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Abstract. By using the theory of complex multiplication for general Siegel modular varieties
we construct arithmetic subalgebras for BC-type systems attached to number fields containing a
CM field. The abelian extensions obtained in this way are characterized by results of [Wei]. Our
approach is based on a general construction of BC-type systems of Ha and Paugam [HP05] and
extends the construction of the arithmetic subalgebra of Connes, Marcolli and Ramachandran
[CMR05] for imaginary quadratic fields.
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1. Introduction

In their fundamental article [BC95] Bost and Connes constructed a quantum statistical
mechanical system, the so-called Bost–Connes or BC system, that recovers (among
other arithmetic properties of Q) the explicit class field theory of Q. It is a natural
question to ask for other quantum statistical mechanical systems that recover – at
least partially – the (explicit) class field theory of number fields different from Q.
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This paper is a contribution to this question in the case of CM fields. In nature a
CM field arises as (rational) endomorphism ring of an Abelian variety with complex
multiplication.

Background. A quantum statistical mechanical system A D .A; .�t /t2R/ is a C �-
algebra A together with a one-parameter group of automorphisms .�t /t2R. Some-
times we call A simply aC �-dynamical system. One should think ofA as the algebra
of observables of a quantum physical system with the one-parameter group .�t /t2R

implementing the time evolution of the observables. A symmetry of A is a C �-
automorphism of A which commutes with the time evolution. Interesting properties
of A can be read off its equilibrium states at a temperature T 2 Œ0;1/. An equilib-
rium state at inverse temperature ˇ D 1

T
is given by a so-called KMSˇ -state. See

[BR79] and [BR81] for more information.
Now a first step towards generalizing the Bost–Connes system to other number

fields is given by a system of the following kind (see [CMR06] and [LLN09]):
A BC-type system for a number fieldK is a quantum statistical mechanical system

A D .A; .�t /t2R/ with the following properties:

(i) The partition function of A is given by the Dedekind zeta function of K.

(ii) The quotient of the idele class group CK by the connected component DK of
the identity of CK acts as symmetries on A.

(iii) For each inverse temperature 0 < ˇ � 1 there is a unique KMSˇ -state.

(iv) For each ˇ > 1 the action of the symmetry groupCK=DK on the set of extremal
KMSˇ -states is free and transitive.

Remark. i) Using class field theory we see that property (ii) simply states that the
Galois group Gal.Kab=K/ Š CK=DK of the maximal abelian extensionKab ofK is
acting by symmetries on A.

ii) Properties (iii) and (iv) say that there is a spontaneous symmetry breaking
phenomenon at ˇ D 1 (see [BC95] or p. 400 ff. in the book [CM08] by Connes and
Marcolli).

Due to the work of Ha and Paugam [HP05] BC-type systems are known to exist
for an arbitrary number fieldK, we denote their solution (see the next section for the
definition) by

AK D .AK ; .�t /t2R/:

The paper of Laca, Larsen and Neshveyev [LLN09] gives a different description of
AK . In fact [HP05] yields that AK fulfills the first two properties and [LLN09]
verifies the last two properties.

We should mention that the approach of [HP05] works much more general, it
allows to attach a quantum statistical mechanical system to an arbitrary Shimura
variety, the above construction being a special case. The Shimura-theoretic approach
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of [HP05] is based on the foundational work of Connes, Marcolli and Ramachandran
(see [CMR05] and [CMR06]).

The notion of an arithmetic subalgebra for a BC-type system, first encountered in
[BC95], hints to a possible relation between seemingly unrelated areas, namely it asks
for a connection between quantum statistical mechanical systems (physics/operator
algebras) and class field theory (number theory). More precisely (see [CMR06]), a
BC-system for a number field K is a BC-type system A D .A; .�t /t2R/ such that:

(v) There is a K-rational subalgebra Aarith of A, called arithmetic subalgebra of A,
such that for every extremal KMS1-state % and every f 2 Aarith we have

%.f / 2 Kab (1)

and further Kab is generated over K in this way, i.e.,

Kab D K.%.f / j % extremal KMS1-state, f 2 Aarith/:

(vi) Let � 2 CK be a symmetry of A, % an extremal KMS1-state of A and f 2
Aarith. Denote by Œ�� the image of � under Artin’s reciprocity morphism CK !
Gal.Kab=K/ and by �% the action (given by pull-back) of � on %. Then we have
the compatibility relation

�%.f / D Œ���1.%.f // 2 Kab:

Now the difficulty of constructing BC-systems comes from its relation with
Hilbert’s twelfth problem, which asks for an explicit class field theory of a num-
ber fieldK. This problem is completely solved only in two cases, namely the case of
K D Q and the case of K equal to an imaginary quadratic field, like K D Q.i/. It
does not come as a surprise that BC-systems are so far known to exist only in these
two cases. For K D Q see [BC95] and for the imaginary quadratic case we refer to
[CMR05] and the very detailed exposition given in [CM08], p. 551 ff.

The construction in [CMR05] is based on the theory of complex multiplication
(see Section 4) which is a part of the arithmetic theory of Shimura varieties. This
theory allows to construct explicitly abelian extensions of higher-dimensional gen-
eralizations of imaginary quadratic number fields, so-called CM fields. A CM field
E is a totally imaginary quadratic extension of a totally real number field. So, for
example, cyclotomic number fields Q.�n/, �n being a primitive n-th root of unity, are
seen to be CM-fields.

Abelian extensions of a CM fieldE are obtained by evaluating arithmetic modular
functions on so-called CM-points on a Siegel upper half plane (see Section 4.1 for
more information).

Except for the case of an imaginary quadratic field, it is unfortunately not possible
to generate the maximal abelian extension Eab of a CM field E in this way, but still
a non-trivial abelian extension of infinite degree over E. We denote the latter by

Ec � Eab: (2)
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See Theorem 4.2 for the characterization of Ec given in [Wei]. As we remarked
above, for E equal to an imaginary quadratic field there is an equality Ec D Eab.

Due to the lack of a general knowledge of the explicit class field theory of an
arbitrary number field K we content ourself with the following weakening of a BC-
system:

Let F � Kab be an arbitrary abelian extension ofK. A partial BC-system for the
extension F=K is defined like a BC system A D .A; .�t /t2R/ for K except that we
do not demand the arithmetic subalgebra Aarith of A to generate the maximal abelian
extension Kab of K but instead the abelian extension of F , i.e., in property (v) we
replaceKab withF and call the correspondingK-rational subalgebraAarith a (partial)
arithmetic subalgebra of A.

Statement of our result. Now the aim of our paper is to prove the following result.

Theorem 1.1. Let K be a number field containing a CM field. Denote by E the
maximal CM field contained inK and define the abelian extensionKc ofK to be the
compositum

Kc D K �Ec (3)

(with the notation from (2)).
Then the BC-type system AK of [HP05] (see (6.1)) is a partial BC-system for the

extension Kc=K, i.e., there exists a (partial) arithmetic subalgebra Aarith
K for AK .

We want to explain our construction of Aarith
K (cf. Section 7). It is inspired by the

construction given in [CMR05] and [CMR06] (see also [CM08], p. 551 ff.).

Idea of our construction. Let .G;X; h/ be a Shimura datum and denote by
Sh.G;X; h/ the associated Shimura variety. In [HP05] the authors associate to the
datum .G;X; h/, the variety Sh.G;X; h/ and some additional data a quotient map

U ! Z

between a topological groupoidU and a quotientZ D �nU for a group� . Out of this
data they construct aC �-dynamical system A D .A; .�t /t2R/. A dense �-subalgebra
H of A is thereby given by the compactly supported, continuous functions

H D Cc.Z/

on Z, where the groupoid structure of U induces the �-algebra structure on H .
Moreover there are two variations of the above quotient map which can be put
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into the following (commutative) diagram:

U �� Z

UC

��

��

��

ZC

��

��
U ad �� Zad.

For more information see Section 5. We will apply this general procedure in two
special cases. For this we fix a number fieldK together with a maximal CM subfieldE.

I) The BC-type system AK . The (0-dimensional) Shimura datum

�K D .TK ; XK ; hK/

gives rise to a quotient map denoted by

UK ! ZK :

In this case the groupoid UK is of the form (cf. (4))

UK D TK.Af /� . yOK � Sh.TK ; XK ; hK//:

The associated C �-dynamical system is denoted by

AK D .AK ; .�t /r2R/:

It gives rise to a BC-type system forK. For the precise definition of AK and its prop-
erties (e.g. symmetries, extremal KMS1-states) we refer the reader to Sections 3.1
and 6.1. Moreover we denote by HK the dense subalgebra of AK given by

HK D Cc.ZK/:

II) The Shimura system ASh. To the CM field E we associate the Shimura datum

�Sh D .GSp.VE ;  E /;H
±
g ; hcm/;

where in fact the construction of the morphism hcm takes some time (see Section 3.2).
This is due to two difficulties that arise in the case of a general CM field E which are
not visible in the case of imaginary quadratic fields. On the one hand one has to use
the Serre group SE , and on the other hand in general the reflex fieldE� of a CM field
E is not anymore equal to E (see B.3). We denote the associated quotient map by

USh ! ZSh
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and analogously its variations (see Section 6.2.2). Here the relevant groupoids at
hand are of the form

USh D GSp.Af /� .�Sh;M � Sh.GSp.VE ;  E /;H
±
g ; hcm//

and

U ad
Sh D GSpad.Q/C � .�ad

Sh;M �Hg/:

We denote the resulting C �-dynamical system by ASh and call it Shimura system
(cf. Section 5.3).

Remark. In the case of an imaginary quadratic fieldK the Shimura system ASh gives
rise to the GL2-system of Connes and Marcolli [CM08].

The second system is of great importance for us because of the following: De-
note by xcm 2 Hg the CM-point associated with hcm and denote by Mcm the ring
of arithmetic modular functions on Hg defined at xcm. By the theory of complex
multiplication we know that for every f 2Mcm we have (cf. (3) and Section 4.3.1)

f .xcm/ 2 Kc � Kab

and moreover Kc is generated in this way. Our idea is now that Mcm gives rise to
the arithmetic subalgebra Aarith

K . More precisely we will construct a (commutative)
diagram (see Section 6.3)

UK
��

��

ZK

��
USh

�� ZSh ,

which is induced by a morphism of Shimura data �K ! �Sh constructed in Section 3.3.
Then, using the Criterion 5.1, we see that the morphism ZC

Sh ! ZSh (from the
above diagram) is invertible and obtain in this way a continuous map

‚ W ZK ! ZSh ! ZC
Sh ! Zad

Sh:

Using easy properties of the automorphism group of Mcm, we can model each f in
Mcm as a function Qf on the spaceZad

Sh (which might have singularities). Nevertheless
in Proposition 7.1 we see that for every f 2 Mcm the pull back Qf B ‚ lies in
HK D Cc.ZK/ and we can defineAarith

K as theK-algebra generated by these elements,
i.e.,

Aarith
K D h Qf B‚ jf 2McmiK :

Now, using the classification of extremal KMS1-states of AK (see Section 6.1.5),
the verification of property (v) is an immediate consequence of our construction and
property (vi) follows by using Shimura’s reciprocity law and the observation made
in Proposition 4.4 (see Section 7.1 for the details).
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Our paper is organized along the lines of this section, recalling on the way the
necessary background. In addition we put some effort in writing a long Appendix
which covers hopefully enough information to make this paper “readable” for a person
with little beforehand knowledge of the arithmetic theory of Shimura varieties.

Acknowledgment. The author would like to thank James Milne, Sergey Neshveyev
and Frederic Paugam for helpful and valuable comments and his advisor Eric Leicht-
nam for his guidance through this first project of the author’s PhD thesis.

This work has been supported by the Marie Curie Research Training Network
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Notations and conventions. We use the common notations N, Z, Q, R, C. If
A denotes a ring or monoid, we denote its group of multiplicative units by A�. A
number field is a finite extension of Q. The ring of integers of a number field K is
denoted by OK . We denote by AK D AK;f � AK;1 the adele ring of K (with its
usual topology), where AK;f denotes the finite adeles and AK;1 the infinite adeles
of K. AK contains K by the usual diagonal embedding and by yOK we denote the
closure of OK in AK;f . Invertible adeles are called ideles. The idele class group
A�

K=K
� of K is denoted by CK , its connected component of the identity by DK .

