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Abstract. We introduce the new notion of "-graded associative algebras which takes its roots
from the notion of commutation factors introduced in the context of Lie algebras ([39]). We
define and study the associated notion of "-derivation-based differential calculus, which gen-
eralizes the derivation-based calculus on associative algebras. A corresponding notion of
noncommutative connection is also defined. We illustrate these considerations with various
examples of "-graded commutative algebras, in particular some graded matrix algebras and the
Moyal algebra. This last example also permits us to interpret mathematically a noncommutative
gauge field theory.
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1. Introduction

Noncommutative geometry finds its origins in the fact that spaces are dual to com-
mutative algebras. For instance, a topological (Hausdorff, locally compact) space
can be equivalently described by the algebra of its continuous functions, which is a
commutative C*-algebra. The noncommutative C*-algebras would then correspond
to some “noncommutative topological spaces”. This correspondence also takes place
in measure theory and in differential geometry, which gives rise to noncommutative
geometry ([7], [26]). This in particular has led in physics to theories describing the
standard model of particle physics ([6]) coupled to gravitation in the spectral triple
approach, and others as candidates for new physics beyond the standard model.

While the spectral triple approach ([7]) is actually a natural way to construct non-
commutative extension of differential calculus and is intensively studied presently,
the differential calculus based on the derivations of an associative algebra provides an-
other (not so widely explored) way to produce noncommutative differential calculus.
The differential calculus based on the derivations of an associative noncommutative
algebra has been introduced in [12] (see also [18], [14]). Besides, further develop-
ments with possible applications to the construction of noncommutative versions of
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Yang–Mills–Higgs type models have been carried out in [15], [16] for the algebra of
matrix-valued functions and in [17], [33].

On another side, graded algebra has been studied for a long time ([37]), and its
most well-known applications are the theories of supermanifolds, and of graded Lie
algebras ([20]). Note also that a recent work on graded associative algebras, and in
particular graded matrix algebras, has been done ([2]). A natural generalization of
Z-grading (or Z2-grading) is the �-grading, where � is an abelian group. However,
in order to recover similar properties as for Z-graded Lie algebras, one has to define
an additional structure, introduced for instance in [4] for associative algebras and
studied by Scheunert [39] in the context of Lie algebras, called the commutation
factor.

One can now ask for a noncommutative geometry adapted to this setting of graded
algebras. It would then correspond to some “graded noncommutative spaces”. Note
that projective varieties are precisely such objects at the level of noncommutative
algebraic geometry (see [1] and references therein). In this paper, we study the notion
of "-graded associative algebra in relation to the derivation-based non commutative
geometry. An "-graded algebra, as it is defined here, is an associative algebra endowed
with a commutation factor ", to which one can associate canonically a structure of
generalized Lie algebra ([38]) or "-Lie algebra ([39]). The main contribution of
this paper is to generalize the defining features of the differential calculus based
on derivations of an associative algebra to the case of "-graded algebras and their "-
derivations. We show in particular that the differential calculus based on "-derivations
of an "-graded associative algebra is a general and natural framework including all
the works mentioned above. Finally, we illustrate these constructions on various
examples.

The notion of "-graded algebras as it is defined and considered here is related to
some constructions introduced in [4], Chapter III, in order to study in an unifying
way some particular graded algebras: the tensor, the symmetric and the exterior
algebras associated to modules. Let us also mention that our definition is close to
some definitions of color (Lie) algebras, where a commutation factor is also used
under the name of bicharacter. Our terminology is deliberately chosen from the one
by Scheunert [39] who studied "-Lie algebras. This choice is motivated by the fact
that some "-Lie algebras will be naturally associated to "-graded associative algebras,
so that it is very convenient to use his nomenclature.

The paper is organized as follows. In Section 2.1, we recall the notion of com-
mutation factor and give relation to the theory of Schur’s multipliers. We introduce
the notion of an "-graded algebra and its "-derivations in Section 2.2, and then we
construct the differential calculus based on "-derivations in Section 2.3 and its theory
of (noncommutative) "-connections in Section 2.4. As an illustration, we apply this
formalism in Section 3.1 to "-graded commutative algebras, for a supermanifold.
Then, we study in Sections 3.2 and 3.3 the matrix algebra endowed with elementary
and fine gradings, which produces interesting examples of "-graded algebras. We
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study the general properties of these "-graded matrix algebras, their differential cal-
culus and their space of "-connections. Section 3.4 is related to the case of the Moyal
algebra. An "-graded algebra is constructed from the Moyal space. We apply this
construction to find naturally the recently constructed candidate for a renormalizable
gauge action on Moyal space ([10]) as built from a graded curvature.

2. Noncommutative geometry based on "-derivations

2.1. Commutation factors. We recall here the principal features of the commuta-
tion factors and the Schur’s multipliers. For commutation factors, we refer mainly to
the extended study by Scheunert [39] for the general features, and to [4] for applica-
tions to associative algebras. Let K be a field, K� its multiplicative group, and � an
abelian group.

Definition 2.1. A commutation factor is a map " W � � � ! K� satisfying

".i; j /".j; i/ D 1K;

".i; j C k/ D ".i; j /".i; k/;

".i C j; k/ D ".i; k/".j; k/

(2.1)

for all i; j; k 2 � .

Note that as trivial consequences, one has the useful relations

".i; 0/ D ".0; i/ D 1K; ".i; i/ 2 f1K;�1Kg; ".j; i/ D ".i;�j / D ".i; j /�1

for all i; j 2 � .
A very simple and well-known example of such structure concerns the case� D Z

for which ".p; q/ D .�1/pq is a commutation factor. In fact, from a general result
which will be mentioned later on, this is the only non-trivial commutation factor on
Z, the trivial one being ".p; q/ D 1. We will call this non-trivial commutation factor
the natural one on Z.

One can define an equivalence relation on the commutation factors of an abelian
group in the following way:

Definition 2.2. Two commutation factors " and "0 are called equivalent if there exists
f 2 Aut.�/, the group of automorphisms of � , such that

"0.i; j / D f �".i; j / D ".f .i/; f .j //:

for all i; j 2 � .

Due to the axioms (2.1), one defines the signature function " W � ! f�1K; 1Kg of
" by  ".i/ D ".i; i/ for all i 2 � , which satisfies  f �" D f � " for all f 2 Aut.�/.
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Proposition 2.3. Let " be a commutation factor. Let us define

�0
" D fi 2 � j ".i; i/ D 1Kg; �1

" D fi 2 � j ".i; i/ D �1Kg:
Then " is called proper if �0

" D � . This property is compatible with the equivalence
relation on the commutation factors. If " is not proper, �0

" is a subgroup of � of
index 2, and �0

" and �1
" are its residues.

With these notations, we define the signature factor of the commutation factor "
by

s."/.i; j / D
´

�1K if i 2 �1
" and j 2 �1

" ;

1K if not;

for all i; j 2 � . s."/ is also a commutation factor such that s.f �"/ D f �s."/ for all
f 2 Aut.�/.

Lemma 2.4. Let "1 and "2 be two commutation factors respectively on the abelian
groups �1 and �2, over the same field K. Then the map " defined by

"..i1; i2/; .j1; j2// D "1.i1; j1/"2.i2; j2/; (2.2)

for all i1; j1 2 �1 and all i2; j2 2 �2, is a commutation factor on the abelian group
� D �1 � �2, over K.

Proposition 2.5. Let � be a finitely generated abelian group and K a field. Then � is
the direct product of a finite number of cyclic groups, whose generators are denoted
by fergr2I . Any commutation factor on � over K takes the form

".i; j / D Q
r;s2I

".er ; es/
�r �s ;

for all i D P
r2I �rer , j D P

s2I �ses 2 � (�r ; �s 2 Z), and the following
condition holds: If mrs is the greatest common divisor of the orders mr � 0 of er

and ms � 0 of es in � , then

".er ; er/ D
´
1K if mr is odd for all r 2 I;
˙1K if mr is even for all r 2 I;

and

".er ; es/
mrs D 1K for all r; s 2 I:

The proof is straightforward and was given in [39]. This proposition gives the
explicit form of a commutation factor on a finitely generated abelian group, but this is
not a classification of such factors. In general, it is not easy to obtain this classification,
and it is related to the theory of multipliers as we will see below, but in the following
example, taken from [39], things become more simple.
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Example 2.6. Let � D Zn
p , with p a prime number, let K be a field of characteristic

different from p, and let ˛ ¤ 1K be a p-th root of unity in K. Then any commutation
factor on � over K takes the unique form

".i; j / D ˛'.i;j /;

for all i; j 2 � , where ' is a bilinear form on the vector space Zn
p over the field Zp ,

which is symmetric if p D 2, and is skew-symmetric if p � 3. In the latter case, "
is proper. To equivalent commutation factors correspond equivalent (in the sense of
linear algebra) bilinear forms.

Proof. We recall here the proof in [39]. Let " be a commutation factor on � over
K. Since p is prime and different from the characteristic of K, there exists a pth
root of unity in K, ˛ ¤ 1K, and all the pth roots of unity are powers of ˛. Using
Proposition 2.5, if fergr2I are the canonical generators of� D .Zp/

n, for all r; s 2 I ,
".er ; es/

p D 1K, so that there exists mrs 2 Zp such that ".er ; es/ D ˛mrs and
msr D �mrs .

Then, for all i D P
r2I �rer , j D P

s2I �ses 2 � (�r ; �s 2 Z), ".i; j / D
˛'.i;j /, where '.i; j / D P

r;s2I �r�smrs is a bilinear form. If p � 3, thenmrr D 0

for all r 2 I , and ' is skew-symmetric. If p D 2, then msr D �mrs D mrs for all
r; s 2 I , and ' is symmetric.

2.1.1. Schurmultipliers. We will now present the theory of multipliers of an abelian
group, due to Schur (also for non-abelian groups), which is related to the classification
of commutation factors. Let us recall the standard definition of a factor set, closely
related to a projective representation.

Definition 2.7. Let � be an abelian group, and K a field. A factor set is a map
� W � � � ! K� such that

�.i; j C k/�.j; k/ D �.i; j /�.i C j; k/ (2.3)

for all i; j; k 2 � . Two factor sets � and � 0 are said to be equivalent if there exists a
map � W � ! K� such that

� 0.i; j / D �.i; j /�.i C j /�.i/�1�.j /�1

for all i; j 2 � . The quotient of the set of factor sets by this equivalence relation is
an abelian group, for the product of K, and is called the multiplier group M� of � .
Each class Œ�� 2 M� is called a multiplier.

If � is a factor set and f 2 Aut.�/, the pullback f �� defined by

f ��.i; j / D �.f .i/; f .j //;

for all i; j 2 � , is also a factor set. Moreover, this operation is compatible with the
above equivalence relation so that the pullback can now be defined on the multipliers:



348 A. Goursac, T. Masson, and J.-C. Wallet

f �Œ�� D Œf ���. This defines an equivalence relation on the multipliers which is not
compatible with the product.

A more refined equivalence relation involves also subgroups of �: if Œ�� and Œ� 0�
are multipliers and �0 and �1 are subgroups of � , .Œ��; �0/ and .Œ� 0�; �1/ are called
equivalent if there exists f 2 Aut.�/ such that f .�1/ D �0 and Œ� 0� D f �Œ��.

Note that the equation (2.3) is related to the definition of cocycles of the group � ,
while the equivalence of factor sets can be reexpressed in terms of coboundaries, so
that multipliers are in fact exponentials of the cohomology classes H 2.�;K/ of the
group � .

2.1.2. Relation between commutation factors and multipliers. If " is a commu-
tation factor on � over K, notice that, due to Definition 2.1, it is a factor set of � . But
there is a deeper relation between commutation factors and factor sets, given by the
following theorem ([39]):

Theorem 2.8. Let � be an abelian group, and let K be a field.
(i) Any multiplier Œ�� defines a unique proper commutation factor "� on � by

"� .i; j / D �.i; j /�.j; i/�1 (2.4)

for all i; j 2 � .
(ii) If � is finitely generated, any proper commutation factor " on � can be

constructed from a multiplier Œ�� by (2.4).
(iii) If, in addition, K is algebraically closed, then " is constructed from a unique

multiplier Œ��.
(iv)For� finitely generatedandKalgebraically closed, if twoproper commutation

factors "� and "� 0 are equivalent, then Œ� 0� is a pullback of Œ��.

Proof. This theorem was partly proved in [39]. We recall and complete here the
proof.

