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Spectral triples and the geometry of fractals
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Abstract. We construct spectral triples for the Sierpinski gasket as infinite sums of unbounded
Fredholm modules associated with the holes in the gasket and investigate their properties. For
each element in the K-homology group we find a representative induced by one of our spectral
triples. Not all of these triples, however, will have the right geometric properties. If we want
the metric induced by the spectral triple to give the geodesic distance, then we will have to
include a certain minimal family of unbounded Fredholm modules. If we want the eigenvalues
of the associated generalized Dirac operator to have the right summability properties, then we
get limitations on the number of summands that can be included. If we want the Dixmier trace
of the spectral triple to coincide with a multiple of the Hausdorff measure, then we must impose
conditions on the distribution of the summands over the gasket. For the elements of a large
subclass of the K-homology group, however, the representatives are induced by triples having
the desired geometric properties. We finally show that the same techniques can be applied to
the Sierpinski pyramid.
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0. Introduction

In his noncommutative geometry program Alain Connes employs ideas from oper-
ator algebras to analyze singular spaces for which the classical tools of geometric
analysis fail. One of the basic structures in this theory is that of a spectral triple
.A; H ; D/, consisting of an algebra A of bounded operators on a Hilbert space H

and an unbounded selfadjoint operator D on H . In this picture, the space is replaced
by the algebra A – in the simplest cases an algebra of sufficiently smooth functions
on the space –, while the geometry is encoded in the operator D, which is required
to have a compact resolvent and bounded commutators with the elements of A. In
[Co2], [Co4] Connes proves with some relevant examples that his program may be
used to study fractals. In [La1], [La2] Michel Lapidus investigates in many differ-
ent ways the possibility of developing a noncommutative fractal geometry. In [CI]
Christensen and Ivan construct spectral triples for approximately finite dimensional
C*-algebras and then apply this result to the special case of the continuous functions
on the Cantor set. In [CIL] Christensen, Ivan and Lapidus construct a spectral triple
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associated to the Sierpinski gasket. It encodes the geometry in that it recovers the
geodesic distance, the Hausdorff dimension and the Hausdorff measure; moreover, it
gives a non-trivial element in the K-homology group of the gasket.

In this paper, our main interest is to determine which K-homology elements we
can obtain by constructions of this type. At the same time, we extend the analysis
to the case of the Sierpinski pyramid. In both cases, a crucial role is played by the
sets HSG and HSP of holes in the gasket and non-horizontal holes in the pyramid,
respectively. In fact, the K1 groups are just the free abelian groupsL

HSG
Z and

L
HSP

Z;

and the K-homology groups K1 are the dual groups with respect to Z,Q
HSG

Z and
Q

HSP
Z:

A K-homology element can therefore be identified with a sequence of integers indexed
by HSG and HSP, respectively.

We show that it is possible to obtain any element in the K-homology group from
our construction, but the only geometric structure which is preserved by all such
spectral triples is the geodesic distance. If we want to have a spectral triple of this
type which gives the right Hausdorff dimension, then there is some limitation on the
growth of the associated sequence representing the K-homology element. Whenever
this sequence is bounded, we find a spectral triple with the right metric and the right
dimension. There is room for some unbounded sequences too, but we are not able
to say exactly which ones we can obtain. The Hausdorff measure is dominated by
the volume measure induced by any of our spectral triples. In general, however, the
two measures are not proportional. We find sufficient conditions for this to be true.
These investigations show that inside our set-up there are bounds on the numbers as
well as on the distributions of summands we use in forming our spectral triples. In
the other direction we can prove that the spectral triple, which we denote ZGT, and
which represents the 0-element in the K-homology group, actually has a minimality
property. We do this by showing that if just any summand – in the sum of unbounded
Fredholm modules giving this spectral triple – is left out, then the geodesic distance
will not be the metric coming from this spectral triple.

Acknowledgment. We are grateful to Malek Joumaah for the drawings.

1. Sierpinksi gasket: constructions, K-theory and K-homology

There are two basic procedures which both produce the Sierpinski gasket; one is
based on continued cuttings and the other on continued extensions of graphs. The
first steps in the cutting procedure are shown in the Figure 1 below.
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Figure 1

The Sierpinski gasket is just the intersection of all these sets, and a compactness
argument shows that this is a non-empty compact subset of the plane. The inductive
construction procedure shows that there are many holes, i.e., bounded components
of the complement of the gasket, and once a hole has been added it will remain
undisturbed during the following steps of the construction.

The first steps in the extension procedure are shown in the Figure 2 below.

Figure 2

In this case the gasket is obtained as the closure of the union of all these sets,
which may be thought of as planar graphs.

The K1 and the first Steenrod K-homology group K1 of the gasket are computable
from general results on the K-theory and K-homology of planar sets. Let X be a non-
empty compact Hausdorff space and {H 1.X/ the first Čech cohomology group of
X , i.e., {H 1.X/ is the quotient of the multiplicative group C.X/�1 of continuous
non-vanishing functions on X , by its component of unity. Define a character homo-
morphism K1.C.X// ! {H 1.X/ by assigning to a unitary in Mk.C.X// – which
is a continuous, unitary-valued function on X – the class of the function which is
obtained as the pointwise determinant. If X is a non-empty, compact subset of the
plane then this is an isomorphism (see for example [HR]).

The following description of {H 1.X/ makes it clear that K1.C.X// is free abelian.

Theorem 1.1 ([HR]). Let f�1; �2; : : : g be a sequence of points in CnX with precisely
one �j in each hole, i.e., bounded component of the complement of X , and none in
the unbounded component of the complement. The group {H 1.X/ is freely generated
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as an abelian group by the homotopy classes of the nowhere zero complex functions
z � �j on X .

For the first Steenrod K-homology group of X , K1.C.X//, there are two equiva-
lent descriptions. The first is due to Brown, Douglas, Fillmore (see [BDF]) who realize
K1.C.X// as the abelian group of unitarily equivalent extensions of C*-algebras of
the form

0 ! K ! A ! C.X/ ! 0;

where K is the C*-algebra of compact operators on a separable complex Hilbert
space. The second description is due to Kasparov [Ka2] (see also [Co1], [Co2])
who realizes K1.C.X// as the abelian group of stable homotopy classes of bounded
Fredholm modules over C.X/.

If X is a compact planar set

K1.C.X// Š Hom.K1.C.X/; Z/ .[BDF], [Do]/:

In Kasparov’s picture of K1 ([Ka1], [Co2]) the isomorphism between K1.C.X// and
Hom.K1.C.X/; Z/ is given by the following index map:

Let .H.�/; F / be an (odd bounded) Fredholm module over C.X/ and let P D
.I C F /=2. Let u be a unitary in C.X/. Then the operator P �.u/P from PH to
itself is a Fredholm operator. An additive map from K1.C.X// to Z is determined
by

ˆ.H;F /.Œu�/ D � Index.P �.u/jPH/:

The index map ˆ.H;F / only depends upon the class of .H; F /.
Baaj and Julg have shown in [BJ] that every class of bounded Fredholm modules

over the algebra C.X/ contains a Fredholm module constructed from an unbounded
one (see also [Co2], IV, Appendix A). Precisely, any unbounded Fredholm module
.H; D/ associated to C.X/ defines a bounded Fredholm module .H; F /, where F is
the self-adjoint unitary coming from the polar decomposition of the Dirac operator
D. The symmetry F equals 2P � I where P is the spectral projection E.Œ0; 1Œ/

for D. Every bounded Fredholm module over C.X/ is operator homotopic to one
obtained from the foregoing construction.

