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Abstract. The aim of this paper is to provide a unifying categorical framework for the many
examples of para-(co)cyclic modules arising from Hopf cyclic theory. Functoriality of the
coefficients is immediate in this approach. A functor corresponding to Connes’s cyclic duality
is constructed. Our methods allow, in particular, to extend Hopf cyclic theory to (Hopf)
bialgebroids.
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Introduction

Cyclic cohomology extends and unifies cohomology theories like de Rham cohomol-
ogy and Lie algebra cohomology of matrices. It has applications e.g. in homological
algebra, algebraic topology, Lie algebras, algebraic K-theory and so non-commutative
differential geometry.

The foot-stone in cyclic cohomology theory is a so called cocyclic object, i.e.,
a cosimplicial object equipped with an isomorphism at each grade n, roughly im-
plementing a cyclic permutation of the coface and codegeneracy morphisms. In
particular, the (n + 1)st power of this cocyclic morphism is required to be the iden-
tity. The study of cocyclic objects, or a quest of their examples, can be divided to two
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steps. First one can deal with a more general structure, called a para-cocyclic object,
obtained by relaxing the requirement about the (n + 1)st power of the cocyclic mor-
phism at grade n to be trivial. Truly cocyclic subobjects or quotients of para-cocyclic
objects are then studied as a subsequent step.

There are many known examples of (para-)cocyclic objects, relevant for various
purposes. A large family of examples, occurring as symmetries in non-commutative
differential geometry, is associated to (co)module (co)algebras of bialgebras. The
first example of this kind appeared in [9] where it was used by Connes and Moscovici
to give a geometrical interpretation of the non-commutative Chern-character. Further
examples of para-cocyclic objects, associated to (co)module (co)algebras of Hopf al-
gebras were constructed by Hajac et al. in [12], where also non-trivial coefficients
provided by (co)modules of the Hopf algebra were introduced. As a most important
achievement, also criteria (on the coefficients) for the existence of truly cocyclic sub-
objects and quotients were found. These constructions were extended to bialgebras
(extending Hopf algebras) by Kaygun in [16] and [17]. A new type of coefficients,
so-called contramodules, was proposed by Brzeziniski in [5]. In this way, currently
there are known eight families of para-cocyclic objects associated to bialgebras: A
cosimplicial object can be constructed from a module algebra or a comodule algebra,
or from a module coalgebra or a comodule coalgebra A (yielding four possibilities),
using either a functor of the form A ® (—) or a functor of the form Hom (4, —) (dou-
bling the number of examples). In each case there turns out to be an appropriate
choice of the coefficients resulting in a para-cocyclic structure.

Dually to (para-)cocyclic objects, one may consider (para-)cyclic objects, i.e.,
(para-) cocyclic objects in the opposite category. Using bialgebras, there can be
constructed again eight families of examples.

Asitwas observed by Connes in [8], the category of cyclic objects and the category
of cocyclic objects in a given category are isomorphic. This isomorphism, called
cyclic duality, is not known to extend to the categories of para-cyclic and para-
cocyclic objects only to their appropriate subcategories. These (full) subcategories
have those objects whose para-(co)cyclic morphisms are isomorphisms at each grade,
cf. Khalkhali and Rangipour’s work [18].

For para-(co)cyclic objects associated to (co)module (co)algebras of bialgebras,
the para-(co)cyclic morphisms are not isomorphisms in general. They are isomor-
phisms, however, if the bialgebra in question is a Hopf algebra with an invertible
antipode. In this case the eight families of associated para-cocyclic objects and the
eight families of para-cyclic objects turn out to be pairwise related by cyclic duality.

The aim of this paper is to provide a general construction of para-(co)cyclic objects,
including in particular existing constructions in terms of bialgebras together with their
generalizations to bialgebroids, cf. [10]. We do not investigate here, however, the
existence of truly (co)cyclic subobjects or quotients.

An important antecedent work of similar aims is Kaygun’s paper [17], where a
universal construction of para-(co)cyclic objects, including examples from bialgebras,
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was presented. The construction in this work is built on monoids and comonoids in
symmetric monoidal categories. Therefore, while it is perfectly suitable to describe
(co)module (co)algebras of bialgebras, it has to be generalized in order to be able to
cope with bialgebroids over non-commutative base algebras. Such a generalization
(under the names admissible septuple and its transposition map) was proposed in our
previous work [4]. In Section 2 of the current paper we introduce a category in which
admissible septuples and their transposition maps are special objects. This newly
introduced category + comes equipped with a functor Z* from # to the category of
para-cocyclic objects in the category of functors. As a consequence, any object in
induces a functor from a category (of coefficients) to the category of para-(co)cyclic
objects in another category (usually the category of modules over a commutative
ring). Thus the resulting construction of para-(co)cyclic modules is functorial for the
choice of coefficients.

Behind the construction of the above category # there are some 2-categorical
considerations. Consider an abstract 2-category 7 with a single O-cell o, a 1-cell
t:0 — oand 2-cells n: 0 = t and w: tt = t,suchthat wont = ¢ = po
tnand o ut = wotu (ie., such that (¢, u,n) is a monad in 7). A monad
(T,m,u) on a category M can be described then as a 2-functor F from J to an
appropriate 2-category Cat of (some) categories, functors and natural transformations,
such that Fo = M, Ft = T, Fu = m and Fn = u. A lax natural transformation
between 2-functors F, F': T — Cat is precisely the same as a monad morphism
(Ft, Fu, Fn) — (F't, F'j, F'n) in the sense of [23] (for a review see Section 1
below). Extending this picture, we may consider an abstract 2-category § of three 0-
cells o, d and c, with two monads on o related by a distributive law ¢, together with a
so-called S (¢, c)-algebrain S (0, c) anda $ (d, ¢)-algebrain S (d, 0). (For areview of
algebras over distributive laws in [7] see Section 1 below.) The objects in our category
A are 2-functors § — Cat and the morphisms are lax natural transformations between
them. In Section 3 we collect eight families of examples of objects in + associated
to bialgebroids.

A dual construction in Section 4 provides us with another category 8B, admitting a
functor Z . from B to the category of para-cyclic objects in the category of functors.
In Section 5 we construct eight families of examples of objects in B in terms of
bialgebroids.

In Section 6 we investigate the natural question how Connes’ cyclic duality func-
tor (more precisely its extension ~ to the categories of para-(co)cyclic objects with
invertible para-(co)cyclic morphisms at each grade) lifts to a functor = between
appropriate subcategories of /4 and 8B, such that Z, o~ =~ o Z*. Behind this lifting
there are liftings of (co)monads.

In Section 7 we show that the examples associated to (co)module (co)algebras
of a Hopf algebroid with a bijective antipode, belong to the subcategories of # and
B on which the lifted cyclic duality functor = is defined. We also check that these
examples are pairwise related by the functor =
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The paper contains an Appendix, summarizing some facts about modules, comod-
ules and contramodules of bialgebroids and Hopf algebroids, used to construct the
examples in the paper.

Notation. Composition of functors and the corresponding composition of natu-
ral transformations is denoted by juxtaposition. That is, for consecutive functors
F:€ - Dand G: D — &, the composite is denoted by GF, with object map
X — GFX. For endofunctors T: € — €, we also write TT = T2. For natural
transformationsv: F — F'andw: G — G’, the value of v at an object X is denoted
by vX. Moreover, Gv is a natural transformation GF — GF’ whose value at X is
given by G(v X ) — written simply as Gv X . Similarly, wF is a natural transformation
GF — G'F,withvalue at X givenby w(FX) = wFX. The composition of consec-
utive natural transformations is denoted by o. The identity morphism of any object X
is denoted by the same symbol X . In order to simplify some computations, we shall
use the string representation of functors and their natural transformations. Through-
out this paper, the composition of functors is represented by horizontal juxtaposition
of strings, the functor acting first being represented by the rightmost string. A natural
transformation Fj ... F, — Gy ... Gy, will be represented as a ‘microchip’ with n
inputs Fy,..., F, atits top and m outputs Gy, ..., Gy, at its bottom. The identity
natural transformation of a functor F will be represented just as a string, without
any box, as in the first diagram. For a natural transformation v: F — F’, we draw
Gv: GF — GF' and vH : FH — F'H as in the second and the third pictures.

