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Real mixed Hodge structures

Mikhail Kapranov

Abstract. We identify the category of real mixed Hodge structures with the category of vector
bundles with connections (not necessarily flat) on C, equivariant with respect to C�. Here C
is the complex plane considered as a 2-dimensional real manifold, and C� is the multiplicative
group of complex numbers considered as a real group.
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0. Introduction

Let MHSR be the category of real mixed Hodge structures [6], [7]. Thus, an object of
MHSR consists of a finite-dimensional R-vector space V , equipped with an increasing
filtration W� and a decreasing filtration F

� on VC D V ˝R C. These filtrations are
required to satisfy the following condition:

grp
F grq

F
grW

n .VC/ D 0 for n ¤ p C q: (0.1)

Here xF � is the filtration obtained from F
� by complex conjugation, and we denote

the filtration induced by W� on VC by the same symbol W�.
It is known that MHSR is an abelian tensor category. The goal of this note is to

give a “gauge-theoretic” description of MHSR.
Consider C, the set of complex numbers, as a 2-dimensional real algebraic variety

(i.e., an algebraic variety over R), and the multiplicative group C� as a 2-dimensional
real algebraic group acting on this variety. In more formal algebro-geometric terms,
we are applying the Weil restriction functor RC=R from C to R:

C D RC=R.A1/ D A2
R; C� D S ´ RC=R.Gm/; (0.2)

see [6], (2.1.2). Let Bunr.CIC�/ be the category of (real) algebraic vector bundles
on C, equivariant with respect to the C�-action and equipped with an invariant (real
algebraic) connection. Note that the connections are not assumed flat.
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Theorem 0.3. There exists an equivalence of abelian tensor categories

h W Bunr.CIC�/! MHSR

with the following properties:

(a) If .E;r/ is an object of Bunr.CIC�/ and .V; W�; F
�
; xF �

/ D h.E;r/, then
the space grW

�
.V / is canonically identified with E0, the fiber of E at 0.

(b) In the situation of (a), the vector space V is identified with the space of covari-
antly constant sections

V D H 0r.ft j Re.t/ D �1=2g; E/:

(c) r is flat if and only if V is split, i.e., isomorphic to a direct sum of pure Hodge
structures.

(d) The functor of “absolute cohomology”

R�Hod W MHS! VectR; V 7! RHomMHS.R.0/; V /;

of Beilinson [1] is identified with the invariant part of the “de Rham sequence”
functor

.E;r/ 7! �.C; fE r�! E ˝�1
Cg/C�

:

Here �1
C is the sheaf of real 1-forms on C as a real 2-manifold.

Remarks 0.4. (a) This gives a geometric interpretation of the pro-unipotent group
U which, according to Deligne [7], governs mixed Hodge structures. Indeed, U is
realized as (the pro-algebraic completion of) the group of piecewise smooth loops in C
considered up to reparametrization and cancellation (with the group operation being
the composition of loops). This group of loops acts in any bundle with connection
via the holonomy. See Section 2.7 below for a discussion at the Lie algebra level.

(b) Theorem 0.3 bears interesting similarities with the results of Connes and
Marcolli [4]. They considered a certain tensor category of “equisingular” families of
connections and identified it with the category of representations of a pro-unipotent
group U�. This group contains Gm and the commutant ŒU�; U�� is free on generators
of Gm-weights 1, 2, 3, …. On the other hand, our results show that the category
Bunr.C; C�/ is equivalent to the category of representations of the group U of
Deligne. This group contains C� D S , and ŒU; U� is free on generators zp;q , p; q � 1,
of bi-weight p, q. So the relation between U and U� is qualitatively the same as the
relation between all mixed Hodge structures and iterated extensions of Tate structures.
However, the two categories of connections leading to these groups are quite different
and a direct relation of [4] with Hodge structures is not known.

(c) The group C� does not act freely on C because of the fixed point at 0, so from
the topological point of view the quotient C=C� is ill behaved and should be replaced
by the quotient stack C==C�. This stack can be seen as a local archimedean analog of
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the “adele class space” A==k� of Connes [3]. Here k is a global field, and A is its ring
of adeles. Quotients similar to C==C� were also considered by Laumon [11] from
the point of view of D-modules and constructible sheaves. Categories of equivariant
connections on other pre-homogeneous vector spaces can provide interesting analogs
of the category of mixed Hodge structures.

The proof of Theorem 0.3 will be given in §1. It is based on a version of the
Radon–Penrose transform which takes equivariant bundles with connections on (the
complexification of) C into equivariant algebraic vector bundles on a punctured pro-
jective plane. The latter bundles can be realized as Rees bundles of mixed Hodge
structures, following the work of Penacchio [13], [14].

In §2 we will relate our description with the description of Deligne [7] using the
“Hodge monodromy operator”. We also give an interpretation of Deligne’s Hodge
group G and its Lie algebra.

I am deeply grateful to A. B. Goncharov who explained to me some basics of
mixed Hodge structures. He also informed me about his work [8] (then in progress).
Theorem 0.3 turned out to be very closely related to the approach of [8]. In particular,
the “twistor line” of [8] is naturally identified with the real line Re.t/ D �1=2 from
Theorem 0.3 (c). See Remark 2.5.2 below for more details. I would also like to thank
F. Loeser for pointing out the work [11]. This work was partially supported by an
NSF grant.

1. Construction of the equivalence

1.1. Complex version. We will deduce Theorem 0.3 from its complex version. Re-
call that a complexmixedHodge structure is a datum consisting of a finite-dimensional
complex vector space V with an increasing filtration W and two decreasing filtrations
F 0, F 00 which satisfy the condition

grp
F 0 grq

F 00 grW
n .V / D 0 for n ¤ p C q

similar to (0.1). Another name for such an object is “a triple of opposite filtrations”
[6]. We denote by MHSC the category of complex mixed Hodge structures. Like
MHSR, it is an abelian tensor category.