We fix an algebraic closure xQ of Q in C. Usually we think of a number fieldK as
lying in C by an embedding � W K ! xQ � C. Complex conjugation on C is denoted
by �. Sometimes we write z� for the complex conjugate of a complex number z.

Artin’s reciprocity map A�
K ! Gal.Kab=K/ W � 7! Œ�� is normalized such that an

uniformizing parameter maps to the arithmetic Frobenius element. Further given a
group G acting partially on a set X we denote by

G �X D f.g; x/ 2 G �X j gx 2 Xg (4)

the corresponding groupoid (see [LLN09], p. 327).
If X denotes a topological space we write 	0.X/ for its set of connected compo-

nents.

2. On the arithmetic subalgebra for K D Q.i /

Before we describe our general construction we will explain the easiest case K D
Q.i/, where many simplifications occur, in some detail and point out the modifications
necessary for the general case. For the remainder of this section K always denotes
Q.i/, although many of the definitions work in general. For the convenience of the
reader we will try to make the following section as self-contained as possible.

2.1. The quotient map UK ! ZK . We denote by TK the Q-algebraic torus given
by the Weil restriction TK D ResK=Q.Gm;K/ of the multiplicative group Gm;K ,
i.e., for a Q-algebra R the R-points of TK are given by TK.R/ D .R ˝Q K/�. In
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particular we see that TK.Q/ D K�, TK.Af / D A�
K;f

and TK.R/ D A�
K;1. In our

special case we obtain that after extending scalars to R the R-algebraic group TK
R is

isomorphic to S D ResC=R.Gm;R/. Further the finite setXK D TK.R/=TK.R/C D
	0.T

K.R// consists in our case of only one point. With this in mind we consider the
0-dimensional Shimura datum (see D.5)

�K D .TK ; XK ; hK/;

where the morphism hK W S! TK
R is simply given by the identity (due to TK

R Š S).
(In the general case hK is chosen according to Lemma 3.1.)

The (0-dimensional) Shimura variety Sh.�K/ is in our case of the simple form

Sh.�K/ D TK.Q/n.XK � TK.Af // D K�nA�
K;f :

We write Œz; l� for an element in Sh.�K/ meaning that z 2 XK and l 2 TK.Af /.
(For general number fields the description of Sh.�K/ is less explicit but no diffi-

culty occurs.)

Remark 1. The reader should notice that by class field theory we can identify
Sh.�K/ D K�nA�

K;f
with the Galois group Gal.Kab=K/ of the maximal abelian

extension Kab of K. This is true in general, see Section 6.1.4.

The (topological) groupoid UK underlying the BC-type system

AK D .AK ; .�t /t2R/

is now of the form (see (4) for the notation)

UK D TK.Af /� . yOK � Sh.�K//

with the natural action of TK.Af / on Sh.�K/ (see D.2) and the partial action of
TK.Af / D A�

K;f
on the multiplicative semigroup yOK � AK;f by multiplication.

The group
�2

K D yO�
K � yO�

K

is acting on UK as

.
1; 
2/.g; �; Œz; l�/ D .
�1
1 g
2; 
2�; Œz; l


�1
2 �/; (5)

where 
1; 
2 2 bO�
K , g; l 2 TK.Af /, � 2 yOK and z 2 XK , and we obtain the quotient

map
UK ! ZK D �2

KnUK :

In the end of this section we will construct the arithmetic subalgebra Aarith
K of the

BC-type system AK which is contained in HK D Cc.ZK/ � AK . For this we will
need the following.
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2.2. The quotient map USh ! ZSh. In our case of K D Q.i/ the maximal CM
subfield E of K is equal to K. The Shimura datum �Sh associated with E is of the
form (see Section 3.2)

�Sh D .GSp.VE ;  E /;H
±; hcm/:

Here GSp D GSp.VE ;  E / is the general symplectic group (cf. D.3) associated with
the symplectic vector space .VE ;  E /.

The latter is in general chosen according to (13). Due to the fact that the reflex
field E� (cf. B.3) is equal to E and the Serre group SE is equal to T E D TK

we can simply choose the Q-vector space VE to be the Q-vector space E and the
symplectic form  E W E � E ! Q to be the map .x; y/ 7! TrE=Q.ixy

�/. A simple
calculation shows that  E .f .x/; f .y// D det.f / E .x; y/ for all f 2 EndQ.VE /

and all x; y 2 VE , therefore we can identify GSp with GL2 D GL.VE /. Now
again using the fact that the Serre group SE equals T E we see that the general
construction of hcm W S D T E

R ! GSpR D GL2;R (see (16)) is given on the R-points
by a C ib 2 C� D S.R/ ! �

a �b
b a

� 2 GL2.R/. Each ˛ 2 GSp.R/ defines a map
˛�1hcm˛ W S! GSpR given on the R-points by aC ib 2 C� 7! ˛�1hcm.aC ib/˛ 2
GL2.R/ and the GSp.R/-conjugacy class X D f˛�1hcm˛ j ˛ 2 GSpR.R/g of hcm

can be identified with the Siegel upper lower half space H± D C � R by the map

˛�1hcm˛ 2 X 7! .˛�1hcm.i/˛/ � i 2 H±;

where the latter action � denotes Möbius transformation. Under this identification the
morphism hcm corresponds to the point xcm D i on the upper half plane H. The point
xcm 2 H is a so-called CM-point (see D.6).

Remark. The definition of a CM-point and the observation made in (15) explain the
need of using the Serre group in the general construction of hcm. The explanation
given in Section 4.1 shows in particular why we have to define the vector space VE

in general according to (13).

The Shimura variety Sh.�Sh/ is of the nice form (cf. (39))

Sh.�Sh/ D GSp.Q/n.H± � GSp.Af //:

Again we write elements as Œz; l� 2 Sh.�Sh/ with z 2 H± and g 2 GSp.Af /.
In our case the topological groupoid USh underlying the Shimura system ASh is

given by (cf. Section 6.2.1)

USh D GSp.Af /� .M2.yZ/ � Sh.�Sh//;

where GSp.Af / D GL2.Af / is acting in the natural way on Sh.�Sh/ and partially on
the multiplicative monoid of .2 � 2/-matrices M2.yZ/ � M2.Af / with entries in yZ.
The group

�2
Sh D GL2.yZ/ � GL2.yZ/
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is acting on USh exactly like in (5) and induces the quotient map

USh ! ZSh D �2
ShnUSh:

Remark. Note that the quotient ZSh is not a groupoid anymore (see [HP05], top of
p. 251).

In our example it is sufficient to consider the positive groupoid UC
Sh (see 6.2.2)

associated with USh. (In the general case the adjoint groupoid U ad
Sh seems to be more

appropriate.) It is given by

UC
Sh D GSp.Q/C � .M2.yZ/ �H/

together with the group

.�C
Sh/

2 D GL2.Z/
C � GL2.Z/

C D SL2.Z/ � SL2.Z/

acting by
.
1; 
2/.g; �; z/ D .
1g


�1
2 ; 
2�; 
2z/

and inducing the quotient map

UC
Sh ! ZC

Sh D .�C
Sh/

2nUC
Sh : (6)

By construction GSp.R/ is acting (free and transitively) on H± and GSp.R/C, the
connected component of the identity, can be thought of as stabilizer of the upper half
plane HC D H which explains the action of GSp.Q/C D GSp.Q/\GSp.R/C on H.
Due to Criterion 5.1 we know that the natural (equivariant) morphism of topological
groupoids UC

Sh ! USh given by .g; �; z/ 7! .g; �; Œz; 1�/ induces a homeomorphism
on the quotient spaces ZC

Sh �! ZSh in the commutative diagram

USh
�� ZSh

UC
Sh

��

��

ZC
Sh.

Š
��

(7)

Remark. The groupoid UC
Sh corresponds to the GL2-system of Connes and Marcolli

(see [CM08] and [HP05], Lemma 5.8).

2.3. A map relating UK and USh. We want to define an equivariant morphism of
topological groupoids UK ! USh, where equivariance is meant with respect to the
actions of �K on UK and �Sh on USh. For this it is necessary (and more or less
sufficient) to construct a morphism of Shimura data between �K D .TK ; XK ; hK/

and �Sh D .GSp.VE ;  E //;H±; hcm/, which is given by a morphism of algebraic
groups

' W TK ! GSp
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such that hcm D 'R B hK . In our case the general construction of ', stated in (17),
reduces to the simple map (on the Q-points)

aC ib 2 K� D TK.Q/ 7!
�
a �b
b a

�
2 GL2.Q/ D GSp.Q/;

and we see in fact that after extending scalars to R the morphism 'R W TK
R D S !

GSpR is already equal to hcm W S ! GSpR. The simplicity of our example comes
again from the fact that we do not have to bother about the Serre group, which
makes things less explicit, although the map ' W TK ! GSp still has a quite explicit
description even in the general case thanks to Lemma 3.3.

Now by functoriality (see D.5) we obtain a morphism of Shimura varieties

Sh.'/ W Sh.�K/! Sh.�Sh/

which can be explicitly described by

Œz; l� 2 K�n.XK � TK.Af // 7! Œxcm; '.Af /.l/� 2 GSp.Q/n.H± � GSp.Af //:

In the general case we have essentially the same description (see (30)), the point
being that every element z in XK is mapped to xcm 2 H±, as in the general case.
Using yOK D yZ˝Z OK we can continue the map '.Af / to a morphism of (topolog-
ical) semigroups M.'/.Af / W yOK ! M2.yZ/ by setting n˝ .a C ib/ 7! �

an �bn
bn an

�
.

By continuation we mean that '.Af / and M.'/.Af / agree on the intersection of
TK.Af / \ yOK � AK;f . In the general case the explicit description of ' given in
(18) is used to continue ' to M.'/ (see Section 6.3.1), the above example being a
special case. Now it can easily be checked that

.g; �; Œz; l�/ 2 UK 7! .'.Af /.g/;M.'/.Af /.�/; Œxcm; '.Af /.l/�/ 2 USh

defines the desired equivariant morphism of topological groupoids

UK ! USh:

Summarizing we obtain the commutative diagram (using (7))

UK
��

��

ZK

��
USh

�� ZSh

UC
Sh

��

�� ZC
Sh ,

Š
��

which gives us the desired morphism of topological spaces

‚ W ZK ! ZSh ! ZC
Sh: (8)
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In general we have to go one step further and use the adjoint groupoid Zad
Sh (cf. Sec-

tion 6.2.2), but this is only due to the general description of the automorphism group
AutQ.M/ of the field of arithmetic automorphic functions M; see Section 4.3.1 and
the next section for explanations.

2.4. Interlude: theory of complex multiplication. In this section we will provide
the number theoretic background which is necessary to understand the constructions
done so far.

We are interested in constructing the maximal abelian extensionEab ofE D K D
Q.i/ and there are in general two known approaches to this problem.

I) The elliptic curve A W y2 D x3 Cx. Let us denote byA the elliptic curve defined
by the equation

A W y2 D x3 C x: (9)

It is known that the field of definition ofA and its torsion points generate the maximal
abelian extensionEab ofE. (By field of definition of the torsion points ofAwe mean
the coordinates of the torsion points.)

Notice that in our case the complex points of our elliptic curve A are given
by A.C/ D C=OE and the rational ring of endomorphisms of A turns out to be
End.A.C//Q D Q˝Z OE D E; we say that A has complex multiplication by E.
Remember that OE D ZŒi �.

Remark. To obtain the abelian extensions of K provided by A explicitly one may
use for example the Weierstrass p-function associated with A (see [Sil94]) but as we
will use another approach we do not want to dive into this beautiful part of explicit
class field theory.

II) The (Siegel) Modular curve Sh.GSp; H±; hcm/. We want to interpret the
Shimura variety Sh.�Sh/ D Sh.GSp;H±; hcm/ constructed in the last section as mod-
uli space of elliptic curves with torsion data.