F G F F H Fy 5 F3 F G F G
Idp = Gv = vH = (v) =
F G F' F' H GiLy L, G G

The composition of natural transformations is represented by vertical juxtaposition of
the corresponding ‘layers’. The natural transformation acting first is represented by
the top layer. Hence if translating diagrams to formulae, we have to read our diagrams
from the bottom to the top and from left to right: For example, let us consider natural
transformations

Up: K1H2—>L1L2, u2:G2H1—>K1,
us: G3F2F3 g H1H2, Uy Fl —> G1G2G3.

Then the fourth diagram of the above picture is the string representation of the natural
transformation

G]M] o G]M2H2 o G1G2M3 o M4F2F3.
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In this notation, naturality of morphisms is visualized by their behaviour as ‘pearls’
on the strings. That is, those boxes which do not have common ingoing or outgoing
strings, can be freely moved above or below each other, cf. the last equality in the
above figure.

The above diagrammatic notation is used more generally in any 2-category: 1-
cells are represented by vertical strings, their domains corresponding to the surfaces
on their right and codomains corresponding to the surfaces on their left. 2-cells are
represented by boxes, with domains represented by ‘incoming legs’ at their top and
codomains represented by ‘outgoing legs’ at their bottom. Horizontal and vertical
compositions in a 2-category are represented by horizontal and vertical juxtapositions
of such diagrams. Diagrams like the rightmost one above, come from the middle four
interchange law.

Note that in the literature the dual diagrammatic notation is used equally fre-
quently. In that case, our strings representing 1-cells are replaced by the orthogonal
lines — hence surfaces on the sides of the original lines are replaced by source and
target points of the new orthogonal lines; and source and target points of the original
lines are replaced by surfaces on the sides of the new orthogonal lines. In this no-
tation 2-cells are represented by labels of the faces surrounded by their domain and
codomain 1-cells. For instance the 2-cell in the second figure above is represented as

Though both diagrammatic notations contain precisely the same information, in this
paper we prefer to work with string diagrams.

1. ®-module functors and their morphisms

In this section we recall some notions from category theory, the constructions of the
later sections are built on.

The following notions are introduced in [23].

Definition 1.1. A monad on a category M is a triple (T, m,u), where T: M — M
is a functor and m: T2 — T and u: M — T are natural transformations, called
the multiplication and unit, respectively, which satisfy the last two (associativity
and unitality) conditions in the following figure. (Our string representations for the
multiplication and the unit of a monad are introduced in the first two equalities in the
same figure.)
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T T TTTTTT

=Y e Y

T T T T T

A morphism from a monad (7’,m’,u’) on M’ to a monad (7, m,u) on M is a
pair (F, f), where F: M’ — M is a functor and f: TF — FT’ is a natural
transformation which satisfies the following two relations.

TTF TTF

oW

F 1 F 1T FT’FT’

Monads and their morphisms constitute a category, with identity morphism
(M, T): (T,m,u) — (T,m,u) and composition law (G, g) o (F, f) = (GF,Gf o
gF), for monad morphisms (F, f): (T",m",u") — (T',m’,u’) and (G, g):
(T, m’,u")y — (T, m,u).

The category of monads and their morphisms is in fact isomorphic to a full sub-
category in the category of 2-functors and lax natural transformations. Let us denote
in any 2-category the horizontal composition by juxtaposition and the vertical com-
position by o. Consider the 2-category Cat whose 0-cells are some categories (whose
monads we are aiming to describe), 1-cells are functors and 2-cells are natural trans-
formations. (In order to avoid set theoretical problems arising from the paradox of
“the category of all categories”, some restrictions on the 0-cells are needed. Since
our most important examples in Sections 3 and 5 are (co)module categories, for our
purposes allowing only for small categories would be too restrictive. All of our exam-
ples are included, for example, if O-cells are all admissible or all locally presentable
categories, cf. [21]. Readers interested in other examples might choose other classes
(or in some cases even finite sets) of O-cells to define an appropriate (large) 2-category
Cat.) On the other hand, consider the 2-category freely generated by a monad. That
is, the 2-category 7 with a single O-cell o, a non-identity 1-cell 1: 0 — o and its
iterated horizontal composites, and 2-cells given by composites of the non-identity
2-cells n: 0 = t and u: tt = ¢, modulo the relations wont =t = potn and
nout =potu (fora diagrammatic representation see Definition 1.1); that is, such
that (¢, i, n) is a monad in 7. A 2-functor K: 7 — Cat is precisely the same as a
monad (K¢, K, Kn) on the category Ko.

A lax natural transformation K' — K, for 2-functors K, K': € — D between
any 2-categories € and D, is given by 1-cells F¢: K'C — KC in D, labelled by the
O-cells C of €, and 2-cells f,,: (Ky)Fc: — Fc(K'y) in D, labelled by the 1-cells
y: C’ — C in €. These data obey the following conditions.
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(i) Naturality of f; thatis, for any 2-cell I': y — § in €, the diagram
Sy /
(Ky)Fcr —— Fc(K'y)

(KT)F¢r l Fc(K'T)

(K8)For —2*~ Fe(K'S)

commutes.
(i) Compatibility of f with the horizontal composition; that is, for any 1-cells

c" L ¢’ L ¢, theidentity £, = £, (K'y") o (Ky) f holds.

c
(iii) Compatibility of f with the identity 1-cells; i.e., for any identity 1-cell C — C,
F
fc is equal to the identity 2-cell F¢ —— F.

A lax natural transformation between 2-functors K, K’: 7 — Cat is given then by
a functor F = F,: K'o — Ko and a natural transformation f = f;: (Kt)F —
F(K't). (The value of f on the other 1-cells t” for n # 1 is determined by the
compatibility conditions (ii) and (iii) with the horizontal composition and with the
identity 1-cell.) The naturality condition (i), applied to I' = w and I' = n, respec-
tively, yields precisely the same conditions in Definition 1.1 on a monad morphism
(F, f): (K't, K'u,K'n) - (Kt, K, Kn).

Definition 1.2. An algebra for a monad (T, m,u) on a category M, is a monad
morphism from the identity monad on the terminal category (of a single object and
its identity morphism) to (T, m, u), that is, a pair (M, ¢), where M is an object in M
and o: TM — M is a morphism in M such that the first two diagrams in

T, T
T2M —2>TM M ™' —2=TM
li la uMl \ Q/J/ le
™ %> M, ™ > M, M —2=um

commute. A morphism of T -algebras (M’, o') — (M, ¢)isamorphism¢: M’ — M
in M such that the third diagram above commutes. Algebras of a monad 7" and their
morphisms constitute the so-called Eilenberg—Moore category M7 .

Note that via composition on the right, a monad 7': M — M induces a monad
Cat(7,—) on the category Cat(.M,—), whose objects are functors of domain M
and whose morphisms are natural transformations. Symmetrically, there is a monad
Cat(—, T') acting by composition on the left on the category Cat(—, M), whose objects
are functors of codomain M and whose morphisms are natural transformations. In
order to distinguish algebras of these induced monads from 7 -algebras, we call an
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algebra of the monad Cat(7, —) a right T -module functor and we term an algebra of
the monad Cat(—, T') a left T -module functor.

Definition 1.3. Consider two monads (7, m;, u;) and (T, m,, u,) on the same cat-
egory M. A (monad) distributive law is a natural transformation ®: 7, 7T; — T;T;
such that the following four relations hold true.

TTTzTTTz TTsz .1 T, T, T,
r ’l“ CZ—‘l/I’ CZ—‘l lT CZ-‘l r l T‘lTr

The first two defining relations are equivalent to the fact that (77, ®) is a monad
endomorphism of (T, m,, u,).

