S become the identity
object in †. Therefore, by the universal property of �ŒS�1� we obtain a k-algebra
map

�ŒS�1� ! †: (3.16)

On the other hand, the kernel of the localization map � ! �ŒS�1� consists of those
matrices E 2 � for which SIn � E D 0 for some n � 0. Due to equality (3.12) we
observe that the elements of M1 satisfy this condition. Therefore, by the universal
property of † ´ �=M1 we obtain a k-algebra map

† ! �ŒS�1�: (3.17)

The maps (3.16) and (3.17) are clearly inverse of each other and so the proof is
finished.

Lemma 3.18. The algebras M1, � and † are flat as k-modules.

Proof. We start by proving this proposition in the particular case where the base ring
k is Z. In this case the underlying Z-modules of .M1/Z and �Z are torsion-free and
so by [33], Corollary 3.1.5, are flat. Due to Proposition 3.11, †Z identifies with the
(left) localization of �Z with respect to the set S , and so a standard argument shows
that the right �Z-module †Z is flat. Since �Z is flat as a Z-module, we conclude
that †Z is also flat as a Z-module.
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Let us now consider the general case. Clearly we have a natural isomorphism of
k-modules

.M1/Z ˝Z k ��!� .M1/k :
By [4], Lemma 4.7.1, we also have natural isomorphisms of k-modules

�Z ˝Z k ��!� �k and †Z ˝Z k ��!� †k :

Therefore, since flat modules are stable under extension of scalars, the proof is
achieved.

4. An exact sequence

Let H be a k-algebra and J � H a two-sided ideal.

Definition 4.1. The category J of idempotents of J is defined as follows: its objects
are the symbols u, whereu is an idempotent ofJ ; thek-module J.u;u0/of morphisms
from u to u0 is uJu0; composition is given by multiplication in J and the unit of each
object u is the idempotent u. Associated to H and J there is also a J-H -bimodule
X such that X.u;�/ ´ uJ , with left and right actions given by multiplication.

Recall from [14], Example 3.3 (b), that if H and J are flat as k-modules and J
has idempotent local units (i.e., for each finite family as , s 2 S , of elements in J
there exists an idempotent u 2 J such that uas D asu D as for all s 2 S ) we have
an exact sequence

0 ! J
X�! H ! H=J ! 0:

in Hmo. By Lemmas 3.4 and 3.18, if we take H D � and J D M1, we obtain the
exact sequence

0 ! M1
X�! � ! † ! 0 (4.2)

in Hmo.

Proposition 4.3. The dg functor

k ! M1; � 7! E11 (4.4)

(see Notation 3.3), is a derived Morita equivalence.

Proof. We will prove a stronger statement, namely that the above functor (4.4) is a
Morita equivalence; see [24], §2. The category M1 is by definition enriched over
k-modules and the classical theory of Morita holds in this setting. Let Mod-M1 be
the abelian category of right M1-modules (i.e., contravariant k-linear functors from
M1 to k-modules) and�.�/ W M1 ! Mod-M1; E 7! M1.�;E/ μ yE ;
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the (enriched) Yoneda functor. Following [24], Theorems 2.2 and 2.5, we need
to show that bE11 is a small projective generator of Mod-M1 and that its ring of
endomorphisms is isomorphic to k. Note that we have natural isomorphisms

HomMod-M1
.bE11;bE11/ ' M1.E11;E11/ D E11 � M1 �E11 ' k:

Moreover, bE11 is small and projective by definition. Therefore, it only remains to
show that bE11 is a generator, i.e., , that every right M1-module P is an epimorphic
image of a sum of (possibly infinitely many) copies of bE11. Given an object E in
M1 we have, by the (enriched) Yoneda lemma, an isomorphism

HomMod-M1
. yE ; P / ' P.E/

and so we obtain a natural epimorphismL
E 2M1

L
P.E /

yE � P:

This shows that it suffices to treat the case where P is of shape yE . We consider first
the cases E D Enn;n 2 N. The following morphisms in M1