Themoduli theoretic picture. For this we consider the connected component Sho D
Sh.�Sh/

o of our Shimura variety which is described by the projective system (see D.4
and [Mil04])

Sho D lim �N
�.N/nH;

where �.N/, for N � 1, denotes the subgroup of � D �.1/ D SL2.Z/ defined
by �.N/ D fg 2 � j g 	 �

1 0
0 1

�
mod N g. We can view the quotient �.N/nH as a

complex analytic space, but due to the work of Baily and Borel it carries also a unique
structure of an algebraic variety over C (see [Mil04]). We will use both viewpoints.
Seen as an analytic space we write H.N / D �.N/nH and for the algebraic space
we write Sho

N D �.N/nH.
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Now observe that the space H.N / classifies isomorphism classes of pairs .A; t/
given by an elliptic curve A over C together with a N -torsion point t of A. In
particular H.1/ D �nH classifies isomorphism classes of elliptic curves over C.

In this picture our CM-point Œxcm�1 D Œi �1 2 H.1/ corresponds to the isomor-
phism class of the elliptic curve A from (9) and, more general, the points Œxcm�N 2
H.N / capture the field of definition of A and its various torsion points and recover
the maximal abelian extension Eab of E in this way! By Œz�N we denote the image
of z 2 H in H.N / under the natural quotient map H! H.N /.

Remark. For the relation between Sh and Sho we refer the reader to [Mil04], p. 303 ff.

The field of arithmetic modular functions M. To construct the abelian extensions
provided by the various points Œxcm�N explicitly we proceed as follows: We consider
the connected canonical model M o of Sho (see D.7) which provides us with an
algebraic modelM o

N D �.N/nM o of the algebraic variety Sho
N over the cyclotomic

field Q.�N /. In general we obtain algebraic models over subfields of Qab. This
means that M o

N is an algebraic variety defined over the cyclotomic field Q.�N / and
after scalar extension to C it becomes isomorphic to the complex algebraic variety
Sho

N . Let us denote by k.M o
N / the field of rational functions on M o

N , in particular
this means that elements in k.M o

N / are rational over Q.�N /. It makes sense to view
the point Œxcm�N as a point onM o

N and if a function f 2 k.M o
N / is defined at Œxcm�N ,

then we know (cf. Section 4.3.1) that

f .Œxcm�N / 2 Eab: (10)

In particular varying over the various N and the rational functions in k.M o
N / the

values f .Œxcm�N / generate Eab over E. The next step is to realize that the function
field k.M o

N / can be seen as subset of the field of rational functions k.Sho
N / on the

complex algebraic variety Sho
N (cf. Section 4.3.1). As rational functions in k.Sho

N /

correspond to meromorphic functions on H.N / and meromorphic functions on H.N /
are nothing else than meromorphic functions on H that are invariant under the action
of �.N/, we can view each rational function in k.M o

N / as a meromorphic function
on H which is invariant under �.N/. If we denote by k.M o

N /cusp the subfield of
k.M o

N / consisting of functions f 2 k.M o
N / that give rise to meromorphic functions

on H that are meromorphic at the cusps (see Section 4.3.1), it makes sense to define
the field of meromorphic functions M on H given by the union

M DS
N

k.M o
N /cusp:

Due to (10) we know furthermore that for every f 2M which is defined in xcm, we
have

f .xcm/ 2 Kab D Eab

andKab is generated in this way. Therefore we call the field M the field of arithmetic
modular functions.
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Explicitly M is described for example in [Shi00] or [CM08], Definition 3.60,
p. 507. A very famous arithmetic modular function is given by the j -function which
generates the Hilbert class field of an arbitrary imaginary quadratic field.

Remark. (1) In the light of Section 4.1 and Lemma 3.2 (2) we mention that the field
of definitionE.xcm/ of xcm is in our example equal toE D Q.i/, which is the reason
why our example is especially simple.

(2) If we take a generic meromorphic function g on H.N / that is defined in Œxcm�N
then the value g.Œxcm�N / 2 C will not even be algebraic. This is the reason why we
need the canonical model M o which provides an arithmetic structure for the field of
meromorphic functions on H.N /.

In the general case the construction of M is quite similar to the construction above
(see Section 4), the only main difference being that in general the theory is much less
explicit (e.g. the description of M).

Automorphisms of M and Shimura’s reciprocity law. In our exampleK D E D
Q.i/, using the notation from Section 4.3, we have the equality xE D GSp.Af /

Q� and
obtain a group homomorphism

GSp.Af /! xE ! AutQ.M/;

where the first arrow is simply the projection and the second arrow comes from
Section 4.3.2. We denote the action of ˛ 2 GSp.Af / on a function f 2 M by ˛f .
In particular we see that ˛ 2 GSp.Q/C D SL2.Q/ is acting by

˛f D f B ˛�1; (11)

where ˛�1 acts on H by Möbius transformation. The adjoint system, which is well
suited for the general case (cf. Section 6.2.2), is not needed in our special example. We
note that the group GSpad.Q/C occurring in Section 6.2.2 is given by SL2.Q/=f±I g,
where I denotes the unit in SL2.Q/. Due to the fact that f±I g acts trivially on H we
can lift the action to GSp.Q/C. Further there is a morphism of algebraic groups

� W TK ! GSp;

which induces a group homomorphism denoted by (compare (22))

N� D �.Af / W TK.Af /! GSp.Af /:

The reciprocity law of Shimura can be stated in our special case as follows:
Let � be in A�

K;f
, denote by Œ�� 2 Gal.Kab=K/ its image under Artin’s reciprocity

map and let f 2 M be defined in xcm 2 H. Then N�.�/f is also defined in xcm 2 H
and

N�.�/f .xcm/ D Œ���1f .xcm/ 2 Kab: (12)

The formulation in the general case concentrates on the group xE (see Section 4.4).
Now we are ready for the construction of the arithmetic subalgebra.
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2.5. Construction of the arithmetic subalgebra. Define Mcm to be the subring of
functions in M which are defined at xcm 2 H. For every f 2 Mcm we define a
function Qf on the groupoid UC

Sh by

Qf .g; �; z/ D
´

�f .z/ if � 2 GSp.yZ/;
0 if � 2M2.yZ/ � GSp.yZ/:

Due to (11) Qf is invariant under the action of �C
Sh D SL2.Z/�SL2.Z/ and therefore

Qf descends to the quotient ZC
Sh (cf. (6)). Proposition 7.1 shows further that the pull-

back Qf B‚ (see (8)) defines a compactly supported, continuous function onZK , i.e.,
we have Qf B‚ 2 HK D Cc.ZK/ � AK . Therefore we can define theK-subalgebra
Aarith

K of HK generated by these elements

Aarith
K D h Qf B‚ jf 2McmiK :

Now we want to show that Aarith
K is indeed an arithmetic subalgebra for AK (see (1)).

The set E1 of extremal KMS1-states of AK is indexed by the set Sh.�K/ and
for every ! 2 Sh.�K/ the corresponding KMS1-state %! is given on an element
f 2 HK D Cc.ZK/ by (cf. Section 6.1.5)

%!.f / D f .1; 1; !/:
Using Remark 1 we write Œ!� for an element! 2 Sh.�K/when regarded as element in
Gal.Kab=K/. Now if we take a function f 2Mcm and ! 2 Sh.�K/ we immediately
see

%!. Qf B‚/ D Œ!��1.f .xcm// 2 Kab

and property (v) follows (in general we will only show property (v) of course). To
show property (vi) we take a symmetry � 2 CK D A�

K=K
� (see Section 6.1.4) of AK

and denote by Œ�� 2 Gal.Kab=K/ its image under Artin’s reciprocity homomorphism
and let f and ! be as above. We denote the action (pull-back) of � on %! by �%! and
obtain

�%!. Qf B‚/ D '.Af /.�/f .xcm/:

But by Proposition 4.4 we know that

'.Af /.�/ D N�.�/ 2 GSp.Af /;

and due to Shimura’s reciprocity law (12) we can conclude that

�%!. Qf B‚/ D N�.�/f .xcm/ D Œ���1.f .xcm// D Œ���1.%!. Qf B‚// 2 Kab;

which proves property (vi). For the general case and more details we refer the reader
to Section 7.1.

Remark. Our arithmetic subalgebra AK in the case of K D Q.i/ is essentially the
same as in [CMR05].



290 B. Yalkinoglu

Remark. In a fancy (and very sketchy) way we might say that the two different
pictures, one concentrating on the single elliptic curve A and the other on the moduli
space of elliptic curves (see the beginning of Section 2.4), are related via the Langlands
correspondence. In terms of Langlands’s correspondence, the single elliptic curve A
lives on the motivic side whereas the moduli space of elliptic curves lives (partly)
on the automorphic side. As we used the second picture for our construction of an
arithmetic subalgebra, we might say that our construction is automorphic by nature.
This explains the fact that we have a “natural” action of the idele class group on
our arithmetic subalgebra (see above). Using the recent theory of endomotives (see
[CM08], Chapter 4 and in particular p. 551) one can recover the arithmetic subalgebra
Aarith

K by only using the single elliptic curve A. In particular one obtains a natural
action of the Galois group. This and more will be elaborated in another paper.

We now concentrate on the general case.

3. Two Shimura data and a map

As throughout the paper letK denote a number field andE its maximal CM subfield.
We fix an embedding � W K ! xQ! C and denote complex conjugation on C by �.

ToK andE, respectively, we will attach a Shimura datum �K and �Sh, respectively,
and show how to construct a morphism ' W �K ! �Sh between them. We will freely
use the Appendix: every object not defined in the following can be found there or in
the references given therein.

Recall that the Serre group attached toK is denoted bySK (cf. C.1), it is a quotient
of the algebraic torus TK (defined below), the corresponding quotient map is denoted
by 	K W TK ! SK .

3.1. Protagonist I: �K . The 0-dimensional Shimura datum �K D .TK ; XK ; hK/

(see D.5) is given by the following: the Weil restriction TK D ResK=Q.Gm;K/,
the discrete and finite set XK D TK.R/=TK.R/C Š 	0.A�

K;1/, and a morphism

hK W S D ResC=R.Gm;C/! TK
R which is chosen according to the next lemma.

Lemma 3.1. There is a morphism of algebraic groups hK W S ! TK
R such that the

diagram

S
hK ��

hK
���

��
��

��
� TK

R

�K
R

��
SK

R

commutes.
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Proof. Remember that hK W S! SK
R is defined as the composition

S
ResC=R.�K/���������! ResC=R.S

K
C /

NmC=R������! SK
R ;

where K W Gm;C ! TK
C is defined by K D 	K

C B � (cf. C.2). Define hK W S!
T E

R simply by

S
ResC=R.�� /���������! ResC=R.T

K
C /

NmC=R������! TK
R :

For proving our claim it is enough to show that the diagram

S

ResC=R.�K /
������������������

ResC=R.�� / �� ResC=R.T
K
C /

NmC=R ��

ResC=R.�K
C /

��

TK
R

�K
R

��
ResC=R.S

K
C /

NmC=R �� SK
R

is everywhere commutative.
The triangle on the left is commutative because ResC=R is a functor. Due to

Theorem A.1 it is enough to show that rectangle on the right is commutative af-
ter applying the functor X� (cf. A.3). Since 	K W TK ! SK is defined to be
the inclusion X�.SK/ � X�.TK/ on the level of characters (cf. C.1), we see that
X�.ResC=R.	

K
C // andX�.	K

R / are inclusions as well and the commutativity follows.

3.2. Protagonist II: �Sh. The construction of the Shimura datum �Sh in this section
goes back to Shimura [Shi00]; we also refer to [Wei]. It is of the form �Sh D
.GSp.VE ;  E /;H±

g ; hcm/. The symplectic Q-vector space .VE ;  E / is defined as
follows.