(i) Let � be a factor set, and let "� .i; j / D �.i; j /�.j; i/�1 for i; j 2 � . Then
"� .i; j /"� .j; i/ D 1K and

"� .i;j C k/"� .i; j /
�1"� .i; k/

�1

D �.i; j C k/�.i; j /�1�.i; k/�1.�.j C k; i/�.j; i/�1�.k; i/�1/�1

for all i; j; k 2 � . By using three times the property (2.3), one obtains

�.j C k; i/ D �.i; j C k/�.j; i/�.k; i/�.i; j /�1�.i; k/�1;

which proves that "� .i; j Ck/ D "� .i; j /"� .i; k/. The third axiom of Definition 2.1
can be proved in a similar way. If � 0.i; j / D �.i; j /�.i C j /�.i/�1�.j /�1, then
� 0.i; j /� 0.j; i/�1 D �.i; j /�.j; i/�1.
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(ii) Let us suppose that � is finitely generated, and let fergr2I be a system of
generators, where I is an ordered (finite) set. Let " be a proper commutation factor
on � . Define � W � � � ! K� by

�.i; j / D Q
r<s

".er ; es/
�r �s

for all i D P
r2I �rer , j D P

s2I �ses 2 � (�r ; �s 2 Z). Since ".er ; er/ D 1K

and ".er ; es/ D ".es; er/
�1 for all r; s 2 I , one has ".i; j / D �.i; j /�.j; i/�1. And

�.i; j C k/�.j; k/ D Q
r<s

".er ; es/
�r �sC�r �sC�r �s D �.i; j /�.i C j; k/

for all k D P
r2I �rer 2 � (�r 2 Z).

(iii) Let � be a finitely generated abelian group, K an algebraically closed field,
and " a commutation factor on � over K. Suppose that " is constructed through (2.4)
from two factor sets � and � 0. Then �.i; j /� 0.i; j /�1 D �.j; i/� 0.j; i/�1 for all
i; j 2 � , which means that �� 0�1 is a symmetric factor set. Since K is algebraically
closed, �� 0�1 is equivalent to one, and � and � 0 are in the same multiplier.

(iv) If � is finitely generated and K algebraically closed, consider two equivalent
commutation factors " and "0: "0 D f �", with f 2 Aut.�/. Then there exists a
unique multiplier Œ�� such that " D "� . For all i; j 2 I ,

"0.i; j / D �.f .i/; f .j //�.f .j /; f .i//�1 D "f �� .i; j /:

By unicity of the associated multiplier of "0, we obtain the result.

Corollary 2.9. Let � be a finitely generated abelian group, and let K be an alge-
braically closed field. Then

(i) the proper commutation factors on � are classified by the equivalence classes
(by pullback) of the multipliers of � ,

(ii) the non-proper commutation factors on � are classified by the equivalence
classes of multipliers and subgroups of index 2 of � .

Proof. (i) is a direct consequence of Theorem 2.8.
For (ii), if "1 and "2 are non-proper equivalent commutation factors on � , then

there exists f 2 Aut.�/ such that "2 D f �"1, and f .�0
"2
/ D �0

"1
. For all ˛ D 1; 2,

we decompose "˛ D s."˛/Q"˛ , with Q"˛ proper commutation factors. Using now
Theorem 2.8, there exist unique multipliers Œ�˛� such that Q"˛ D "�˛

, and they satisfy
Œ�2� D f �Œ�1�. Then .Œ�1�; �

0
"1
/ and .Œ�2�; �

0
"2
/ are equivalent.

Conversely, if "˛ D s."˛/"�˛
for all ˛ D 1; 2, with Œ�˛� multipliers such that

.Œ�1�; �
0
"1
/ and .Œ�2�; �

0
"2
/ are equivalent, then there exists f 2 Aut.�/ such that

f .�0
"2
/ D �"0

1
and Œ�2� D f �Œ�1�. This means that s."2/ D f �s."1/ and "�2

D
f �"�1

so that "2 D f �"1.
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Thus, by studying the equivalence classes of multipliers and of multipliers and
subgroups of index 2 of a given abelian group � , one can characterize all the com-
mutation factors on � up to equivalence.

2.2. "-graded associative algebras. Let K be a field, K� its multiplicative group,
and� an abelian group. The latter notion of commutation factors has been introduced
in the context of graded Lie algebras by Scheunert and gives rise to the following
definition:

Definition 2.10 ("-Lie algebra, [39]). Let g� be a �-graded vector space, let " be
a commutation factor on � , and let Œ�;��" W g� � g� ! g� be a bilinear product
homogeneous of degree 0 satisfying

Œa; b�" D �".jaj; jbj/Œb; a�";
Œa; Œb; c�"�" D ŒŒa; b�"; c�" C ".jaj; jbj/Œb; Œa; c�"�"; (2.5)

for all a; b; c 2 g� homogeneous, where jaj 2 � is the degree of a 2 g�. The couple
.g�; Œ�;��"/ is called an "-Lie algebra.

An "-Lie algebra for which the product Œ�;��" is always 0will be called an abelian
"-Lie algebra.

Notice that the notion of "-Lie algebras was generalized in [28] to quasi-hom-Lie
algebras.

In this paper, following [4], we introduce the following structure (the terminology
is chosen to be close to the one by Scheunert):

Definition 2.11 ("-graded associative algebra). Let A� be an associative unital �-
graded K-algebra, endowed with a commutation factor " on � , then .A�; "/ will be
called an "-graded (associative) algebra.

Notice that the "-structure is only related to the algebra A� through the grading
abelian group � . In particular, the product in the algebra is not connected to this
structure. In the following, such an "-graded (associative) algebra will be denoted
simply by A�

" or even A� if no confusion arises.
Any Z-graded associative algebra is an "-graded associative algebra for the natural

commutation factor on Z, so that the theory described below can be applied to any
Z-graded (associative) algebra.

Remark 2.12. Using Lemma 2.4, if A�;� is an associative unital �1 � �2-bigraded
K-algebra equipped with two commutation factors "1 and "2 for the two gradings
separately, then it is also an "-graded algebra for the product grading �1 � �2 with "
defined by (2.2).
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If A� is an "-graded algebra, one can construct its underlying "-Lie algebra using
the bracket defined by

Œa; b�" D a � b � ".jaj; jbj/ b � a
for all a; b 2 A� homogeneous. We will denote this structure by A

�

Lie;".

Definition 2.13 ("-graded commutative algebra). A�

" is called an "-graded commu-
tative algebra if A

�

Lie;" is an abelian "-Lie algebra.

For the case of Z-graded algebras, depending on the commutation factor, one
obtains as "-graded commutative algebras either commutative and graded algebras
(for the trivial commutation factor) or graded commutative algebras (for the natural
commutation factor).

Definition 2.14 ("-center). Let A�

" be an "-graded algebra. The "-center of A�

" is the
"-graded commutative algebra

Z
�

".A/ D fa 2 A
� j Œa; b�" D 0 for all b 2 A

�g:

Depending on the choice of the "-structure on a �-graded algebra, this "-center
can be very different. Nevertheless, one has j1j D 0 and 1 2 Z�

".A/.
Let us now mention some elementary constructions using "-graded algebras. Let

A� and B� be two "-graded algebras with the same commutation factor ".
A morphism of "-graded algebras is defined to be a morphism of associative unital

�-graded algebras 	 W A� ! B�. As a consequence, 	 is also a morphism of "-Lie
algebras between A

�

Lie;" and B
�

Lie;".
As in [4], the "-graded tensor product of two "-graded algebras A� and B� is the

"-graded algebra defined as the �-graded vector space .A ˝B/� for the total grading,
equipped with the product given by

.a˝ b/ � .c ˝ d/ D ".jbj; jcj/.a � c/˝ .b � d/
for all a; c 2 A� and all b; d 2 B� homogeneous.

Lemma 2.15. Let A�

" and B�

" be two "-graded commutative algebra. Then their
"-graded tensor product is an "-graded commutative algebra.

When no confusion arises, we refer to this "-graded tensor product as the tensor
product of "-graded algebras.

An "-trace on A� is a linear map T W A ! K, which satisfies

T .a � b/ D ".jaj; jbj/T .b � a/ (2.6)

for all a; b 2 A� homogeneous.
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The structure of a module compatible with an "-graded algebra A� is simply the
structure of a �-graded module. M � is a �-graded module on A� if it is a �-graded
vector space and a module on A� such that M iAj � M iCj (for right modules) for
all i; j 2 � . The space of homomorphisms of M � is an "-graded algebra and will be
denoted by Hom�

A.M ;M /.
Let us now introduce the key object which will permit us to introduce a differential

calculus adapted to this situation.

Definition 2.16 ("-derivations). An "-derivation on the "-graded algebra A� is a linear
map X W A� ! A� such that if X is homogeneous (as map of graded spaces) of degree
jXj 2 � , then

X.a � b/ D X.a/ � b C ".jXj; jaj/ a � X.b/ (2.7)

for all a; b 2 A with a homogeneous.
We denote by Der�

".A/ the �-graded space of "-derivation on the "-graded alge-
bra A�.

Notice that this definition makes explicit reference to the "-structure, so that
Der�

".A/ really depends on it. Moreover, the "-derivations are a particular case of the
notion of .�; 
/-derivations ([25]).

Proposition 2.17 (Structure of Der�

".A/). The space Der�

".A/ is an "-Lie algebra for
the bracket

ŒX;Y�" D XY � ".jXj; jYj/YX:

It is also a Z�

".A/-bimodule for the product structure

.z � X/.a/ D ".jzj; jXj/.X � z/.a/ D z � .X.a// (2.8)

for all X 2 Der�

".A/, all z 2 Z�

".A/ and all a 2 A� homogeneous.

Notice that the left and right module structures are equivalent modulo the factor
".jzj; jXj/. So that we will mention it as a module structure, not as a bimodule one.
In order to take into account this extra factor, it would be convenient to introduce the
notion of "-central bimodule, as a straightforward adaptation of the notion of central
bimodule defined in [18] and [19]. We will not go further in this direction here.

As usual, an inner "-derivation on A� is an "-derivation which can be written as

b 7! ada.b/ D Œa; b�"

for an a 2 A�. We denote by

Inn�

".A/ D fada j a 2 A
�g

the space of inner "-derivations on A�.
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Proposition 2.18. Inn�

".A/ is an "-Lie ideal and a Z�

".A/-module.
This permits one to define the quotient

Out�

".A/ D Der�

".A/= Inn�

".A/

as an "-Lie algebra and a Z�

".A/-module. This is the space of outer "-derivations
on A�.

From these considerations, one then gets the two short exact sequences of "-Lie
algebras and Z�

".A/-modules:

0 ! Z
�

".A/ ! A
� ad�! Inn�

".A/ ! 0;

0 ! Inn�

".A/ ! Der�

".A/ ! Out�

".A/ ! 0:

It is possible to define the notion of "-derivations on A� taking values in a bimodule.
We will not make use of it in the following.

For the remainder of this section, all linear structures are defined over the field
K D C.

Let us now take a look at the notion of involution in this framework. In order
to do that, one has to further constrain the notion of commutation factors, which we
require to satisfy the hermitian condition

".i; j / D ".j; i/ (2.9)

for all i; j 2 � . Equivalently, j".i; j /j D 1 for all i; j 2 � .

Definition 2.19 (Involution, unitarity and reality). An involution on an "-graded
algebra A� (over the field K D C) is an antilinear map Ai ! A�i , for any i 2 � ,
denoted by a 7! a�, such that

.a�/� D a; .a � b/� D b� � a� (2.10)

for all a; b 2 A�.
The unitary group of A� associated to � is defined and denoted by

U.A/ D fg 2 A
� j g� � g D 1g:

An "-derivation decomposed into its homogeneous elements as X D P
k2� Xk ,

where jXkj D k, is called real if .Xk.a//
� D ".jaj; jXkj/X�k.a

�/ for all a 2 A�

homogeneous and all k 2 � .
An "-trace T on A� is real if T .a�/ D T .a/ for all a 2 A�,

Finally, a hermitian structure on a right A�-module M � is a sesquilinear form
h�;�iW M i � M j ! Aj �i , for i; j 2 � , such that

hm; ni� D hn;mi; hma; nbi D a�hm; nib (2.11)

for all m; n 2 M � and all a; b 2 A�.
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Remark 2.20 (Involution and "-structure). Notice that the definition of the involution
as it is given by (2.10) does not make direct reference to the "-structure, as well as
the hermitian structure defined by (2.11). In Section 3, some examples of "-graded
matrix algebras are exposed, for which the usual involution is compatible with the
present definition.

An other natural definition of the involution can be considered, where an explicit
reference to " appears in the second relation of (2.10) and in the two relations of
(2.11).

2.3. The differential calculus based on "-derivations. The derivation-based dif-
ferential calculus was introduced in [12], [18], [19]. It has been studied for various
algebras in [15], [16], [31], [32], [17], [33], [43], [5], [44] (see also [13], [14], [34],
[35] for reviews), and some propositions to generalize this construction to graded
algebras were presented, for instance, in [29], [22].