E11

E11�E1n�Enn���������! Enn and Enn

Enn�En1�E11���������! E11

show us that E11 and Enn are isomorphic and so the claim follows.
We consider now the cases E D Im, m 2 N. The natural morphisms in M1

Enn

Enn�Enn�Im��������! Im; 1 � n � m;

give rise to a map
mL
n�1

bEnn ! cIm (4.5)

in Mod-M1. In order to show that the map (4.5) is surjective, we need to show that
its evaluation

mL
n�1

M1.B;Enn/ ! M1.B; Im/ (4.6)

at each object B of M1 is surjective. We have Im D Pm
n�1Enn, and so (4.6)

identifies with the natural map

mL
n�1

.B � M1 �Enn/ ! B � M1 � �Pm
n�1Enn

�
;

which is easily seen to be surjective. Since E11 is isomorphic to Enn, n 2 N, the
claim is proved.
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Finally, we consider the case of a general object E in M1. Since E has only a
finite number of non-zero entries there exists a natural numberm such that Ei;j D 0

when i or j is greater than m. We have then the equality

E � Im D Im �E D E:

This implies that the composition

E
E �Im�Im������! Im

Im�Im�E������! E

equals the identity map of the object E . Since the abelian category Mod-M1 is
idempotent complete, we conclude that the right M1-module bE is a direct factor ofcIm. This achieves the proof.

By combining the exact sequence (4.2) with the derived Morita equivalence (4.4)
we obtain in Hmo an exact sequence

0 ! k ! � ! † ! 0: (4.7)

Notation 4.8. Given a dg category A, we denote by �.A/ the dg category � ˝ A

and by †.A/ the dg category †˝ A; see §2.1.

Proposition 4.9. For every dg category A we have an exact sequence

0 ! A ! �.A/ ! †.A/ ! 0

in Hmo.

Proof. The exact sequence (4.7) and [7], Proposition 1.6.3, leads to the exact sequence

0 ! k ˝L A ! � ˝L A ! †˝L A ! 0

in Hmo. By Lemma 3.18 the algebras � and † are flat as k-modules and so the
derived tensor products are identified in Hmo with the ordinary ones. Moreover, we
have a natural isomorphism k ˝L A ' A.

5. Flasqueness of �

Definition 5.1. Let A be a dg category with sums (i.e., the diagonal dg functor
� W A ! A�A admits a left adjoint ˚W A�A ! A) such that Z0.A/ is equivalent
to perf.A/; see Notations 2.1 and 2.2. Under these hypothesis, we say that A is
flasque if there exists a dg functor � W A ! A and a natural isomorphism Id ˚� ' � .

Proposition 5.2. The dg category perfdg.�/ is flasque.
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Proof. Notice first that since we have an isomorphism of k-algebras

.�/T W �op ��!� �;

it is equivalent to show that the dg category perfdg.�
op/ is flasque. By definition,

perfdg.�
op/ has sums and Z0.perfdg.�

op// is equivalent to perf.�op/. Now recall
from Definition 3.6 the construction of the �-�-bimodule W . As explained in [16],
§3.8, the bimodule W gives rise to a Quillen adjunction

C.�op/

��
C.�op/,

W˝� �
��

which is moreover compatible with the C.k/-enrichment. Since the �-�-bimodule
W is � as a left �-module, the left Quillen dg functor

W ˝� �W Cdg.�
op/ ! Cdg.�

op/

restricts to a dg functor

� W perfdg.�
op/ ! perfdg.�

op/:

Moreover, given an object P in perfdg.�
op/ we have a functorial isomorphism

P ˚ �.P / D P ˚ .W ˝� P / ' .� ˚W /˝� P
 �!� W ˝� P D �.P /;

where  is obtained by tensoring the �-�-bimodule isomorphism � ˚W ��!� W of
Lemma 3.7 with P . This finishes the proof.

Lemma 5.3. Let A and B be two dg categories, with A flasque. Then the dg category
rep.B;A/ (see §2.2) is also flasque.