Choose a finite collection of primitive CM types .Ei ; ˆi /, 1 � i � r , such that

(i) for all i the reflex field E�
i is contained in E, i.e., E�

i � E for all i , and

(ii) the natural map (take (34) and apply the universal property from C.1)

SE

Q
N

E=E�

i�������!
rQ

iD1

SE�

i

Q
�ˆi�����!

rQ
iD1

T Ei (13)

is injective. (Proposition 1.5.1 in [Wei] shows that this is always possible.)

For every i 2 f1; : : : ; rg we define a symplectic form  i W Ei � Ei ! Q on Ei

by choosing a totally imaginary generator �i of Ei (over Q) and setting

 i .x; y/ D TrEi =Q.�ixy
�/: (14)

Now we define .VE ;  E / as the direct sum of the symplectic spaces .Ei ;  i /. Instead
of GSp.VE ;  E / we will sometimes simply write GSp.
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To define the morphism hcm the essential step is to observe (see [Mil98], Re-
mark 9.2) that the image of the map �ˆi

B NE=E�

i
W SE ! T Ei is contained in the

subtorus T Ei of T Ei , which is defined on the level of Q-points by

T Ei .Q/ D fx 2 E�
i j xx� 2 Q�g;

and analogously T Ei .R/ is defined for an arbitrary Q-algebraR. This is an important
observation because there is an obvious inclusion of algebraic groups (cf. A.2)

i W
rQ

iD1

T Ei ! GSp.VE ;  E /; (15)

whereas there is in general no embedding
Q
T Ei ! GSp.

With this in mind we define hcm as the composition

S
hE

��! SE
R

Q
N

E=E�

i
;R���������!

rQ
iD1

S
E�

i

R

Q
�ˆi ;R������!

rQ
iD1

T
Ei

R

iR��! GSpR : (16)

Write h0
cm W S!

Qr
iD1 T

Ei

R for the composition of the first three arrows.

Remark. (1) By construction, hcm is a CM point (cf. D.6), which is needed later to
construct explicitly abelian extensions K. See Section 4.1.

(2) Viewed as a point on the complex analytic space H±
g we write xcm instead of

hcm. Further we denote the connected component of H±
g containing xcm by Hg , i.e.,

xcm 2 Hg .

Our CM point hcm enjoys the following properties.

Lemma 3.2. (1) We have hcm D i BQr
iD1 hˆi

(see (33)).
(2) The field of definition E.xcm/ of xcm is equal to the composite of the reflex

fields zE D E�
1 : : : E

�
r � E, i.e., the associated cocharacter cm of hcm is defined

over zE (see D.6).
(3) The GSp.R/-conjugacy classes of hcm can be identified with the Siegel upper-

lower half plane H±
g , for some g 2 N depending on E.

Proof. (1) This follows immediately from (36) and (38).
(2) This follows from [Mil04], p. 347, and (1).
(3) For this we refer to the proof of Lemma 3.11 in [Wei].

3.3. The map ' W �K ! �Sh. On the level of algebraic groups ' W TK ! GSp is
simply defined as the composition

TK �K

��! SK
NK=E����! SE

Q
N

E=E�

i������!
rQ

iD1

SE�

i

Q
�ˆi����!

rQ
iD1

T Ei
i�! GSp : (17)
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For ' being a map between �K and �Sh we have to check that the diagram

S
hK ��

hcm ���
��

��
��

��
TK

R

'R

��
GSpR

commutes, but this compatibility is built into the construction of hK . Using the reflex
norm (cf. B.3 and (37)) we can describe ' as follows

Lemma 3.3. The map ' W TK ! GSp is equal to the composition

TK

Q
N

K=E�

i������!
rQ

iD1

T E�

i

Q
Nˆi����!

rQ
iD1

T Ei
i�! GSp : (18)

4. About arithmetic modular functions

4.1. Introduction. We follow closely [Del79], [MS81] and [Wei]; see also [Hid04].
The reader should be aware of the fact that we are using a normalization of Artin’s
reciprocity map different from [MS81] and have to correct a “sign error” in [Del79],
as pointed out in [Mil04], p. 347.

As usual we denote byK a number field containing a CM subfield and denote by
E the maximal CM subfield of K. In this section we want to explain how the theory
of complex multiplication provides (explicit) abelian extensions of K. In general
one looks at a CM-point x 2 X on a Shimura variety Sh.G;X/ and by the theory of
canonical models one knows that the point Œx; 1� on the canonical model M.G;X/
of Sh.G;X/ is rational over the maximal abelian extension E.x/ab of the field of
definition E.x/ of x (see D.6).

In our case we look at Siegel modular varieties Sh.GSp;H±
g/ which can be con-

sidered as (fine) moduli spaces of Abelian varieties over C with additional data (level
structure, torsion data and polarization). See [Mil04], Chap. 6, for an explanation of
this. Each point x 2 Hg corresponds to an Abelian variety Ax .

In opposite to the case of imaginary quadratic fields, in general the field of defini-
tionE.x/ is neither contained inE nor inK. Therefore, in order to construct abelian
extensions of K, we have to find an Abelian variety Ax such that

E.x/ � K:
This is exactly the reason for our choice of xcm 2 Hg because we know (see Lem-
ma 3.2 (2)) that

E.xcm/ D zE D E�
1 : : : E

�
r � E � K:
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Here xcm corresponds to a product Acm D A1 � � � � �Ar of simple Abelian varieties
Ai with complex multiplication given byEi . This construction is the best one can do
to generate abelian extensions of K using the theory of complex multiplication. The
miracle here is again that the field of definition ofAcm and of its torsion points generate
abelian extensions of E.xcm/. Now to obtain these abelian extensions explicitly one
proceeds in complete analogy with the case of Q.i/ explained in Section 2.4, namely
rational functions on the connected canonical model M o of the connected Shimura
variety Sh.GSp;H±

g/
o give rise to arithmetic modular functions on Hg which generate

the desired abelian extensions when evaluated at xcm. This will be explained in detail
in the following.

4.2. Working over xQ

4.2.1. The field F of arithmetic automorphic functions. We start with the remark
that the reflex field of .GSp;H±

g/ (cf. D.6) is equal to Q (see Remark on p. 317).

Remark. This is the second notion of “reflex field”. But the reader should not get
confused.

Denote by † the set of arithmetic subgroups � of GSpad.Q/C which contain the
image of a congruence subgroup of GSpder.Q/ (see beginning of Appendix D). The
connected component of the identity Sho of Sh D Sh.GSp;H±

g/ is then given by the
inverse limit Sho D lim �	2†

�nHg (cf. D.4).

Denote by M o D M o.GSp;H±
g/ the canonical model of Sho in the sense of

[Del79], 2.7.10, i.e., M o is defined over xQ. For every � 2 † the space �nHg is an
algebraic variety over C and �nM o a model over xQ.

The field of rational functions k.�nM o/ on �nM o is contained in the field of
rational functions k.�nHg/. Elements in the latter field correspond to meromorphic
functions on Hg (now viewed as a complex analytic space) that are invariant under
� 2 †.

Following [MS81] we call the field F DS
	2† k.�nM o/ the field of arithmetic

automorphic functions on Hg .

4.2.2. About AutQ.F /. The (topological) group E defined by the extension (see
[Del79], 2.5.9)

1! GSpad.Q/C ! E

�! Gal. xQ=Q/! 1

is acting continuously on M o ([Del79], 2.7.10) and induces an action on F by

˛f D �.˛/ � .f B ˛�1/ D .�.˛/f / B .�.˛/˛�1/ (19)

(see [MS81], Section 3.2). This is meaningful because f and ˛�1 are both defined
over xQ.

Using this action one can prove the following.
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Theorem 4.1 ([MS81], Theorem 3.3). The map E ! AutQ.F / given by (19) iden-
tifies E with an open subgroup of AutQ.F /.

4.3. Going down to Qab. We said thatM o is defined over xQ but it is already defined
over a subfield k of Qab. More precisely k is the fixed field of the kernel of the map
Gal. xQ=Q/ab ! N	0	.GSp/ defined in [Del79], 2.6.2.1 . Therefore the action of E

onM o factors through the quotient xE of E defined by the following the commutative
diagram with exact rows (see [MS81], 4.2 and 4.12, or [Del79], 2.5.3):

1 �� GSpad.Q/C ��

id
��

E

 ��

pr

��

Gal. xQ=Q/ ��

res

��

1

1 �� GSpad.Q/C ��

id

��

xE 
 ��

�

��

Gal.k=Q/ ��

l

��

1

1 �� GSpad.Q/C �� GSp.Af /

C.Q/
�� N	0	.GSp/ �� 1.

(20)

Here C denotes the center of GSp.

Remark. (1) We know that C.Q/ D Q� is discrete in GSp.Af / (cf. [Hid04]).
(2) Because l is injective, � is injective as well and we can identify xE with an

(open) subgroup of GSp.Af /

Q� .

(3) xE is of course depending onK, but we suppress this dependence in our notation.

4.3.1. The field M of arithmetic modular functions. Let f 2 F be a rational
function, i.e., f is a rational function on �nM o, for some � 2 †. We call f an
arithmetic modular function if it is rational over k, and meromorphic at the cusps
(when viewed on the corresponding complex analytic space). Compare this to [Wei],
Section 3.4, or [Mil98], p. 35 ff.

Definition 4.1. The subfield of F generated by all arithmetic modular functions is
denoted by M. Further we denote by Mcm the subring of M of all arithmetic modular
functions which are defined in xcm.

The importance of Mcm for our purposes is explained (see [Mil98], Lemma 14.4,
and [Wei], Lemma 3.11) by

Theorem 4.2. Let Acm denote the abelian variety corresponding to xcm (cf. Theo-
rem 4.1).

Denote byKAcm thefield extensionofK obtainedbyadjoining thefield of definition
of Acm and all of its torsion points.
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Further denote by KM the field extension of K obtained by adjoining the values
f .xcm/, for f 2Mcm.

Finally denote byKc the composition ofK with the fixed field of the image of the
Verlagerungsmap Ver W Gal.F ab=F /! Gal.Eab=E/, whereF is the maximal totally
real subfield of E. Then we have the equality

Kc D KAcm D KM:

Remark. Notice we are not simply using the field of arithmetic automorphic functions
as considered by Shimura – see [MS81], Section 4.8, for his definition – because the
exact size of the abelian extension obtained by using these functions is not clear (at
least to the author). It is clear that the field of Shimura is contained in KM and we
guess that it should generate the same extension Kc of K.

4.3.2. About AutQ.M/. It is clear that M is closed under the action of xE (see
[MS81], Section 3.2 or Section 4.4) and therefore we obtain a continuous map

xE ! AutQ.M/

given like above by

˛f D �.˛/ � .f B ˛�1/ D .�.˛/f / B .�.˛/˛�1/:

In particular GSpad.Q/C is acting on M by

˛f D f B ˛�1: (21)

4.4. The reciprocity law at xcm. Write

cm W Gm;C ! SE
C

.h0
cm/C����!

rQ
iD1

T Ei;C
i�! GSpC

for the associated cocharacter of hcm (cf. D.6). From Lemma 3.2 (1) we know that
hcm D i BQ h�i

and therefore cm D i BQ�i
. Because �i

is defined overE�
i the

cocharacter 0
cm D

Q
�i

is defined over zE D E�
1 : : : E

�
r � E � K. To simplify

the notation set T DQr
iD1 T Ei . Define the morphism

� W TK ! GSp

as composition of

TK
ResK=Q.�0

cm/���������! ResK=Q.TK/
NmK=Q�����! T

i�! GSp :

If we identify xE with an (open) subset of GSp.Af /

Q� using � (see (20)), one can show
(see [MS81], Section 4.5, or [Del79], 2.6.3) that �.A/ W A�

K ! GSp.A/ induces, by
� 7! �.Af /.�/ mod Q�, a group homomorphism

N� W A�
K ! xE: (22)
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If we denote by Œ�� 2 Gal.Kab=K/ the image of � 2 A�
K under Artin’s reciprocity

map one can show (cf. [MS81], Section 4.5) that (cf. (20))

�. N�.�// D Œ���1jk : (23)

Remark. The careful reader will ask why it is allowed to define � using the extension
K of the field of definition of the cocharacter cm given by zE because our reference
[MS81] uses zE to define �. The explanation for this is given by Lemma 4.5 and
standard class field theory.