Remark 2.21. For an associative algebra A, we recall that the derivation-based
differential calculus is given by

�n
Der.A/ D f! W Der.A/n ! A j Z.A/-multilinear and antisymmetricg:

Thus, two important notions enter in this definition: the notion of derivation and of
center (related to the bracket of the underlying Lie algebra of A). We saw that the
center and the derivations can be generalized to the center of quasi-hom-Lie algebras
([28]) and .�; 
/-derivations ([25]), but in this paper we only consider the notion of
"-center and of "-derivation, since they are compatible with each other. Indeed, the
same commutation factor is used for the bracket and the Leibniz relation, and therefore
the framework of "-graded algebras seems to be well adapted for the definition of a
derivation-based differential calculus.

In the notations of the last section, let A� be an "-graded algebra and M � a right
A�-module.

Definition 2.22. For n 2 N and k 2 � , let �n;k
" .A;M / be the space of n-linear

maps ! from .Der�

".A//
n to M � such that, for all X1; : : : ;Xn 2 Der�

".A/ and all
z 2 Z�

".A/ homogeneous,

!.X1; : : : ;Xn/ 2 M kCjX1jC���CjXnj;
!.X1; : : : ;Xnz/ D !.X1; : : : ;Xn/z;

!.X1; : : : ;Xi ;XiC1; : : : ;Xn/ D �".jXi j; jXiC1j/!.X1; : : : ;XiC1;Xi ; : : : ;Xn/;

(2.12)

and �0;k
" .A;M / D M k , where X � zis defined by (2.8).
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From this definition, it follows that the vector space��;�

" .A;M / is N��-graded,
and �n;�

" .A;M / is a right module on A�.
In the case M � D A�, we write ��;�

" .A/ D �
�;�

" .A;A/.

Proposition 2.23. Endowed with the following product and differential,��;�

" .A/ is a
differential algebra: for all ! 2 �p;j!j

" .A/, � 2 �q;j�j
" .A/, and all X1; : : : ;XpCq 2

Der�

".A/ homogeneous, the product is

.! � �/.X1; : : : ;XpCq/

D 1

pŠqŠ

X
�2SpCq

.�1/j� jf1 !.X�.1/; : : : ;X�.p// � �.X�.pC1/; : : : ;X�.pCq//;

(2.13)

and the differential is

d!.X1; : : : ;XpC1/

D
pC1P
mD1

.�1/mC1f2Xm!.X1; : : :
m_: : : : ;XpC1/

C P
1�m<n�pC1

.�1/mCnf3 !.ŒXm;Xn�"; : : :
m_: : : :

n_: : : : ;XpC1/;

(2.14)

where the factors fi are given by

f1 D Q
m<n

�.m/>�.n/

".jX�.n/j; jX�.m/j/
Q

m�p

".j�j; jX�.m/j/;

f2 D ".j!j; jXmj/
m�1Q
aD1

".jXaj; jXmj/;

f3 D ".jXnj; jXmj/
m�1Q
aD1

".jXaj; jXmj/
n�1Q
aD1

".jXaj; jXnj/:

�
�;�

" .A/ is an Q"-graded algebra for the abelian group z� D Z � � and the com-
mutation factor Q"..p; i/; .q; j // D .�1/pq".i; j /. Furthermore, d is an Q"-derivation
of ��;�

" .A/ of degree .1; 0/ satisfying d2 D 0.
For any right A�-module M �, ��;�

" .A;M / is a right module on ��;�

" .A/ with
respect to the action

.!�/.X1; : : : ;XpCq/

D 1

pŠqŠ

X
�2SpCq

.�1/j� jf1!.X�.1/; : : : ;X�.p//�.X�.pC1/; : : : ;X�.pCq//

(2.15)

for all ! 2 �
p;j!j
" .A;M /, all � 2 �

q;j�j
" .A/, and all X1; : : : ;XpCq 2 Der�

".A/

homogeneous, where f1 is still the one given above.
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Proof. It is a straightforward calculation to check that (2.13) and (2.14) are compatible
and make ��;�

" .A/ a z�-graded differential algebra, in the same way that (2.15) turns
�

�;�

" .A;M / into a right ��;�

" .A/-module. By Lemma 2.4 and Remark 2.12 the
proposition is proved.

Remark 2.24 (Notion of z�-graded differential algebra). In the previous proposition,
we made use of the terminology of a “z�-graded differential algebra”, or more simply
“differential algebra”, without defining precisely these notions. In this case, the
meaning is obviously to denote the differential d in the Z-direction on the z�-graded
algebra, which satisfies the following properties: it is an Q"-derivation of degree .1; 0/
such that d2 D 0.

It could be convenient and desirable to define a good notion of "-graded differential
algebra in general. In order to do that, one starts with an "-graded associative algebra
A� and an associated differential d which is an "-derivation whose square is zero.
But the degree of this differential is difficult to constrain to be “minimal” in some
“direction” in the associated grading group � , except for special situations, as the
ones where this group is freely generated by a finite number of generators. In these
cases, a differential could be required to have as degree one of these generators. Then
there could be as many differentials as there are generators, a situation very similar
to the one for usual bigraded algebras (� D Z � Z).

In low degrees (in the Z-part), the expression of the differential takes the form

da.X/ D ".jaj; jXj/X.a/;
d!.X;Y/ D ".j!j; jXj/X.!.Y// � ".j!j C jXj; jYj/Y.!.X// � !.ŒX;Y�"/

for all a 2 A�, ! 2 �1;�
" .A/, X;Y 2 Der�

".A/ homogeneous.
One has to be aware of the fact that even if the "-Lie algebra of derivations is finite-

dimensional, the vector space��;�

" .A/ can be infinite-dimensional. For instance, this
is indeed the case for Example 3.12, where the symmetric part of this differential
calculus amounts to an infinite-dimensional part.

Proposition 2.25. If A� is an "-graded commutative algebra then ��;�

" .A/ is an
Q"-graded commutative algebra.

Proof. This is a straightforward computation.

Definition 2.26 (Restricted differential calculus). Let g� be an "-Lie subalgebra of
Der�

".A/ and a module on Z�

".A/. The restricted differential calculus ��;�

" .Ajg/
associated to g� is defined as the space of n-linear maps! from .g�/n to A� satisfying
the axioms (2.12), with the above product (2.13) and differential (2.14). It is also a
z�-graded differential algebra.
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Proposition 2.27 (Cartan operation). Let g� be an "-Lie subalgebra of Der�

".A/.
Then g� defines canonically a Cartan operation on .��;�

" .A/; d/ in the following way.
For each X 2 Der�

".A/, the inner product with X is the map iX W �n;k
" .A/ !

�
n�1;kCjXj
" .A/ such that, for all ! 2 �

n;j!j
" .A/ and all X;X1; : : : ;Xn�1 2 g�

homogeneous,

iX!.X1; : : : ;Xn�1/ D ".jXj; j!j/!.X;X1; : : : ;Xn�1/; (2.16)

and iX�
0;�

" .A/ D 0. The map iX is then an Q"-derivation of the algebra ��;�

" .A/ of
degree .�1; jXj/.

The associated Lie derivative LX to iX is

LX D ŒiX; d� D iXd C diX W �n;k
" .A/ ! �n;kCjXj

" .A/; (2.17)

which makes it into an Q"-derivation of ��;�

" .A/ of degree .0; jXj/, where the bracket
in (2.17) comes from the commutation factor Q" of ��;�

" .A/.
Then the following properties are satisfied for all X;Y 2 g� homogeneous:

ŒiX; iY� D iXiY C ".jXj; jYj/iYiX D 0;

ŒLX; d� D LXd � dLX D 0;

ŒLX; iY� D LXiY � ".jXj; jYj/iYLX D iŒX;Y�" ;

ŒLX; LY� D LXLY � ".jXj; jYj/LYLX D LŒX;Y�" :

Proof. For all ! 2 �
n;j!j
" .A/, � 2 �

p;j�j
" .A/ and all X;Y;X1; : : : ;Xn�2 2 g�

homogeneous, one has

iX.! � �/ D .iX!/ � �C .�1/n".jXj; j!j/!.iX�/;
due to the definition of iX (2.16) and of the product (2.13). Then the third axiom of
(2.12) implies that

iXiY!.X1; : : : ;Xn�2/ D ".jXj C jYj; j!j/".jXj; jYj/!.Y;X;X1; : : : ;Xn�2/

D �".jXj; jYj/iYiX!.X1; : : : ;Xn�2/;

so that ŒiX; iY� D 0. Furthermore, LXd D diXd D dLX. We have

ŒLX; iY� D iXdiY C diXiY � ".jXj; jYj/.iYiXd C iYdiX/:

By a long but straightforward calculation, using (2.14) and (2.16), one finds that
ŒLX; iY� D iŒX;Y�" . Finally, the above results permit one to show that

ŒLX; LY� D LX.iYd C diY/ � ".jXj; jYj/.iYd C diY/LX

D iŒX;Y�"d C diŒX;Y�" D LŒX;Y�" :
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2.4. "-connections. Let us now generalize the notion of noncommutative connec-
tions ([15], [16], [17], [14], [34]) and gauge theory to this framework of "-graded
algebras. Let M � be a right module on the "-graded algebra A�.

Definition 2.28 ("-connections). A homogeneous linear map of degree 0,

r W M
� ! �1;�

" .A;M /;

is called an "-connection if

r.ma/ D r.m/aCmda (2.18)

for all a 2 A� and all m 2 M �.

Proposition 2.29. Let r be an "-connection on M �. Then it can be extended to a
linear map

r W �p;�

" .A;M / ! �pC1;�

" .A;M /

using the relation, for all ! 2 �
p;j!j
" .A;M / and all X1; : : : ;XpC1 2 Der�

".A/

homogeneous,

r.!/.X1; : : : ;XpC1/

D
pC1P
mD1

.�1/mC1f4r.!.X1; : : :
m_: : : : ;XpC1//.Xm/

C P
1�m<n�pC1

.�1/mCnf5!.ŒXm;Xn�"; : : :
m_: : : :

n_: : : : ;XpC1/;

(2.19)

where the factors fi are given by

f4 D
pC1Q

aDmC1

".jXmj; jXaj/;

f5 D ".jXnj; jXmj/
m�1Q
aD1

".jXaj; jXmj/
n�1Q
aD1

".jXaj; jXnj/:

Then r satisfies the relation

r.!�/ D r.!/�C .�1/p!d� (2.20)

for all ! 2 �p;j!j
" .A;M /, � 2 �q;j�j

" .A/ homogeneous.
The obstruction for r to be a homomorphism of right A�-modules is measured by

its curvature R D r2, a homogeneous linear map of degree 0, which takes the form

R.m/.X;Y/ D ".jXj; jYj/r.r.m/.Y//.X/ � r.r.m/.X//.Y/ � r.m/.ŒX;Y�"/
for all m 2 M �, X;Y 2 Der�

".A/ homogeneous.
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Proof. The formula (2.19) is inspired by the formula (2.14) in order to get this exten-
sion well defined. Proving (2.20) is therefore like proving that d is an Q"-derivation of
degree .1; 0/ in Proposition 2.23, which is a tedious but straightforward computation.

Proposition 2.30. The space of all "-connections on M � is an affine spacemodeled on
the vector space Hom0

A.M
�; �

1;�

" .A;M //. Furthermore, the curvatureR associated
to an "-connection r is a homomorphism of right A�-modules.

Proof. Let r and r 0 be two "-connections, and let ‰ D r � r 0. Then

‰.ma/ D r.m/a � r 0.m/a D ‰.m/a

for all a 2 A� and m 2 M �. Therefore, ‰ 2 Hom0
A.M

�; �
1;�

" .A;M //.
In the same way, from R D r2, using (2.18) and (2.20), one obtains

R.ma/ D r2.m/a � r.m/daC r.m/daCmd2a D R.m/a:

Definition 2.31 (Gauge group). The gauge group of M � is defined as the group of
automorphisms of degree 0 of M � as a right A�-module, Aut0

A.M ;M /. Its elements
are called gauge transformations.

Each gauge transformation ˆ is extended to an automorphism of degree .0; 0/ of
�

�;�

" .A;M /, considered as a right ��;�

" .A/-module, in the following way:

ˆ.!/.X1; : : : ;Xp/ D ˆ.!.X1; : : : ;Xp//

for all ! 2 �p;j!j
" .A;M / and X1; : : : ;Xp 2 Der�

".A/.