For a complex vector space V we denote �.V / the complex conjugate space. It
consists of symbols �.v/, v 2 V , with the operations

�.v/C �.v0/ D �.v C v0/; ��.v/ D �. N�v/; � 2 C:

Thus we have an antilinear isomorphism

� W V ! �.V /: (1.1.1)
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Given a complex mixed Hodge structure .V; W�; F 0�
; F 00�

/, its complex conjugate
structure is defined by

�.V; W�; F 0�

; F 00�

/ D .�.V /; �.W�/; �.F 00�

/; �.F 0�

//: (1.1.2)

This defines an action of the Galois group

� D Gal.C=R/ D f1; �g
on the category MHSC, and MHSR consists of �-equivariant objects in MHSC. So
we describe MHSC in a way compatible with the �-action.

Consider the affine plane A2 D Spec CŒt1; t2� over C with the standard action
of the torus G2

m. Let Bunr.A2IG2
m/ be the category of complex algebraic vector

bundles on A2 which are equivariant with respect to the G2
m-action and equipped with

an equivariant (complex algebraic) connection. There is a �-action on Bunr.A2IG2
m/

induced by the action on A2 given by

�.t1; t2/ D .Nt2; Nt1/; (1.1.3)

and by a similar action on G2
m. The following then implies Theorem 0.3(a).

Theorem 1.1.4. MHSC is equivalent to Bunr.A2IG2
m/ as a tensor category with

�-action.

The proof will be given in Section 1.4 below.

1.2. The Radon–Penrose transform of equivariant connections. Let us compact-
ify A2 D Spec CŒt1; t2� to P2 D Proj CŒu0; u1; u2�, so A2 is given by u0 ¤ 0, and

P2 D A2 [ P11; P11 D Proj CŒt1; t2�; ti D ui=u0: (1.2.1)

Let {P2 be the dual projective plane of lines in P2, so {P2 D Proj CŒv0; v1; v2�, where
.vi / are the dual coordinates. As usual, points in P2 give lines in {P2: for a point
x 2 P2 we denote �x the set of lines in P2 through x. Now, lines in A2 form

{P2
0 D {P2 � fŒ1 W 0 W 0�g;

so we have the incidence diagrams

A2

k

��

Q0
q0��

��

��p0 �� {P2
0

j

��
P2 Q

q�� p �� {P2.

(1.2.2)
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Proposition 1.2.3. Let .E;r/ 2 Bunr.A2IG2
m/ and r D rk.E/. Consider the sheaf

of O-modules on {P2
0 ,

E0 D pr
0�.q�

0 E/;

where pr
0� is the subsheaf in the direct image p0� consisting of sections covariantly

constant along the fibers of p0. Then E0 is locally free of rank r , so it is an algebraic
vector bundle on {P2

0 .

We call E0 the Radon–Penrose transform of .E;r/, following [12], Ch. 2, §2.

Proof. The variety {P2
0 is covered by two open charts isomorphic to A2. One of them,

U D Spec CŒa; b�, parametrizes lines of the form

t2 D at1 C b; (1.2.4)

and the other one is defined similarly, with the roles of t1, t2 interchanged. So we
will prove that E0jU is a free OU -module of rank r .

Let V be the space of G2
m-invariant sections of E over G2

m, so dim.V / D r . Over
G2

m, we have a trivialization E ' OG2
m
˝ V . With respect to this trivialization, the

equivariant connection r has the form

r D d C B1 d log t1 C B2 d log t2; B1; B2 2 End.V /: (1.2.5)

Now eq. (1.2.4) identifies p�1
0 .U / with U �A1, where A1 D Spec CŒt1�. Denote by

zE the algebraic vector bundle on U �A1 corresponding to the bundle q�
0 .E/jp�1

0
.U /

under this identification. Then r induces a relative connection in zE along the fibers
of the projection U � A1 ! U . Denote this relative connection by D. Substituting
(1.2.4) into (1.2.5) and using the above trivialization of E on G2

m, we find a trivial-
ization of zE near U � f1g � U � P1 such that the connection matrix of D in this
trivialization has at most first order pole near t1 D1.

This means that for each choice of numerical values a; b 2 C we then have a
nonsingular connection in an algebraic vector bundle zEa;b D Ejft2Dat1Cbg on A1,
having a regular singularity at infinity; see [5], Theorem 1.1.2 (i). As such, it has
a fundamental solution whose matrix elements are regular functions (polynomials)
in t1; see [5], Theorem 1.1.9. As a, b vary, the coefficients of these polynomials
are regular functions in a, b since they are found by the standard recursive formulas.
This implies that the relative connection D in zE is algebraically trivial (isomorphic
to a pullback of a bundle on U , with trivial relative connection), and so the sheaf of
covariantly constant sections is a free OU -module of rank r .

The action of the torus G2
m on A2 by dilations extends to P2 and, by duality, to

{P2. Both P2 and {P2 are toric varieties with respect to this action, and {P2
0 is a torus

invariant open set. By construction, the vector bundle E0 on {P2
0 is G2

m-equivariant.
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Note further that the embedding j W {P2
0 ! {P2 misses just one point, so the direct

image
E D j�E0 (1.2.6)

is a reflexive coherent sheaf on the surface {P2 and thus a vector bundle. This bundle
is still equivariant with respect to G2

m.
We denote by Q the category of vector bundles E on {P2 equivariant under G2

m

and trivial on each line � � P2 except perhaps the lines corresponding to points of
P11 � P2. We have a natural structure of a tensor category on Q given by tensor
product of vector bundles.