Remark. The above description of K1.C.X// for any compact planar set X identifies
Hom.K1.C.SG//; Z/, and thus K1.C.SG//, with the product group

Q
Z, with one

factor for each hole in SG.

2. Some notation and conventions

The basis for our constructions is Section 8 of [CIL], and we assume some familiarity
with these results. There a spectral triple for the Sierpinski gasket is constructed as
an example. We will call this triple the old gasket triple. Let us briefly recapture
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some of the definitions and names. The basis for the construction is an equilateral
triangle of circumference 2� which is placed as in Figure 2 such that one vertex
is pointing upwards. This triangle is denoted by �0;1, and for any natural number
n the gasket contains 3n triangles �n;j , 1 � j � 3n, of circumference 2�=.2n/

which are all scaled and translated copies of �0;1 as shown in Figure 2. Each of the
triangles �n;j is then treated as a circle with radius 2�n: In [CIL], Theorem 2.4, we
investigated the standard spectral triple for a circle of radius 2�n, and we showed
how this triple can be transformed into an unbounded Fredholm module for C.SG/.
We will let UFM.�n;j / denote this unbounded Fredholm module. The direct sum
of these unbounded Fredholm modules over all the pairs .n; j / then gives the old
spectral triple. Later, the authors discussed other possibilities for a spectral triple
for the Sierpinski gasket. It is clear that the upside down triangles which form the
boundaries of the bounded components of the complement of the gasket must contain
nearly the same information as the triangles �n;j . The triangle �0;1 then only
will appear indirectly as a boundary in a completion of the union of all the upside-
down triangles, but this is not a serious problem, since we can just add the module
corresponding to the outer triangle to the direct sum of the modules associated to all
the upside down triangles. To be more precise we will also introduce a numbering
system for the upside down triangles. The central one is denoted by r1;1; it is of
circumference � . All the upside down triangles are then numbered by a pair .m; k/

with m; k natural numbers such that 1 � k � 3m�1, and they are denoted by rm;k .
With HSG denoting the countable set that enumerates the holes in the Sierpinski

gasket, i.e.,
HSG ´ f.m; k/ j m 2 N; 1 � k � 3m�1g;

we may write

K1.C.SG// D L
.m;k/2HSG

Z;

K1.C.SG// D Hom.K1.C.SG//; Z/ D Q
.m;k/2HSG

Z:

3. On a family of spectral triples representing any element in K 1.C.SG//

Just as for the triangles �n;j we can construct an unbounded Fredholm module,

UFM.rm;k/ D .A; Hrm;k
; Drm;k

/;

for the Sierpinski gasket by parameterizing rm;k on a circle of radius 2�m following
[CIL], Definition 8.1. For each of the triangles �n;j , respectively rm;k , we can
also construct an unbounded Fredholm module by reversing the orientation in the
parameterization of the triangles. These modules will be denoted by UFM.�n;j / and
UFM.rm;k/, respectively.
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Proposition 3.1. Let u be a unitary in C.SG/, Œu� its class in K1.C.SG//. For each of
the triangles �n;j , respectively rm;k , denote the winding number for the restriction
of u.z/ to this triangle by w�n;j

.u/, respectively wrm;k
.u/. Then:

(i) ˆUFM.�n;j /.Œu�/ D w�n;j
.u/.

(ii) ˆUFM.rm;k/.Œu�/ D wrm;k
.u/.

(iii) ˆUFM.�n;j /.Œu�/ D P
rm;k��n;j

wrm;k
.u/.

(iv) The element ˆUFM.�n;j / in the group

Hom.K1.SG/; Z/ D Q
.m;k/2HSG

Z

is the function f�n;j
W HSG ! Z given by

f�n;j
.m; k/ D

´
1 if rm;k � �n;j ;

0 else.

Proof. (i) and (ii) are consequences of the result that for the unit circle T , the Hilbert
space H D L2.T / and the projection PC onto HC D spanfzn j n � 0g, the winding
number of u on T is the opposite integer to the index of PCMujHC, where Mu is
the multiplication operator induced by u.

For (iii) use the uniform continuity of u: From a certain natural number n0 on we
have for any n; m � n0 that the winding numbers of u around any �n;j and any rm;k

vanish for m; n � n0. Let us next compute ˆUFM.�0;1/.Œu�/. By the same argument
as above, it equals the winding number of u around �0;1. On the other hand this is
the sum of the winding numbers over the four triangles �1;j , 1 � j � 3, and r1;1.
For each of �1;j we repeat the subdivision until we reach the level n0 from where on
all winding numbers of u vanish. We are left with the sum of all the winding numbers
of u over the triangles rm;k , 1 � m � n0, 1 � k � 3m�1, and obtain (iii) in the case
where n D 0 and j D 1. The general case then follows by an analogous argument
applied to the triangle �n;j :

(iv) is just a reformulation of (iii) which is suitable for the computations to come.

We recall from [CIL] that we can perform infinite-direct sums of unbounded
Fredholm modules of the types

UFM.rm;k/ or UFM.rm;k/

and get an unbounded Fredholm module as a result.
We will now construct a spectral triple ZGT for the Sierpinski gasket which

induces the trivial element of the group K1.C.SG//. This may seem a bit strange,
but the idea is that ZGT – an acronym for Zero Gasket Triple – will carry all the
geometric information on the geodesic distance, the Hausdorff dimension, and the
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volume form, but induce the zero-element in the K-homology group. If we then add
any unbounded Fredholm module by direct sum to ZGT, the K1 element induced by
the sum equals that of the added unbounded Fredholm module.

The spectral triple ZGT is defined in very much the same way as the old gasket
triple mentioned in Section 2. It is the direct sum of the unbounded Fredholm modules
associated to all the upside down triangles rm;k plus the unbounded Fredholm module
coming from the outer triangle �0;1, with the orientation reversed:

Proposition 3.2. The direct sum of unbounded Fredholm modules

ZGT ´ UFM.�0;1/ ˚
� 1L

mD1

� 3m�1L
kD1

UFM.rm;k/
��

is a spectral triple. The Hilbert space is denoted by HZGT, the representation of
C.SG/ on HZGT and the Dirac operator on HZGT are named �ZGT and DZGT. The
bounded Fredholm module coming from the polar decomposition of DZGT induces
the trivial element of the group K1.C.SG//.

Proof. The arguments from [CIL], pages 27–28, may be copied and show that the
direct sum is a spectral triple.

The results (ii) and (iii) in Proposition 3.1 show that the corresponding element
in K1.C.SG// is trivial.

Theorem 3.3. The spectral triple ZGT has the following geometric properties:

(i) The metric induced by the ZGT is the geodesic distance.

(ii) The ZGT is summable for any positive s > log 3= log 2. Its zeta-function �ZGT.s/

is meromorphic with a simple pole at log 3= log 2 and it is given by �ZGT.s/ D
2 .2s�1/.2s�2/

2s�3
� �.s/.