Note that in the representation of @, the string corresponding to 7, crosses over the
other one. If ® is an isomorphism, then the string representation of ®~! is obtained
from that of ® by an up-down reflection.

As it was proven in [1], a distributive law ®: T, Ty — T; T, as in Definition 1.3
induces a monad structure on the composite functor 7; 7,., with the multiplication m
and unit u, whose string representations are as follows.

LTTT. NT0T

a (N

The following well-known lemma describes morphisms between such composite
monads.

(1.1)

Lemma 1.4. Let (T7,my, u;p), (Ty, m,,u,) be two monads on the same category M
and let (T}, m;,u?), (T),m..,u.) be two monads on M'. Let &: T,T; — T;T, and
O': T)T — T/T] be distributive laws. The following assertions are equivalent for
monadmorphisms (G, q;): (T/,mj, u})) — (T;,my,u;) and (G, qr): (T}, my, u;) —
(Tr,my, ur):

() (G, qi T} o T1q,) is a monad morphism Tl’Tr’ — T; Ty, cf (1.1).
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(i) The following identity holds true.
g T, TG

o J
= (1.2)
by

GTIT, GT|T,

Distributive laws (77, T, ®) as objects, with triples (G, gq;, q,) satistying the
equivalent conditions in Lemma 1.4 as morphisms between them, constitute a category
which can be regarded again as a full subcategory in the category of 2-functors and lax
natural transformations. To this end, consider now a 2-category £ of a single 0-cell o,
generated by two monads (¢, iz, n;) and (¢, 4y, nr) ono and a2-cell ¢ : t,t; — 1t
such that

Qourty =t 0Pt otrp, Pon =110,
and

Gotrpy = putrotipodty,  potrn = nt,

(for a diagrammatic representation see Definition 1.3), i.e., such that ¢ is a distributive
law. A 2-functor K: £ — Cat is the same as a pair of monads on the category Ko
related by adistributive law K ¢p. A lax natural transformation between such 2-functors
is the same as a pair of monad morphisms as in Lemma 1.4.

The following definition is quoted from [7].

Definition 1.5. Consider two monads (77, m;, u;) and (T}, m,, u,) on the same cat-
egory M and a distributive law ®: T,T; — T;T,. A ®-algebra is a pair consisting of
an object X of M and a morphism £: T, X — T; X such that the following diagrams
commute:

r2x T nnx 25 nnx e 12x X X
mrX\L lmlx urX\L \LWX
£
T, X : X, T,X —>T)X.

If T; is equal to the identity functor M then there is a trivial distributive law
® = T,. In this case P-algebras are the same as T,-algebras.

A distributive law ®: T, 7; — T;T,, between monads on M, induces a dis-
tributive law Cat(®, —): Cat(7;, —) Cat(T,,—) — Cat(T,,—) Cat(7;, —) between
monads on Cat(-M, —) and a distributive law Cat(—, ®): Cat(—, T,) Cat(—, T;) —
Cat(—, T7) Cat(—, ;) between monads on Cat(—, M) . Algebras for these induced
distributive laws are called right and left ®-module functors, respectively. Explicitly,
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a right ®-module functor is a pair consisting of a functor M: M — € (where € is
any category) and a natural transformation i : M 7; — M7, such that the following
relations hold true.

nnn nnhT

k) -
|

n 7. n 1T, n T,

A left ®-module functor is a pair, consisting of a functor Li: & — M (where D is
any category) and a natural transformation w: T, — T;Ll such that the following
relations hold true.

T.7.u T.T. U L U
= = (1.4)
[
T, U T, U U Tu

Once again, right or left ®-module functors can be described as 2-functors from
an appropriately chosen 2-category to Cat. Consider a 2-category R, with two 0-
cells o and ¢, generated by two monads (#;, u;, ;) and (¢, iy, ) on o related by a
distributive law ¢ : t,¢; — t;t,, and a further 1-cell p: 0 — c¢ together with a 2-cell
t: pt; — pt, such that

Lo ppi = plrotty o ppotty and o pn = pny

(for a diagrammatic representation see (1.3)), i.e., such that (p,t) is an R(¢, ¢)-
algebra in R (o, ¢). A 2-functor K from R to Cat can be described then as a pair of
monads on the category Ko, related by a distributive law K¢, together with a right
K¢-module functor (Kp, Kt). A 2-functor from the horizontal opposite of R to Cat
corresponds to a pair of monads related by a distributive law and a left module functor
for it.

Making use of the above observations, we can define morphisms between right
or left ®-module functors as lax natural transformations between the corresponding
2-functors. Explicitly, this yields the following.

Definition 1.6. Consider two monads (77, m;, u;) and (T,, m,, u,) on the same cate-
gory M and two monads (7}, m}, u}) and (T, m;, u;) on M'. Let &: T, T; — T; T,
and ®': T/T; — T, T, be distributive laws.
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A morphism from a right ®-module functor (M': M’ — €',i": ' T/ —
M'T}) to a right ®-module functor (M: M — €,i : NT; — NT;) is a quintuple
(G,q1,9r, A, ), where (G,q): (T’,m;,u;) — (T;,m;,u;) and (G,q,):
(T}, m,,u,) - (Tr,m,,u,) are monad morphisms, A: € — € is a functor and
7. MG — AM’ is a natural transformation such that (1.2) and the following relation
hold.

nnG nNnhLda

(1.5)

Similarly, a morphism from aleft ®'-module functor (L/': D’ — M', w’: T/ —
T,/U") to a left ®-module functor (U: H — M, w: T,U — T;U) is a quintuple
(G.q1.9r,V,0), where (G,qp): (T],mj,u)) — (T;,my,u;) and (G,q,):
(T),m,,u,.) — (Ty,my,u,) are monad morphisms, vV: O’ — D is a functor and
w: UV — GL is a natural transformation such that (1.2) and the following relation
hold.

.UV T,.UV
= l (1.6)
GT/vw GT/v

It is immediately clear by their definition as lax natural transformations that mor-
phisms of (left or right) ®-module functors can be composed in the appropriate sense.

2. Para-cocyclic objects and ®-module functors

In this section we construct a category +, which comes equipped with a functor to a
category of para-cocyclic objects in the category of functors. This implies that any
object of # induces a functor from a category D (of coefficients) to the category of
para-cocyclic objects in some category €.

Motivated by the constructions in Section 1, consider a 2-category § with three
0-cells o, ¢ and d, generated by two monads on o related by a distributive law ¢ and
an S (¢, c)-algebra in S(o0,c) and an §(d, ¢)-algebra in S(d,0). Explicitly, § has
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1-cells depicted in

t
. C),
dj}%c.
2%

2-cells are horizontal and vertical composites of identity 2-cells and the following
2-cells:

Witp =, mio=n, it St o=,
¢:tty = tity, L ptp = pty, W:lq=1q.

On these generating 2-cells one imposes three types of relations. The first one
oty e bt 4

# te b b bt b t, ‘.
l tl tr tr tr tr

means that (¢;, iy, n;) and (¢, ps, ;) are monads in §. One also imposes the relations

'r 'r r tl tl 'r tl tl l tr
l t'r‘ tl tr t
so that ¢ is a distributive law. Finally, the relations

Pttt Pttt t, t, @t t. 4 q q

QQ (

t; q t; q t; 4 tr 4

mean that (p, ) is S(¢, c)-algebra in S(o,c) and (g, @) is an S(d, ¢)-algebra in
S(d,o).

We define a category + as the opposite of the category of 2-functors from § to Cat
and lax natural transformations between them. Explicitly, this means the following.

Definition 2.1. The category < is defined to have objects (T;, T, ®, M, i, U, w),
where
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e T; and T, are monads on the same category M ;

e ®&: T, T; — T;T, is a distributive law;

e (M: M —€,i: NT; — NT,) is aright ®-module functor;
e (U: D — M,w: T,U— T;U) is aleft ®-module functor.