Theorem 1.2.7. The correspondence .E;r/ 7! E establishes an equivalence of
tensor categories

Bunr.A2IG2
m/! Q:

Proof. We already showed how to construct E from .E;r/ and that E is equivariant.
Note that Q is equivalent, via (1.2.6), to the category Q0 of equivariant bundles on
{P2

0 trivial on all the lines contained in {P2
0 . Indeed, these are precisely the lines not

corresponding to the points of P11. Now, the equivalence of Bunr.A2IG2
m/ with P0

is an equivariant version of a particular case of the general fact about Radon–Penrose
transforms ([12], Ch. 2, §2, Theorem 2.3). Indeed, the first line in (1.2.2) is a particular
case of a double fibration considered in [12], Ch. 2, Sect. 2.1. The cited theorem
establishes an equivalence between holomorphic bundles on {P2

0 trivial on all the lines
and holomorphic bundles with connections on A2 but in our equivariant situation we
can restrict to algebraic bundles on both sides, in virtue of Proposition 1.2.3. Let us
just explain why E is trivial on each line contained in {P2

0 , i.e., any line � of the form
�x , x 2 A2. Indeed, if l � A2 is a line through x, then the restriction of covariantly
constant sections to x gives an isomorphism

El D H 0r.l; E/ ��!' Ex;

so

Ej� D O� ˝Ex (1.2.8)

is trivial.

1.3. Rees bundles and the work of Penacchio. We now relate Theorem 1.2.7 with
the description of MHSC given by Penacchio [13], [14]. Denote by

Rs.V; W�; F 0�

; F 00�

/ D L
i;j;k2Z

.Wi\F 0�j \F 00�k/.V /vi
0v

j
1 vk

2 � CŒv˙1
0 ; v˙1

1 ; v˙1
2 �

(1.3.1)
the Rees module over CŒv0; v1; v2� corresponding to the 3-graded vector space
.V; W�; F 0�

; F 00�
/. Here the minus signs before j and k correspond to convert-

ing the decreasing filtrations F 0, F 00 into increasing ones. Both CŒv0; v1; v2� and
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Rs.V; W�; F 0�
; F 00�

/ have compatible Z3-gradings which translate to a G3
m-action

on {A3 D Spec CŒv0; v1; v2� and into an equivariant structure of the coherent sheaf
on {A3 corresponding to Rs.V; W�; F 0�

; F 00�
/. If we consider the gradings by total

degree, we can form the projective plane {P2 D Proj CŒv0; v1; v2� which we identify
with the {P2 from Section 1.2, and a coherent sheaf on {P2 corresponding to the graded
module Rs.V; W�; F 0�

; F 00�
/. We denote this sheaf PRs.V; W�; F 0�

; F 00�
/ or simply

by E . The quotient torus
G2

m D G3
m=Gm

(quotient by the diagonal embedding) is identified with the G2
m acting on {P2, and E

is equivariant. Further, it is known that Rees modules are reflexive, so E is a G2
m-

equivariant vector bundle on {P2. Since the variables v0, v1, v2 are associated to the
filtrations W , F 0, F 00 in (1.3.1), we denote the coordinate lines in {P2 by

{P1
W D fv0 D 0g; {P1

F 0 D fv1 D 0g; {P1
F 00 D fv2 D 0g;

and the torus fixed points by

{P0
WF 0 D fv0 D v1 D 0g; {P0

WF 00 D fv0 D v2 D 0g; {P1
F 0F 00 D fv1 D v2 D 0g:

Then the restrictions of the Rees bundles to the coordinate lines are found as follows
(see [14], 2.6.2):

Ej{P1
W
DL

n

PRs.grW
n V; F 0�

; F 00�
/˝O.�n/: (1.3.2)

Here on the right-hand side we have the Rees bundles on P1 corresponding to the bi-
filtered spaces .grW

n V; F 0�
; F 00�

/ (induced filtrations). Similarly for other coordinate
lines. The restrictions to (i.e., fibers over) the fixed points are given by the bigraded
spaces associated to the corresponding pairs of filtrations:

Ej{P0
WF 0
D grW

�
gr�

F 0.V /; (1.3.3)

etc. Now recall an observation of Deligne, used by Simpson [16].

Proposition 1.3.4. Let F 0�, F 00� be two filtrations on a finite-dimensional vector
space V . Then the following are equivalent:

(i) F 0� and F 00� are n-opposite (induce a pure complex Hodge structure of
weight n).

(ii) The Rees bundle PRs.V; F 0�
; F 00�

/ on P 1 is a direct sum of several copies
of O.n/.

As observed in [14], the isomorphism (1.3.2) implies that for a complex mixed
Hodge structure .V; W�; F 0�

; F 00�
/ the restriction Ej{P1

W
is trivial:

Ej{P1
W
' grW

�
.V /˝O{P1

W
: (1.3.5)
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Denote by P the following category. Objects of P are G2
m-equivariant vector

bundles E on P2 which are trivial on {P1
W . Morphisms in P are equivariant morphisms

of bundles which have constant rank everywhere except possibly the point {P0
F 0F 00 .

Clearly, P is a tensor category with respect to the tensor product of vector bundles.
The main result of [13], [14] is (see [13], Theorem 3.1):

Theorem 1.3.6. The Rees bundle construction defines an equivalence of tensor cat-
egories

MHSC ! P :

Now notice the following:

Lemma 1.3.7. The categories P and Q are equivalent.

Proof. We first identify the objects. On the surface of it, P seems to have more
objects, as we require triviality on one line only rather than on all lines not meeting
{P0

F 0F 00 . However, triviality is an open condition for vector bundles on P1. So if

E 2 P is trivial on {P1
W , it is trivial on an open subset U of lines in {P2 containing

{P1
W . By equivariance, U can be assumed to be preserved under the torus action. This

implies that U contains all lines not meeting {P0
F 0F 00 . So E is an object of Q as well.

Next, we identify the morphisms. On the surface of it, Q seems to have more
morphisms, as we do not require the constant rank condition. So let f W E ! E 0 be
a morphism in Q, i.e., just an invariant morphism of equivariant vector bundles, both
being objects of Q. Let � � LP2 be a projective line such that both E and E 0 are trivial
on �. Then clearly f has constant rank along �. On the other hand, any two points
of {P2 � {P0

F 0F 00 are connected by a chain of lines � as above. This implies that the

rank of f is constant on {P2 � {P0
F 0F 00 , so f is a morphism of P .