Proposition 2.32. The gauge group of M � acts on the space of its "-connections in
the following way: for ˆ 2 Aut0

A.M ;M / and r an "-connection,

rˆ D ˆ B r Bˆ�1

is again an "-connection. The induced action of ˆ on the associated curvature is
given by

Rˆ D ˆ BR Bˆ�1:

Proof. The axioms (2.18) are satisfied for rˆ: for all a 2 A� andm 2 M �, we have

rˆ.ma/ D ˆ B r.ˆ�1.m/a/ D .rˆ.m/a/Cmda:

Since jˆj D jˆ�1j D 0, rˆ is homogeneous of degree 0. The proof is trivial for
Rˆ D rˆ B rˆ.
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Let A� be an "-graded involutive (C-)algebra, and let M � be a right A�-module
with a hermitian structure.

A gauge transformation ˆ is called unitary if

hˆ.m/;ˆ.n/i D hm; ni
for all m; n 2 M �.

Proposition 2.33. An "-connection r is called hermitian ifP
k2�

".�jmj C jnj; k/hr.m/.Xk/; ni C hm;r.n/.X/i D d.hm; ni/.X/

for allm; n 2 M � homogeneous and X D P
k2� Xk a real "-derivation decomposed

in homogeneous components, with jXkj D k.
Then the space of hermitian "-connections on M � is stable under the group of

unitary gauge transformations.

Proof. Let ˆ be a unitary gauge transformation, r a hermitian "-connection, X DP
k2� Xk a real "-derivation, and m; n 2 M �. ThenP

k2�

".�jmj C jnj; k/hrˆ.m/.Xk/; ni C hm;rˆ.n/.X/i

D P
k2�

".�jmj C jnj; k/hr Bˆ�1.m/.Xk/; ˆ
�1.n/i C hˆ�1.m/;r Bˆ�1.n/.X/i

D d.hˆ�1.m/;ˆ�1.n/i/.X/
D d.hm; ni/.X/:

3. Applications to various examples of "-graded algebras

The aim of this section is to illustrate the previous definitions with some results for
particular "-graded algebras. Four typical examples have been chosen here. First,
we consider examples of "-graded commutative algebras and the case of a particular
supermanifold. Then we study two cases of noncommutative "-graded algebras:
matrix algebras with elementary grading, for which the same properties as in the
non-graded case ([15]) occur, and matrix algebras with fine grading, which is very
different from the previous case. Finally, we consider a generalization of matrix
algebras, the Moyal algebra, from which one can construct a Z2-graded algebra,
and we give some mathematical explanations about a particular gauge theory on the
Moyal space resulting from this superalgebra.

3.1. "-graded commutative algebras. First, a non-graded associative algebra can
be seen as an "-graded algebra, so that the differential calculus based on the derivations
of an associative algebra, as, for instance, presented in [12], is a particular case of the
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formalism of this chapter. Consequently, for the commutative non-graded algebra
A D C1.M/ of the functions of a smooth compact manifold M , the differential
calculus of Section 2.3 is the de Rham complex for the manifold M .

Let us consider the case of the finite-dimensional Z-graded commutative algebra
A� D ^�

V with its usual grading, where V is a vector space of dimension q. The
commutation factor is taken to be ".p; q/ D .�1/pq with p; q 2 Z. Denote by
f
igiD1;:::;q a basis of V . Then A� D ^�

.
1; : : : ; 
q/ where in this algebra the 
i ’s
are anticommuting variables of degree 1. The "-center of this algebra is the whole
algebra: Z�

".A/ D A�.

Using (2.7), any "-derivation X on A� homogeneous of degree r is completely
determined by its values on the generators 
i . Because we are dealing with a graded
commutative algebra, one can easily verify that any values Xi D X.
i / 2 ArC1

are acceptable. Notice the shift in the degrees between the one of X as a graded
derivation and the degrees of the Xi ’s as elements in A�. Denote by f˛j gj D1;:::;q the
dual basis of f
igiD1;:::;q . Then ˛j defines a derivation of degree �1: 
i 7! ı

j
i 1.

As a module over the "-center, one has Der�

".A/ D A�C1 ˝ V �, where the module
structure is the one on A� and V � is the dual vector space of V . One can explicitly
write X D Xi ˝ ˛i with the previous notations.

The structure of "-Lie algebra of Der�

".A/ can be described as follows. The "-Lie
bracket on 1 ˝ V � is zero and for any "-derivations X and Y of degrees r and s,
one has ŒX;Y�" D Xi˛

i .Yj /˝˛j � .�1/rsYj˛
j .Xi /˝˛i with obvious notations.

This "-Lie bracket is a Nijenhuis–Richardson type bracket.

Using the structure of Der�

".A/, any n-form ! 2 �n;k
" .A/ is completely given by

its values on the derivations in 1˝V �, i.e., on the˛i ’s. For instance, 1-forms of degree
k are elements in Ak ˝ V where we identify V �� D V . For n-forms, notice that
one has !.˛i1 ; : : : ; ˛ip ; ˛ipC1 ; : : : ; ˛in/ D !.˛i1 ; : : : ; ˛ipC1 ; ˛ip ; : : : ; ˛in/ because
the ˛i ’s are of odd degree as derivations. The vector space of n-forms of degree k is
then

^.k�n/
V ˝ SnV , where S�V is the symmetric algebra defined on V .

In order to be precise, we define 
i1 _ � � � _ 
in 2 SnV as the n-form of degree n:

.
i1 _ � � � _ 
in/.˛
j1 ; : : : ; ˛jn/ D .�1/n.n�1/

2
P

�2Sn


i1.˛
j�.1// : : : 
in.˛

j�.n//:

With this definition, the product of 2 forms ! D !a ˝ Pa 2 ^k
V ˝ SmV and

� D �b ˝Qb 2 ^`
V ˝ SnV is just the product in the graded commutative algebra^�

V ˝ S�V : !� D .�1/m`!a ^ �b ˝ Pa _Qb , so that as a graded commutative
algebra ��;�

" .A/ D ^�
V ˝ S�V .

Applied to the ˛i ’s, the definition of the differential, (2.14), simplifies because
the second sum is zero. Its explicit expression on forms as elements of the algebra
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^�
V ˝ S�V then is

.
i1 ^ � � � ^ 
ik /˝ .
j1
_ � � � _ 
jn

/ 7!

.�1/n
kP

`D1

.�1/k�`.
i1 ^ � � � ^ 
i`�1
^ 
i`C1

^ � � � ^ 
ik /˝ .
i` _ 
j1
_ � � � _ 
jn

/:

One just “transfers” a 
i from the antisymmetric part to the symmetric one.
Consider now the Z-graded commutative algebra obtained as a tensor product

A
� D C1.Rpjq/ D C1.Rp/˝ V�

V;

where, as before, V is a vector space of dimension q. This algebra describes a
particular case of a supermanifold ([30]). As in the previous example, Z�

".A/ D A�.
Denote by f
igiD1;:::;q a basis ofV . Then any elementf 2 A� can be decomposed

as
f .x/ D P

I�f1;:::;qg
fI .x1; : : : ; xp/


I :

where .xi / is the canonical coordinate system of Rp , I is an ordered subset of
f1; : : : ; qg and 
I D ^

i2I 
i .
One can then show that any "-derivation on A� can be decomposed into two parts:

one part acts as a derivation onC1.Rp/with values inC1.Rp/˝^�

V , and another
part is a smooth function with values in the "-derivations on

^�

V :

Der�

".A/ D �
�.Rp/˝ V�

V
� ˚ �

C1.Rp/˝ V�C1
V ˝ V ��

;

where �.Rp/ is the usual Lie algebra of vector fields on Rp and where we have
explicitly used the structure of the space of "-derivations on

^�

V .
As a Z�

".A/-module, Der�

".A/ is generated by the two disjoint ("-)Lie algebras
�.Rp/ and V �, so that

��;�

" .A/ D �
�

dR.R
p/˝��;�.

V�

V /

as graded commutative differential algebras.

3.2. "-graded matrix algebras with elementary grading. Let � be an abelian
group and let A D MD be the algebra of D �D complex matrices such that A is a
�-graded algebra:

A
� D L

˛2�

A˛: (3.1)

Let .Eij /1�i;j �D be the canonical basis of A�, whose product is as usual

Eij �Ekl D ıjkEil : (3.2)

Definition 3.1 (Elementary grading, [2]). The grading (3.1) is called elementary if
there exists a map ' W f1; : : : ;Dg ! � such that Eij is homogeneous of degree
jEij j D '.i/ � '.j / for all i; j 2 f1; : : : ;Dg.



Noncommutative "-graded connections 363

From now on, we suppose that the grading (3.1) is elementary. Then one can
check that the usual conjugation is an involution for A�. Furthermore, A� can be
characterized by the following result:

Proposition 3.2 ([2]). The matrix algebra A� D MD , with an elementary�-grading,
is isomorphic, as a �-graded algebra, to the endomorphism algebra of some D-
dimensional �-graded vector space.

More general gradings on A were classified in [2].

3.2.1. Properties. Let " W � � � ! C� be a commutation factor which turns the
elementary �-graded involutive algebra A� into an "-graded algebra.

Proposition 3.3. The "-center of A� is trivial:

Z
�

".A/ D Z0
".A/ D C1:

Proof. Let A 2 Z�

".A
�/ written as A D PD

i;j D1 aijEij . Then, due to (3.2), we
immediately get, for all k; l 2 f1; : : : ;Dg,

0 D ŒA;Ekl �" D
DP

i;j D1

.aikıjl � ".'.l/ � '.j /; '.k/ � '.l//alj ıik/Eij :

Therefore, for all i , j , k, l ,

aikıjl D ".'.l/ � '.j /; '.k/ � '.l//alj ıik :

For i ¤ k and j D l , we get aik D 0, and ai i D ajj for i D k and j D l . This
means that A 2 C1.

Proposition 3.4 ("-traces). For any A D .aij / 2 A�, the expression

Tr".A/ D
DP

iD1

".'.i/; '.i//ai i (3.3)

defines a real "-traceonA�. Moreover, the spaceof "-traces onA� is one-dimensional.

Proof. Let T be an "-trace on A�. From (2.6), we get T .Eij � Ekl/ D ".'.i/ �
'.j /; '.k/ � '.l//T .Ekl �Eij / for all i , j , k, l . Using (3.2), one obtains

ıjkT .Eil/ D ".'.i/ � '.j /; '.k/ � '.l//ıilT .Ekj /:

Then, with i ¤ l and j D k, one gets T .Eil/ D 0. On the other hand, with
i D l and j D k, one has T .Ei i / D ".'.i/ � '.j /; '.j / � '.i//T .Ejj / D
".'.i/; '.i//".'.j /; '.j //T .Ejj /. So Tr" is an "-trace on A� and there exists � 2 C
such that T D �Tr".
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In the following we will denote by sl
�

".D/ the "-Lie subalgebra of A� of "-traceless
elements.

Proposition 3.5. All the "-derivations of A� are inner:

Out�

".A/ D 0:

Moreover, the space of real "-derivations of A� is isomorphic to the space of antiher-
mitian matrices.

Proof. Let X 2 Der�

".A/ homogeneous, decomposed on the basis as X.Eij / DPD
k;lD1 Xkl

ij Ekl , with Xkl
ij D 0 if '.k/� '.l/� '.i/C '.j / ¤ jXj where jXj is the

degree of X. Then, due to (2.7), we have

X.Eij �Ekl/ D X.Eij / �Ekl C ".jXj; '.i/ � '.j //Eij � X.Ekl/

for all i , j , k, l . Using (3.2), this can be written as

DP
a;bD1

ıjkXab
il
Eab D

DP
a;bD1

.ıb
l
Xak

ij C ".jXj; '.i/ � '.j //ıa
i X

jb

kl
/Eab:

For b D l , and by changing some indices, we obtain

Xkl
ij D ıjlX

ka
ia � ".jXj; '.i/ � '.j //ık

i X
ja

la
: (3.4)

for all i , j , k, l , a.
On the other hand, let us defineMX D PD

kD1 X.Eka/ �Eak D PD
k;lD1 Xla

ka
Elk 2

A� for an arbitrary a. Then, using (3.2), we find

ŒMX; Eij �" D
DP

k;lD1

.ıl
j Xka

ia � ".'.j / � '.l/; '.i/ � '.j //ık
i X

ja

la
/Ekl :

Since X
ja

la
D 0 for '.j / � '.l/ ¤ jXj, equation (3.4) implies that ŒMX; Eij �" DPD

k;lD1 Xkl
ij Ekl D X.Eij /, and X is an inner derivation generated by MX.

The statement about reality can be checked easily.

3.2.2. Differential calculus and "-connections. In this section, we describe the
differential calculus based on "-derivations for a certain class of "-graded matrix
algebras with elementary grading. In order to do that, we introduce the following
algebra, which is the equivalent of the exterior algebra in the present framework.