(iii) Let � denote the Hausdorff probability measure of dimension log 3= log 2 on the
Sierpinski gasket. Then for any Dixmier trace and any continuous function g in
C.SG/ we have

Tr!.jDZGTj� log 3
log 2 �ZGT.g// D 4

3 log 3
� �

� log 3

log 2

�
�
Z

SG

g.x/d�.x/:

Proof. Except for the computation of the zeta-function, the proof here can be copied
from [CIL], Theorem 8.4, Proposition 8.6. With respect to the zeta-function, we get
for any fixed natural number l that the zeta function for �l;j or rl;j in a point s > 1

equals P
k2Z

2�lsjk C 1=2j�s D 2 � 2�ls � 2s
P

k2N

.2k C 1/�s

D 2 � 2�ls � 2s � .1 � 2�s/ � �.s/

D 21�ls � .2s � 1/ � �.s/:

(1)
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Since there are 3m�1 triangles of the form rm;j and just one of the form �0;1 we get
that the zeta function for this spectral triple – for s > log.3/= log.2/ – is given by

�ZGT.s/ D 2.2s � 1/ � �.s/ C
1P

mD1

3m�1 � 2 � 2�ms.2s � 1/ � �.s/

D 2.2s � 1/�.s/ C 2 � .2s � 1/2�s 1

1 � .3=2s/
� �.s/

D 2
.2s � 1/.2s � 2/

2s � 3
� �.s/:

Further on, by Proposition 4 on page 306 in [Co2], we obtain

Tr!.jDZGTj� log 3
log 2 / D lim

x!1C.x � 1/ Tr.jDZGTj�x� log 3
log 2 /

D lim
x!1C.x � 1/�ZGT

�
x � log 3

log 2

�

D 2 lim
x!1C.x � 1/

.2
x

log 3
log 2 � 1/.2

x
log 3
log 2 � 2/

2
x

log 3
log 2 � 3

�

�
x

log 3

log 2

�

D 4

3
� �

� log 3

log 2

�
� lim

x!1C
x � 1

3x�1 � 1

D 4

3 log 3
� �

� log 3

log 2

�
:

Definition 3.4. For .f .m; k//m;k 2 Q
.m;k/2HSG Z let UFM.f / denote the direct

sum

M
.m;k/2HSG W f .m;k/¤0

8<
:UFM.rm;k/

f .m;k/˚ � � � ˚ UFM.rm;k/ if f .m; k/ > 0;

UFM.rm;k/
�f .m;k/˚ � � � ˚ UFM.rm;k/ if f .m; k/ < 0:

It is now quite easy to construct a spectral triple which induces any prescribed
element in the group K1.C.SG//.

Definition 3.5. Let .f .m; k//m;k 2 Q
.m;k/2HSG Z then ST.f / denotes the direct

sum
ZGT ˚ UFM.f /:

Theorem 3.6. Let .f .m; k//m;k 2 Q
.m;k/2HSG Z. Then ST.f / is a spectral triple

which induces the geodesic distance on the gasket and the K1-element .f .m; k//m;k .

Such a spectral triple will in general not have the right summability properties.
In the first place the authors thought that the elements in K1.C.SG// coming from
spectral triples that encode the fractal geometry of the gasket ought to be a subgroup
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of Hom.K1.C.SG//; Z/, but it is by no means clear or even true that the direct sum
of two arbitrary unbounded Fredholm modules will make sense as an unbounded
Fredholm module. The problem is analogous to the one coming from the addi-
tion of unbounded operators, namely that for two spectral triples .A1; H1; D1/ and
.A2; H2; D2/ associated to a C*-algebra A the intersection A1 \A2 may be too small
to be a dense subalgebra of A.

This problem does not arise when forming the sum used in the definition of
ST.f /, since the algebra A is the same for all summands. We infer from the proof of
Theorem 8.2 in [CIL] that A is the algebra generated by the real affine functions on
the plane, restricted to the gasket. Since ZGT is a summand in any ST.f / it follows
that the metric induced by the ST.f / must be the one induced by ZGT which equals
the geodesic distance on the gasket.

With respect to summability properties, it follows from the fact that ZGT is a
direct summand in ST.f / that ST.f / can only be summable for p > log 3= log 2.
The zeta function for ST.f /, say �f , is easily computed to be

�f .s/ D 2
.2s � 1/.2s � 2/

2s � 3
� �.s/ C

1P
mD1

3m�1P
kD1

jf .m; k/j.2 � 2�ms � .2s � 1/ � �.s//

D �ZGT.s/ C 2 � .2s � 1/�.s/
� 1P

mD1

3m�1P
kD1

jf .m; k/j � 2�ms
�
:

By applying the root criterion we see that the following result holds.

Theorem 3.7. Let .f .m; k// 2 Q
HSG Z. Then ST.f / is summable for any p >

log 3= log 2 if and only if

lim sup
m!1

� 3m�1P
kD1

jf .m; k/j
�1=m � 3:

There is an immediate corollary.

Corollary 3.8. If supm;k jf .m; k/j < 1, then ST.f / is summable for any p >

log 3= log 2.

This result implies that the elements of the subgroup of the K-homology group
K1 given by bounded sequences are all represented by spectral triples with the right
summability properties. We have thought of a possible converse to Theorem 3.7, and
we conjecture that the following is true.

Conjecture 3.9. Let .A; H; D/ denote a spectral triple for C.SG/ which induces
the geodesic distance on the gasket. If it is summable for any p > log 3= log 2 and
.f .m; k// 2 Q

HSG Z represents its K-homology class then

lim sup
m!1

� 3m�1P
kD1

jf .m; k/j
�1=m � 3:
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At the time of the publication of this article we had no new information on the
status of the conjecture.

The volume form obtained from a spectral triple ST.f / which is summable for
p > log 3= log 2 clearly majorizes a multiple of the one obtained from the log 3= log 2-
dimensional Hausdorff measure, since ST.f / contains ZGT as a direct summand.
On the other hand it is rather obvious that even for a bounded sequence .f .m; k//

the values may be unevenly distributed so that the resulting volume form is not
proportional to the one coming from the log 3= log 2-dimensional Hausdorff measure.
Below, we discuss conditions on .f .m; k// that assure that the volume form given
by ST.f / and the log 3= log 2-dimensional Hausdorff measure are multiples of each
other. We first give a definition, then state our results.

Definition 3.10. The sequence .f .m; k// is said to be boundedly almost invariant,
if the sequence of averages

a.m/ ´
3m�1X
kD1

jf .m; k/j
3m�1

is bounded and

lim sup
m!1

� 3m�1P
kD1

j jf .m; k/j � a.m/j
�1=m

< 3:

Let Df and .Hf ; �f / denote the Dirac operator and the representation of the
spectral triple ST.f /, respectively.

Lemma 3.11. Let .f .m; k// be a boundedly almost invariant sequence. Then

jDf j� log 3= log 2 2 L.1;1/.Hf /:

(See beginning of [Co2], IV.2.ˇ, p. 303).