1.4. Proof of Theorems 1.1.4 and 0.3 (a)–(d). Combining now Theorems 1.2.7,
1.3.6 and Lemma 1.3.7, we get an equivalence of tensor categories

MHSC
PRs��! Q D P

‰�! Bunr.A2IG2
m/;

where PRs is the Rees bundle construction, and ‰ is the inverse Radon–Penrose
transform. This is the equivalence claimed in Theorem 1.1.4. To finish the proof, it is
enough to compare the behavior of the equivalence with respect to the �-action, see
Section 1.1. The definition (1.1.2) of the conjugate Hodge structure implies that the
coordinates v0, v1, v2 on {P2 associated to the three filtrations in the Rees construction,
are transformed under � as follows:

v0 7! Nv0; v1 7! Nv2; v2 7! Nv1:

This translates into the action (1.1.3) on the plane A2 formed by lines in {P2 not meeting
{P0

F 0F 00 . This finishes the proof of Theorem 1.1.4 and thus of Theorem 0.3 (a).
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To see part (b) of Theorem 0.3, note that by general properties of the inverse
Radon–Penrose transform, see (1.2.8), and by (1.3.5) , we have

E0 D H 0.{P1
W ; E/ D grW

�
.V /: (1.4.1)

Next, to see part (c), note that by the definitions of the Rees module and bundle, V is
recovered as the fiber

V D Rs.V; W�; F 0�

; F 00�

/=.v1 � 1; v2 � 1; v3 � 1/ D EŒ1W1W1�:

The point Œ1 W 1 W 1� 2 {P2 corresponds to the line

f1C t1 C t2 D 0g � A2;

which, in the presence of the real structure t1 D t , t2 D Nt , can be described as
Re.t/ D �1=2. Our statement then follows from the definition of the Radon–Penrose
transform, see Proposition 1.2.3.

To see part (d), notice that flatness of r is equivalent to the property that E0

(and thus E) is trivial as a vector bundle. The fact that triviality of the Rees bundle
is equivalent to splitting of the Hodge structure, was pointed out in [14], (2.10),
Theorem 2.

1.5. Noncommutative differential operators and absolute Hodge cohomology.
Here we prove part (d) of Theorem 0.3. We will prove the following complex version.
Taking into account the real structures is straightforward.

Theorem 1.5.1. If .E;r/ is the G2
m-equivariant bundle with connection on A2

corresponding to a complexHodge structure .V; W�; F 0�
; F 00�

/, thenwehaveanatural
quasiisomorphism

�.A2; fE r�! E ˝�1
A2g/G2

m � RHomMHSC.C.0/; V /:

For the proof we embed Bunr.A2IG2
m/ into a larger abelian category in which the

trivial bundle OA2 (which corresponds to the Hodge structure C.0/) has a projective
resolution.

Recall [10] that for any smooth algebraic variety X=C there is a sheaf DX of non-
commutative rings on X called the sheaf of noncommutative differential operators.
We will need the following properties of DX . First, DX has a multiplicative filtration
fD�d

X g (by “order”) with quotients identified with

D�d
X =D�d�1

X ' T ˝d
X ;

so that the associated graded algebra of DX is the tensor algebra of TX .
Second, there is a natural embedding

� W TX ! D�1
X ;
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splitting the first level of the filtration.
Third, DX plays the same role for nonflat connections as the ordinary sheaf of

differential operators does for flat ones. To be precise, we have the following.

Proposition 1.5.2. Let E be any quasi-coherent sheaf of OX -modules. Then struc-
tures of a DX -module on E extending the OX -module structure are in bijection with
connections ( flat or not) on E.

Example 1.5.3. Let X D An with coordinates t1, …, tn. Then the ring D.An/ is
generated by the polynomial ring CŒt1; : : : ; tn� and by the symbolsr1, …,rn, which
are required to satisfy

Œri ; tj � D ıij ; 1 � i; j � n;

and no other relations. In particular, r1, …, rn generate a free associative algebra.
Given a bundle with connection .E;r/ on An, the generator ri acts in E by the
covariant derivative r@=@ti .

Proposition 1.5.4. Let E 0 be any sheaf of DX -modules quasi-coherent over OX (i.e.,
a quasi-coherent OX -module with a connection). Then the following 2-term version
of the Spencer sequence is a locally free left DX -resolution of E 0:

�
�

.E 0/ D fDX ˝OX
TX ˝OX

E 0 d�! DX ˝OX
E 0g;

d.P ˝ v ˝ e0/ D P � �.v/˝ e0 � P ˝ �.v/.e0/:

Proof. Filtering �
�
.E 0/ by the subcomplexes

fD�.d�1/
X ˝OX

TX ˝OX
E 0 d�! D�d

X ˝OX
E 0g; d � 0;

we find the associated graded complex to be

� L
d�0

T
˝.d�1/

X

�˝ TX ˝E 0 ! L
d�0

T ˝d
X ˝E 0: (1.5.5)

Since the associated graded algebra of DX is the tensor algebra of TX , we see that
the differential in (1.5.5) is the tensor multiplication, and so it is a resolution of
T ˝0

X ˝E 0 D E 0 as a left module over the tensor algebra. Using the exactness of the
associated graded complex (1.5.5), we deduce the exactness of �

�
.E 0/ by a spectral

sequence argument.

Let now M be the category of G2
m-equivariant quasi-coherent sheaves of OA2-

modules, equipped with an equivariant connection (not necessarily flat). In other
words, M is the category of G2

m-equivariant DA2-modules, quasi-coherent over OA2 .
Clearly, M is an abelian category. Theorem 1.1.4 realizes MHSC as a full subcategory
in M (formed by quasi-coherent sheaves which are vector bundles). Note that this
subcategory is also abelian, and is closed under extensions in M. This implies that
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for any two objects V; V 0 2 MHSC with the corresponding objects E; E 0 2 M, the
natural morphism

Exti
MHSC

.V 0; V /! Exti
M.E 0; E/

is an isomorphism for i D 0, 1.