Definition 3.6 ("-exterior algebra). Let V � be a �-graded vector space and " a com-
mutation factor on � . One defines the "-exterior algebra on V �, denoted by

^�

" V
�,

to be the tensor algebra of V � quotiented by the ideal generated by

fX ˝ Y C ".jXj; jYj/Y ˝ X j X;Y 2 V � homogeneousg:
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Proposition 3.7 (Structure of
^�

" V
�). The .Z��/-graded algebra

^�

" V
� is Q"-graded

commutative for the commutation factor Q"..m; i/; .n; j // D .�1/mn".i; j /.
One has the factor decomposition as tensor products of Q"-graded commutative

algebras, V�

"
V � D

� N
˛2�

".˛;˛/D1

V�

V ˛
�

˝
� N

˛2�
".˛;˛/D�1

S�V ˛
�
;

where
^�

V ˛ is the (usual) exterior algebra of the vector space V ˛ and S�V ˛ is the
(usual) symmetric algebra.

The proof is just a straightforward adaptation of the one for the usual exterior
algebra. Nevertheless, notice that the factors are of two types: an exterior algebra or
a symmetric algebra.

Let " be a commutation factor on an abelian group � , let g� be an "-Lie algebra
for this commutation factor and V � a �-graded vector space of representation of g�.
Let us introduce the .Z � �/-graded vector space ��;�

" .g; V / D V � ˝ ^�

".g
�/�.

Proposition 3.8. The space��;�

" .g; V / is a .Z � �/-graded differential complex for
the differential of degree .1; 0/ defined by

d!.X1; : : : ;XpC1/

D
pC1P
mD1

.�1/mC1g1 Xm!.X1; : : :
m_: : : : ;XpC1/

C P
1�m<n�pC1

.�1/mCng2 !.ŒXm;Xn�"; : : :
m_: : : :

n_: : : : ;XpC1/;

(3.5)

for all ! 2 �p;j!j
" .g; V / and X1; : : : ;XpC1 2 g� homogeneous, where

g1 D ".j!j; jXmj/
m�1Q
aD1

".jXaj; jXmj/

g2 D ".jXnj; jXmj/
m�1Q
aD1

".jXaj; jXmj/
n�1Q
aD1

".jXaj; jXnj/:

Moreover, in the case where V � is an "-graded algebra and g� D V �

Lie;" is its
associated "-Lie algebra, acting by the adjoint representation on V �,��;�

" .g; V / is a
.Z � �/-graded differential algebra for the product

.! � �/.X1; : : : ;XpCq/

D 1

pŠqŠ

X
�2SpCq

.�1/j� jg3!.X�.1/; : : : ;X�.p// � �.X�.pC1/; : : : ;X�.pCq//
(3.6)

for all ! 2 �
p;j!j
" .g; V /, � 2 �

q;j�j
" .g; V /, and X1; : : : ;XpCq 2 g� homogeneous,

where
g3 D Q

m<n
�.m/>�.n/

".jX�.n/j; jX�.m/j/
Q

m�p

".j�j; jX�.m/j/:
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Proof. The product (3.6) and the differential (3.5) are formally the same as the product
(2.13) and the differential (2.14).

This permits one to show the following theorem, which gives the structure of the
"-derivation-based differential calculus on a certain class of "-graded matrix algebras
for elementary gradings.

Theorem 3.9 (The "-derivation-based differential calculus). Let A� D MD be an
"-graded matrix algebra with elementary grading, and suppose that

Tr".1/ D
DP

iD1

".'.i/; '.i// ¤ 0: (3.7)

Then:

(1) The adjoint representation ad W sl
�

".D/ ! Der�

".A/ is an isomorphism of "-Lie
algebras.

(2) Let ad� W ��;�

" .sl".D/;A/ ! �
�;�

" .A/ be the push-forward of ad and let .Ei /

be a basis of A�. Then, for any ! 2 �k;�

" .sl".D/;A/, one has the relation

ad�.!/.adEi1
; : : : ; adEik

/ D !.Ei1 ; : : : ; Eik /: (3.8)

(3) ad� is an isomorphism of .Z � �/-graded differential algebras.

Proof. (1) Since sl".D/ \ Z".A/ D 0, by Proposition 3.3 and using the condi-
tion (3.7), the kernel of the surjective map ad W sl

�

".D/ ! Der�

".A/ D Inn�

".A/

is trivial, so that it is an isomorphism of vector spaces. Due to the "-Jacobi iden-
tity (2.5), one has adŒa;b�" D Œada; adb�" for all a; b 2 A� , which proves that
ad W sl

�

".D/ ! Der�

".A/ is an isomorphism of "-Lie algebras.
(2) Equation (3.8) is then a trivial consequence of this isomorphism.
(3) Let us stress that sl".D/ is only a subalgebra of the associated "-Lie algebra of

A�, but the result of Proposition 3.8 generalizes to this case, so that��;�

" .sl".D/;A/

is a .Z � �/-graded differential algebra. It is straightforward to see that ad� is a
morphism of .Z � �/-graded differential algebras. Indeed, the products and the
differentials have the same formal definitions, (2.13) and (3.6), as well as (2.14)
and (3.5), for the two complexes ��;�

" .A/ and ��;�

" .sl".D/;A/. Equation (3.8)
shows that ad� is injective. For .Ei / a basis of A, adapted to the decomposition
A� D C1 ˚ sl

�

".D/ (with E0 D 1), .
 i / its dual basis, and � 2 �
k;�
" .A/, we set

�.adEi1
; : : : ; adEik

/ D �
j
i1;:::;ik

Ej 2 A�. Then � D ad�.�j
i1;:::;ik

Ej 

i1 ^ � � � ^ 
 ik /,

with �j
i1;:::;ik

D 0 if one of i1; : : : ; ik is zero. Therefore, ad� is surjective and an
isomorphism of bigraded differential algebras.

Let us notice that there exist some examples of "-graded matrix algebras for which
condition (3.7) is not satisfied (see Example 3.12 below with m D n).

Let us now describe explicitly the space of "-connections.
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Proposition 3.10. The space of "-connections on A�, considered as a module over
itself, is an affine space modeled on the vector space

�1;0
" .A/ D L

˛2�

A˛ ˝ sl˛
" .D/

�

and contains the (trivial) "-connection d.
Moreover, ad�1 can be seen as a 1-form, and d C ad�1 defines a gauge-invariant

"-connection.

Proof. Let r be an "-connection. Define !.X/ D r.1/.X/ for all X 2 Der�

".A/.
Then ! 2 �1;0

" .A/ and r.a/ D daC ! � a for all a 2 A�.
On the other hand, ad�1 W Der�

".A/ ! sl
�

".D/ � A� is a 1-form of degree 0. Since
all "-derivations of A� are inner, one has X.a/ D Œad�1.X/; a�" for all X 2 Der�

".A/.
It is then straightforward to prove the gauge invariance of the connection dCad�1.

The noncommutative 1-form ad�1 defined here is the exact analog of the non-
commutative 1-form i
 defined in the context of the derivation-based differential
calculus on the matrix algebra. It also gives rise to a gauge-invariant connection (see
[12], [15], [17], [33] for details). This shows that some of the results obtained in
the non-graded case remain valid in this new context. But one has to be careful that
condition (3.7) is fulfilled.

3.2.3. Concrete examples. In this part we give concrete example of "-graded matrix
algebras in the case when the abelian group � is freely generated by a finite number
of generators fergr2I , and when " is a commutation factor on � over K D C.

We first recall the definitions given in [38] of color algebras and superalgebras.
If ".er ; er/ D 1 for all r 2 I , then the "-graded algebra A� is called a color algebra.
Otherwise, it is a color superalgebra.

In the following examples, we will consider three gradings: the trivial case� D 0,
the usual case � D Z2, and a third case � D Z2 � Z2. Proposition 2.5 determines
the possible commutation factors for these groups. They were already given in Ex-
ample 2.6 for the two latter groups.

Example 3.11 (� D 0). We consider here the trivial grading � D 0 on the matrix
algebra A D M.n/ D Mn, so that the commutation factor is also trivial: ".i; j / D 1.
The "-commutator Œ�;��" and the trace Tr" are the usual non-graded ones for matrices.
The "-center and the "-derivations of this "-graded algebra are given by Z".A/ D C1
and Der".A/ D Inn".A/ D sln, the usual Lie algebra of traceless matrices. The
"-derivation-based differential calculus coincides with the (usual) derivation-based
differential calculus studied in [12], [15], [31]:

�
�

".M.n// D �
�

Der.M.n// � M.n/˝ � V�

sln
��
:
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It is finite-dimensional and its cohomology is

H
�
.�".M.n//; d/ D H

�
.sln/ D �.

V�

sl�
n/;

the algebra of invariant elements for the natural Lie derivative.

Example 3.12 (� D Z2). Consider now the case � D Z2, with the usual commu-
tation factor ".i; j / D .�1/ij , and the matrix superalgebra A� D M.m; n/. This
superalgebra is represented by .mC n/ � .mC n/-matrices,

M D
�
M11 M12

M21 M22

	
2 A

�
;

whereM11,M12,M21 andM22 are respectively .m�m/, .m�n/, .n�m/ and .n�n/
(complex) matrices. The Z2-grading is defined such that M11 and M22 correspond
to degree 0 2 Z2, whereas M12 and M21 are of degree 1 2 Z2, so that this grading
is elementary. Using Proposition 3.4, we find that

Tr".M/ D Tr.M11/ � Tr.M22/

is an "-trace, Z�

".A/ D C1 and Der�

".A/ D Inn�

".A/.
Notice that when m D n, one has Tr".1/ D 0, so that condition (3.7) is not

satisfied.
If m ¤ n, one can suppose, by convention, that m > n. In that case, Tr".1/ ¤ 0,

and using Theorem 3.9, one gets

Der�

".A/ D sl
�

".m; n/ D sl0
".m; n/˚ sl1

".m; n/;

and the associated differential calculus based on these superderivations is given by

��;�

" .M.m; n// � M�.m; n/˝ � V�

sl0
".m; n/

�� ˝ �
S�sl1

".m; n/
��
: (3.9)

In this decomposition, the second tensor product is the one of Q"-graded algebras as in
Proposition 3.7. Note that this expression involves the symmetric algebra of the odd
part of sl

�

".m; n/
�, which means that ��;�

" .M.m; n// is infinite-dimensional as soon
as n > 0 (remember that m > n), even if sl

�

".m; n/ is finite-dimensional. This is a
key difference to the non-graded case (see Example 3.11). The cohomology of (3.9)
was computed in [22] and is given by

H �;�.�".M.m; n//; d/ D H
�;0.�".M.m; n//; d/ D H

�
.slm/:

This is exactly the cohomology of the (non-graded) Lie algebra slm.

Example 3.13 (� D Z2�Z2). Let us now consider the case of� D Z2�Z2 gradings,
with the commutation factor ".i; j / D .�1/i1j2Ci2j1 . Let A� D M.m; n; r; s/ be the
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"-graded algebra of .mC nC r C s/� .mC nC r C s/matrices defined as follows:
any element in A� is written as

M D

0
BB@
M11 M12 M13 M14

M21 M22 M23 M24

M31 M32 M33 M34

M41 M42 M43 M44

1
CCA 2 A

�
; (3.10)

where Mij are rectangular matrices. The grading is such that M11, M22, M33 and
M44 correspond to degree .0; 0/ 2 �;M12,M21,M34 andM43 correspond to degree
.1; 0/; M13, M24, M31 and M42 correspond to degree .0; 1/; M14, M23, M32 and
M41 correspond to degree .1; 1/. This is an elementary grading, A� is a color algebra
in the sense of [38], and is therefore a less trivial example of "-graded algebra than the
usual matrix algebra or the super matrix algebra described in Examples 3.11 and 3.12.
Moreover,

Tr".M/ D Tr.M11/C Tr.M22/C Tr.M33/C Tr.M44/ D Tr.M/

is an "-trace, Z�

".A/ D C1 and Der�

".A/ D Inn�

".A/ D sl
�

".m; n; r; s/. Furthermore,
the differential calculus based on "-derivations is

��;�

" .M.m; n; r; s// D M.m; n; r; s/˝ � V�

" sl".m; n; r; s/
��

(3.11)

Example 3.14 (� D Z2 � Z2). Consider the same grading group � on the same
algebra A� as in Example 3.13, but with a different commutation factor:
".i; j / D .�1/i1j1Ci2j2 . A� is then a color superalgebra but not a color algebra
(here "..1; 0/; .1; 0// D �1). General results lead us to the "-trace

Tr".M/ D Tr.M11/ � Tr.M22/ � Tr.M33/C Tr.M44/;

and one has Z�

".A/ D C1, Der�

".A/ D Inn�

".A/. If m C s ¤ n C r , one gets
Der�

".A/ D sl
�

".m; n; r; s/. The differential calculus is also described by equation
(3.11), but sl

�

".m; n; r; s/ is different in this example from Example 3.13.