By a morphism (Ty, Ty, ®,1,i, U, w) — (T/, T/, ®,1,i’, L/, w') we mean a datum
(G’ q1,4qr, AN, T, V, C()) Such tha’[

* (G,q;,4r, N, ) is a morphism from the right ®'-module functor (17, ') to the
right ®-module functor (M, i) (cf. Definition 1.6);

* (G,q;,4r,V,w) is a morphism from the left ®'-module functor (L', w’) to the
left ®-module functor (U, w) (cf. Definition 1.6).

Recall that a para-cocyclic object in a category € consists of a family {Z"}, of
objects in €, for all non-negative integers 7, and morphisms

dk. zn=t 5 zn k. zntl L 7n fork =0,....n,

called coface and codegeneracy morphisms, respectively, satisfying cosimplicial re-
lations, together with so called para-cocyclic morphisms t" : Z" — Z" foralln > 0,
which satisfy

tnOdO — d", l‘nOdk — dk_lo[n_l, tnOSO — Snotn-i-lotn-i-l’ tnosk — sk_lot"+1

forallk = 1,...,n. A morphism (Z*,d*,s*,t*) — (Z’*,d"™*, s"*,t"*) is a family
of morphisms { f": Z" — Z"},>0 in €, compatible with the coface, codegeneracy
and para-cocyclic morphisms in the evident sense.

Definition 2.2. The category & is defined to have objects that are para-cocyclic
objects in the category of functors. That is, for any non-negative integer », a functor
Z": D — € together with natural transformations 4% : Z"~1 — 77 sk. zn+1
Zm" " Z" — Z" for 0 < k < n, satisfying the defining relations of a para-cocyclic
object.

Morphisms from (Z*: D — €,d*,s*,t*) to (Z™*: D' — €', d"™*, s™* ')
are triples (A, Vv, £*), where A: € — € and v: D' — D are functors and £*:
(Z*Vv,d*V, 5"V, t*V) — (AZ"™*, Ad"*, As"™, At"*) is a morphism of para-cocyclic
objects.

Interms of &: 7,7 — T;T, and q;: T;G — GTI’ , we define inductively some
new natural transformations: Let qlo be the identity natural transformation G — G
and ®° be the identity natural transformation 7, — 7. Put g} := ¢; and ®' := .
For every n > 1 we now define ®": T, T — T/'T, and q;': T/'G — GTI’" by
" = 7" '® o &7 and q; = c]lTl’"_1 o T;q;’_l, respectively. For these
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natural transformations we will use the string diagrams in the figure below.

" = //\// q =
j}n Tr G Tvl/n

Note that in this figure each stripe represents a bunch of n strings, each one repre-
senting the functor 7.

Theorem 2.3. There is a functor Z*: A — P with object map
(T;, T, ®,1: M —€,i,U: D — M,w) —~ (I‘ITI*HU: D — €, d* s* 7).
The functor Z* takes a morphism
(G.q1.9r N0,V 0): (T1, Tr, @,1,0, U, w) — (T}, T/, @', 11, i", U, w')
to the triple (A, V,E%). At every degree n > 0 and for 0 < k < n, the coface

morphisms d¥, the codegeneracy morphisms s¥, the para-cocyclic morphism " and
the morphism £" are given by the natural transformations below.

n thk/]—ln—ku n T TIT/HLU NI U

d* = [ sk =

N TFOTkU NI TR U

A H,Tlm,ﬂu,

Proof. The datum (M Tl*+1|_|, d*,s*) is obviously a cosimplex in the category of
functors, cf. [25]. Its para-cocyclicity is checked with the same steps in [4], Theorem
1.10. It remains to show that £* is a morphism of para-cocyclic objects. Its compati-
bility with the coface and codegeneracy morphisms follows by naturality and monad
morphism property of q;, see the following diagrammatic computations.

n le 7—‘ln—k ] \V M le 7—}71—k u V] mn le T T Tln—k U V] M T[lc T T Tln—k U Vi

A T,'Tl’le/T/"’k o T I}/sz/T/"fku’ oI T[,k T/Tl’"’ku’ oI T[,A i Tl,nfku,



A categorical approach to cyclic duality 495

Compatibility with the para-cocyclic morphisms is proved in the figure below.

n T 17" u v n T, 17" u v n T 17" u v n T, 17" u v

s : ™

A ﬂ/ Tvl/n zﬂl/ |_|/ A ﬂ/ Tvl/n 1}/ |_|/ A l_I, Tvl/n le/ LJ/ A l_l, Tvl/’ﬂ zwl/ U/

It follows by using naturality and (1.5) in the first equality, then applying (1.2) repeat-
edly in the second equality, and using in the last equality (1.6) together with naturality.
O

Corollary 2.4. Anyobject (T;, Ty, ®,M: M — €,i,U: D — M, w) of the category
A determines a functor from D to the category of para-cocyclic objects in €. The
objects of D play the role of coefficients for the resulting para-cocyclic object in €.

3. Examples from Hopf cyclic theory

In this section we list some examples of objects in the category +4 in Definition 2.1,
arising from Hopf cyclic theory (of bialgebroids, hence in particular of bialgebras).
They give rise to families of para-cocyclic objects in the category Mod-k of modules
over a commutative ring k. They extend examples in [13], [12], [16] and [5].

Let R be an algebra over a commutative ring k. The tensor product of two k-
modules will be denoted by ®. Regarding the regular R-bimodule R as a right
R® := R ® R°P-module, and regarding any R-bimodule as a left R°*-module, we
can define a functor R @ ge (—): R-Mod-R — Mod-k. Applying it to the R-module
tensor product of two R-bimodules M and N, it yields the so called cyclic R-module
tensor product. Throughout the paper, it will be denoted by

M@RNZ=R®Re(M®RN)'=\’M®ReN.
For finitely many R-bimodules {M;};—1,.. », we put
My ®gr My ®R -+ ®r My := (M1 Qg -+ ®r Mi—1) ®Re (M; QR -+- @r Mpy),

where the right-hand side yields the same k-module for any i = 1,...,n (defining
the 0-fold tensor product to be equal to R).

For a short review of modules, comodules and contramodules of a bialgebroid, we
refer to the Appendix. Throughout, actions in modules are denoted by juxtaposition
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and for coactions in comodules we use a Sweedler type index notation, with implicit
summation understood.

The first example of an object in the category # in Definition 2.1 arises from
Theorem 2.4 of [4].

Example 3.1. Let B be a left bialgebroid over a k-algebra L and A be aleft B-module
algebra. Then A4 is in particular an L-ring, with multiplication u: A ® A — A and
unit 7: L — A. An object in 4 is given by the following data:

e the monads 7 = A ®, (=) and T, = (=) ®, A on L-Mod-L, with monad

structures

p&r(—): TF =T, n®(=): L-Mod-L — T;
and

() ®Lu: T > T,, (=) ®Ln: L-Mod-L — T,
respectively;

« the trivial distributive law ® = A ®; (—) ®p A: T, T} — T;T,;

¢ the right ®-module functor (M,7), where M = L ®. (—): L-Mod-L — Mod-k
and
ip:A®L P —>PQLA a®Lpr pALa,

for any L-bimodule P;

¢ the left ®-module functor (U, w), where Li: B-Comod — L-Mod-L is the
forgetful functor and

wy: M@ A—>AQL M, m@Lar m_ya®rm

for any left B-comodule M with coaction m +— m[_1] ® m[q).

Applying the functor Z* in Theorem 2.3, we obtain a para-cocyclic object in
Mod-k for any left B-comodule M. At degree n, it is the k-module A®L"+1 ®; M.
Coface and codegeneracy maps are

dk(ao ®L aj @)L @L an—1 ®L m)
=ap®L QL a1 QL 14 ® ax QL -+ QL an—1 ®L M,
k -~ ~ ~ ~
§s"(ap ®r a1 QL -+ QL an+1 @L M)

=ao ®L " QL ak—1 QL rak+1 QL k42 QL *++ QL an+1 QL M
for k =0, ...,n. The para-cocyclic operator comes out as
t"(ap ®L a1 ®L -+ L ap QL M) = a1 QL -+ QL an L M[—11a0 QL M[q].