Proposition 1.5.6. (a) The category MHSC has cohomological dimension 1, i.e., for
any two objects V , V 0 we have Exti

MHSC
.V 0; V / D 0 for i � 2.

(b) The category M also has cohomological dimension 1. Therefore for any two
objects V 0; V 2 MHSC with corresponding equivariant bundles with connections
E 0, E the natural morphism

RHomMHSC.V 0; V /! RHomM.E 0; E/

is a quasi-isomorphism.

Proof. Part (a) was proved by Carlson [2]. Let us prove part (b). Given two objects
E, E 0 of M, the complex of vector spaces RHomM.E 0; E/ is obtained from the
complex

RHomDA2
.E 0; E/ D HomDA2

.�
�

.E 0/; E/ (1.5.7)

of sheaves on A2 by taking (the derived functor of) global sections and then taking the
(derived functor of the) subspace of invariants with respect to G2

m. Now, the complex
(1.5.7) is a 2-term complex of quasi-coherent sheaves on A2, equivariant with respect
to G2

m. Since A2 is affine and G2
m is reductive, we do not need to derive the functors

of global sections and invariants, so RHom.E 0; E/ is still a 2-term complex.

This implies Theorem 1.5.1. Indeed, the statement and the proof of Proposition
1.5.6 imply that

RHomMHSC.C.0/; V / D RHomM.OA2 ; E/ D �.A2; HomDA2
.�

�

.OA2/; E//G2
m ;

which is nothing but the global equivariant de Rham sequence in the formulation of
the theorem.

2. The Deligne operator as the holonomy of an equivariant connection

2.1. Reminder on the Deligne operator. We start by recalling the description of
MHSC by means of the “Hodge monodromy” operator ı given by Deligne [7]. For
any object .V; W�; F 0�

; F 00�
/, there are two splittings

V D L
p;q2Z

V
p;q

F 0 D L
p;q2Z

V
p;q

F 00 ; (2.1.1)
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(see [7], p. 510) with the following properties. First, both these splittings induce the
same filtration W� by

L
pCq�n

V
p;q

F 0 D L
pCq�n

V
p;q

F 00 D Wn.V /: (2.1.2)

Secondly, the first splitting induces F 0� and the second F 00� by

F 0p.V / D L
p0�p; q2Z

V
p;q

F 0 ; F 00q.V / D L
p2Z; q0�q

V
p;q0

F 00 : (2.1.3)

Thirdly,
V

q;p
F 0 	 ��1.�.V /

p;q
F 00 / mod WpCq�1.V /:

Here � is the antilinear isomorphism (1.1.1) and �.V /
p;q
F 00 is the second splitting

but for the conjugate Hodge structure as defined by (1.1.2). Let us also denote for
simplicity

grp;q.V / D grp
F 0 grq

F 00 grW
pCq.V /:

Then the projections

a
p;q
F 0 W V p;q

F 0 ! grp;q.V /; a
p;q
F 00 W V p;q

F 00 ! grp;q.V /

are isomorphisms. So their direct sums, denoted by aF 0 and aF 00 , are isomorphisms

aF 0 ; aF 00 W V ! grW
�

.V / DL
p;q

grp;q.W /; (2.1.4)

and so we have the automorphism

ı D aF 00a�1
F 0 W grW

�
.V /! grW

�
.V /;

which is known to satisfy

.ı � 1/.grp;q.V // � L
p0<p; q0<q

grp0;q0

.V /:

Deligne’s characterization is then as follows.

Theorem 2.1.5. Let � be the category of pairs .V
��

; ı/, where V
�� D L

V p;q

is a finite-dimensional bigraded C-vector space and ı is an automorphism of V
��

satisfying
.ı � 1/.V p;q/ � L

p0<p; q0<q

V p0;q0

:

Then the functor

.V; W�; F 0�

; F 00�

/ 7! .V
�� D gr��

.V /; ı D aF 00a�1
F 0 /

is an equivalence of tensor categories MHSC ! �.
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2.2. The Hodge group. Now, still following [7], we reformulate Theorem 2.1.5 in
terms of representations of appropriate Lie algebras and groups. Indeed, ı being
unipotent, specifying ı is equivalent to specifying its logarithm

D D log.ı/ D P
p;q�1

Dp;q;

where Dp;q is the bihomogeneous part of degree .�p;�q/, i.e., Dp;q.V p0;q0

/ �
V p0�p; q0�q for any p0, q0. Now, the operators Dp;q can be given arbitrarily subject
only to the homogeneity conditions. So we get:

Reformulation 2.2.1. MHSC is equivalent to the category of finite-dimensional bi-
graded representations of the free Lie algebra

L D FLiefzp;q j p; q � 1g;
where the generator zp;q has bidegree .�p;�q/.

The bigrading in L induces the weight filtration W on it, as in (2.1.2), and this fil-
tration is compatible with the Lie algebra structure. Each quotient L=W�d L is finite-
dimensional and nilpotent. Denote by exp.L=W�d L/ the corresponding unipotent
algebraic group. We have then the pro-algebraic group

U D lim �d
exp.L=W�d L/:

The bigrading on L=W�d L can be interpreted as an action of G2
m, and these actions

induce an action on U, so we have the semidirect product

G D G2
m Ë U:

Then, MHSC is equivalent to the category of finite-dimensional representations of
G . The group G , sometimes referred to as the Hodge group, is the group of auto-
morphisms of the fiber functor

!W W MHSC ! VectC; .V; W�; F 0�

; F 00�

/ 7! gr��

.V /:

2.3. Comparison of two descriptions. We now compare the description of MHSC

given by Theorem 2.1.5 (or, equivalently, by Reformulation 2.2.1) with the description
of Theorem 1.1.4 via equivariant connections.