The explicit computation of the commutators Œ�;��" for the "-Lie algebras of
"-derivations is not given here because they give rise to cumbersome expressions.
Nevertheless, let us mention that they are different for the four above cases, and
therefore the "-Lie algebras of "-derivations, Der�

".A/, are different for these four
examples.

3.3. "-graded matrix algebras with fine grading. In this section we study the case
of a fine-grading for the matrix algebra A�.

Definition 3.15 (Fine grading). Let A� D MD be the complex matrix algebra, graded
by an abelian group � .
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The grading (3.1) of A� is called fine if dimC.A
˛/ 	 1 for all ˛ 2 � . Then we

define the support of the grading:

Supp.A�
/ D f˛ 2 � j A˛ ¤ 0g:

Let � be an abelian group and A D MD the algebra ofD �D complex matrices
such that A� is a fine �-graded algebra. Let .e˛/˛2Supp.A�/ be a homogeneous basis
of A�.

Proposition 3.16. With the above hypotheses on A�, A� is a graded division algebra,
namely all non-zero homogeneous elements of A� are invertible. Moreover, Supp.A�/

is a subgroup of � .
The fine grading of A� is determined by the choice of the basis .e˛/ and the factor

set � W Supp.A�/ � Supp.A�/ ! C� defined by

e˛ � eˇ D �.˛; ˇ/e˛Cˇ

for all ˛; ˇ 2 Supp.A�/. Furthermore, A� is a fine "� -graded commutative algebra,
where the commutation factor "� is defined by (2.4).

Proof. The proof of the first property is in [2]. It uses the fact that A�, as an associative
algebra, does not contain any proper ideal.

For all ˛; ˇ 2 Supp.A�/, e˛ � eˇ is proportional to e˛Cˇ and is different from
0 because of the above property. This defines �.˛; ˇ/. Then � is a factor set (see
Definition 2.7) since A� is associative. For ˛; ˇ 2 Supp.A�/, one has

e˛ � eˇ D �.˛; ˇ/e˛Cˇ D "� .˛; ˇ/eˇ � e˛;

with "� .˛; ˇ/ D �.˛; ˇ/�.ˇ; ˛/�1 (see (2.4)).

Note that e0 D �.0; 0/1.
Let us give a typical example of a fine-graded matrix algebra: the Clifford algebra.

Definition 3.17. Let � be an abelian group, and � a factor set of � . We define here
S D C Ì� � , the crossed-product of C by � relatively to � . S is the algebra of
functions � ! C which vanishes outside of a finite number of elements of � , with
product: for all f; g 2 S and all k 2 � ,

.f � g/.k/ D P
iCj Dk

�.i; j /f .i/g.j /:

Let .ek/k2� be its canonical basis, given by ek.i/ D ıik for all i; k 2 � . It
satisfies ei � ej D �.i; j /eiCj for all i; j 2 � . With the natural fine �-grading given
by Sk D Cek , S � is an "� -graded commutative algebra.
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Example 3.18. Let � D .Z2/
n, for n 2 N� and � the factor set of � defined by

�.i; j / D .�1/
P

1�p<q�n ipjq :

for all i; j 2 � . Then C Ì� .Z2/
n is isomorphic to the Clifford algebra C l.n;C/.

This is still true for any factor set equivalent to � .

3.3.1. Properties. The algebra A� D MD has therefore a natural commutation
factor "� , and one can ask about the properties of A� if it is endowed with another
general commutation factor " on � . We have to “compare” " with "� . In this section,
" will denote a commutation factor on � over C (potentially different from "� )
satisfying the hermitian condition (2.9).

Proposition 3.19. Let "1 and "2 be two commutation factors on � over C. We denote

�"1;"2
D fi 2 � j "1.i; j / D "2.i; j / for all j 2 �g:

�"1;"2
is a subgroup of � compatible with the signature decomposition, that is,

�"1;"2
\ � i

"1
D �"1;"2

\ � i
"2

for all i 2 Z2.

Proposition 3.20 ("-center). The "-center of A�, whose fine grading is associated to
the factor set � , is given by

Z
�

".A/ D L
˛2�";"�

A˛:

Proof. Suppose that there exists ˛ 2 Supp.A�/ such that e˛ 2 Z�

".A/. Then

Œe˛; eˇ �" D �.˛; ˇ/.1 � .""�1
� /.˛; ˇ//e˛Cˇ

for all ˇ 2 Supp.A�/. Moreover, Œe˛; eˇ �" D 0 if and only if ".˛; ˇ/ D "� .˛; ˇ/ for
all ˇ, that is, ˛ 2 �";"�

.

For two commutation factors "1 and "2 on � over C, let us also define the (po-
tentially empty) set

R"1;"2
D fi 2 � j "1.i � j; j / D "2.i � j; j / for all j 2 �g:

Proposition 3.21. This set satisfies

�i 2 R"1;"2
; i C j 2 �"1;"2

for all i; j 2 R"1;"2
. Moreover, if  "1

D  "2
, then R"1;"2

D �"1;"2
; otherwise,

R"1;"2
\ �"1;"2

D ;. Here  " is the signature function of " defined in Section 2.1.
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Proposition 3.22 ("-traces). The "-traces on A� are the linear maps A ! C van-
ishing outside of L

˛2R";"�

A˛:

Then, from the proof of Proposition 3.20, one obtains

Proof. Suppose that T W A� ! C is an "-trace. For all ˛; ˇ 2 Supp.A�/, we
have that T .Œe˛; eˇ �"/ D 0. Then, from the proof of Proposition 3.20, one obtains
.1 � ""�1

� .˛; ˇ//T .e˛Cˇ / D 0. After a change of variables ˛ ! ˛ � ˇ,

.1 � ""�1
� .˛ � ˇ; ˇ//T .e˛/ D 0

for all ˛; ˇ 2 Supp.A�/. Then (T .e˛/ D 0 or ˛ 2 R";"�
) for all ˛ 2 Supp.A�/.

Let us define the coordinates .x˛/˛2Supp.A�/ of a homogeneous "-derivation X of
A� by

X.e˛/ D �.jXj; ˛/ x˛ e˛CjXj
for all ˛ 2 Supp.A�/.

Theorem 3.23 ("-derivations). The coordinates of a homogeneous "-derivation X of
A� satisfy

x˛Cˇ D x˛ C .""�1
� /.jXj; ˛/xˇ

for all ˛; ˇ 2 Supp.A�/. Moreover, X is inner if and only if x˛ is proportional
(independently of ˛) to 1 � .""�1

� /.jXj; ˛/.
The exact sequence of "-Lie algebras and Z�

".A/-modules is canonically split,

0 ! Inn�

".A/ ! Der�

".A/ ! Out�

".A/ ! 0;

and there are only two possibilities for X:

(1) if jXj 2 �";"�
, then X is outer and given by a group morphism of Supp.A�/

into C;

(2) otherwise, X is inner.

Proof. Let X be a homogeneous "-derivation of A�. The defining relation (2.7) of
"-derivations,

X.e˛ � eˇ / D X.e˛/ � eˇ C ".jXj; ˛/e˛ � X.eˇ / for all ˛; ˇ 2 Supp.A�
/;

can be reexpressed in terms of the coordinates of X:

�.jXj; ˛ C ˇ/x˛Cˇ�.˛; ˇ/

D �.jXj; ˛/x˛�.˛ C jXj; ˇ/C ".jXj; ˛/�.jXj; ˇ/xˇ�.˛; ˇ C jXj/:
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Due to (2.3) and (2.4), one obtains

x˛Cˇ D x˛ C .""�1
� /.jXj; ˛/xˇ :

If X is inner, then there exists � 2 C such that

X.e˛/ D �ŒejXj; e˛�" D ��.jXj; ˛/.1 � ""�1
� .jXj; ˛//ejXjC˛

for all ˛ 2 Supp.A�/. Due to the definition of the coordinates .x˛/ of X, one has

x˛ D �.1 � ""�1
� .jXj; ˛//:

The converse is straightforward.
(1) If jXj 2 �";"�

, then x˛Cˇ D x˛ C xˇ and x W Supp.A�/ ! C is a group
morphism. Moreover, the only possible inner derivation is 0. Consequently, X can
be seen as an outer "-derivation.

(2) If jXj … �";"�
, there exists ˛ 2 Supp.A�/ such that ""�1

� .jXj; ˛/ ¤ 1. Since

x˛ C ""�1
� .jXj; ˛/xˇ D x˛Cˇ D xˇ C ""�1

� .jXj; ˇ/x˛

for all ˛; ˇ 2 Supp.A�/, one concludes that

xˇ D 1 � ""�1
� .jXj; ˇ/

1 � ""�1
� .jXj; ˛/x˛

for all ˇ 2 Supp.A�/. By the above property of inner "-derivations, X is inner. The
grading, and more precisely the belonging of the grading to �";"�

or not, provides a
splitting of the "-derivations exact sequence.

Corollary 3.24. We define sl
�

".A/ to be the space of traceless matrices (see Propo-
sition 3.22) and the Z�

".A/-module

�
�

".A/ D L
˛…�";"�

A˛:

Then

(1) A� D Z�

".A/˚ ��

".A/,

(2) ad W ��

".A/ ! Inn�

".A/ is an isomorphism of Z�

".A/-module, and

(3) if " is a proper commutation factor, then ��

".A/ D sl
�

".A/, and ad restricted to
this "-Lie algebra is an isomorphism of "-Lie algebra.

Proof. Indeed, ker.ad/ D Z�

".A/. If " is proper, R";"�
D �";"�

due to Proposi-
tion 3.21. Then Proposition 3.22 gives the result: ��

".A/ D sl
�

".A/.

Corollary 3.25. In the case " D "� , one has

Z
�

"�
.A/ D A

�
; Der�

"�
.A/ D Out�

"�
.A/:

Moreover, the "� -traces of A� are the linear maps A ! C.
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Proof. Indeed, �"� ;"�
D R"� ;"�

D � . Note that Œe˛; eˇ �"�
D 0 for all ˛; ˇ 2

Supp.A�/.

We notice that the results of Corollary 3.25 are very different from those obtained
in Section 3.2, namely Proposition 3.3 and Proposition 3.5, which are close to the
results on the non-graded case of matrices. This shows that the extension to the "-
graded case of the framework of derivations is non-trivial and can provide interesting
examples.

Note that the dimension has not been used for the moment in this section, so that
the latter results remain true for any fine-graded division algebra. If we take into
account that A� is finite-dimensional, one obtains:

Corollary 3.26. For A� D MD with fine grading, andD < 1,

Out�

".A/ D 0:

Proof. If Supp.A�/ is finite, the only group morphism Supp.A�/ ! C is trivial.

3.3.2. Differential calculus and "-connections. To describe the differential calcu-
lus of A� D MD based on "-derivations, we need to introduce the notation

�
�;�

";Z
.�".A/;A/ D A

� ˝Z".A/

V�

";Z".A/.�".A/
�/�;

which is inspired by Section 3.2.2, and where the "-exterior algebra of ��

".A/ is
made of tensor products on Z�

".A/. As for Proposition 3.8, it is easy to show that
�

�;�

";Z
.�".A/;A/ is a .Z � �/-graded algebra, and a graded differential algebra if

��

".A/ is an "-Lie algebra.

Lemma 3.27. One can define the coordinates of any element ! 2 �n;j!j
" .A/ of the

differential calculus:

!.ade˛1
; : : : ; ade˛n

/ D !˛1;:::;˛n
ej!j � e˛1

� � � � � e˛n

D �.j!j; ˛1 C � � � C ˛n/�.˛1; ˛2 C � � � C ˛n/

: : : �.˛n�1; ˛n/ !˛1;:::;˛n
ej!jC˛1C���C˛n

for ˛i 2 Supp.A�/n�";"�
. Then these coordinates satisfy

!˛1;:::;˛i ;˛iC1;:::;˛n
D �.""�1

� /.˛i ; ˛iC1/ !˛1;:::;˛iC1;˛i ;:::;˛n
;

!˛1;:::;˛i Cˇ;:::;˛n
D !˛1;:::;˛i ;:::;˛n

for all ˇ 2 �";"�
\ Supp.A�

/:

Proof. The proof is straightforward by using the axioms of the differential calculus
in equation (2.12).

Theorem 3.28. Let A� D MD be an "-graded matrix algebra with fine grading
(D < 1). Then:
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(1) ad� W ��;�

";Z
.�".A/;A/ ! �

�;�

" .A/ is an isomorphism of .Z � �/-graded alge-
bras.

(2) The space of "-connections on A� is an affine space modeled on the vector space

�1;0
" .A/ � L

˛…�";"�

A˛ ˝Z".A/ .A
˛/�:

(3) Moreover, if " is proper, the above map ad� is an isomorphism of graded differ-
ential algebras.