The next example is obtained from [4], Theorem 2.7.
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Example 3.2. Let B be a right bialgebroid over a k-algebra R and (A4, i, 7n) be a
right B-comodule algebra (hence in particular an R-ring). For the B-coaction on A,
use the notation a — al® @ g al'l. An object in 44 is given by the following data:

¢ thesame monads 7; = AQg (—) and T, = (—) Qg A on R-Mod- R, introduced
in Example 3.1 (replacing L by R);

e the trivial distributive law ® = A g (=) Qr A: T, T} — T; T;;

* the same right ®-module functor (17, i), introduced in Example 3.1 (replacing
L by R);

¢ theleft ®-module functor (U, w), where LI: Mod-B — R-Mod-R is the forgetful
functor and

wy: N Q®rA—> ARQr N, m®Rar—>a[O]®Rma[1],

for any right B-module N.

For any right B-module N, the corresponding para-cocyclic object in Mod-k is,
at degree n, A®®"*+1 & p N. Coface and codegeneracy maps are given by the same
formulae in Example 3.1 (replacing L by R and M by N). The para-cocyclic operator
has the form

t"(ap ®r a1 ®r - @R an ®rm) = ay g -+ Or an r al’ &g maf’.

In the following example, for a left R-module P, a right R-module Q and R-
bimodules C and D, the canonical isomorphisms

Hom_ g(C,Hom_ g(D, Q)) = Hom_ g(C ®g D, Q)

and
Hompg _(C,Hompg (D, P)) = Homg (D ®r C, P)

are suppressed.

Example 3.3. Let B be a right bialgebroid over a k-algebra R and (C, A, €) be a
right B-module coring (hence in particular an R-coring). An object in +4 is given by
the following data:

e the monads 7; := Hom_ gr(C,—) and 7, := Homg _(C,—) on R-Mod-R,
with monad structures
Hom_ g(A,—): T/ — T;, Hom_ g(e,—): R-Mod-R — T,
and
Homg _(A,—): T?> — T,, Homg,_(e,—): R-Mod-R — Ty,

respectively;
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¢ the distributive law

®: Hompg,_(C,Hom_ g(C,—)) = Homp r(C ®x C,—)
=~ Hom_ g(C,Homg —(C,—))

given by switching the arguments;

* the right ®-module functor (M,7), where M = Homg g(R,—): R-Mod-R —
Mod-k and

ip: Hompg gr(R,Hom_ gr(C, P)) = Homg r(C, P)
~ Hompg gr(R,Hompg _(C, P))

is the hom-tensor adjunction natural isomorphism for any R-bimodule P;

¢ the left ®-module functor (U, w), where LI: B-Ctrmod — R-Mod-R is the
forgetful functor and

wo: Homg _(C, Q) — Hom_g(C,Q), [ (c+— a(f(c—))),

for a left B-contramodule (Q, o).

For any left B-contramodule (Q, «), this yields a para-cocyclic object in Mod-k.
It is given by Homg g(C®R"*1 (), at degree n. Coface and codegeneracy maps
are

(d*o™ D) (co ®r c1 ®R -+ ®R Cn)

= 0" D(co ®r - ®R ck-1€(ck) R Cht1 ®R *** OR Cn),
(5D (co Qr 1 ®r -+ @R Cn)

= 0" D (o Qr - QR Ck—1 QR Alck) R Ckt1 R -+ OR Cn)

for ) € Homg g(C®&/*1 Q)andk = 0,...,n. The para-cocyclic map is equal
to

("™ (co ®r c1 ®R @R cn) = (@™ (cn(—) ®r o ORCI ®R*** ®R Cn—1)).

Example 3.4. Let B be a left bialgebroid over a k-algebra L and (C, A,€) be a
left B-comodule coring (hence in particular an L-coring), with B-coaction ¢ +—
c[-1] ®L ¢c[o]- An object in + is given by the following data:
* thesame monads 7; := Hom_ 1 (C,—)and 7, := Homg _(C, —) on L-Mod-L,
introduced in Example 3.3 (replacing R by L);
* the same distributive law @, introduced in Example 3.3 (replacing R by L);

¢ the same right ®-module functor (17, i), introduced in Example 3.3 (replacing
Rby L);
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¢ theleft ®-module functor (LI, w), where LI: Mod-B — L-Mod-L is the forgetful
functor and for any right B-module N,

WHN HOHIL,_(C, N) — Hom_,L(C, N), f g (C g f(C[O])C[_l] )

The cosimplicial structure of the para-cocyclic object in Mod-k, corresponding to a
right B-module N, is the same as in Example 3.3 (replacing R by L and Q by N).
The para-cocyclic map comes out as

(f"</’("))(00 ®LC1 L QL Cp) = 90(")(Cn[o] ®L o ®L €1 ®L *** ®L Cn—1)Cn[-1]-

Specializing the above four examples to bialgebras instead of bialgebroids, in all
of them the functors M become identity functors.

For an R-coring C, a C-bicomodule is an R-bimodule M, together with a right
C-coaction oM : M — M ®p C and a left C-coaction Mp: M — C ®p M such
that o™ is a left R-module map, Mp is a right R-module map and (Mo ®g C)ooM =
(C ®r o™) o Mp. Morphisms of bicomodules are right C -comodule maps as well as
left C -comodule maps. The category of C-bicomodules is denoted by C-Comod-C.

Example 3.5. Let B be a right bialgebroid over a k-algebra R and (C, A,€) be a
left B-comodule coring, hence in particular an L := R°P-coring. An object in 4 is
given by the following data:

e The monads 7; = C ®f (—) and 7, = (=) ®1 C on C-Comod-C. For a
C-bicomodule (M, Mp, oM), TIM = C ®; M is a C-bicomodule via the left
and right coactions

cQ@rmi> Alc)®.m and ¢ ®rm+— ¢ oM (m).
The monad structure of 7 is given by the multiplication and unit
C®Le®L M:TM — TiM and Mo: M — TyM.

Symmetrically, T, M = M ®; C is a C-bicomodule via the left and right
coactions

m Q¢ Mom)QRp ¢ and m Q¢ m L Alc).
The monad structure of 7} is given by the multiplication and unit
M®pe®,C:T?M - T,M and oM: M — T, M.
¢ The trivial distributive law & = C ® (—) ®, C.
* The right ®-module functor M: C-Comod-C — Mod-k given by the equalizer

L®LoM

MM — L &L M COLM=M®EC

L& Mo
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for any C-bicomodule M. The natural transformation i is given by the isomor-
phism
N =L®L(-)=(-)®LL=nT,.

¢ The left ®-module functor LI = (—) ®z C: Mod-B — C-Comod-C. For the
left B-coaction on C, introduce the index notation ¢ — ¢[71 ® R ¢l and for
the comultiplication in C write A(c) = ¢(1) ®L c(2). For any right B-module
N,UN = N ®p, C is a C-bicomodule via the left and right coactions

mQeyr c— C(l)[o] (273 I’)’lC(l)[_l] ®rcpy and mQpcr> mQ@pcq) QL ().
The natural transformation w: (—) ® 2, C ®1, C — C ®r, (—) ® C is given by
wym@Lc®Ld) =c®, m e d.

For any right B-module N, this yields a para-cocyclic object in Mod-k. At degree
n, itis givenby M(C®L"t1@; N, C) = C®L"T1®; N. Forevery0 < k <n—1,
the corresponding coface map is
d*(co ®L -+ ®L cn1 ®L m)
=co®L VL Ck—1 ®L Alck) ®L Ck+1 &L RL a1 ®L M,
while
d"(co®pL -+ ®L cu1 ®L m)

= CO(Z) ®L C1 @L e ®L Cn_l ®L C0(1>[0] ®L mco(l)[_l]'

If 0 < k < n, then the codegeneracy map sk is given by

s5(co ®L -+ ®L cny1 L m)

=Co®L " ®L Ck—1 QL Ck€(Ch41) ®L Ch12 QL *++ QL Cnt+1 L M.
The para-cocyclic map is

1"(co®L + ®L cn ®Lm) =1 ®L VL ¢n BL C<[)O] ®L mc([>_1]-

Example 3.6. Let B be a right bialgebroid over a k-algebra R and (C, A,€) be a
right B-module coring, hence in particular an R-coring. An object in +4 is given by
the following data:

* The same monads 7; = C ®g (—) and 7, = (—) ®g C on C-Comod-C,
introduced in Example 3.5 (replacing L by R).