Theorem 2.3.1. Let .V; W�; F 0�
; F 00�

/ 2 MHSC, and .E;r/ be the corresponding
G2

m-equivariant bundle with connection in A2. Then, under the identification E0 D
gr��

.V / given by (1.4.1), the Deligne operator

ı W E.0;0/ D V
�� ! V

�� D E.0;0/

is recovered as the holonomy of r along the boundary of the triangle with vertices
.0; 0/, .�1; 0/, .0;�1/.
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Proof. We realize the bundle E explicitly by a patching function. We represent the
punctured projective plane as the union of two affine planes:

{P2
0 D {P2 � {P0

F 0F 00 D {A2
F 0 [ {A2

F 00 ;

where

{A2
F 0 D Spec CŒ	0; 	1�; 	0 D v0=v2; 	1 D v1=v2;

{A2
F 00 D Spec CŒ
0; 
2�; 
0 D v0=v1; 
2 D v2=v1;

are the affine charts centered at the points {P0
WF 0 and {P0

WF 00 . We are interested only

in the restriction E0 of E to {P2
0 , as points of A2 correspond to lines contained in {P2

0 .
The restriction of the Rees bundle E to {A2

F 0 is just the Rees bundle on A2 corre-
sponding to the pair of filtrations W , F 0; see [14], 2.6.1. In other words, this is the
bundle corresponding to the CŒ	0; 	1�-module

MF 0 DL
i;j

.Wi \ F 0�j /.V / 	 i
0	

j
1 � V Œ	˙1

0 ; 	˙1
1 �:

Note that W�, F
� are simultaneously split by the first bigrading .V

p;q
F 0 / from (2.1.1),

so by (2.1.3) we can identify MF 0 with a free module as follows:

MF 0 DL
i;j

L
pCq�i
p��j

V
p;q

F 0 	 i
0	

j
1 D

L
p;q

V
p;q

F 0 ˝ 	
pCq
0 	

�p
1 CŒ	0; 	1�:

In other words, we have the trivialization

�F 0 W gr��

.V /˝CŒ	0; 	1�!MF 0 ;

�F 0.vpq ˝ f .	0; 	1// D a�1
F 0 .vpq/˝ 	

pCq
0 	

�p
1 f .	0; 	1/; vp;q 2 grp;q.V /:

(2.3.2)

Here a�1
F 0 is the inverse of the isomorphism induced by the splitting .V

p;q
F 0 /, see

(2.1.4).
Similarly, the restriction of E to {A2

F 00 is the Rees bundle on A2 corresponding to
W , F 00, so it corresponds to the CŒ
0; 
2�-module

MF 00 DL
k;l

.Wk \ F 00�l/.V /
k
0
l

2 D
L
k;l

L
pCq�k

q��l

V
p;q
xF 
k

0
l
2;

where we now used the second splitting in (2.1.1). So we get a trivialization

�F 00 W gr��

.V /˝CŒ
0; 
2�!MF 00 ;

�F 00.vpq ˝ g.
0; 
2// D a�1
F 00.vp;q/˝ 


pCq
0 


�q
2 g.
0; 
2/:

(2.3.3)

This means that we have glued E0 out of two trivial bundles, each with fiber gr��
.V /.

Let us view a point 	 D .	0; 	1/ 2 {A2
F 0 with both coordinates nonzero as an element
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of the torus G2
m. Let 	 7! �.	/ be the torus action on gr��

.V / corresponding to the
bigrading. In coordinates 	0; 	1 it has the form

�.	/.vp;q/ D 	
pCq
0 	

�p
1 vp;q; vp;q 2 grp;q.V /:

Writing now the identification of these two bundles on {A2
F 0 \ {A2

F 00 , i.e., expressing
the 
’s through the 	’s and accounting for the monomial factors in (2.3.2) and (2.3.3),
we find straightforwardly:

Proposition 2.3.4. The patching function ˆ D ��1xF �F of E0 with respect to the above
trivializations has the form

ˆ.	/ D �.	/�1ı �.	/:

We now prove Theorem 2.3.1. Recall that each point T D .t1; t2/ 2 A2 corre-
sponds to a line

�T D fv0 C t1v1 C t2v1 D 0g � {P2
0 :

Given two distinct points T , T 0, we denote by ŒT; T 0� the straight line segment joining
them. Since E is trivial on each �T , the restriction map

RT T 0 W ET D H 0.�T ; E/! E�T \�T 0 D H 0r.ŒT; T 0�; E/

is an isomorphism. By general properties of the Radon–Penrose transform (cf., e.g.,
[17], p. 377), the holonomy along ŒT; T 0� is found as

HT T 0 D R�1
T 0T BRT T 0 W ET ! ET 0 :

Now notice that �.0;0/ D {P1
W , while �.�1;0/ is the line fv0 D v1g joining the points

{P0
WF D Œ0 W 0 W 1� and Œ1 W 1 W 1�. Similarly, �.0;�1/ is the line fv0 D v2g joining
{P0

W xF D Œ0 W 0 W 1� and Œ1 W 1 W 1�. By Proposition 2.3.4, the value of the patching
function ˆ.	/ at the point 	0 D 	1 D 1, which is the same as Œ1 W 1 W 1�, is equal to ı.
This implies:

Lemma 2.3.5. If we identify H 0.�.�1;0/; E/ and H 0.E; �.0;�1/; E/ with gr��
.V /,

using the trivializations �F 0 and �F 00 , then the composite isomorphism

H 0.�.�1;0/; E/
R.�1;0/;.0;�1/���������! EŒ1W1W1�

R�1
.0;�1/;.�1;0/���������! H 0.�.0;�1/; E/

is identified with ı.

The lemma implies Theorem 2.3.1 since with respect to our identifications the
holonomies along the two other sides of the triangle are equal to 1.
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2.4. Equivariant connections in coordinates. Let V
�� be a finite-dimensional bi-

graded C-vector space, and let zV �� be the corresponding G2
m- equivariant vector

bundle on A2. As a vector bundle, it is trivial: zV �� D V
�� ˝ OA2 , while the G2

m-
action is given by

.�1; �2/.vpq ˝ f .t1; t2// D t
p
1 t

q
2 vpq ˝ f .�1t1; �2t2/; vpq 2 V p;q:

Lemma 2.4.1. Every G2
m-equivariant vector bundle on A2 is equivariantly isomor-

phic to a bundle of the form zV ��.