Proof. Since all "-derivations are inner, one can adapt the proof of Theorem 3.9.

3.3.3. Concrete examples. Let us apply the latter results on simple examples of
fine-graded matrix algebras.

Example 3.29. For � D 0, the only possibility of a fine-graded complex matrix
algebra is A� D C.

For� D Z2, there is no fine-graded matrix algebra A� such that Supp.A�/ D Z2.

Example 3.30. For � D Z2 � Z2, the only possibility of a fine-graded complex
matrix algebra A� such that Supp.A�/ D � is A� D M2, the .2� 2/ complex matrix
algebra.

� A.0;0/ D C1, and, up to a permutation, A.1;0/ D C
1, A.0;1/ D C
2 and
A.1;1/ D C
3, where the 
i are the Pauli matrices:


1 D
�
0 1

1 0

	
; 
2 D

�
0 �i
i 0

	
; 
3 D

�
1 0

0 �1
	
:

� The factor set � associated to the algebra A� is given by

�..1; 0/; .0; 1// D ��..0; 1/; .1; 0// D ��..1; 0/; .1; 1//
D �..1; 1/; .1; 0// D �..0; 1/; .1; 1// D ��..1; 1/; .0; 1// D i

for the non-trivial terms. The associated proper commutation factor is then

"� .j; k/ D .�1/j1k2Cj2k1

for all j; k 2 � .

� Since � is a product of cyclic groups, and C is a field of characteristic zero,
there is no non-zero group morphism � ! C.

� If A� is endowed with its associated commutation factor "� , it is a color algebra.
Then, by Corollary 3.25, one obtains

Z
�

"�
.M2/ D M2; Der�

"�
.M2/ D Out�

"�
.M2/ D 0;
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and the "� -traces are the linear maps M2 ! C. Moreover, the differential
calculus is trivial:

��;�

"�
.M2/ D �0;�

"�
.M2/ D M2:

� If A� is endowed with the commutation factor ".j; k/ D .�1/j1k1Cj2k2 , it is a
color superalgebra. Since �";"�

D f.0; 0/; .1; 1/g and R";"�
D f.1; 0/; .0; 1/g,

one has

Z
�

".M2/ D C1 ˚ C
3; Der�

".M2/ D Inn�

".M2/ D C ad	1
˚ C ad	2

;

and the "-traces are the linear maps Z".M2/ ! C. One can also notice that
C
1 ˚C
2 D sl1.1; 1/ in the notations of Example 3.12, so that the differential
calculus writes

��;�

" .M2/ D M2 ˝
sl0.1;1/

.S�
sl1.1; 1/�/:

Note that it was proved in [2] that every graded matrix algebra can be decomposed
into the tensor product of an elementary graded matrix algebra and a fine graded
matrix algebra, which are the two typical cases of graded matrix algebras (studied in
Sections 3.2 and 3.3). In this section, we have seen that fine graded matrix algebras
are naturally related to commutation factors and that the theory of comparison of
commutation factors permits to characterize properties of such algebras.

3.4. Application to the Moyal algebra. The Moyal algebra M
 is a deformation
quantization of RD . Expanded on the matrix basis, the Moyal algebra can be seen as
a generalization of finite-dimensional matrix algebras. Without considering all the
possible gradings and commutation factors, we will construct a superalgebra A

�



from

M
 , study its properties, and apply it to explain mathematically a noncommutative
gauge theory used in mathematical physics ([10]).

3.4.1. General properties of the Moyal algebra. Here we collect the main proper-
ties of the Moyal algebra which will be used in the subsequent discussion. For more
details, see e.g. [21], [41]. Let � 
 �.RD/with even dimensionD and � 0 be respec-
tively the space of complex-valued Schwartz functions on RD and its topological dual,
the space of tempered distributions on RD . Consider a symplectic structure on RD ,
represented by an invertible skew-symmetric D �D matrix †, and ‚ D 
†, where
the positive parameter 
 has mass dimension �2. The Moyal product associated to
‚ can be conveniently defined on � � � by

.a ? b/.x/ D 1

.�
/Djdet†j
Z
dDydDza.x C y/b.x C z/e�2iy‚�1z (3.12)

for all a; b 2 � , such that .a ? b/ 2 � , where1 ‚:k 
 ‚��k� . The ? product (3.12)
can be further extended to � 0 � � by using the duality of linear spaces: hT ? a; bi D

1We use in this section the implicit summation convention.
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hT; a ? bi for all T 2 � 0, a; b 2 � . In a similar way, (3.12) can be extended to
� � � 0. Owing to the smoothening properties of (3.12) together with the tracial
identity

R
dDx .a ? b/.x/ D R

dDx a.x/:b.x/, where the symbol “.” denotes the
(commutative) usual pointwise product, it can be shown that T ? a and a ? T are
smooth functions ([21], [41]). The Moyal algebra M
 is then defined as

M
 D L \ R;

where L (resp. R) is the subspace of � 0 whose multiplication from right (resp. left)
by any Schwartz function is a subspace of � .

By denoting � the complex conjugation, .M
 ; ?;
�/ is a unital involutive topolog-

ical algebra which involves in particular the “coordinate” functions x� satisfying the
relation

Œx�; x� �? D i‚�� ;

defined on M
 , where we set Œa; b�? D a ? b � b ? a and fa; bg? D a ? b C b ? a.
Defining Qx� D 2‚�1

��x� , other relevant properties of the ?-product that hold on M


and that will be used in the following are:

@�.a ? b/ D @�a ? b C a ? @�b;

Œ Qx�; a�? D 2i@�a;

f Qx�; ag? D 2 Qx�a;

Œ Qx� Qx� ; a�? D i

2
Qx�@�aC i

2
Qx�@�a

(3.13)

for all a; b 2 M
 .
By defining the straightforward generalization of the �4-theory on the Euclidean

Moyal space,

S.�/ D
Z

dDx
�1
2
.@��/

2 C m2

2
�2 C �� ? � ? � ? �

�
;

one finds a new divergence, called ultraviolet-infrared (UV/IR) mixing [36], which
spoils the renormalizability of the theory. A solution to this problem has been carried
out by Grosse and Wulkenhaar by adding a harmonic term to the action,

S D
Z

dDx
�1
2
.@��/

2 C �2

2
. Qx��/

2 C m2

2
�2 C ��?4

�
; (3.14)

so that the theory becomes renormalizable to all orders in perturbation ([24]). A new
gauge theory on the Moyal space was exhibited in [10], [23] from a one-loop effective
action of the model (3.14),

S D 1

4

Z
dDx

�
F�� ? F�� C�02fA�;A�g2

? C �A� ?A�

�
; (3.15)

where F�� D @�A� � @�A� � i ŒA�; A� �? and A� D A� C 1
2

Qx�. This gauge action
is indeed a good candidate for a renormalizable gauge theory on the Moyal space.
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3.4.2. An "-graded algebra constructed from Moyal space. We construct an "-
graded algebra A

�



(here a superalgebra) from the Moyal algebra M
 . We also study

its "-center and exhibit a particular "-Lie subalgebra g� of its inner derivations. From
these considerations, we find as a classical scalar action the quadratic part of the
renormalizable Grosse–Wulkenhaar model (3.14).

Definition3.31. Let A
�



be the Z2-graded complex vector space defined by A0



D M


and A1



D M
 . Let us also introduce the following product on A
�



D A0



˚ A1



:

.a; b/ � .c; d/ D .a ? c C ˛ b ? d; a ? d C b ? c/ (3.16)

for all a; b; c; d 2 M
 , where ˛ is a real parameter. Finally, for i; j 2 Z2, define the
usual commutation factor: ".i; j / D .�1/ij .

Proposition 3.32. The vector space A
�



, endowed with the product (3.16) and the

commutation factor ", is an "-graded algebra. The bracket of its associated "-Lie
algebra (which is a superalgebra) has the following expression: for � D .�0; �1/ 2
A

�



and  D . 0;  1/ 2 A

�



,

Œ�;  �" D .Œ�0;  0�? C ˛f�1;  1g?; Œ�0;  1�? C Œ�1;  0�?/:

Moreover, .�0; �1/
� D .�

�
0 ; �

�
1/ is an involution for A

�



(˛ 2 R).

Proof. For example, let us check the associativity of the product:

..a; b/ � .c; d// � .e; f /
D .a ? c ? e C ˛.b ? d ? e C a ? d ? f C b ? c ? f /;

a ? c ? f C a ? d ? e C b ? c ? e C ˛ b ? d ? f /

D .a; b/ � ..c; d/ � .e; f //

for all a; b; c; d; e; f 2 M
 . In the same way, distributivity and the other axioms are
verified. Notice that 1 D .1; 0/ is the unit element of this algebra.

Since the center of the Moyal algebra is trivial (Z.M
 / D C), we find the "-center
of A

�



:

Z
�

".A
 / D C1 D C ˚ 0:

Furthermore, a (non-graded) trace of a subclass of this algebra is given by

Tr.�/ D
Z
dDx �0.x/:

for all � D .�0; �1/ 2 A
�



.
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Let us now define the objects � D 1, �� D �1
2

Qx� and ��� D 1
2

Qx� Qx� D 2���� ,
and give some calculation rules deduced from (3.13):

Œi�; ��? D 0;

fi�; �g? D 2i��;

Œi��; ��? D @��;

fi��; �g? D 2i��:�;

Œi��� ; ��? D 1

2
��@�� C 1

2
��@��

(3.17)

for all � 2 M
 . Consequently, the usual derivations of the Moyal algebra @� are
inner and can be expressed in terms of ��.

Proposition 3.33. Then ad.0;i�/, ad.i
�;0/, ad.0;i
�/ and ad.i��� ;0/ are real "-deri-
vations of A

�



of degrees 1, 0, 1 and 0, respectively. Moreover, the vector space

g� generated by these "-derivations is an "-Lie subalgebra of Der�

".A
 / and a right
Z�

".A
 /-module.

Proof. The following relations, computed from (3.17),

Œ.0; i�/; .0; i�/�" D .�2˛; 0/
Œ.i��; 0/; .0; i�/�" D .0; 0/

Œ.0; i��/; .0; i�/�" D .�2˛��; 0/

Œ.i���/; .0; i�/�" D .0; 0/

Œ.i��; 0/; .i�� ; 0/�" D .i‚�1
�� ; 0/

Œ.i��; 0/; .0; i��/�" D .0; i‚�1
���/

Œ.0; i��/; .0; i��/�" D .�˛��� ; 0/

Œ.i��� ; 0/; .i��; 0/�" D . i
2
��‚

�1
�� C i

2
��‚

�1
��; 0/

Œ.i��� ; 0/; .0; i��/�" D .0; i
2
��‚

�1
�� C i

2
��‚

�1
��/

Œ.i��� ; 0/; .i��� ; 0/�" D . i
2
���‚

�1
�� C i

2
���‚

�1
�� C i

2
���‚

�1
�� C i

2
���‚

�1
��; 0/;

combined with Œada; adb�" D adŒa;b�" for all a; b 2 A
�



, show that g� is an "-Lie

algebra.

Notice that the vector space generated only by ad.i
�;0/ and ad.0;i
�/ is not an "-
Lie subalgebra. Indeed, g� is the smallest subalgebra of Der�

".A
 / involving ad.i
�;0/

and ad.0;i
�/.
We now make use of the previous construction of the "-graded algebra A

�



to give a

mathematical interpretation to the theory (3.14). In the notations of Propositions 3.32
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and 3.33, one can compute: for all � 2 M
 real,

Tr
�jŒ.i��; 0/; .�; �/�"j2 C jŒ.0; i��/; .�; �/�"j2 C 1



jŒ.0; i�/; .�; �/�"j2

�
D

Z
dDx

�
.1C 2˛/.@��/

2 C ˛2. Qx��/
2 C 4˛2



�2

�
;

where jaj2 D a� � a 2 A
�



and we impose �0 D �1 D �. Setting �2 D ˛2

1C2˛

and m2 D 4˛2


.1C2˛/
, we find that the latter expression is the quadratic part of the

Grosse–Wulkenhaar action with harmonic term (3.14), which therefore seems to be
related to ��;�

" .A
 jg/.
Remark 3.34. This stems from the fact that the graduation of the “graded Moyal
algebra” A

�



mimics the Langmann–Szabo duality [27], which seems to play an

important role in the renormalizability of this model. Indeed, the Langmann–Szabo
duality (@� � Qx�) can be related to (i Œ��; :�? � f��; :g?) or to (.i��; 0/ � .0; i��/)
due to the relations

Œ.i��; 0/; .�0; �1/�" D .Œi��; �0�?; Œi��; �1�?/;

Œ.0; i��/; .�0; �1/�" D .i˛f��; �1g?; Œi��; �0�?/;

and further assuming �0 D �1 D �. In fact, an exact correspondence between
Langmann–Szabo duality and this grading exchange was proved in [9]. Moreover,
the previous formalism, contrary to the usual (@� � Qx�) symmetry, can also be
applied to gauge theory, as we will see in the next part.