* The trivial distributive law ® = C Qg (—) ®r C.

¢ The same right ®-module functor (11, i), introduced in Example 3.5 (replacing
L by R).
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* The left ®-module functor LI = (—) ® g C : B-Comod — C-Comod-C. For
a left B-comodule M, with coaction m +— ml™1 @ g m!%, using the notation
A(c) = c(1) ®r ¢(2), UM = M ®pg C is a C-bicomodule with left and right
coactions
mQ@Rc — C(l)m[_l] QRr m[o] QR C(2) and mQrcr—>mQR C(1) @R C(2)-

The natural transformation w: (=) g C @ C — C ®r (—) Qg C is given
by
wy(m @rc ®rd) = emt1 ®R ml0 Rrd.

For any left B-comodule M this determines a para-cocyclic object in Mod-k. At
degree n, it is given by M(C®r" 1 @ p M @ C) = C®r"*1 @ M. For every
0 <k < n — 1, the corresponding coface map is

dk(co ®r - Or Cne1 ®r M)
= o ®R - QR k-1 O Alck) ®R k1 R -+~ ®R Cam1 Qr M,
while
d"(co®R+* ®R Cn—1 ®r m)
= Co(2) ®rCI ®R - Or Cn1 R 00(1)771[_1] &g ml.
If 0 < k < n, then the codegeneracy map s¥ is given by
s¥(co ®r *++ ®r cny1 ®r M)
= o ®R - R k-1 OR Ck€(Ck11) OR Ch12 OR - R Cnt1 ®R M.
The para-cocyclic map is
1"(co®R ... QR Cr ®rRM) =1 R ... Or ¢n OR com™ @ g m®.

Restricting to the case when B is a bialgebra over k, this para-cocyclic module yields
a symmetrical version of [12], (2.1)-(2.4) (note the minor difference of using a left
or a right module coalgebra). In [12] additional assumptions are made on the left
comodule M under which a truly cocyclic quotient exists.

Example 3.7. Let B be a left bialgebroid over a k-algebra L and (A4, i, n) be a left
B-module algebra, hence in particular an L-ring. The following data define an object
in A:
* The monads 7; = Hom_ 1 (A, —) and 7, = Homy, (A4, —) on A-Mod-A. For
any A-bimodule X, 7; X = Hom_ 1 (A4, X) is an A-bimodule via

(a1 faz)(a) = a1 f(aza) fora,a;,a; € A, f € Hom_ (4, X).
The monad structure is given by

Hom_ 1 (A®L 1, X): TZZX —-T;X and X > T;X, x> [at> xa].
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Symmetrically, 7, X = Homp, (A4, X) is an A-bimodule via
(a1gaz)(a) = g(aay)ap fora,ay,az € A, g € Homy, (4, X).
The monad structure is given by
Homy —(n ®L 4, X): Ter —-T,X and X —> T, X, x> [arax].
The distributive law

®: Hom_ 1 (A,Homy _(A,—)) = Homg (A ®x A, —)
~ Homy,_(A,Hom_ 1 (4, —)).

The right ®-module functor M: A-Mod-A — Mod-k given for any A-bimodule
X by the equalizer

frlaraf(1)]
nX ——Homyg, (L, X) ————= Homg, (4, X).
frlamf(Dal

That is, M.X is the center of the A-bimodule X . The natural transformation i is
given by the isomorphism

MHom_ 1(A,—) = Homy, .(L,—) = MHomy — (A4, —).

The left ®-module functor LU = Homy,_ (A4, —): B-Ctrmod — A-Mod-A. For
any left B-contramodule (Q, o), UQ = Homy _(4, Q) is an A-bimodule via

(a1gaz)(a) = a(g((—az)aay)) fora,ai,ar € A, g € Homp (A, Q).

The map w: Homy _(A,Hom;, _(A4,—)) — Hom_ ;(4,Homy _(4,-)) is
given by

(wo(h))(a)(b) = a(h(b)(—a)) fora,b € A, h € Homy (A, Hom; (A4, Q)).

For any left B-contramodule (Q, ), this determines a para-cocyclic object in Mod-k.
It is given by MHom_ 1 (A®2"*! Homy (A4, Q)) =~ Homp (A®L"*! Q) at
degree n. For every 0 < k < n — 1, the corresponding coface map is

(d*e ™" D) (ao R -+ ®L an)

= <P(n_1)(ao ®L - ®L ax—1 QL kg1 OL k42 QL -+ QL an),

while

d"o" V) (ao ®L - ®L an)
= a(@" D ((—an)ao ®L a1 ®L -+ QL an-1)).
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If 0 < k < n, then the codegeneracy map sk is given by
(Kot (o ®L -+ ®1 an)
=" V(g ®L - ®L ax OL 14 ®L A1 ®L -+ OL an).
The para-cocyclic map is
("9 (@0 ®L -+ ®L an) = (9™ (~an ®1 a0 OL +++ ®L an—1)).

where ¢/) € Homp 1 (A®L/+1, Q).

This yields a non-commutative base version of the para-cocyclic module in [5],
p- 6. (In [5] additional assumptions are made on the left contramodule (Q, ) under
which a truly cocyclic subobject exists.)

Example 3.8. Let B be a left bialgebroid over a k-algebra L and (A, i, 7n) be a
right B-comodule algebra with B-coaction a > afg) ®L ai]. Then (A, u,n) is in
particular an R := L°P-ring. The following data determine an object in #A:

* The same monads 7; = Hom_ gr(A4, —) and 7, = Hompg (A4, —) on A-Mod-A4,
introduced in Example 3.7 (replacing L by R).

* The same distributive law ®, introduced in Example 3.7 (replacing L by R).

¢ The same right ®-module functor (11, i), introduced in Example 3.7 (replacing
L by R);

* The left ®-module functor LI = Hompg, —(A4,—) : Mod-B — A-Mod-A. For
any right B-module N, UN = Hompg (A, N) is an A-bimodule via
(ai1gaz)(a) = glazaar)asn) fora,ay,az € A, g € Homg, (A, N).

The map w: Hompg, —(A,Homg —(A,—)) — Hom_ gr(A4,Homg _(4,—)) is
given by
(wx (M) (a)(b) = h(b)(ag))ap)-

For any right B-module N, this determines a para-cocyclic object in Mod-k. At degree
n, it is given by MHom_ g(A®R"*! Homg (A4, N)) = Homg r(A®R"*1 N).
For every 0 < k < n — 1, the corresponding coface map is

(d*o" " DY(ag Qg -+ ®r an)

=" V(@) @R - @R Ap—1 ®R AkAk+1 OR dk+2 R - - OR An),
while

(d 9" V) (ao ®r -+ @R an) = 9"V (anjo)@0 @R @1 OR - ®R An—1)dn[1]-
If 0 < k < n, then the codegeneracy map s* is given by
(s*¢"*D)(ao @R -+ O an)

— (p("+1)(ao QR - QraAr QR 14 QR Ag+1 QR - QR ap).
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The para-cocyclic map is
(t"0™)(ao ®r -+ ®r an) = ¢ (an[0] ®R A0 R *** OR An—1)an[1]:

where /) € Homp g(A®RIT1 N).

This yields a non-commutative base version of the para-cocyclic module in [12],
(3.1)-(3.4). (In [12] additional assumptions are made on the right module N under
which a truly cocyclic submodule exists.)