Now we are able to state the reciprocity law

Theorem 4.3 ([MS81], Theorem 4.6 and Section 4.10). Let � 2 A�
K and f 2Mcm.

Then f .xcm/ is rational over Kab. Further N�.�/f is defined in xcm and
N�.�/f .xcm/ D Œ���1.f .xcm//: (24)

Proof. We simply reproduce the argument given in the proof of [MS81], Theorem 4.6.
The first assertion is clear by the definition of the canonical model (cf. D.6) and the
other two assertions follow from the following calculation.

Regard the special point xcm as a point on the canonical model Œxcm; 1� 2 M o.
The action of N�.�/�1 is given by N�.�/�1Œxcm; 1� D �. N�.�/�1/Œxcm; �.�/� and further
we know Œxcm; �.�/� D Œ���1Œxcm; 1� (by (40)). Therefore we obtain

N�.�/f .xcm/ D �. N�.�// � .f B N�.�/�1/.Œxcm; 1�/

D .�. N�.�/f / B .�. N�.�// N�.�/�1/.Œxcm; 1�/

D .�. N�.�/f / B .�. N�.�//�. N�.�//�1/.Œxcm; �.�/�/

(23)D .Œ���1jkf /.Œ���1Œxcm; 1�/ D Œ���1.f .Œxcm; 1�//

D Œ���1.f .xcm//:

The next observation is one of the key ingredients in our construction of the
arithmetic subalgebra.

Proposition 4.4. The two maps of algebraic groups ' and � are equal.

Proof. This is an immediate corollary of Proposition C.1, Lemma 3.3, the compati-
bility properties of the norm map and the next simple lemma.

Lemma 4.5. Let .L; �/ a CM type and L0 a finite extension of the reflex field L�.
Then the following diagram is commutative:

T L0
ResL0=Q �L0

��

NL0=L�

��

ResL0=Q.T
L

L0/
NmL0=Q �� T L

T L�
ResL�=Q �L�

�� ResL�=Q.T
L

L�/ .

N mL�=Q

������������������
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Now having at hand all the number-theoretic ingredients that are needed, we can
move on to the “operator-theoretic” part of this paper.

5. On Bost–Connes–Marcolli systems

We review very briefly the general construction of C �-dynamical systems, named
Bost–Connes–Marcolli systems, as given in [HP05].

5.1. BCM pairs. A BCM pair .D ;L/ is a pair consisting of a BCM datum D D
.G;X; V;M/ together with a level structure L D .L; �; �M / of D .

A BCM datum is a Shimura datum .G;X/ together with an enveloping algebraic
semigroupM and a faithful representation � W G ! GL.V / such that �.G/ �M �
End.V /. Here V denotes a Q-vector space of finite dimension.

A level structure L of D consists of a lattice L � V , a compact open subgroup
� � G.Af / and a compact open semigroup �M � M.Af / such that �.�/ � �M

and �M stabilizes L˝Z
yZ.

Remark. In [HP05], Definition 3.1, a more general notion of Shimura datum is
allowed than ours given in Appendix D.

To every BCM datum D and lattice L � V one can associate the following so-
called maximal level structure to obtain a BCM pair by setting �M D M.Af / \
End.L˝Z

bZ/ and � D ��1.��
M /.

The level structure L is called fine if � is acting freely on G.Q/n.X �G.Af //.

Remark. For the definition of the topology ofG.Af / andM.Af /we refer the reader
to [PR94]. Especially one can show that �.Af / W G.Af /!M.Af / is a continuous
map (cf. [PR94], Lemma 5.2).

5.2. Quotient maps attached to BCM pairs. Let .D ;L/ a BCM pair.

5.2.1. The BCM groupoid. There is a partially defined action of G.Af / on the
direct product �M � Sh.G;X/ given by

g.�; Œz; l�/ D .g�; Œz; lg�1�/;

where we suppressed the morphism �. Using this the BCM groupoid U is the
topological groupoid (using the notation given in (4)) defined by

U D G.Af /� .�M � Sh.G;X//:

There is an action of the group � � � on U given by

.
1; 
2/.g; �; Œz; l�/.
1g

�1
2 ; 
2�; Œz; l


�1
2 �/: (25)
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We denote the quotient by Z D .� � �/nU and obtain a natural quotient map

U ! Z:

We denote elements in Z by Œg; �; Œz; l��.

Remark. In general the quotient Z is not a groupoid anymore; see [HP05], Defini-
tion 4.2.1.

5.2.2. The positive BCM groupoid. Assume that the Shimura datum .G;X/ of our
BCM pair satisfies (SV5) (cf. D.1). Moreover we choose a connected component
XC of X and set G.Q/C D G.Q/ \ G.R/C, where G.R/C denotes the connected
component of the identity ofG.R/. ThenG.Q/C is acting naturally onXC, because
XC can be regarded as a G.R/C-conjugacy class (see D.4). Now we can consider
the positive (BCM) groupoid UC which is the topological groupoid given by

UC D G.Q/C � .�M �XC/:

If we set �C D � \G.Q/C we see further that �C � �C is acting on UC by

.
1; 
2/.g; �; z/ D .
1g

�1
2 ; 
2�; 
2z/: (26)

We denote the quotient by ZC D .�C � �C/nUC and obtain another quotient map

UC ! ZC:

There is a natural equivariant morphism of topological groupoids

UC ! U (27)

given by .g; �; z/ 7! .g; �; Œz; 1�/, inducing a commutative diagram

U �� Z

UC

��

�� ZC.

��

(28)

The following criterion given in [HP05], Section 5.1, will be crucial for our
approach

Criterion 5.1. If the natural map G.Q/ \ � ! G.Q/=G.Q/C is surjective and
jG.Q/nG.Af /=�j D 1, then the natural morphism (27) induces a homeomorphism
of topological spaces

ZC ! Z:
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Remark. (1) In other words the two conditions of the criterion simply mean that we
have a decomposition of the form G.Af / D G.Q/C � � .

(2) The inverse Z ! ZC of the above homeomorphism is given explicitly as
follows. By using the first remark we can write every l 2 G.Af / as a product
l D ˛ˇ with ˛ 2 G.Q/C and ˇ 2 � (this decomposition is unique up to an
element in �C D � \ G.Q/C). In particular every element Œg; �; Œz; l�� 2 Z can
be written as Œg; �; Œz; l�� D Œgˇ�1; ˇ�; Œ˛�1z; 1�� and under the inverse of the above
homeomorphism this element is sent to Œgˇ�1; ˇ�; ˛�1z� 2 ZC.

5.2.3. The adjoint BCM algebra. Let us denote by C the center of G and assume
further that �.C.Q// is a normal subsemigroup of M.Af /. The adjoint group Gad

of G is the quotient of G by its center C (in the sense of algebraic groups, see
[Wat79]). Let us define the semigroup �ad

M to be the quotient of �M by the normal
subsemigroup �.C.Q//\�M and remember thatXC can be naturally regarded as a
Gad.R/C-conjugacy class (see D.4). With this in hand we define the adjoint (BCM)
groupoid U ad to be the topological groupoid

U ad D Gad.Q/C � .�ad
M �XC/:

It is known that the projectionG �! Gad induces a surjective group homomorphism
	ad W G.Q/C ! Gad.Q/C (see [Mil04], Proposition 5.1). Setting �ad D 	ad.�C/
we see immediately that �ad ��ad is acting on U ad exactly as in (26). We obtain yet
another quotient map

U ad ! Zad:

Using the two projections �M ! �ad
M and 	ad there is by construction an obvious

equivariant morphism of topological groupoids

UC ! U ad; (29)

which induces (together with (28)) a commutative diagram

U �� Z

UC

��

��

��

ZC

��

��
U ad �� Zad:

5.3. BCM algebras and systems. Let .D ;L/ be a BCM pair. The BCM algebra
H D HD;L is defined to be the set of compactly supported, continuous function on
the quotient Z D .� � �/nU of the BCM groupoid U , i.e.,

H D Cc.Z/:
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By viewing functions in H as � � �-invariant functions on the groupoid U , we
can equip H with the structure of a �-algebra by using the usual convolution and
involution on U (like in the construction of groupoid C �-algebras). We refer to
[HP05], Section 4.3.2, for the details. After completing H in a suitable norm we
obtain a C �-algebra A (see [HP05], Section 6.2). Further there is a time evolution
.�t /t2R on H resp. A so that we end up with the BCM system A D AD;L given by
the C �-dynamical system

A D .A; .�t /t2R/

associated with the BCM pair .L;D/. For the general definition of the time evolution
we refer to [HP05], Section 4.4. We will state the time evolution .�t /t2R only in the
case of our BC-type systems AK (cf. Section 6.1.3).

Remark. In complete analogy one might construct a positive respectively adjoint
BCM system, but we do not need this.

5.4. On symmetries of BCM algebras. In Section 4.5 of [HP05] the authors define
symmetries of BCM algebras, but for our purpose we need to deviate from their
definition in order to be in accordance with the definition of symmetries for BC-type
systems given in [LLN09].

Let .D ;L/ be a BCM pair with fine level structure (see Section 5.1) and recall
(D.2) that there is a natural right action of G.Af / on the Shimura variety Sh.G;X/
which is denoted by mŒz; l� D Œz; lm�. Define the subgroup G	.Af / D fg 2
G.Af / j g
 D 
g for all 
 2 �g. Further, if we denote by C the center of G, the
group C.R/ is acting on Sh.G;X/ by cŒz; l� D Œcz; l�. We end up with a right action
of G	.Af / � C.R/ as symmetries on the BCM algebra HD;L given on a function
f 2 Cc.Z/ by

.m;c/f .g; �; Œz; l�/ D f .g; �; Œcz; lm�/:

Remark. IfG.Af / is a commutative group and we have a decompositionG.Af / D
G.Q/ � � then it is immediate that our symmetries agree with the ones defined in
[HP05], Section 4.5.

6. Two BCM pairs and a map

In this section we will apply the constructions from the last section to our Shimura
data �K D .TK ; XK ; hK/ and �Sh D .GSp.VE ;  E /;H±

g ; hcm/ from Section 3 and
show how the two resulting systems can be related.

6.1. Costume I: .DK ; LK / and AK . In this sectionK is an arbitrary number field.
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6.1.1. The BCM groupoid .DK ; LK /. Let us recall the BCM pair .DK ;LK/ from
[HP05], Definition 5.5, attached to �K . It is given by

.DK ;LK/ D ..�K ; K;M
K/; .OK ; yO�

K ;
yOK//;

where the algebraic semigroup MK is represented by the functor which assigns to a
Q-algebra R the semigroup of Q-algebra homomorphisms Hom.KŒX�;K ˝Q R/.
By definition we have that MK.R/� D TK.R/ for every Q-algebra R, which gives
an embedding � W TK !MK . (It will be convenient to set �K D yO�

K .)

6.1.2. The quotient map UK ! ZK . The corresponding BCM groupoid, denoted
by UK , is given by

UK D TK.Af /� . yOK � Sh.�K//

with �2
K D yO�

K � yO�
K acting as in (25). We denote the quotient of this action by

ZK D �2
KnUK :

6.1.3. The time evolution. Following [HP05], Section 7.3, the time evolution
.�t /t2R on the BCM algebra HK D Cc.ZK/ is given as follows. Denote by
N D NK=Q W A�

K;f
! R the usual idele norm. Let f 2 HK be a function, then we

have

�t .f /.g; �; Œz; l�/ D N.g/itf .g; �; Œz; l�/:

6.1.4. On symmetries. First, from [Del79], 2.2.3, we know that there is an isomor-
phism between Sh D Sh.TK ; XK ; hK/ and 	0.CK/. By class field theory the latter
space 	0.CK/ D CK=DK is identified with the Galois group Gal.Kab=K/ of the
maximal abelian extension of K using the Artin reciprocity homomorphism. Under
this identification the natural action of TK.Af / D A�

K;f
on Sh corresponds simply

to the Artin reciprocity map, i.e., if � is a finite idele in T .Af / and !1 D Œg; l� 2 Sh
corresponds to the identity in Gal.Kab=K/, then �!1 D Œg; l�� corresponds to the
image Œ�� in Gal.Kab=K/ of � under Artin’s reciprocity map.