3.4.3. "-connections for this "-graded algebra. Let us consider the differential
calculus��;�

" .A
 jg/ and apply the considerations of Section 2.4 for the module M � D
A

�



, with the hermitian structure ha; bi D a� �b for alla; b 2 A

�



. We describe here the

"-connections and their curvatures in terms of the gauge potentials and the covariant
coordinates we introduce. We also look at the action of gauge transformations on
such objects. Finally, we recover the recently constructed candidate (3.15) for a
renormalizable noncommutative gauge theory as an action built from the curvature
presented in this section.

Proposition 3.35. Let r be a hermitian "-connection on A
�



. For X 2 Der�

".A
 /,
define the gauge potential associated to r: �iAX D r.1/.X/: A W X 7! AX is in
�

1;0
" .A
 jg/ and if X is real, then AX is real too.
Then the "-connection r takes the form

rXa D X.a/ � iAX � a
for all X 2 Der�

".A
 /, a 2 A
�



, where rXa D ".jXj; jaj/r.a/.X/. Defining

FX;Y � a D i".jXj C jYj; jaj/R.a/.X;Y/, we obtain the curvature

FX;Y D X.AY/ � ".jXj; jYj/Y.AX/ � i ŒAX; AY�" � AŒX;Y�"

for all X;Y 2 Der�

".A
 /.
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Proof. Indeed, for X 2 Der�

".A
 / and a 2 A
�



,

r.a/.X/ D r.1 � a/.X/ D r.1/.X/C 1 � da.X/:

The curvature simplifies to

R.a/.X;Y/ D ".jXj; jYj/r.r.a/.Y//.X/ � r.r.a/.X//.Y/ � r.a/.ŒX;Y�"/
D ".jXj; jYj/d.da.Y//.X/ � d.da.X//.Y/ � da.ŒX;Y�"/

� i".jXj C jaj; jYj/d.AY � a/.X/ � i".jaj; jXj/AX � da.Y/

� ".jaj; jXj C jYj/AX � AY � aC i".jaj; jXj/d.AX � a/.Y/
C i".jXj C jaj; jYj/AY � da.X/

C ".jXj; jYj/".jaj; jXj C jYj/AY � AX � a
C i".jaj; jXj C jYj/AŒX;Y�" � a:

By using

0 D d2a.X;Y/ D ".jXj; jYj/d.da.Y//.X/ � d.da.X//.Y/ � da.ŒX;Y�"/;

we find

R.a/.X;Y/

D ".jaj; jXj C jYj/.�iX.AY/C i".jXj; jYj/Y.AX/ � ŒAX; AY�" C iAŒX;Y�"/ � a:

Therefore, we set

r.1/.ad.i
�;0// D .�iA0
�; 0/; r.1/.ad.0;i
�// D .0;�iA1

�/;

r.1/.ad.0;i�// D .0;�i'/; r.1/.ad.i��� ;0// D .�iG�� ; 0/:
(3.18)

The associated curvature can then be expressed as:

F.0;i�/;.0;i�/ D .2i˛' � 2i˛' ? '; 0/;
F.i
�;0/;.0;i�/ D .0; @�' � i ŒA0

�; '�?/;

F.0;i
�/;.0;i�/ D .�i˛ Qx�' � i˛fA1
�; 'g? C 2i˛.A1

� � A0
�/; 0/;

F.i��� ;0/;.0;i�/ D .0;�1
4

Qx�@�' � 1
4

Qx�@�' � i ŒG�� ; '�?/;

F.i
�;0/;.i
� ;0/ D .@�A
0
� � @�A

0
� � i ŒA0

�; A
0
� �?; 0/;

F.i
�;0/;.0;i
�/ D .0; @�A
1
� � @�A

0
� � i ŒA0

�; A
1
� �? �‚�1

��'/;

F.0;i
�/;.0;i
�/ D .�i˛ Qx�A
1
� � i˛ Qx�A

1
� � i˛fA1

�; A
1
�g? � i˛G�� ; 0/;

F.i
�;0/;.i���;0/ D .@�G�� C Qx�@�A
0
� C Qx�@�A

0
� � i ŒA0

�; G���?

C 2‚�1
��A

0
� C 2‚�1

��A
0
� ; 0/;
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F.0;i
�/;.i���;0/ D .0; @�G�� C Qx�@�A
1
� C Qx�@�A

1
� � i ŒA1

�; G���?

C 2‚�1
��A

1
� C 2‚�1

��A
1
�/;

F.i��� ;0/;.i��� ;0/ D .� Qx�@�G�� � Qx�@�G�� C Qx�@�G�� C Qx�@�G��

� i ŒG�� ; G�� �? � 2‚�1
��G�� � 2‚�1

�� G��

� 2‚�1
��G�� � 2‚�1

��G��; 0/: (3.19)

Here we have suppressed the ad’s in the indices of F to simplify the notations.

Proposition 3.36. The unitary gauge transformationsˆ of A
�



are completely deter-

mined by g D ˆ.1/: ˆ.a/ D g � a for all a 2 A
�



, and g is a unitary element of A

�




of degree 0: g� � g D 1. Then this gauge transformation acts on the gauge potential
and the curvature by

A
g

X D g � AX � g� C ig � X.g�/; (3.20)

F
g

X;Y D g � FX;Y � g�: (3.21)

for all X;Y 2 Der�

".A
 /.

Proof. For all X 2 Der�

".A
 / and a 2 A
�



,

rg

Xa D g � .X.g� � a/ � iAX � g� � a/ D X.a/C g � X.g�/ � a � ig � AX � g� � a:

Since rg

Xa D X.a/ � iA
g

X � a, we obtain the result (3.20). The proof is similar for
(3.21).

In the following, we will denote the gauge transformations (of degree 0) by .g; 0/,
where g 2 M
 and g� ? g D 1. Then the gauge potentials (3.18) transform into

.A0
�; 0/

g D .g ? A0
� ? g

� C ig ? @�g
�; 0/;

.0; A1
�/

g D .0; g ? A1
� ? g

� C ig ? @�g
�/;

.0; '/g D .0; g ? ' ? g�/;

.G�� ; 0/
g D .g ? G�� ? g

� � i
4
g ? . Qx�@�g

�/ � i
4
g ? . Qx�@�g

�/; 0/:

(3.22)

We introduce the covariant coordinates

A0
� D A0

� C 1

2
Qx�; A1

� D A1
� C 1

2
Qx�;

ˆ D ' � 1; G�� D G�� � 1

2
Qx� Qx� ;
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so that the curvature takes the new form

F.0;i�/;.0;i�/ D .2i˛ � 2i˛ˆ ? ˆ; 0/;
F.i
�;0/;.0;i�/ D .0;�i ŒA0

�; ˆ�?/;

F.0;i
�/;.0;i�/ D .�i˛fA1
�; ˆg? � 2i˛A0

�; 0/;

F.i��� ;0/;.0;i�/ D .0;�i ŒG�� ; ˆ�?/;

F.i
�;0/;.i
� ;0/ D .‚�1
�� � i ŒA0

�;A
0
� �?; 0/;

F.i
�;0/;.0;i
�/ D .0;�i ŒA0
�;A

1
� �? �‚�1

��ˆ/;

F.0;i
�/;.0;i
�/ D .�i˛fA1
�;A

1
�g? � i˛G�� ; 0/;

F.i
�;0/;.i���;0/ D .�i ŒA0
�;G���? C 2‚�1

��A0
� C 2‚�1

��A0
� ; 0/;

F.0;i
�/;.i���;0/ D .0;�i ŒA1
�;G���? C 2‚�1

��A1
� C 2‚�1

��A1
�/;

F.i��� ;0/;.i��� ;0/ D .�i ŒG�� ;G�� �? � 2‚�1
��G��

� 2‚�1
�� G�� � 2‚�1

��G�� � 2‚�1
�� G��; 0/:

(3.23)

In the notations of (3.19) and (3.23), we will construct a gauge-invariant action
by taking the trace of the square of a (graded) curvature. Note that due to (3.22), the
field ' can be interpreted as a scalar field (in the adjoint representation), whileA0

� and
A1

� are usual gauge potentials on the Moyal space. Let us identify A0
� D A1

� D A�

for the computation of the action. Note also that for dimensional consistency one
has to consider i

p

��� rather than i��� in the action, ip



� rather than i� , and to

rescale conveniently the fields ' and G�� . Taking for the moment G�� D 0 and
ˆ D 0, which can be done because these fields transform covariantly, we obtain the
following action, up to constant terms:

Tr.jFada;adb
j2/ D

Z
dDx

�
.1C 2˛/F�� ? F�� C ˛2fA�;A�g2

?

C 8


.2.D C 1/.1C ˛/C ˛2/A� ?A�

�
:

(3.24)

Here an implicit summation is on a; b 2 f.0; ip


�/; .i��; 0/; .0; i��/; .i

p

��� ; 0/g.

We easily recognize the action (3.15). When taking2 ˆ ¤ 0 and G�� D 0, we obtain
an additional real scalar field action coupled to gauge fields:

S.'/ D
Z
dDx

�
2˛j@�' � i ŒA�; '�?j2 C 2˛2j Qx�' C fA�; 'g?j2 � 4˛

p

'‚�1

��F��

C 2˛.DC2˛/



'2 � 8˛2p


' ? ' ? ' C 4˛2' ? ' ? ' ? '

�
: (3.25)

A part of this action can be interpreted as a Higgs action coupled to gauge fields, with
harmonic term (3.14) and a more general positive potential term built from the ?-
polynomial part involving '. Moreover, this action is not Langmann–Szabo covariant
(cubic term) but related to the generalization of this duality discussed below.

2We recall that ˆ D ' � 1.
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Notice that the gauge fields A� are already massive (see the last term in (3.24)).
Furthermore, the action (3.25) involves a BF-like ([3], [42]) term

R
'‚�1

��F�� similar
to the one introduced by Slavnov [40] in the simplest noncommutative extension of
the Yang–Mills theory on Moyal space.

3.4.4. Discussion on the gauge theory. We have therefore interpreted both actions
(3.14) and (3.15) within the formalism introduced in this section for the superalgebra
A

�



. Some comments concerning the classical action (3.15) are now in order.
First, it is not surprising that we obtain a Higgs field in this theory as a part of

a connection. This was already the case for, e.g., spectral triples approach of the
Standard Model [6] and for the models stemming from the derivation-based differ-
ential calculus in [16]. Notice that a somewhat similar interpretation of covariant
coordinates as Higgs fields in the context of gauge theory models on Moyal algebras
has also been given in [5]. Moreover, an additional BF-like term in (3.25) appears in
the present situation. Such a Slavnov term was shown in [40] to improve the IR (and
UV) behavior of the actionZ

dDx..1C 2˛/F�� ? F�� � 4˛
p

'‚�1

��F��/; (3.26)

when the field ' is not dynamical ([40]). The corresponding impact on the UV/IR
mixing of the full action in the present situation remains to be analyzed.

In view of the discussion given in Section 3.4.2, the grading of the "-associative
algebra A� mimics the Langmann–Szabo duality in the scalar case. As far as the
gauge theory built from the square of the curvature is concerned, this is reflected in
particular into the action (3.24) (the G�� D ˆ D 0 part), which has been shown to
be an effective action ([10], [23]). As a consequence, one can view this grading as a
generalization of the Langmann–Szabo duality to the scalar and gauge case. Observe
that in (3.24), the part .fA�;A�g? � 1

4
f Qx�; Qx�g?/might be viewed as the symmetric

counterpart of the usual antisymmetric curvature F�� D i
4
Œ Qx�; Qx� �? � i ŒA�;A� �?.

Then the general action Tr.jFada;adb
j2/ involves the termsZ

dDx
�
˛2.fA�;A�g? � 1

2
Qx� Qx�/

2 C 2˛2G��.fA�;A�g? � 1
2

Qx� Qx�/
�
;

which can also be seen as the symmetric counterpart of the BF action (3.26), if we
interpret G�� as the “symmetric” analog of the BF multiplier ‚�1

��'.
One can further observe that the gauge action built from the square of the curvature

has a trivial vacuum (and in particular A� D 0), which therefore avoids the difficult
problem ([8]) to deal with the non-trivial vacuum configurations of (3.24) that were
determined in [11].

Due to the formalism of derivation-based differential calculus and "-connections
developed in Section 2, we have thus given a mathematical interpretation of the theory
(3.15) as constructed from a graded curvature.
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