4. Para-cyclic objects

Symmetrically to the considerations in Section 1 and Section 2, one can obtain another
category B together with a functor Z. from B to a category of para-cyclic objects in
the category of functors. Without repeating the details, in this section we summarize
the main steps.

Definition 4.1. A comonad on a category M is a triple (S, d, e), where S : M — M
is a functor and d: S — S? and e: S — M are natural transformations called
the comultiplication and counit, respectively. Their string representations are shown
in the first two pictures of the figure below. They satisfy the coassociativity and
counitality constraints expressed by the third and the fourth equalities in the same
figure.

A morphism from a comonad (S’,d’,e’) on M’ to a comonad (S, d,e) on M
is a pair (F, f), where F: M’ — M is a functor and f: SF — FS’is a natural
transformation which is compatible with the comultiplications and the counits in the
sense of the last two relations of the following figure.

41 4

S88§ §88

FS'S FS'S F F

Comonads and their morphisms constitute a category which is isomorphic to the
category of 2-functors and lax natural transformations, from the vertical opposite of
the 2-category 7 in Section 1 to Cat.

Definition 4.2. A coalgebra for acomonad S on a category M is a pair (M, @), where
M is an object in M and o: M — SM is a morphism in M which is coassociative
and counital in the evident sense.

A morphism of S-coalgebras (M’,0') — (M, o) is a morphism ¢: M’ — M
in M such that Sg o o' = g o ¢. Coalgebras of a comonad S and their morphisms
constitute the so-called Eilenberg—Moore category M.
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Via composition on the right, a comonad S: M — M induces a comonad
Cat(S, —) on the category Cat(M, —). Symmetrically, there is a comonad Cat(—, S)
on the category Cat(—, M). We call a coalgebra of the comonad Cat(S, —) a right
S-comodule functor and we term a coalgebra of the comonad Cat(—, S) a left S-
comodule functor.

Definition 4.3. Consider two comonads (S;,d;,e;) and (Sy, d,,e,) on the same

category M. A comonad distributive law is anatural transformation ¥: §;S, — S, 5;
such that the following equalities hold.

(L

SSlSl SSlSl Sy SySpS1 SpS:S)

r r l r

A comonad distributive law W: S;S, — S,8; as in Definition 4.3 induces a
comonad structure on the composite functor S; .S, , with comultiplication d and counit
e whose string representations are given in the figure below.

SiSr SISy

-

S 8:51S,  515.5; Sy

Definition 4.4. Consider two comonads (S7,d;, e;) and (Sy, d,,e;) on the same
category M and a comonad distributive law W: S;S, — S;S;. A W-coalgebra is
a pair consisting of an object X in M and a morphism &: S; X — S, X rendering
commutative the following diagrams.

3

SiX Sy X S X —t-8x
ld'X X i and lelx Erxl @.1)
s2x g5, x Yo 5,5 x 2 g2 X X.

Coalgebras of the comonad distributive law Cat(W, —) are called right V-comodule
functors. Consider two comonads (S;.d;, e;) and (S;, dy, e;) on the same category
M and two comonads (S/, el) and (S/,d/,e.) on M'. Let ¥: §;S, — S,
and W': §/S] — S5 be comonad distributive laws. A morphism from a right ¥’-

comodule functor (I‘I’: M — €'’ 'S — 1'S)) to aright ¥-module functor
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Mm: M — €,i: NS, — 1Sy is a quintuple (G, q;, qr, A, ), where A: E” —- €
is a functor, 7: M G — AN’ is a natural transformation, (G.q;): (S}.d].e;) —
(S1,d;,er)and (G, qr): (S),d], e.) — (S, dy,e;) are comonad morphlsms These
data are, in addition, subject to the following two conditions.

S S G S S G

g

GS.S GS.S ANTYS AT S

4.2)

Right W-comodule functors and their morphisms constitute a category which is iso-
morphic to the category of 2-functors and lax natural transformations, from the vertical
opposite of the 2-category R in Section 1 to Cat.

Symmetrically, a left W-comodule functor is a coalgebra for the comonad dis-
tributive law Cat(—, ¥). A morphism from a left ¥'-module functor (L/': O’ —
M, w' Sl’l_l’ — S/U) to a left W-module functor (U: & — M,w: S;U —
SyU) is a quintuple (G, q;. g, V,w), where (G,q;): (S].d].e;) — (S;.d;, e;) and
(G,qr): (S].d].e.) = (S, dy, e;) are comonad morphisms such that the first con-
dition in (4.2) holds, vV: &’ — D is a functor and w: U Vv — GL' is a natural
transformation such that the following relation holds.

S, U Vv S U v

4.3)

GS.uw GS U

Left W-comodule functors and their morphisms constitute a category which is isomor-
phic to the category of 2-functors and lax natural transformations, from the horizontal
and vertical opposite of the 2-category &R in Section 1 to Cat.

We can define a category 8B as the opposite of the category of 2-functors and lax
natural transformations, from the vertical opposite of the 2-category § in Section 1
to Cat:

Definition 4.5. The category B is defined to have objects (S;, Sy, ¥, M, i, U, w),
where

* S; and S, are comonads on the same category JM;

e WU: §;S, — S, 8 is a comonad distributive law;

e (M: M—€,i: NS, — nS;) is aright ¥-comodule functor;
e (U: D — M, w: S;U — S,U) is a left W-comodule functor.
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A morphism (S, S, W, N0, U w)  — (S8, W00 U w') is a datum
(G.q1.qr. N, 7, V, ) such that

* (G,q1,4r, N, ) is a morphism from the right ¥’'-comodule functor (1’,i’) to
the right W-comodule functor (M, 7);

* (G,q;.4r,V, ) is a morphism from the left ¥’-comodule functor (L, w") to
the left W-comodule functor (LI, w).

Recall that the opposite €°P of a category € has the same objects and morphisms
as €, but composition of morphisms is opposite to that in €. A para-cyclic object in
a category € is, by definition, a para-cocyclic object in €°P.

Definition 4.6. Objects of the category & are para-cyclic objects in the category of
functors. Morphisms from (Zy: D — €,dx, sx, 1) to (Z,: D' — €', d,, s, tl)
are triples (A, V,£&x), where A: € — € and V: D' — D are functors and
Ex: (ZuV,deV,5:V, 1) — (AZL, AL, ASL, AL,) is a morphism of para-cyclic
objects.

Dually to Theorem 2.3 the following holds.

Theorem 4.7. There is a functor Zs: B — P, with object map
(S S Wi M—>Ci,u: D - Mw) > (NS0 D — € de,se.ti).
The functor Z takes a morphism
(G.q1,qr, AT,V @) (S, S, W, 0,0, U w) — (87,8, 9, i, 1 w)
to the triple (A, V, £x). At every degreen > 0 and for 0 < k < n, the face morphisms

dy, the degeneracy morphisms s, the para-cyclic morphism t,, and the morphism &,
are given by the natural transformations below.

n sk sstu n sk s s*u nosy S u nsttu v

N .

. J
nosf st U n sksssy— u nos S u Astt
Corollary 4.8. Any object (S;, Sy, ¥,M: M — €,i,U: D — M, w) of the cate-

gory B determines a functor from D to the category of para-cyclic objects in €. The
objects of D play the role of coefficients for the resulting para-cyclic object in €.
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5. Examples from Hopf cyclic theory

In this section we present several examples of objects in the category B in Defini-
tion 4.5, similar to those we have seen in Section 3. Throughout this section the same
notational conventions are used as in Section 3.

The first example is obtained from [4], Theorem 2.9 (for the case of a bialgebra
see [17], Section 5.3).