Proof. According to our description of the spectral triple ST.f / and the statement in
front of Theorem 3.7 it follows that the �-function for s > log 3= log 2 is given as the
infinite sum of non-negative values

Tr.jDf j�s/ D �f .s/ D �ZGT.s/ C 2.2s � 1/�.s/
� 1P

mD1

3m�1P
kD1

jf .m; k/j � 2�ms
�
:

The theory we will use to prove the lemma is all based on limits as x ! 1C rather
than s ! log 3= log 2, so we will replace the �-function with the positive function
T .x/ defined for x > 1 by

T .x/ ´ �f

�
x � log 3

log 2

�
:
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Since .f .m; k// is almost boundedly invariant we define the sequence of averages
.a.m// as above and let

A ´ supfa.m/ j m 2 N0g C 1:

Then there exists a positive d < 3 and a natural number N1 such that

3m�1P
kD1

j jf .m; k/j � a.m/j < d m for all m � N1:

Since all elements in the sum which defines �f .s/ are non-negative we may rearrange
the sum as we please. Further since we are interested in the behaviour of .x �1/T .x/

as x ! 1C any finite number of terms in the sum defining T .x/ may be left out, when
we prove that .x � 1/T .x/ is bounded on the interval .1; 1/. We know already by
Theorem 3.3 that the function �ZGT.x log 3= log 2/ can be extended to a meromorphic
function with a simple pole at 1. Let us then look at the remaining sum and let us
begin to sum for m � N1. To make the notation easier we will still use the variable
s D x log 3= log 2 and we get

2 � .2s � 1/�.s/
1P

mDN1

3m�1P
kD1

jf .m; k/j � 2�ms

� 2.2s � 1/�.s/
1P

mDN1

2�ms
h
3m�1a.m/ C

3m�1P
kD1

j jf .m; k/j � a.m/j
i

� 2.2s � 1/�.s/
1P

mDN1

2�msŒ3m�1A C d m�

D 2.2s � 1/�.s/

�
A

3

�
3

2s

�N1 2s

2s � 3
C

�
d

2s

�N1 2s

2s � d

�
:

From here it follows that the function �f .s/�.s� log 3
log 2

/ is bounded for s 2 .
log 3
log 2

; 1/,
and then T .x/.x � 1/ is bounded on the interval .1; 1/. The lemma then follows
from [GBVF], Lemma 7.19 and Lemma 7.20.

Proposition 3.12. Let .f .m; k// be a boundedly almost invariant sequence, with
corresponding spectral triple ST.f /, and ! an ultrafilter on N which induces a
Dixmier trace on the ideal L.1;1/.Hf /, then the functional ' on C.SG/ defined for
g in C.SG/ by

'.g/ ´ Tr!.jDf j� log 3= log 2�f .g//

is a multiple of the Hausdorff integral on the Sierpinski gasket.

Proof. It is well known that the trace property of Tr! implies that ' becomes a
bounded positive linear functional on C.SG/. We show that the measure assigned by
' to the portion of Sierpinski gasket which is contained inside or on each �n;j equals
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3�n of the measure assigned to the entire gasket. This will imply that ' is a multiple
of the Hausdorff integral on the gasket since the log 3= log 2-dimensional Hausdorff
measure is the unique measure on the gasket satisfying the foregoing scaling property
([Ba]). First of all we will only need to study the Dixmier trace coming from the
unbounded Fredholm module UFM.f /, so we will introduce some notations. We
will let �m;k denote the representation consisting of jf .m; k/j copies of the standard
representation of C.rm;k/, and we will let Km;k denote the corresponding Hilbert
space. On this space we define zDm;k as the corresponding amplified Dirac operator.
Then we define the Hilbert space K, the representation � and the Dirac operator as
the direct sum of these objects over indices m; k with f .m; k/ ¤ 0. By the lemma
above j zDj� log 3= log 2 is in L.1;1/.

Take Fn;j to be the triangle �n;j together with its interior. Let us then consider
the functions on SG which are the characteristic functions 	1;j , j 2 f1; 2; 3g, for
the portion of Sierpinski gasket which is contained in F1;j . These functions are
not continuous on the gasket, but we see that there is a unique way to extend the
representation � to be defined on these functions too, namely by defining �.	1;j / as
the orthogonal projection from K onto the subspace Kj defined by

Kj ´ L
rm;k�F1;j

Km;k :

To compute Tr!.�.	1;j /j zDj� log 3= log 2/, we have to go through summations over
decreasing eigenvalues of j zDj� log 3= log 2 corresponding to the eigenvectors which are
contained in the space Kj . Here each nonzero eigenvalue for j zDj� log 3= log 2 is of the
form

3�mj1=2 C l j� log 3= log 2 for m 2 N; l 2 Z:

The multiplicity of such an eigenvalue is

M.m/ ´ P
rm;k��1;j

jf .m; k/j:

In the partial sums used to define the Dixmier trace

Tr!.�.	1;j /j QDj� log 3= log 2/

we will now replace the expression

M.m/3�mj1=2 C l j� log 3= log 2

by

3m�2a.m/3�mj1=2 C l j� log 3= log 2;

and then we need a correction term�
M.m/ � 3m�2a.m/

	
3�mj1=2 C l j� log 3= log 2:
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By checking partial sums of sums corresponding to decreasing eigenvalues, one
can se that the sums involving a.m/ will be exactly the same as those used to compute
Tr!.j zDj� log 3= log 2/, except that they are all scaled by the factor 1=3. For a suitable
d < 3, the sums of the correction terms may be dominated as follows:

X
l2Z

X
m2N

jM.m/ � 3m�2a.m/j3�mj1=2 C l j� log 3= log 2

D 4�

�
log 3

log 2

� X
m2N

jM.m/ � 3m�2a.m/j3�m

� 4�

�
log 3

log 2

� X
m2N

3�m
X

rm;k��1;j

j jf .m; k/j � a.m/j

� 4�

�
log 3

log 2

� X
m2N

3�md m

� 4�

�
log 3

log 2

�
d

3 � d
:

Because the sum of all these correction terms is finite, the Dixmier trace
Tr!.�.	1;j /j zDj� log 3= log 2/ is one third of Tr!.j zDj� log 3= log 2/. Repeated use of this
argument will show that the measure assigned by ' to the portion of the Sierpinski
gasket which is contained in Fn;j equals 3�n of the measure assigned to the entire
gasket.

Example 3.13. The boundedly almost invariant sequences do not form a subgroup
of K1.SG/: There exist two boundedly almost invariant sequences f and g such that
for the sum sequence h.m; k/ ´ f .m; k/ C g.m; k/, the Dixmier trace associated
to ST.h/ is not a multiple of the Hausdorff integral.

Proof. The gasket has the three upward pointing triangles

�1;k; k D 1; 2; 3:

We let .f .m; k// and .g.m; k// denote the sequences in K1.SG// given by f .m; k/ D
1 for all indices .m; k/ and

g.m; k/ D
´

�1 if rm;k � F1;1;

1 else;

respectively. Here F1;1 is as in the proof of Proposition 3.12. Clearly both are
boundedly almost invariant, but we shall see that their sum h.m; k/ ´ f .m; k/ C
g.m; k/ is not. We obtain a.m/ D 4=3 for the sequence of averages for jh.m; k/j.
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Hence

lim sup
m!1

� 3m�1X
kD1

ˇ̌̌
jh.m; k/j � 4

3

ˇ̌̌�1=m

D lim sup
m!1

�
1

3
� 4

3
3m�1 C 2

3
� 2

3
3m�1

�1=m

D lim sup
m!1

�
8 � 3m�3

	1=m D 3;

so the sequence .h.m; k// is not boundedly almost invariant.
For any continuous positive function with support inside F1;1, the Dixmier trace

induced by ST.h/ equals that of the Dixmier trace coming from ZGT. This will not
be the case, however, for a positive continuous function supported inside F1;2. Hence
the Dixmier trace corresponding to ST.h/ is not a multiple of the Hausdorff integral.