Now, because TK is commutative, we see that C.Af / � C.R/ D TK.A/ D A�
K

is acting by symmetries on HK . By what we just said this action is simply given by
the natural map A�

K ! 	0.CK/ D CK=DK so that we obtain (tautologically) the
desired action of CK=DK Š Gal.Kab=K/ on HK .

Remark. The reader should notice that in the case of an imaginary quadratic number
field K our symmetries do not agree with the symmetries defined [CMR05] (except
when the class number of K is equal to one, where the two definitions agree). For a
short discussion on this matter we refer the reader to the Remark on p. 308.
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6.1.5. About extremal KMS1-states of AK . We refer to [CM08], p. 445 ff., or
[BR81] for the notion of extremal KMS1-states.

Let AK D .AK ; .�t /t2R/ denote the corresponding BCM system (cf. Section 5.3).
In [LLN09], Theorem 2.1 (vi), it is shown that the set E1 of extremal KMS1-states
of AK is indexed by the set Sh D Sh.TK ; XK ; hK/ and the extremal KMS1-state
%! associated with ! 2 Sh is given on a function f 2 HK by evaluation, namely

%!.f / D f .1; 1; !/:
Remark. (1) It follows immediately that the symmetry group CK=DK is acting free
and transitively on the set of extremal KMS1-states.

(2) Using the definition of symmetries given in [HP05] we obtain another action
of CK=DK on HK but in general this will not induce a free and transitive action
on the extremal KMS1-states. In fact the two different actions of CK=DK on HK

given in [LLN09] resp. [HP05] are equivalent if and only if the class number hK of
K is equal to 1. This follows directly from the fact that if (and only if) hK D 1 then
already yO�

K surjects onto Gal.Kab=K/.

All put together we have the following result.

Theorem 6.1 ([HP05] and [LLN09]). Let K be an arbitrary number field. Then the
BCM system AK D .AK ; .�t /t2R/ is a BC-type system (cf. p. 276).

6.2. Costume II: .DSh; LSh/

6.2.1. The BCM groupoid .DSh; LSh/. Recall the construction of the symplectic
vector space .VE ;  E / (see Section 3.2). We still have some freedom in specifying
the totally imaginary generators �i of the (primitive) CM fields Ei , which in turn
define the symplectic form  E (cf. (14)). Let us denote by LE the lattice LE DLr

iD1 OEi
� VE DLr

iD1Ei . We now fix generators �i according to the following
lemma.

Lemma 6.2. For each i 2 f1; : : : ; rg there exists a totally imaginary generator
�i 2 Ei , such that the associated symplectic vector space .VE ;  E / is integral with
respect toLE , i.e., there exists a symplectic basis fej g for .VE ;  E / such that ej 2 LE

for each j .

Proof. For each i , choose any totally imaginary generator Q�i 2 Ei and regard the
associated symplectic form z E on VE (see (14)). It is known that there exists a
symplectic basis f Qej g for .VE ; z E /. Now for each j there exists a qj 2 N such
that ej D qj Qej 2 LE because Ei D OEi

˝Z Q. Set q D Q
j qj and define the

symplectic form  E on VE by using, for every i , the totally imaginary generators
�i D q�2 Q�i 2 Ei . By construction it is now clear that fej g is an integral symplectic
basis for .VE ;  E /.
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Now having fixed our Shimura datum �Sh D .GSp.VE ;  E /;H±
g ; hcm/we define

the BCM pair .DSh;LSh/ equipped with the maximal level structure (cf. Section 5.1)
with respect to the lattice LE by

.DSh;LSh/ D ..�Sh; VE ;MSp/; .LE ; �Sh; �Sh;M //;

where the algebraic semigroup MSp D MSp.VE ;  E / is represented by the functor
which assigns to a Q-algebra R the semigroup

MSp.R/ D ff 2 EndR.VE ˝Q R/ j there exists �.f / 2 R such that

 E;R.f .x/; f .y// D �.f / E;R.x; y/ for all x; yg:
It is clear by definition (compare A.2) that MSp.R/� D GSp.R/, which defines a
natural injection � W GSp! MSp.

6.2.2. Some quotient maps. We denote the corresponding BCM groupoid by

USh D GSp.Af /� .�Sh;M � Sh.�Sh//;

where the group �2
Sh D �Sh � �Sh is acting as usual. We denote the quotient of USh

by this action by
ZSh D �2

ShnUSh:

Due to D.3 and part (1) of the Remark on p. 295 we are allowed to consider the
positive and adjoint BCM groupoid, which we denote by UC

Sh and U ad
Sh , respectively.

The corresponding quotients are denoted analogously by ZC
Sh D .�C

Sh/
2nUC

Sh and
Zad

Sh D .�ad
Sh/

2nU ad
Sh .

6.3. The map ‚ W ZK ! Z ad
Sh . The aim in this section is to construct a continuous

map ‚ W ZK ! Zad
Sh.

6.3.1. Relating ZK and ZSh. Recall that the morphism of Shimura data ' W �K !
�Sh constructed in Section 3.3 is a morphism of algebraic groups ' W TK ! GSp,
inducing a morphism Sh.'/ W Sh.�K/ ! Sh.�Sh/ of Shimura varieties. More-
over there is a natural continuation of ' to a morphism of algebraic semigroups
M.'/ W MK ! MSp due to the following. We know that ' W TK ! GSp can be
expressed in terms of reflex norms (see Lemmas 3.3 and B.3) that are given by de-
terminants, and this definition makes still sense if we replace TK and GSp by their
enveloping semigroupsMK and MSp, respectively. Now we can define an equivari-
ant morphism of topological groupoids

� W UK ! USh

by

.g;m; z/ 2 UK 7! .'.Af /.g/;M.'/.Af /.z/;Sh.'/.z// 2 USh: (30)
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To show the equivariance of� use '.Af /.�K/ � �Sh and the equivariance of Sh.'/
(cf. D.2). We obtain a continuous map

x� W ZK ! ZSh:

6.3.2. Relating ZSh and Z ad
Sh . In order to relate ZSh and Zad

Sh we will show that we
are allowed to apply Criterion 5.1 by proving the following two lemmas.

Lemma 6.3. We have GSp.VE ;  E /.Af / D GSp.VE ;  E /.Q/ � �Sh:

Proof. Let fej g be an integral symplectic basis of VE with respect to LE (cf. Lem-
ma 6.2). Each f 2 GSp.Af / is Af -linear and therefore determined by the values on
ej ˝ 1˝ 1 2 LE ˝Z Q˝Z

yZ given by

f .ej ˝ 1˝ 1/ DP
k

ak;j ˝ bk;j ˝ ck;j 2 LE ˝Z Q˝Z
yZ:

Let dk;j 2 N be the denominator of bk;j and define c.f / DQ
k;j dk;j 2 N:

Now observe that the map

Mf W ei 7! c.f /ei

is a map in GSp.Q/ � GSp.Af /, i.e.,Mf is compatible with the symplectic structure
 E . Obviously

Mf B f 2 �Sh;

and thus we obtain the desired decomposition

f DM�1
f B .Mf B f / 2 GSp.Q/ � �Sh:

Lemma 6.4. The map GSp.Q/ \ �Sh ! GSp.Q/=GSp.Q/C is surjective.

Proof. We know that GSp.R/C D ff 2 GSp.R/ j �.f / > 0g (see A.2). From this
we get GSp.Q/C D GSp.Q/ \ GSp.R/C D ff 2 GSp.Q/ j �.f / > 0g.

Let f be an element in GSp.Q/. If we define Mf exactly as in the proof above,
we see that Mf 2 GSp.Q/C and conclude that Mf B f 2 GSp.Q/ \ �Sh.

Thus we see that the natural morphismZC
Sh ! ZSh (see (27)) is a homeomorphism

so that we can invert this map and compose it with the natural map ZC
Sh ! Zad

Sh
(cf. (29)) to obtain a continuous map

ZSh ! Zad
Sh:

Finally, if we compose the last map with x� from above we obtain a continuous
denoted by

‚ W ZK ! Zad
Sh:
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One crucial property of‚ is that every element z 2 ZK will be sent to an element of
the form

‚.z/ D Œgˇ�1; ˇ�; ˛�1xcm� 2 Zad
Sh; (31)

where g 2 Gad.Q/C, � 2 �ad
Sh;M , ˛ 2 Gad.Q/ and ˇ 2 �ad

Sh such that ˛ˇ 2
	ad.'.TK.Af /// � Gad.Af /.

7. Construction of our arithmetic subalgebra

The idea of the construction to follow goes back to [CMR05] and [CMR06].
We constructed the ring Mcm of arithmetic modular functions on Hg that are

defined in xcm (see Section 4.3.1). Further the group xE acts by automorphisms on
Mcm according to Section 4.3.2. (Recall that we use the notation ˛f to denote the
action of an automorphism ˛ on a function f 2 Mcm.) Thanks to the embeddings
(cf. Section 4.3)

xE ! GSp.Af /

Q� ! MSp.Af /

Q�  �ad
Sh;M

the intersection xE \�ad
Sh;M is meaningful and thus we can define, for each f 2Mcm,

a function Qf on U ad
Sh by

Qf .g; �; z/ D
´

�f .z/ if � 2 xE \ �ad
Sh;M ;

0 else.
(32)

By construction Qf is invariant under the action of .
1; 
2/ 2 �ad
Sh � �ad

Sh because

Qf .
1g

�1
2 ; 
2m; 
2z/

defD �2mf .
2z/
(21)D ��1

2
�2mf .z/ D Qf .g;m; z/:

Therefore we can regard Qf as function on the quotient Zad
Sh D .�ad

Sh/
2nU ad

Sh .
We set WK D yO�

K � yOK � Sh.TK ; XK/, which is a compact and clopen subset
of UK and invariant under the action of �2

K , i.e., �2
K � WK � WK . With these

preliminaries we have the following result.

Proposition 7.1. Let f be a function in Mcm. Then Qf B‚ is contained in Cc.ZK/,
i.e.,

Qf B‚ 2 HK � AK :

Proof. As we have already observed in (31), the image of an element z 2 ZK under
‚ is of the form Œgˇ�1; ˇ�; ˛�1xcm� 2 Zad

Sh. Therefore fK D Qf B‚ is continuous.
Since‚ is continuous, the action of xE is continuous and does not produce singularities
at special points (see Theorem 4.3).

Let us now regard fK as �2
K-invariant function on UK . Due to xE � GSp.Af /

Q�

and (32) we see that the support of our function fK is contained in the clopen subset
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yO�
K � yO�

K �Sh.TK ; XK/ � UK . Using the compact subsetWK � UK , the next easy
lemma finishes the proof.

Lemma 7.2. LetG be a topological group, X be a topologicalG-space and Y � X
a compact, clopen subset such that GY � Y . If we have a continuous, G-invariant
function f 2 CG.X/ then f jY 2 Cc.GnX/.

Now we can define our arithmetic subalgebra of AK D .AK ; �t / (cf. Section 6.1).

Definition 7.1. Denote by Aarith
K the K-rational subalgebra of AK generated by the

set of functions f Qf B‚ j f 2Mcmg.

7.1. Proof of Theorem 1.1. Let f 2 Mcm and write fK D Qf B ‚ 2 Aarith
K . Fur-

ther let us denote by %! the extremal KMS1-state of AK corresponding to ! 2
Sh D Sh.TK ; XK ; hK/, see Section 6.1.5. Recall the isomorphism Gal.Kab=K/ Š
	0.CK/ D Sh given by Artin reciprocity. Considered as element in Gal.Kab=K/ we
write Œ!� for !.

Property vi). Let � 2 A�
K be a symmetry of AK (see Section 6.1.4). Due to

Lemmas 6.2 and 6.3, we can write '.Af /.�/ D ˛ˇ 2 GSp.Af / with ˛ 2 GSp.Q/C
and ˇ 2 �Sh. By ˛ resp. Ň we will denote their images in GSpad.Q/C resp. �ad

Sh under
the map 	ad B '.Af /. Moreover we denote the image of � under Artin reciprocity by
Œ�� 2 Gal.Kab=K/.