Proof. It is well known that every G2
m-equivariant vector bundle on A2 is the Rees

bundle corresponding to two filtrations; see, e.g., [14], (2.5.3), Proposition 14. Our
statement follows from the fact that any two filtrations can be simultaneously split by
a bigrading, see, e.g., [14], (2.1.3), Lemme 1.

Proposition 2.4.2. Any G2
m-invariant connection in zV �� has the form

r D d C�; � D P
p;q�1

Ap;qt
p�1
1 t

q
2 dt1 C Bp;qt

p
1 t

q�1
2 dt2;

where d is the standard flat connection of the trivial bundle zV �� and Ap;q , Bp;q are
endomorphisms of V

�� of bidegree .�p;�q/.

Proof. The space of d -covariantly constant (i.e., constant) sections of zV �� is preserved
by the action G2

m (although individual elements of this space may not be). Next, the
datum of any connection at a given point x 2 A2 is given by the subspace Cx in the
space of germs of sections near x which are covariantly constant up to the first order
of tangency. Looking at the trivial connection d , we see, just as for global sections,
that the action of � 2 G2

m takes the subspace Cx into the subspace C�.x/. This means
that d is in fact a G2

m-invariant connection in zV ��. Therefore any other invariant
connection has the form d C �, where � is a global 1-form on A2 with values in
End. zV ��

/, which is G2
m-invariant, i.e., has total degree 0. The sum in the proposition

is nothing but the general shape of such a 1-form.

We denote by

Wn.V
��

/ D L
pCq�n

V p;q; Wn. zV ��
/ DCWn.V

��
/

the weight filtration of the bigraded space V
�� and of the associated bundle. Then each

connection in Proposition 2.4.2 preserves Wn. zV ��
/ and induces the trivial connection

on the quotients.
Isomorphisms among connections in Proposition 2.4.2 which induce the identity

on the quotients of the weight filtration correspond to gauge transformations

� 7! g�1dg C g�1�g; g D g.t1; t2/ D P
p;q�0

Cp;qt
p
1 t

q
2 ; C0;0 D 1; (2.4.3)
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where Cp;q is an endomorphism of V
�� of bidegree .�p;�q/.

Proposition 2.4.4. Each equivalence class of connections as in Proposition 2.4.2
with respect to transformations (2.4.3) contains a unique connection satisfying

Ap;q C Bp;q D 0 for all p; q:

The proof is easy, by induction on the length of the weight filtration.

Remark 2.4.5. The condition in Proposition 2.4.4 is a particular case of the so-called
Fock–Schwinger gauge condition in physics, which for a connection

r D d CP
A�.t1; : : : ; tn/dt�

in a trivial bundle over Rn or Cn reads:

P
�

t�A�.t1; : : : ; tn/ D 0:

2.5. A different set of generators of the Lie algebra L. We now have two ways
of describing a complex mixed Hodge structure .V; W�; F 0�

; F 00�
/ with fixed weight

quotients grW
�

.V / D V
��. The first one is by means of the Deligne operator ı or,

equivalently, of the components Dp;q , p; q � 1, of D D log.ı/. The second one is
by means of an equivariant connection, which, by Proposition 2.4.4, we can uniquely
represent by the gauge potential

� D P
p;q�1

Ap;q.t
p�1
1 t

q
2 dt1 � t

p
1 t

q�1
2 dt2/;

where the Ap;q satisfy the same homogeneity conditions as the Dp;q and, apart from
these conditions, can be taken arbitrarily. The connection r D d C� is trivial along
the coordinate axes ti D 0, so Theorem 2.3.1 gives the following relation between
the Dp;q and the Ap;q:

D D P
p;q�1

Dp;q D log P exp
Z .0;�1/

.�1;0/
�:

Here we used the notation P exp
R

(path-ordered exponential) for the holonomy of a
connection. This implies the following.

Proposition 2.5.1. There exist universal relations

Dp;q D .�1/pCq
�

pCq
p

�
Ap;q C Sp;q.fAp0;q0 j p0 < p; q0 < qg/;

where Sp;q are Lie polynomials with rational coefficients in the lower Ap0;q0 , biho-
mogeneous of bidegree .�p;�q/.



338 M. Kapranov

To prove the proposition, we repeat the above reasoning in the “universal” situa-
tion. Consider the free bigraded Lie algebra

L0 D FLief p̨;q j p; q � 1; deg. p̨;q/ D .�p;�q/g;
similarly to the one in Reformulation 2.2.1, and let L0�n be the subalgebra generated
by the p̨;q with pCq � n. Let Rn be the completed universal enveloping algebra of
L0�n, i.e., the algebra of noncommutative formal power series in the p̨;q , pCq � n.
We then have a connection on A2 with values in Rn:

r D d C !; ! D P
pCq�n

p̨;q.t
p�1
1 t

q
2 dt1 � t

p
1 t

q�1
2 dt2/:

The holonomy of this connection along the segment Œ.�1; 0/; .0;�1/� is then a well-
defined element of Rn, and we consider its logarithm z and the bihomogenous com-
ponents zp;q of z:

z D P
p;q�n

zp;q D log P exp
Z .0;�1/

.�1;0/
!

Since z is a primitive element, it is a Lie series in the p̨;q; p C q � n. By degree
considerations, each zp;q is a Lie polynomial. Now, modulo the commutators, there
is no difference between the path ordered exponential and the usual exponential of
the integral, so we have

z 	
Z .0;�1/

.�1;0/
! D P

pCq�n
p̨;q

Z 0

�1
�tp�1.�1 � t /q�1dt;

whence the claim.

We can view the variables zp;q as the generators of the free Lie algebra L from
Reformulation 2.2.1. So taking the logarithm of the holonomy defines a homomor-
phism

L! L0; zp;q 7! .�1/pCq
�

pCq
p

�
p̨;q C Sp;q.f p̨0;q0 j p0 < p; q0 < qg/;

which, because of its triangular form, is an isomorphism. In particular, the p̨;q can be
expressed back through the zp;q and provide an alternative system of bihomogeneous
generators of L.