The example shows that in order to obtain a subgroup of sequences .f .m; k// such
that the Dixmier trace generated by ST.f / is a multiple of the Hausdorff integral, we
can not do with bounded sequences. On the other hand there is a subgroup where all
elements behave nicely.

Definition 3.14. The group c1.HSG; Z/ is defined as the set of sequences .f .m; k//

such that

9t 2 Z 9M 2 N 8m � M 8k 2 f1; : : : ; 3m�1g W f .m; k/ D t:

Proposition 3.15. For .f .m; k// in c1.HSG; Z/ the Dixmier trace associated to the
spectral triple ST.f / is a multiple of the Hausdorff integral.

Proof. The sequences in c1.HSG; Z/ are all boundedly almost invariant.

4. Aspects of minimality of ZGT

In [Co3] Connes formulates seven axioms for a spectral triple .A; H ; D/ with A

a commutative algebra. In [Co5] he shows that five of these axioms (in a slightly
stronger form) suffice in order to characterize the spectral triples associated to smooth
compact manifolds, i.e., from these axioms one can construct a smooth oriented
compact (spinc) manifold X .

The fractal we study is by nature far away from being a smooth manifold, and
this is why we can not expect to construct spectral triples for the Sierpinski gasket
which satisfy all of Connes’ axioms. One of the problems our spectral triples raise is
that our algebra of differentiable functions (Lipschitz functions), according to [CIL],
Theorem 8.2, is the algebra of functions on the gasket generated by the restrictions
of the affine functions. As we remark in that paper, an affine function restricted to
a triangle gives a continuous function with constant slopes along the edges. It then
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belongs to the domain of the Dirac operator, but its derivative will not, unless the
function is constant. It seems hopeless to get a regularity condition, i.e., to talk about
smooth functions in this case. We will therefore stay inside the set-up where we
consider spectral triples defined as direct sums of of unbounded Fredholm modules
associated to triangles of the form rm;j or �0;1. Our main result in this section
shows that in this set-up, the geometry, i.e., the representation ([Co3]), of the spectral
triple ZGT is the minimal one among those which induce the geodesic distance on the
Sierpinki gasket. Recall that the ZGT spectral triple is the direct sum of the unbounded
Fredholm modules associated to the big outer triangle and all those associated to the
upside down triangles. As the gasket is the closure of the increasing sequence of
graphs Gn in Figure 2, it is clear that one can leave out the big outer triangle and
any finite number of upside down triangles and still gets the gasket as the closure.
The corresponding restricted sum of unbounded Fredholm modules will then induce
a faithful representation and hence a spectral triple, but the geodesic distance will not
be recovered.

We consider the case of a spectral triple which is obtained from ZGT by leaving
out one of the triangles. Let us denote such a spectral triple by RGT (reduced gasket
triple). We will show:

Proposition 4.1. The metric dRGT induced by any RGT is equivalent to the geodesic
distance dg on the gasket, but it does not coincide with it: There exist points x, y

such that

dRGT.x; y/ � 3

2
dg.x; y/: (2)

The rest of this section is devoted to a proof of this proposition divided into several
small arguments. A slight modification of the proof of Theorem 8.13 in [CIL] shows
that for any spectral triple of the form ST.f / the metric induced by the distance
formula applied to this triple is dg . It is well known, see for instance [Ba], that for
points x, y on the gasket

kx � yk � dg.x; y/ � 8kx � yk;

so that the geodesic metric is equivalent to the Euclidean metric.
To enter into the proof of the proposition, let us look at the triple ZGT and suppose

that we take out the summand corresponding to the outer triangle �0;1. It will
become clear that our considerations may be transferred to the situation where we
instead remove one of the triangles rm;k . In order to clarify things we will give some
definitions and figures. Define the graphs

Hn ´ S
m�n

S
k�3m�1

rm;k; n D 1; 2; : : : ; 1:

See the illustration below for a drawing presenting H3 and a part of H4.
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P2

Q

P1

S

R

H3 and part of H4

Figure 3

On each graph Hn a metric dn is given by the geodesic distance on that graph.
As Hn � HnC1 the sequence dnCk.x; y/ is decreasing for any points x; y from Hn

as k ! 1, and we obtain a metric on H1 by

d1.x; y/ ´ lim
k!1

dnCk.x; y/:

Lemma 4.2. For any points x, y in H1,

dg.x; y/ � d1.x; y/ � 2dg.x; y/:

Proof. Fix n such that x; y 2 Hn. It is known from the analysis in [CIL], see
Lemma 8.11 and the following remarks, that a shortest path from x to y can be found
along the edges of Gn D Hn [ �0;1. As any piece of this path going through �0;1

can be replaced by two pieces of the same length in Hn, we have

dg.x; y/ � d1.x; y/ � dn.x; y/ � 2dg.x; y/:

Since the set of points in H1 is dense in the gasket, it is possible to extend d1
by continuity to a metric d0 on the gasket, and we have:

Corollary 4.3. For any pair of points x, y on the Sierpinski gasket,

dg.x; y/ � d0.x; y/ � 2dg.x; y/

so that the metric d0 is equivalent to the geodesic distance.
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We will show next that d0 does not coincide with the geodesic distance. As
mentioned above, let RGT denote the reduced spectral triple obtained as the direct
sum of all the unbounded Fredholm modules associated to all the triangles rm;j

(thus leaving out �0;1), and let DRGT, �RGT be the corresponding Dirac operator and
representation. We consider two vertices P1 and P2 on �0;1 as sketched in Figure 3
and shall show that

dn.P1; P2/ D 3

2
dg.P1; P2/ for n � 3:

This implies that

d0.P1; P2/ D 3

2
dg.P1; P2/: (3)

We first observe that the function d W SG ! RC [ f0g defined by d.x/ ´ d0.P1; x/

satisfies
kŒDRGT; �RGT.d/�k D 1;

and this follows as in the proof of [CIL], Lemma 8.12, noting that on any edge in Hn

the function g is differentiable except at at most one point and the numerical value
of the derivative, when defined, is bounded by 1. Hence

dRGT.P1; x/ � d0.P1; x/: (4)

We consider d on the edge of �0;1 which contains P1 and P2 and abbreviate ˛ D
dg.P1; P2/. Clearly any shortest path from P1 to P2 will pass through Q and

d2.P1; P2/ D 2˛; d3.P1; P2/ D 3

2
˛:

Next, considering the triangles with vertices P1, R, Q and Q, S , P2 we see that
determining a shortest path in H4 is analogous to determining a shortest path in H3

by scaling, and d4.P1; P2/ D 3
2
˛. Iteration then shows that

dn.P1; P2/ D 3

2
˛ for all n � 3:

Taking the limit as n ! 1 we obtain (3) and, in view of (4), inequality (2) in
Proposition 4.1.

Comment 4.4. Proposition 4.1 above shows that no summand in our spectral triple
ZGT can be left out, if the geodesic distance shall be obtained via Connes’ formula.
On the other hand one may leave out any finite number of summands and still get
a spectral triple, because the union of the remaining triangles rm;j is dense in the
gasket. Although such a spectral triple will not reproduce the geodesic distance, the
volume form will still be the one obtained from ZGT.
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5. The Sierpinski pyramid: constructions, K-theory and K-homology

The Sierpinski pyramid is the 3-dimensional version of the Sierpinski gasket. One
starts, for example, with a solid regular tetrahedron P0 (Figure below on the left) and
divides it into eight identical regular tetrahedra. One then cuts out all the smaller
tetrahedra except for the ones at the vertices of the starting tetrahedron, obtaining P1

(Figure below on the right).