The action of the symmetries on the extremal KMS1-states is given by pull back
and because this action is free and transitive it is enough to restrict to the case of the
extremal KMS1-state %1 corresponding to the identity in Gal.Kab=K/.

Using Proposition 4.4 and the reciprocity law (24) we can calculate the action of
� on %!.fK/ as follows:

�%1.fK/
defD %1.

�fK/

(31)D Qf . Ň�1; Ň; N̨�1xcm/

Prop.
4.4D N�.ˇ/f . N̨�1xcm/

(21)D N�.˛/ N�.ˇ/f .xcm/

D N�.�/f .xcm/

(24)D Œ���1.f .xcm//

D Œ���1.%1.fK//:

This is precisely the intertwining property we wanted to prove.
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Property v). Using the notation from above, we conclude immediately that by con-
struction and Theorem 4.2 we have

%1.fK/ D Qf .1; 1; xxm/ D f .xcm/ 2 Kab;

and the above calculation shows further that

%!.fK/ D Œ!%1.fK/ D Œ!��1.f .xcm// 2 Kab;

finishing our proof.

Remark. We want to conclude our paper with a short discussion comparing our
construction with the original construction of Connes, Marcolli and Ramachdran
(see [CMR05]) in the case of an imaginary quadratic field K. Apart from the fact
that we are not dealing with the “K-lattice” picture as done in [CMR05] the main
difference lies in the different definitions of symmetries. If the class number hK of
K is equal to one, it is immediate that the two definitions agree, however for hK > 1

their symmetries contain endomorphisms (see [CMR05], Proposition 2.17), whereas
our symmetries are always given by automorphisms. We want to mention that it is
no problem to generalize their definition to the context of a BC-type system for an
arbitrary number field (this is already contained in [CM08]), and, without changing
the definition of our arithmetic subalgebra, we could have proved Theorem 1.1 by
using the new definition of symmetries (now containing endomorphisms).

This might look odd at first sight, but in the context of endomotives (see [CM08]
for a reference) the relationship between the two different definitions will become
transparent. More precisely, in a forthcoming article (cf. [Ya]) we will show that
every BC-type system (for an arbitrary number field) is an endomotive, and the
precise relationship between the two definitions of symmetries (and their actions on
(extremal) KMSˇ -states) will become clear.

Appendices

A. Algebraic groups

Our references are [Wat79] and [Mil06]. Let k denote a field of characteristic zero,
K a finite field extension of k and Nk an algebraic closure of k. Further we denote by
R a k-algebra.

A.1. Functorial definition and basic constructions. An (affine) algebraic groupG
(over k) is a representable functor from (commutative, unital) k-algebras to groups.
We denote by kŒG� its representing algebra, i.e., for any R we have G.R/ D
Homk-alg.kŒG�; R/.
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A homomorphism F W G ! H between two algebraic groups G and H (over k)
is given by a natural transformation of functors.

Let G and H be two algebraic groups over k, then their direct product G �H is
the algebraic group (over k) given by R 7! G.R/ �H.R/.

LetG be an algebraic group over k andK and extension of k. Then by extension
of scalars we obtain an algebraic group GK over K represented by K ˝k kŒG�.

Now let G be an algebraic group over K. The Weil restriction ResK=k.G/ is an
algebraic group over k defined by ResK=k.G/.R/ D G.K ˝k R/.

Remark. All three constructions are functorial.

A.2. Examples. 1) The multiplicative group Gm;k (over k) is represented by
kŒx; x�1� D kŒx; y�=.xy � 1/, i.e., Gm;k.R/ D R�.

2) Define S D ResC=R.Gm;C/. We have S.R/ D C� and S.C/ Š C� �C�. In
particular we have SC Š Gm;C �Gm;C.

3) More general an algebraic group T over k is called a torus if T Nk is isomorphic
to a product of copies of Gm; Nk .

4) The general symplectic group GSp.V;  / attached to a symplectic Q-vector
space .V;  / is an algebraic group over Q defined on a Q-algebra R by

GSp.R/ D ff 2 EndR.V ˝Q R/ j there exists �.f / 2 R� such that

 R.f .x/; f .y// D �.f / R.x; y/ for all x; y 2 V ˝Q Rg:

A.3. Characters. Let G be an algebraic group over k and set ƒ D ZŒGal. Nk=k/�.
The character group X�.G/ of G is defined by Hom.G Nk;Gm; Nk/. There is a natural

action of Gal. Nk=k/ on X�.G/, i.e., X�.G/ is aƒ-module. Analogously the cochar-
acter group X�.G/ of G is the ƒ-module Hom.Gm; Nk; G Nk/. We denote the action of
� 2 ƒ on a (co)character f by �f or f 
 . The following is important.

Theorem A.1 ([Wat79], Chap. 7.3). The functor G 7! X�.G/ is a contravariant
equivalence from the category of algebraic groups ofmultiplicative type overk and the
category of finitely generated abelian groups with a continuous action of Gal. Nk=k/.

Remark. See [Wat79], Chap. 7.2, for the definition of groups of multiplicative type.
We only have to know that algebraic tori are of multiplicative type.

There is a natural bi-additive and Gal. Nk=k/-invariant pairing h � ; � i W X�.G/ �
X�.G/ ! Z given by h�;i D  B � 2 Hom.Gm; Nk;Gm; Nk/ Š Z. If G is of
multiplicative type the pairing is perfect, i.e., there is an isomorphism of ƒ-modules
X�.G/ Š Hom.X�.G/;Z/.
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A.4. Norm maps. Let L be a finite field extension of K, i.e., we have a tower
k � K � L, and let T be a torus over k. Then there are two types of morphisms of
algebraic groups which we call norm maps. The first one

NmL=K W ResL=K.TL/! TK

is induced by the usual norm map of algebras R ˝K L! R for R a K-algebra. In
applying the Weil restriction functor ResK=k we obtain the second one, namely

NL=K W ResL=k.TL/! ResK=k.TK/:

A.5. The case of number fields. Let K be a number field. We are interested in the
algebraic group TK D ResK=Q.Gm;K/ (over Q). We have TK.R/ D .K ˝Q R/�.

It is easy to see that the isomorphismK˝Q
xQ ŠQ

�2Hom.K; xQ/
xQ induces an iso-

morphism of algebraic groupsTKxQ Š
Q

�2Hom.K; xQ/ Gm; xQ. It follows thatX�.TK/ Š
ZHom.K; xQ/ with Gal. xQ=Q/ acting as follows. For f D P

�2Hom.K; xQ/ a�Œ�� 2
ZHom.K; xQ/ and � 2 Gal. xQ=Q/ we have

�f D P
�2Hom.K; xQ/

a�Œ� B �� D P
�2Hom.K; xQ/

a
�1B�Œ��:

For any inclusion K � L of number fields the norm map NL=K W T L ! TK is
defined by saying that a character f DP

�2Hom.K; xQ/ a�Œ�� 2 X�.TK/ is mapped to

the character fL DP
�02Hom.L; xQ/.a�0jK/Œ�0� 2 X�.T L/.

B. CM fields

We follow [Mil06] and [Mil04]. By � we denote the complex conjugation of C.

B.1. CM fields and CM types. Let E denote a number field. If E is a totally
imaginary quadratic extension of a totally real field, we callE a CM field. In particular
the degree of a CM field is always even. A CM type .E;ˆ/ is a CM field E together
with a subset ˆ � Hom.E;C/ such that ˆ [ �ˆ D Hom.E;C/ and ˆ \ �ˆ D ;.

B.2. About h� and ��. Let .E;ˆ/ be a CM type. Then there are natural iso-
morphisms T E

R Š Q
�2ˆ S resp. T E

C Š Q
�2ˆ Gm;C � Q

N�2�ˆ Gm;C, where the
first one is induced by E ˝Q R Š Q

�2ˆ C and the second one by E ˝ C ŠQ
�2ˆ C �Q

N�2�ˆ C.
Thus we obtain natural morphisms

hˆ W S! T E
R ; z 7! .z/�2ˆ; (33)
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and

ˆ W Gm;C ! T E
C ; z 7! .z/�2ˆ � .1/ N�2�ˆ: (34)

If we take ˆ for granted we could have defined hˆ by the composition

ResC=R.Gm;C/
ResC=R.�ˆ/��������! ResC=R.T

E
C /

NmC=R�����! T E
R :

In particular we see that hˆ and ˆ are related by

hˆ;C.z; 1/ D ˆ.z/:

Remark. In the last two sections one might have replaced C by xQ.

B.3. The reflex field and reflex norm. Let .E;ˆ/ be a CM type. The reflex field
E� of .E;ˆ/ is the subfield of xQ defined by any one of the following conditions:

(a) � 2 Gal. xQ=Q/ fixes E� if and only if �ˆ D ˆ;

(b) E� is the field generated over Q by the elements
P

�2ˆ �.e/, e 2 E;

(c) E� is the smallest subfield of xQ such that there exists a E ˝Q E�-module V
such that

TrE�.ejV / D P
�2ˆ

�.e/ for all e 2 E:

The reflex norm of .E;ˆ/ is the morphism of algebraic groups Nˆ W T E� ! T E

given, for R a Q-algebra, by

a 2 T E�

.R/ 7! detE˝QR.ajV ˝Q R/ 2 T E .R/:

C. The Serre group

Our references are [Mil98], [Mil06] and [Wei]. Let K be a number field. We fix an
embedding � W K ! xQ! C and denote by � complex conjugation on C.

C.1. Definition of the Serre group. The following are equivalent:

(1) The Serre group attached to K is a pair .SK ; K/ consisting of a Q-algebraic
torus SK and a cocharacter K 2 X�.SK/ defined by the following univer-
sal property. For every pair .T; / consisting of a Q-algebraic torus T and a
cocharacter  2 X�.T / defined over K satisfying the Serre condition,

.�C 1/.� � 1/ D 0 D .� � 1/.�C 1/ for all � 2 Gal. xQ=Q/; (35)
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there exists a unique morphism �� W SK ! T such that the diagram

SKxQ
�

�; xQ �� T xQ

Gm; xQ
�K

		�������� �



��������

commutes.

(2) The Serre group SK is defined to be the quotient of TK such that X�.SK/ is
the subgroup of X�.TK/ given by all elements f 2 X�.TK/ which satisfy the
Serre condition

.� � 1/.�C 1/f D 0 D .�C 1/.� � 1/f for all � 2 Gal. xQ=Q/:
The cocharacter K is induced by the cocharacter � 2 X�.TK/ defined by

h� ; †n
 Œ��i D n� for all †n
 Œ�� 2 ZHom.K; xQ/ Š X�.TK/:

(3) If K does not contain a CM subfield, we set E D Q, otherwise E denotes the
maximal CM subfield ofK and F the maximal totally real subfield of E. Then
there is an exact sequence of Q-algebraic groups

1! ker.NF=Q W T F ! TQ/
i�! TK �K

��! SK ! 1;

where i is the obvious inclusion. The cocharacter � of TK , defined as in (2),
induces K , i.e., K D 	K B � .

Remark. ForK D Q orK an imaginary quadratic field there is the obvious equality
SK D TK .

C.2. About �K and hK . The cocharacter K D 	K B� W Gm;C ! SK
C from the

last section induces a natural morphism

hK W S! SK
R

defined by

ResC=R.Gm;C/
ResC=R.�K/��������! ResC=R.S

K
C /

NmC=R�����! SK
R :

We see that K and hK are related by

hK
C .z; 1/ D K.z/

or in other words, for z 2 C�, we have hK.z/ D K.z/K.z/�:
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C.3. About �ˆ and the reflex norm Nˆ . Let .E;ˆ/ be a CM type. The natural
morphism ˆ 2 X�.T E / (cf. (34)) is defined over the reflex field E� and an easy
calculation shows that it satisfies the Serre condition (35). By the universal property
of the Serre group we obtain a Q-rational morphism

�ˆ W SE� ! T E

such that

ˆ D �ˆ;C B E�

:

Also we see immediately that

hˆ D �ˆ;R B hE�

: (36)

Moreover we can relate �ˆ and ˆ by the commutative diagram

T E�
Res.�ˆ;E� /

��

�E�

������������������� ResE�=Q.T
E
E�/

NE�=Q �� T E

SE�

�ˆ

��																	

which can be seen on the level of characters. The relation with the reflex norm
Nˆ W T E� ! T E (see B.3) is given by the following important result.