Proof. By construction, the dg category rep.B;A/ has sums and Z0.rep.A;B//
is equivalent to perf.rep.A;B//. Moreover, since A is flasque and rep.B;�/ is a
2-functor which preserves (derived) products, we obtain a dg functor

rep.B; �/ W rep.B;A/ ! rep.B;A/

and a natural isomorphism Id ˚ rep.B; �/ ' rep.B; �/.

Let us now recall the definition of the algebraic K-theory of dg categories. Given
a dg category A we denote by perfW .A/ the Waldhausen category perf.A/, whose
weak equivalences and cofibrations are those of the Quillen model structure on C.A/;
see [8], §3. The algebraic K-theory spectrum K.A/ of A is the Waldhausen K-
theory spectrum ([32]) of perfW .A/. Given a dg functor F W A ! B, the extension
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of scalars left Quillen functor FŠ W C.A/ ! C.B/ preserves weak equivalences,
cofibrations, and pushouts. Therefore, it restricts to an exact functorFŠ W perfW .A/ !
perfW .B/betweenWaldhausen categories and so it gives rise to a morphism of spectra
K.F / W K.A/ ! K.B/.

Lemma 5.4. Let A be a flasque dg category. Then its algebraic K-theory spectrum
K.A/ is contractible.

Proof. By applying the functor Z0.�/ to A and � , we obtain an exact functor

Z0.�/ W perfW .A/ ! perfW .A/

and a natural isomorphism Id ˚ Z0.�/ ' Z0.�/. Since Waldhausen’s K-theory
satisfies additivity ([32], Proposition 1.3.2 (4)), we have the equality

K.Id/CK.Z0.�// D K.Z0.�//

in the homotopy category of spectra. Therefore, we conclude that IdK.A/ ' K.Id/ is
the trivial map. This shows that the algebraic K-theory spectrumK.A/ is contractible.

6. Proof of Theorem 1.2

We start by showing that �.A/ (see Notation 4.8) becomes the zero object in the
triangulated category Motloc

dg .e/ after application of Uloc
dg . Since�.A/ ' �˝L A and

Uloc
dg is symmetric monoidal with respect to a homotopy colimit preserving symmetric

monoidal structure on Motloc
dg (see [6], Theorem 7.5), it suffices to show that� becomes

the zero object in Motloc
dg .e/.

Recall from [28], §17, that the universal localizing invariant admits the factoriza-
tion

Uloc
dg W HO.dgcat/

Uadd
dg���! Motadd

dg

��! Motloc
dg ; (6.1)

where Motadd
dg is the additive motivator6 and � is a localizing morphism between tri-

angulated derivators. Moreover, due to [5], Proposition 3.7, the objects Uadd
dg .B/Œn�,

with B a dg cell and n 2 Z, form a set of (compact) generators of the triangulated
category Motadd

dg .e/. Therefore, Uadd
dg .�/ is the zero object in Motadd

dg .e/ if and only
the spectra of morphisms R Hom.Uadd

dg .B/;U
add
dg .�//, with B a dg cell, are (homo-

topically) trivial; see [5], §A.3. By [28], Theorem 15.10, we have the equivalences

R Hom.Uadd
dg .B/;U

add
dg .�// ' Krep.B; �/ ' Krep.B; perfdg.�//:

6The additive motivator has a construction similar to the localizing one. Instead of imposing localization
we impose the weaker requirement of additivity.
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Therefore, Proposition 5.2 and Lemmas 5.3 and 5.4 imply that Uadd
dg .�/ is the zero

object in Motadd
dg .e/. From the above factorization (6.1) we conclude that Uloc

dg .�/

(and so Uloc
dg .�.A//) is the zero object in Motloc

dg .e/.
Now recall from Proposition 4.9 that we have an exact sequence

0 ! A ! �.A/ ! †.A/ ! 0:

By applying the universal localizing invariant to the preceding exact sequence we
obtain a distinguished triangle

Uloc
dg .A/ ! Uloc

dg .�.A// ! Uloc
dg .†.A// ! Uloc

dg .A/Œ1�

in Motloc
dg .e/. Therefore, since Uloc

dg .�.A// is the zero object, we have a canonical
isomorphism

Uloc
dg .†.A// ��!� Uloc

dg .A/Œ1�:
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