Figure 4

One iterates this procedure (see below the illustration of P2).

Figure 5

(The drawings are done by Jürgen Meier, www.3d-meier.de.)
In the n-th step, one cuts away 4 � 4n�1 regular tetrahedra, or 4n�1 regular octa-

hedra, with side length equal to 2�n of that of the original one. The Sierpinski pyramid
SP is then the limit of this decreasing sequence of compact subsets Pn, of P0. For
any n 2 N; Pn is the union of 4n solid tetrahedra, say Pn;k , 1 � k � 4n, with the
side length 2�n of that of P0. One calculates easily the Hausdorff dimension of this
fractal. Indeed the Sierpinski pyramid is a self-similar set satisfying the open set
condition and can be constructed out of four similarities of ratio 1=2. This implies
that its Hausdorff dimension s is the solution of the equation 4 � .1=2/s D 1 and
thus s D 2. The C*-algebra of the continuous functions on the Sierpinski pyramid
C.SP/ is the direct limit of C*-algebras C.Pn/ and the homomorphisms given by
the restriction maps. We will use this picture to compute K1.C.SP//. We start by
considering P1. If we retract each P1;k , 1 � k � 4, along oblique edges, as shown
below, we obtain from P1 the graph below, which is homotopic to the three-leaved
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Figure 6

rose R3 (recall that every finite (connected) graph is homotopic to a n-leaved rose,
where n is the number of edges not belonging to a maximal tree of the graph; see, for
example, [AB]).

A

M

P

Q

B

N

C

Q

R3

Figure 7

The three leaves correspond to the holes in the oblique faces of the initial tetrahe-
dron. In the subsequent steps, for any n � 2, the cutting of an octahedron from one
of the tetrahedra of Pn�1 will produce each time three holes in the oblique faces of
Pn�1. Hence Pn will be homotopic to a rose having as many leaves as one counts
holes in every oblique face of any of the pyramids at the n-step in the construction of
SP, i.e.,

3 C 4 � 3 C � � � C 4n�1 � 3 D 4n � 1

leaves. The K-theory of the n-leaved rose Rn is easily computed using a six-term
exact sequence and it follows from [RLL], p. 232, that

K0.C.Rn// D Z and K1.C.Rn// D Zn:

The singular homology of the n-leaved rose is given by H 1.Rn/ D Zn ([AB], [Mu]).
We thus conclude

K1.C.Pn// D H 1.Pn/ D Z4n�1:

As the direct limit of K1.C.Pn//, K1.C.SP// will count the holes in every oblique
face of any of the small pyramids that arise in the construction of the Sierpinski
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pyramid,1 hence

K1.C.SP// D
1L

nD1

Z3�4n�1
:

We shall remark here that also for the Sierpinski pyramid

K1.C.SP// Š {H 1.SP/I
in fact, since SP is the intersection of the Pn, we obtain from [Mu], Theorem 73.4,

{H 1.SP/ D lim�!H 1.Pn/ and H 1.Pn/ D K1.C.Pn//:

Let X be a compact subset of the space R3 and u a unitary in some matrix algebra
Mk.C.X//, i.e., u 2 Uk.C.X//. Then the K1 class Œu� of u is not in general
represented by a unitary v in C.X/, but the above analysis shows that for the Sierpinski
pyramid this is the case. In an unpublished article [Br] (see [BDF], [Do]) Larry
Brown has extended the result in [BDF] to R3, i.e., he showed that the index map (in
Kasparov’s picture)

K1.C.X// 3 Œ.H.�/; F /� 7! ˆ.H;F / 2 Hom.K1.C.X//; Z/

defined by

ˆ.H;F /.Œu�/ D � Index.Pk�k.u/Pk/; u 2 Uk.C.X//; k 2 N;

is an isomorphism for any compact X � R3.
For the Sierpinski pyramid we conclude that

ˆ.H;F /.Œu�/ D � Index.P �.u/P /; u 2 U.C.X//:

6. A family of spectral triples that generates K 1.C.SP//

We suppose that the initial solid tetrahedron P0 is placed such that one vertex is
pointing upwards (as in Figure 4) and has the side length 2�=3. The four equilateral
triangles of perimeter 2� which are the boundaries of the four faces of P0 are denoted
by �0;k , k 2 f1; : : : ; 4g.

Figure 8

1This result was obtained in the diploma thesis [Ha] of Stefan Hasselmann supervised by C. Ivan.
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Numbering 6.1. By �1;1;k , k 2 f1; : : : ; 8g, we denote the eight equilateral triangles
of perimeter � which are the boundaries of the faces of the cut out octahedron in the
first step of the construction procedure of the Sierpinski pyramid. We will consider
them numbered as follows:

(1) �1;1;k , k 2 f1; 2; 3g, for the boundaries of the holes into an oblique face of P0

generated by cutting out the octahedron.

(2) �1;1;4 for the boundary of the hole into the horizontal face of P0, and

(3) �1;1;k , k 2 f5; : : : ; 8g, for the boundaries of the remaining faces of the cut out
octahedron.

Figure 9

In general, for any n 2 N, we introduce a numbering of the 8 � 4n�1 equilateral
triangles of perimeter 21�n� which are the boundaries of the faces of all cut out
octahedra in the n-th step of the construction of the Sierpinski pyramid and denote the
numbered triangles by �n;m;k , m 2 f1; : : : ; 4n�1g, k 2 f1; : : : ; 8g. The numbering
of the triangles obeys the following rules: for any m 2 f1; : : : ; 4n�1g,

(1) �n;m;k , k D 1; 2; 3, for the boundaries of the holes in an oblique face of Pn�1;m,

(2) �n;m;4 for the boundary of the hole in the horizontal face of Pn�1;m, and

(3) �n;m;k , k D 5; : : : ; 8, for the boundaries of the remaining faces of the octahe-
dron which is cut out of Pn�1;m.

We will construct unbounded Fredholm modules over the algebra C.SP/ based
on the triangles �n;m;k similarly as for the Sierpinski gasket. We endow each face
of any pyramid with the orientation induced by the outer normal vector and orient
the boundary correspondingly. With this orientation we construct an unbounded
Fredholm module UFM.�0;k/ over C.SP/ in the same way we did for the initial
triangle �0;1 for the Sierpinski gasket. For n � 1 and m fixed in f1; : : : ; 4n�1g the
triangles �n;m;k , 1 � k � 8, are all boundaries of a face of an octahedron. Then
for each set of indices .n; m; k/ we can construct an unbounded Fredholm module
UFM.�n;m;k/ for C.SP/. By reversing the orientation in the parameterization of the
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triangles we obtain the unbounded Fredholm modules denoted by UFM.�n;m;k/.
To obtain a family of spectral triples which would encode as well as possible

the fractal geometry of the pyramid and generate its K1-group we use the same
idea as for the Sierpinksi gasket. We first construct a spectral triple which encodes
the fractal geometry of the pyramid and induces the 0-index map, and thus the 0-
element of K1.C.SP//. To this spectral triple we then add (the appropriate number of)
circle spectral triples associated to the boundary of each hole (with in the appropriate
orientation) in each oblique face of any small pyramid arising in the construction of
the Sierpinski pyramid.