Proposition C.1 ([Mil06]). We have the equality

Nˆ D NE�=Q B Res.ˆ;E�/: (37)

C.4. More properties of the Serre group. The following properties are all taken
from [Mil06].

Proposition C.2. Let E � K denote two number fields.
(1) The norm map NK=E W TK ! T E induces a commutative diagram

TK
NK=E ��

�K

��

T E

�E

��
SK �� SE .

We call the induced morphism NK=E W SK ! SE .
(2) There is a commutative diagram

S
hK

��

hE
���������� SK

NK=E

��
SE .

(38)
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(3) LetE denote the maximal CM field contained inK, if there is no such subfield
we set E D Q. Then NK=E W SK ! SE is an isomorphism.

(4) Let .E;ˆ/ be a CM type andK1 � K2 two number fields, such thatE� � K1,
and let �ˆ;i W SKi ! T E be the corresponding maps from the universal property of
the Serre group. Then we have

�ˆ;1 B NK2=K1
D �ˆ;2:

D. Shimura varieties

Our references are Deligne [Del79], Milne [Mil04], and Hida [Hid04].
LetG be an algebraic group over Q. Then the adjoint groupGad ofG is defined to

be the quotient ofG by its center C . The derived groupGder ofG is defined to be the
intersection of the normal algebraic subgroups of G such that G=N is commutative.
By G.R/C we denote the identity component of G.R/ relative to its real topology
and setG.Q/C D G.Q/\G.R/C. IfG is reductive, we denote byG.R/C the group
of elements of G.R/ whose image in Gad.R/ lies in its identity component and set
G.Q/C D G.Q/ \G.R/C.

D.1. Shimura datum. A Shimura datum is a pair .G;X/ consisting of a reductive
group G (over Q) and a G.R/-conjugacy class X of homomorphisms h W S ! GR

such that the following (three) axioms are satisfied:

(SV1) For each h 2 X , the representation Lie.GR/ defined by h is of type
f.�1; 1/; .0; 0/; .1;�1/g.

(SV2) For each h 2 X , ad.h.i// is a Cartan involution on Gad
R .

(SV3) Gad has no Q-factors on which the projection of h is trivial.

Since G.R/ acts transitively on X , it is enough to give a morphism h0 W S! GR

to specify a Shimura datum. Therefore a Shimura datum is sometimes written as
triple .G;X; h0/ or simply by .G; h0/.

Further in our case of interest the following axioms are satisfied and (simplify the
situation enormously).

(SV4) The weight homomorphism !X W Gm;R ! GR is defined over Q.

(SV5) The group C.Q/ is discrete in C.Af /.

(SV6) The identity component of the center C o splits over a CM-field.

(SC) The derived group Gder is simply connected.

(CT) The center C is a cohomologically trivial torus.

Remark. (1) Axioms (SV1)–(SV6) are taken from [Mil04], the other two axioms
are taken from [Hid04].
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(2) The axioms of a Shimura variety (SV1)–(SV3) imply, for example, thatX is a
finite union of hermitian symmetric domains. When viewed as an analytic space we
sometimes write x instead of h for points in X and hx for the associated morphism
hx W S! GR.

(3) In [HP05], Definition 3.1, a more general definition of a Shimura datum is
given. For our purpose Deligne’s original definition, as given above, and so-called
0-dimensional Shimura varieties are sufficient.

A morphism of Shimura data .G;X/ ! .G0; X 0/ is a morphism G ! G0 of
algebraic groups which induces a map X ! X 0.

D.2. Shimura varieties. Let .G;X/ be a Shimura datum and let K be a compact
open subgroup of G.Af /. Set ShK D ShK.G;X/ D G.Q/nX � G.Af /=K; where
G.Q/ is acting on X and G.Af / on the left, and K is acting on G.Af / on the
right. On can show (see [Mil04], Lemma 5.13) that there is a homeomorphism
ShK ŠF

�gnXC. HereXC is a connected component ofX and �g is the subgroup
gKg�1 \G.Q/C where g runs over a set of representatives of G.Q/CnG.Af /=K.
WhenK is chosen sufficiently small, then �gnXC is an arithmetic locally symmetric
variety. For an inclusion K 0 � K we obtain a natural map ShK0 ! ShK and in
this way an inverse system .ShK/K . There is a natural right action of G.Af / on this
system (cf. [Mil04], p. 307).

The Shimura variety Sh.G;X/ associated with the Shimura datum .G;X/ is
defined to be the inverse limit of varieties lim �K

ShK.G;X/ together with the natural
action of G.Af /. Here K runs through sufficiently small compact open subgroups
of G.Af /. Sh.G;X/ can be regarded as a scheme over C.

Let .G;X/ be a Shimura datum such that (SV5) holds, then one has

Sh.G;X/ D lim �K
ShK.G;X/ D G.Q/nX �G.Af /: (39)

In this case we write Œx; l� for an element in Sh.G;X/ and the (right) action of an
element g 2 G.Af / is given by

gŒx; l� D Œx; lg�:
In the general case, when .SV 5/ is not holding we use the same notation, understand-
ing that Œx; l� stands for a family .xK ; lK/K indexed by compact open subgroups K
of G.Af /.

A morphism of Shimura varieties Sh.G;X/ ! Sh.G0; X 0/ is an inverse system
of regular maps of algebraic varieties compatible with the action ofG.Af /. We have
the following functorial property:

A morphism ' W .G;X/! .G0; X 0/ of Shimura data defines an equivariant mor-
phism Sh.'/ W Sh.G;X/ ! Sh.G0; X 0/ of Shimura varieties, which is a closed
immersion if G ! G0 is injective ([Mil04], Theorem 5.16).
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D.3. Example. We want to give some details about the Shimura varieties attached
to the data �Sh constructed in Section 3.2. For the identification of the GSp.R/-
conjugacy class of hcm with the higher Siegel upper lower half space

H±
g D fM D AC iB 2Mg.C/ j A D At ; B positive or negative definitiveg

we refer further to [Mil04], Exercise 6.2, p. 316.
In addition the data �Sh fulfill all the axioms stated in D.1. The validity of

(SV1)–(SV6) is shown in [Mil04], p. 316, and the validity of (SC) and (CT) in
[Hid04]. The latter two axioms are important for making the arguments in [MS81]
in this case. From (SV5) follows in particular that we do not have to bother about the
limits in the definition of Sh.GSp;H±

g/ because we have

Sh.GSp;H±
g/ D GSp.Q/n.H±

g � GSp.Af //:

D.4. Connected Shimura varieties. A connected Shimura datum is a pair .G;XC/
consisting of a semisimple algebraic groupG over Q and aGad.R/C-conjugacy class
of homomorphisms h W S! Gad

R satisfying axioms (SV1)–(SV3).
The connected Shimura variety Sho.G;XC/ associated with a connected Shimura

datum .G;XC/ is defined by the inverse limit

Sho.G;XC/ D lim �	
�nXC

where � runs over the torsion-free arithmetic subgroups of Gad.Q/C whose inverse
image inG.Q/C is a congruence subgroup. If we start with a Shimura datum .G;X/

and choose a connected component XC of X , we can view XC as a Gad.R/C-
conjugacy class of morphisms h W S ! Gad

R by projecting elements in XC to Gad
R .

One can show that .Gder; XC/ is a connected Shimura datum. Further, if we choose
the connected component Sh.G;X/o of Sh.G;X/ containing XC � 1, one has the
following compatibility relation

Sh.G;X/o D Sho.Gder; XC/:

D.5. 0-dimensional Shimura varieties. In Section 3.1 we defined a “Shimura da-
tum” �K D .TK ; XK/ which is not a Shimura datum in the above sense because XK

has more than one conjugacy class (recall that TK is commutative). Rather �K is a
Shimura datum in the generalized sense of Pink [Pin90], which we do not want to
recall here. Instead we define the notion of a 0-dimensional Shimura variety follow-
ing [Mil04], which covers all exceptional Shimura data we consider. We define a
0-dimensional Shimura datum to be a triple .T; Y; h/, where T is a torus over Q, Y
is a finite set on which T .R/=T .R/C acts transitively, and h W S! TR is a morphism
of algebraic groups. We view Y as a finite cover of fhg. We remark that the axioms
(SV1)–(SV3) are automatically satisfied in this setup.



On Bost–Connes type systems and complex multiplication 317

The associated 0-dimensional Shimura variety Sh.T; Y; h/ is defined to be the
inverse system of finite sets T .Q/nY �T .Af /=K, withK running over the compact
open subgroups of T .Af /.

A morphism .T; Y; h/ ! .H; h0/ from a 0-dimensional Shimura datum to a
Shimura datum, with H an algebraic torus, is given by a morphism of algebraic
groups ' W T ! H such that h D 'R B h0.

If ' is such a morphism it defines a morphism Sh.'/ W Sh.T; Y; h/! Sh.H; h0/

of Shimura varieties.

Remark. We have that �K fulfills axiom (SV5) if and only if K D Q or K an
imaginary quadratic field (see [HP05], Example 3.2).

D.6. Canonical model of Shimura varieties. Let .G;X/ be a Shimura datum. A
point x 2 X is called a special point if there exists a torus T � G such that hx factors
through TR. The pair .T; x/ or .T; hx/ is called special pair. If .G;X/ satisfies the
axioms (SV4) and (SV6), then a special point is called CM point and a special pair
is called CM pair.

Now given a special pair .x; T /we can consider the cocharacterx ofGC defined
byx.z/ D hx;C.z; 1/. Denote byE.x/ the field of definition ofx , i.e., the smallest
subfield k of C such that x W Gm;k ! Gk is defined.

Let Rx denote the composition

T E.x/
ResE.x/=Q.�x/����������! ResE.x/=Q.TE .x//

NmE.x/=Q�������! T

and define the reciprocity morphism

rx D Rx.Af / W A�
E.x/;f ! T .Af /:

Moreover, every datum .G;X/ defines an algebraic number fieldE.G;X/, the reflex
field of .G;X/. For the definition we refer the reader to [Mil04], Section 12.2.

Remark. (1) For the Shimura datum �Sh D .GSp;H±
g/ (see Section 3.2) we have

E.�K/ D Q (cf. [Mil04], p. 352).
(2) For explanations to relations with the reflex field of a CM field (cf. B.3), see

[Mil04], Example 12.4 b), p. 344 ff.

A modelM o.G;X/ of Sh.G;X/ over the reflex fieldE.G;X/ is called canonical
if

(1) M o.G;X/ is equipped with a right action ofG.Af / that induces an equivariant
isomorphism M o.G;X/C Š Sh.G;X/, and

(2) for every special pair .T; x/ � .G;X/ and g 2 G.Af / the point Œx; g� 2
M o.G;X/ is rational over E.x/ab and the action of � 2 Gal.E.x/ab=E.x// is
given by

�Œx; g� D Œx; rx.�/g�; (40)

where � 2 A�
E.x/;f

is such that Œ�� D ��1 under Artin’s reciprocity map.
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In particular, for every compact open subgroup K � G.Af / it follows that
M o

K.G;X/ DM o.G;X/=K is a model of ShK.G;X/ over E.G;X/.

Remark. Canonical models are known to exist for all Shimura varieties (see [Mil04]).

D.7. Canonicalmodel of connectedShimuravarieties. We refer to [Del79], 2.7.10,
for the precise definition of the canonical modelM o.G;XC/ of a connected Shimura
variety Sh.G;XC/. Here we just want to mention the compatibility

M o.Gder; XC/ DM o.G;X/o;

where the latter denotes a correctly chosen connected component of the canonical
model M o.G;X/.
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