Remark 2.5.2. The generators p̨;q essentially coincide with the generators intro-
duced by Goncharov [8] starting from totally different principles. In fact, the main
feature in Goncharov’s approach to mixed Hodge structures is a connection on the
affine line A1 (called the “twistor line” in [8]) whose holonomy along Œ0; 1� is equal
to the Deligne operator ı. In our approach, this connection appears as the restriction
of a G2

m-equivariant connection from A2 to the affine line t1 C t2 D �1.
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2.6. Geometric interpretation of L. We would now like to give a different inter-
pretation of the bigraded free Lie algebra L. Namely, we observe that L can be
identified with the commutant of the free Lie algebra on two generators.

To be precise, let A be a C-vector space, and let

FLie.A/ D L
d�1

FLied .A/

be the free Lie algebra on A graded by the degree of commutator monomials, i.e., by
putting A in degree 1 and requiring that the bracket be compatible with the grading.
Assume that A is finite-dimensional. Then the algebraic group GL.A/ acts on FLie.A/

by Lie algebra automorphisms. We are interested in the action on the commutant

ŒFLie.A/; FLie.A/� D FLie�2.A/:

This commutant, considered as an abstract Lie algebra, is free. Indeed, by the
Shirshov–Witt theorem ([15], Ch. 2) any subalgebra of a free Lie algebra is free.
However, there is no canonical choice of free generators for the commutant. For
different choices the “spaces of generators” are identified with each other via the
identification with the first homology space (“indecomposable elements”)

H Lie
1 .FLie�2.A/; C/ D FLie�2.A/=ŒFLie�2.A/; FLie�2.A/�: (2.6.1)

In other words, if B � FLie�2.A/ is a graded subspace, then the following are
equivalent:

(1) The natural map FLie.B/! FLie�2.A/ is an isomorphism, so B is a space of
free generators;

(2) The projection B ! H Lie
1 .FLie�2.A/; C/ is an isomorphism.

The first homology space (2.6.1) was identified, as a GL.A/-module, by Reute-
nauer ([15], (8.6.12)). His result reads:

H Lie
1 .FLie�2.A/; C/ D L

d�1

†d;1.A/;

where †d;1 is the Schur functor (irreducible representation of GL) corresponding to
the Young diagram .d; 1/. It is also well known (see, e.g., [9], Proposition 14.2.2)
that as a GL.V /-module,

L
d�1

†d;1.A/ D �
2;cl
pol .A�/

is just the space of closed polynomial 2-forms on the affine space A�.
Now assume that A D C2 is 2-dimensional, and t1, t2 form the standard basis of

A. We can consider ti as a linear function on A�. Then all 2-forms are closed, so a
basis of �

2;cl
pol .A�/ is formed by the monomials

wp;q D t
p�1
1 t

q�1
2 dt1dt2; p; q � 1:
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If we equip FLie.C2/ with the bigrading starting with

deg.t1/ D .�1; 0/; deg.t2/ D .0;�1/;

and then restrict this bigrading to FLie�2.C2/, then wp;q has the same bidegree as
the generator zp;q 2 L, namely .�p;�q/. So there is a graded isomorphism of Lie
algebras

� W L! FLie�2.C2/:

There is, however, a choice in constructing such a �, which is a choice of lifting
of each wp;q to an element �.zp;q/ of FLie�2.C2/. One possible way to fix these
liftings is by putting

�.zp;q/ D Œt2; Œt2; : : : ; Œt2; Œt1; Œt1; : : : ; Œt1; t2� : : : � D ad.t2/q�1.ad.t1/p.t2//:

2.7. L as a fundamental Lie algebra. It was further shown in ([10], (4.3)), that
for any finite-dimensional A as before, the Lie algebra FLie�2.A/ is acted upon not
just by GL.A/ but by the group of formal changes of coordinates in A, i.e., by

Aut CŒŒs1; : : : ; sn�� if A� D
nL

iD1

C � si :

This group is pro-unipotent, while FLie�2.A/ is a discrete, infinitely generated Lie al-
gebra. The action, when restricted to any finitely generated subalgebra in FLie�2.A/,
factors through a finite-dimensional unipotent quotient.

Alternatively, this means that to any smooth n-dimensional algebraic variety X=C
and any point x 2 X there is a naturally associated fundamental Lie algebra P .X; x/

which is isomorphic to FLie�2.Cn/ but not canonically. Any choice of a formal
coordinate system near x gives rise to an isomorphism between the two. It was also
shown that the first cohomology of P .X; x/ is naturally identified as follows:

H 1
Lie.P .X; x/; C/ D y�2;cl

X;x : (2.7.1)

Here the right-hand side is the space of formal germs of closed 2-forms on X near x.
Further, there is a “nonabelian” version of (2.7.1), which was proved in [10]. Let

g be any complex Lie algebra. Then H 1
Lie.g; C/ is the same as the group of isomor-

phism classes of 1-dimensional representations of g, with the operation induced by
tensor product. So we denote by Rep.g/ the tensor category of finite-dimensional
representations of g. Then we have an equivalence of tensor categories

Rep.P .X; x// ' bBunr.X; x/;

where the right-hand side is the category of formal germs of vector bundles with
connections on X near x; see [10], Theorem 4.4.3. This equivalence is natural with
respect to maps of manifolds preserving base points, in particular, to any algebraic
group G acting on .X; x/.
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We now specialize to X D A2, with G D G2
m acting diagonally. We get that the

category of bigraded representations of P .A2; 0/ D L is equivalent to the category
of G2

m-equivariant objects in bBunr.A2; 0/. Now, an equivariant formal germ of a
connection on A2 near 0 must be a polynomial one by degree reasons. So the latter
category is identified with Bunr.A2IG2

m/. This provides an alternative way to relate
our description of MHSC with Theorem 2.1.5.
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