A spectral triple which encodes the fractal geometry of the Sierpinski pyramid
and induces the 0-index map is given in the following definition.

Definition 6.2. The direct sum of unbounded Fredholm modules for the Sierpinski
pyramid given by

4L
kD1

UFM.�0;k/ ˚
1L

nD1

4n�1L
mD1

8L
kD1

UFM.�n;m;k/

is a spectral triple, which is denoted by ZPT (the zero pyramid triple). The Hilbert
space and the Dirac operator of this spectral triple are denoted by HZPT and DZPT,
respectively.

Theorem 6.3. The bounded Fredholm module coming from the polar decomposition
of DZPT induces the trivial element of the group K1.C.SP//.

The spectral triple ZPT has the following geometric properties:

(i) The metric induced is the geodesic distance.

(ii) The ZPT is summable for any positive s > 2. Its zeta-function �ZPT.s/ is mero-
morphic with a simple pole at 2 and is given by �ZPT.s/ D 8 � .2s�1/.2s�2/

2s�4
�.s/.

(iii) Let � denote the normalized 2-dimensional Hausdorff measure on the Sierpinski
pyramid. Then for any Dixmier trace and any continuous function g in C.SP/

we have

Tr!.jDZPTj�2�ZPT.g// D 6

log 2
� �.2/ �

Z
SP

g.x/d�.x/:

Proof. Using similar arguments as in [CIL], pp. 27–28, we can show that the direct
sum is a spectral triple (this result and (i) were also obtained in [Ha]).

Let u be a unitary of C.SP/. We refer to Proposition 3.1 (i) to write the K-
homology element induced by ZPT:

ˆZPT.Œu�/ D
4P

kD1

w�0;k
.u/ C

1P
nD1

4n�1P
mD1

8P
kD1

w�n;m;k
.u/:
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Since from a certain number n0 on the winding number of u around any �n;m;k ,
n > n0, m D 1, …, 4n�1, k D 1, …, 8, vanishes, the sum is finite. Let us compute
it. We notice that

P4
kD1 w�0;k

.u/ D 0 since each edge of the starting tetrahedron is
covered twice but in opposite directions and thus the sum of the winding numbers of
u around the four triangles �0;k is 0, see Figure 8. In fact for any n 2 f1; : : : ; n0g
and m 2 f1; : : : 4n�1g the expression

P8
kD1 w�n;m;k

.u/ is 0 since each edge in the
octahedron numbered .n; m/ will be counted twice and in opposite directions, see
Figure 9. Thus the sum of the winding numbers of u around the eight triangles is 0.
In conclusion the corresponding element in K1.C.SP// of ZPT is trivial. We now
fix a positive number s > 2 and compute the zeta-function of ZPT in s. We remark
first that, for any n 2 N0, the zeta-function in a point s > 2 for �0;k , k D 1, …,
4, and �n;m;k , n 2 N, m D 1, …, 4n�1, k D 1, …, 8, is the zeta-function in s for
�n;j from the Sierpinski gasket case, and thus equals 2 � 2�ns � .2s � 1/ � �.s/, see the
equation (1). There are four triangles �0;k and 8 � 4n�1 triangles �n;m;k . Hence the
zeta-function for ZPT in a point s > 2 is

�ZPT.s/ D 4 � 2.2s � 1/ � �.s/ C
1P

nD1

8 � 4n�1 � 2 � 2�ns.2s � 1/ � �.s/

D 8 � .2s � 1/�.s/ C 8 � 21�s � .2s � 1/
1

1 � .4=2s/
� �.s/

D 8 � .2s � 1/�.s/

�
1 C 21�s � 1

1 � 4=2s

�

D 8 � .2s � 1/.2s � 2/

2s � 4
�.s/:

Moreover, we obtain

Tr!.jDZPTj�2/ D lim
x!1C.x � 1/�ZPT.x � 2/

D 4 � 3�.2/ lim
x!1C.x � 1/

1

4x�1 � 1
D 6

log 2
� �.2/:

In accordance with the convention in Numbering 6.1 we shall index the non-
horizontal holes of Sierpinski pyramid by

HSP ´ f.n; m; k/ j n 2 N; m D 1; : : : ; 4n�1; k D 1; 2; 3g;
and thus we may write

K1.C.SP// D L
.n;m;k/2HSP

Z;

K1.C.SP// D Hom.K1.C.SP//; Z/ D Q
.n;m;k/2HSP

Z:

We shall now construct a spectral triple which induces any prescribed element in
the group K1.C.SP//.
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Theorem 6.4. Let .f .n; m; k//n;m;k 2 Q
.n;m;k/2HSP Z. Then

ST.f / ´ ZPT ˚ UFM.f /;

where UFM.f / denotes the direct sum

M
.n;m;k/2HSP W
f .n;m;k/¤0

8<
:UFM.�n;m;k/

f .n;m;k/˚ � � � ˚ UFM.�n;m;k/ if f .n; m; k/ > 0;

UFM.�n;m;k/
�f .n;m;k/˚ � � � ˚ UFM.�n;m;k/ if f .n; m; k/ < 0;

is a spectral triple which induces the geodesic distance on the pyramid and the K1-
element .f .n; m; k//n;m;k .

As for the gasket it is easily seen that if a function .f .n; m; k// is bounded then
the summability properties for ST.f / are the same as for ZPT. It is also possible to
check that if a function .f .n; m; k// has the property that it is constant for all indices
with n � N for some natural number N then the volume form will be proportional
to that of the 2-dimensional Hausdorff measure.

At last we will examine the possibility to have an unbounded function f .n; m; k/

such that the triple ST.f / is summable for any p > 2. We write down – at least
formally – the zeta-function �f .s/ for ST.f /, and we obtain

�f .s/ D �ZPT.s/ C
1P

nD1

4n�1P
mD1

3P
kD1

jf .n; m; k/j.2 � 2�ns � .2s � 1/ � �.s//

D �ZPT.s/ C 2 � .2s � 1/�.s/
1P

nD1

� 4n�1P
mD1

3P
kD1

jf .n; m; k/j
�

� 2�ns:

Based on the root criterion we then get:

Theorem 6.5. Let .f .n; m; k// 2 Q
HSP Z then ST.f / is summable for any p > 2 if

lim sup
n!1

� 4n�1P
mD1

3P
kD1

jf .n; m; k/j
�1=n � 4:

References

[AB] E. Artin and H. Braun, Introduction to algebraic topology. Charles E. Merrill Pub-
lishing Co., Columbus, Ohio 1969. Zbl 0181.51201 MR 0247624

[BJ] S. Baaj and P. Julg, Théorie bivariante de Kasparov et opérateurs non bornés dans
les C �-modules hilbertiens. C. R. Acad. Sci. Paris Sér. I Math. 296 (1983), 875–878.
Zbl 0551.46041 MR 715325

http://www.emis.de/MATH-item?0181.51201
http://www.ams.org/mathscinet-getitem?mr=0247624
http://www.emis.de/MATH-item?0551.46041
http://www.ams.org/mathscinet-getitem?mr=715325


Spectral triples and the geometry of fractals 273

[Ba] M. T. Barlow, Diffusions on fractals. In Lectures on probability theory and statistics
(Saint-Flour, 1995), Lecture Notes in Math. 1690, Springer, Berlin 1998, 1–121.
Zbl 0916.60069 MR 1668115

[Br] L. G. Brown, The topology of the group Ext.X/. Unpublished.

[BDF] L. G. Brown, R. G. Douglas, and P. A. Fillmore, Extensions of C �-algebras and
K-homology. Ann. of Math. (2) 105 (1977), 265–324. Zbl 0376.46036 MR 0458196

[CI] E. Christensen and C. Ivan, Spectral triples for AF C �-algebras and metrics on the
Cantor set. J. Operator Theory 56 (2006), 17–46. Zbl 1111.46052 MR 2261610

[CIL] E. Christensen, C. Ivan, and M. L. Lapidus, Dirac operators and spectral triples for
some fractal sets built on curves. Adv. Math. 217 (2008), 42–78. Zbl 1133.28002
MR 2357322

[Co1] A. Connes, Non-commutative differential geometry. Inst. Hautes Études Sci. Publ.
Math. 62 (1985), 41–144. Zbl 0592.46056 MR 0823176

[Co2] A. Connes, Noncommutative geometry. Academic Press, San Diego, CA, 1994.
Zbl 0818.46076 MR 1303779

[Co3] A. Connes, Gravity coupled with matter and the foundation of non-commutative
geometry. Comm. Math. Phys. 182 (1996), 155–176. Zbl 0881.58009 MR 1441908

[Co4] A. Connes, Unpublished notes on a Dirac operator associated to the Cantor subset of
the unit interval. Electronic message to Michel Lapidus, May 2002.

[Co5] A. Connes, On the spectral characterisation of manifolds. To appear in J. Noncommut.
Geom. arXiv:0810.2088

[Do] R. G. Douglas, C �-algebra extensions and K-homology. Ann. of Math. Stud. 95,
Princeton University Press, Princeton, N.J., 1980 Zbl 0458.46049 MR 571362

[GBVF] J. M. Gracia-Bondía, J. C. Várilly, and H. Figueroa, Elements of noncommuta-
tive geometry. Birkhäuser Adv. Texts, Birkhäuser, Boston 2001. Zbl 0958.46039
MR 1789831

[Ha] S. Hasselmann, Geometrische und topologische Untersuchungen der Sierpinski-
Pyramide mit Methoden der Nichtkommutativen Geometrie. Diplomarbeit, Leibniz
Universität Hannover, Hannover 2009.

[HR] N. Higson and J. Roe, Analytic K-homology. Oxford Math. Monogr., Oxford Uni-
versity Press, Oxford 2000. Zbl 0968.46058 MR 1817560

[Ka1] G. G. Kasparov, Topological invariants of elliptic operators. I: K-homology. Izv.
Akad. Nauk SSSR Ser. Mat. 39 (1975), 796–838; English transl. Math. USSR-Izv. 9
(1975), 751–792. Zbl 0337.58006 MR 0488027

[Ka2] G. G. Kasparov, The K-functor in the theory of extensions of C �-algebras. Funk-
tsional. Anal. i Prilozhen. 13 (1979), 73–74; English transl. Funct. Anal. Appl. 13
(1980), 296–297. Zbl 0447.46053 MR 554420

[Ka3] G. G. Kasparov, The operator K-functor and extensions of C �-algebras. Izv. Akad.
Nauk SSSR Ser. Mat. 44 (1980), 571–636; English transl. Math. USSR-Izv. 16 (1981),
513–572. Zbl 0464.46054 MR 582160

[La1] M. L. Lapidus, Analysis on fractals, Laplacians on self-similar sets, noncommuta-
tive geometry and spectral dimensions. Topol. Methods Nonlinear Anal. 4 (1994),
137–195. Zbl 0836.35108 MR 1321811

http://www.emis.de/MATH-item?0916.60069
http://www.ams.org/mathscinet-getitem?mr=1668115
http://www.emis.de/MATH-item?0376.46036
http://www.ams.org/mathscinet-getitem?mr=0458196
http://www.emis.de/MATH-item?1111.46052
http://www.ams.org/mathscinet-getitem?mr=2261610
http://www.emis.de/MATH-item?1133.28002
http://www.ams.org/mathscinet-getitem?mr=2357322
http://www.emis.de/MATH-item?0592.46056
http://www.ams.org/mathscinet-getitem?mr=0823176
http://www.emis.de/MATH-item?0818.46076
http://www.ams.org/mathscinet-getitem?mr=1303779
http://www.emis.de/MATH-item?0881.58009
http://www.ams.org/mathscinet-getitem?mr=1441908
http://arxiv.org/abs/0810.2088
http://www.emis.de/MATH-item?0458.46049
http://www.ams.org/mathscinet-getitem?mr=571362
http://www.emis.de/MATH-item?0958.46039
http://www.ams.org/mathscinet-getitem?mr=1789831
http://www.emis.de/MATH-item?0968.46058
http://www.ams.org/mathscinet-getitem?mr=1817560
http://www.emis.de/MATH-item?0337.58006
http://www.ams.org/mathscinet-getitem?mr=0488027
http://www.emis.de/MATH-item?0447.46053
http://www.ams.org/mathscinet-getitem?mr=554420
http://www.emis.de/MATH-item?0464.46054
http://www.ams.org/mathscinet-getitem?mr=582160
http://www.emis.de/MATH-item?0836.35108
http://www.ams.org/mathscinet-getitem?mr=1321811


274 E. Christensen, C. Ivan, and E. Schrohe

[La2] M. L. Lapidus, Towards a noncommutative fractal geometry? Laplacians and volume
measures on fractals. In Harmonic analysis and nonlinear differential equations
(Riverside, CA, 1995), Contemp. Math. 208, Amer. Math. Soc., Providence, RI,
1997, 211–252. Zbl 0889.58012 MR 1467009

[Mu] J. R. Munkres, Elements of algebraic topology. Addison-Wesley Publishing Com-
pany, Redwood City, Calif., 1984. Zbl 0673.55001 MR 755006

[RLL] M. Rørdam, F. Larsen, and N. Laustsen,An introduction toK-theory forC �-algebras.
London Math. Soc. Stud. Texts 49, Cambridge University Press, Cambridge 2000.
Zbl 0967.19001 MR 1783408

Received March 10, 2010

E. Christensen, Department of Mathematics, University of Copenhagen, 2100 Copenhagen,
Denmark

E-mail: echris@math.ku.dk

C. Ivan, Center for RNA Interference and Non-Coding RNA’s, The University of Texas,
M.D. Anderson Cancer Center, Smith Research Building, Houston, Texas 77054, U.S.A.

E-mail: civan@mdanderson.org

E. Schrohe, Institut fürAnalysis, Leibniz Universität Hannover, 30167 Hannover, Germany

E-mail: schrohe@math.uni-hannover.de

http://www.emis.de/MATH-item?0889.58012
http://www.ams.org/mathscinet-getitem?mr=1467009
http://www.emis.de/MATH-item?0673.55001
http://www.ams.org/mathscinet-getitem?mr=755006
http://www.emis.de/MATH-item?0967.19001
http://www.ams.org/mathscinet-getitem?mr=1783408

	Introduction
	Sierpinksi gasket: constructions, K-theory and K-homology
	Some notation and conventions
	On a family of spectral triples representing any element in K1(C(SG))
	Aspects of minimality of ZGT
	The Sierpinski pyramid: constructions, K-theory and K-homology
	A family of spectral triples that generates K1(C(SP))