Example 5.1. Let B be a left bialgebroid over a k-algebra L and (C, A, €) be a
left B-comodule coring (hence in particular an L-coring), with B-coaction ¢ >
c[-1] ®L C[o]- An object in the category B is given by the following data:

¢ the comonads §; = C ®7 () and S, = (—) ®z C on L-Mod-L, with comonad

structures

A®L(-): S — S}, €®L(—): S — L-Mod-L
and

(-)®LA: S, - S? (-)®L€: S, — L-Mod-L,
respectively;

* the trivial comonad distributive law ¥ = C ®1, (—) ®1, C;

¢ theright W-comodule functor (M, i), where M = L®p.(—): L-Mod-L — Mod-
k and for any L-bimodule P,

ip:P®L.C—>C® P, p®Lcr c®p;

e the left W-comodule functor (LI, w), where LI: B-Mod — L-Mod-L is the
forgetful functor and for any left B-module N,

wy: C®. N —>NQ®LC, cQ®rmi>c—m QL C[o]-

For any left B-module N, the corresponding para-cyclic object in Mod-k is given by
C®Ln*t1 @, N at degree n. Face and degeneracy maps are, fork = 0,...,n,

di(co ®L ¢1 ®L *+ R ¢n 1 M)

=co®L 1 QL+ ®L ck—1 VL €(ck) RL Chy1 OL ++ QL € ®L M
sk(co ®rL ¢1 ®L -+ R ¢n & m)

=¢o®L 1 ®L+ ®L Cr—1 ®L Alck) ®L Crs1 L+ ®L cn QL m.

The para-cyclic map comes out as

tn(co ®L €1 ®L +++ ®L cn ®L M) = Cuo] ®L o BL *+* ®L Cue1 BL Cp[—1]M.
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A next example arises from Theorem 2.11 of [4]. Restricting it to the case of
a bialgebra, it yields a symmetrical version of the para-cocyclic module in [17],
Section 5.1.

Example 5.2. Let B be a right bialgebroid over a k-algebra R and (C, A, €) be a
right B-module coring (so in particular an R-coring). An object in 8B is given by the
following data:

e the same comonads S§; = C ®g (—) and S, = (—) ®g C on R-Mod-R,
introduced in Example 5.1 (replacing L by R);

* the trivial comonad distributive law ¥ = C Q@ (—) Qr C;

* the same right W-comodule functor (17, i), introduced in Example 5.1 (replacing
L by R);

¢ the left W-comodule functor (U, w), where LI: Comod-B — R-Mod-R is the
forgetful functor and for any right B-comodule M, with coaction denoted by

wy:CQQr M — M ®frC, c®Rmr—>m[O]®Rcm[1].

For any right B-comodule M, the corresponding para-cyclic module has the same
simplicial structure as in Example 5.1 (replacing L by R and N by M). The para-
cyclic map is

tn(co ®R C1 ®R...®R Cn @Rm) = Cnm[l] QA{)R Co @R C1 @R...@)R Cn—1 @Rm[o].

Example 5.3. Let B be a left bialgebroid over a k-algebra L and (A, i, n) be a
left B-module algebra (so in particular an L-ring). An object in B is given by the
following data:

* the comonads S; = Hom_ ;(4,—) and S, = Hom; _(A4,—) on L-Mod-L,
with comonad structures

Hom_ r(u,—): S; — Slz, Hom_ 1 (n,—): S — L-Mod-L
and
Homy —(u,—): S, — S2, Homy _(n,—): S, — L-Mod-L,

respectively;
¢ the comonad distributive law
W: Hom-_ 1 (A,Homz —(A,—)) = Homy, 1 (A ®f A, —)
=~ Homy (A4, Hom_ (4, -)),

given by switching the arguments;
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* the right W-comodule functor (11, i), where M = Homy, 1. (L,—): L-Mod-L —
Mod-k and the natural transformation

i:Homy, ;(L,Hom_ 1(A,—)) = Homg 1 (A4,—)
=~ Homy, 1 (L,Homy (4, —))
is given by the hom-tensor adjunction isomorphisms;

e the left W-comodule functor (LI, w), where LI: Ctrmod-B — L-Mod-L is the
forgetful functor and for any right B-contramodule (Q, «),

wg: Hom_ 1 (4, Q) - Homz ~(4.Q), f > (a+ a(f(~a))).
The para-cyclic module corresponding to a right B-contramodule (Q, «) is given at
degree n by the k-module Homy 1 (A®2"T1 Q). Face and degeneracy maps are,
fork =0,...,n,
(dkp™)(ao ®L a1 ® ++- ®L dn-1)
=" (a0 ®L - ®L ax—1 ®L 14 ®L ag ®L - ®L an—1)
(sk9™)(ao ®L a1 ®L +++ ®L dn+1)
= ¢™(ap ®L +++ ®L ak—1 ®L Akk+1 OL A2 ®L *** OL dny1)-
The para-cyclic map is
(tnp™) (a0 ®rL a1 ®L -+ ®L an) = (¢ (a1 ®L -+ ®L an ®L (—)ao))
for 9™ € Homy 1 (A®L"*1, Q).
Example 5.4. Let B be aright bialgebroid over a k-algebra R and (A4, ., n) be aright

B-comodule algebra (so in particular an R-ring), with B-coaction a +> al® ® g alll,
An object in B is given by the following data:

* the same comonads S; = Hom_ r(A4, —) and S, = Homg, (A4, —) on R-Mod-
R as constructed in Example 5.3 (replacing L by R);

* the same comonad distributive law W, constructed in Example 5.3 (replacing L
by R);

¢ the same right ¥-comodule functor (1, i), constructed in Example 5.3 (replacing
L by R);

e the left W-comodule functor (LI, w), where U: B-Mod — R-Mod-R is the
forgetful functor and for any left B-module VN,

wy : Hom_ g(A,N) - Homg _(A,N), fr—(ar a £(aly).

The para-cyclic module corresponding to a left B-module N has the same simplicial
structure as in Example 5.3 (replacing L by R and Q by N). The para-cyclic map is

(ta0™) (a0 ®r a1 ®r -+~ ®R an) = a([,l]w(”)(al QR - QR an OR ag)]).
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Example 5.5. Let B be a left bialgebroid over a k-algebra L and (A, i, n) be a
left B-module algebra (so in particular an L-ring). An object in B is given by the
following data.

* The comonads §; = A ®1 (=) and S, = (—) ®. A on A-Mod-A. For any
A-bimodule X, S;X = A ®; X is an A-bimodule via

ai(a ®r x)a, = a1a ®p xa, fora,ai,a; € A, x € X.
The comonad structure is given by
A®Ln®LX:SlX—>SIZX and S X - X, a®p x> ax.
Symmetrically, S, X = X ® A is an A-bimodule via
a1 (x ®r a)a, = a1x Q@ aay fora,ay,a; € A, x € X.
The comonad structure is given by
X®Ln®LA:SrX—>Sr2X and S, X — X, x®par> xa.

¢ The trivial comonad distributive law ¥ = A ® (—) ®1, A.
* The right U-comodule functor M: A ®4 (—): A-Mod-A — Mod-k. The natural
transformation i is given by the isomorphism

it AR ((-)®L A) = L& (—) = A&®4 (AR (—)).

* The left W-comodule functor LI = (—) ® A: Comod-B — A-Mod-A. For any
right B-comodule M, with coaction m > m[o) ® m[y), UM = M ® Aisan
A-bimodule via

ar(m ®p a)ay = mp) L (mpay)aay fora,ai,a, € A, me M.
The natural transformation w: A @ (—) @ A — (—) @ A ®p A is given by
wy(a @, m @ b) = mpg) @ mpja L b.

For any right B-comodule M, this determines a para-cyclic object in Mod-k. At
degree n it is given by A ®4 (A®L" T @7 M ®p A) = A®L"+*1 & M. For every
0 <k < n — 1, the corresponding face map is
dr(ag QL ...QL an ®1 m)
=ao®L...®L Ak—1 ®L Akdk+1 ®L Ak+2 ®L ... ®L an ®p m,
while
dn(ao ®L ... ®L an ®L m)

= (m[l]an)ao ®L a ®L R @L an—1 @)L mio]-
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If 0 < k < n, then the degeneracy map sy is given by

Sk(ao ®L -+ QL an L m)
=ao®L QL ar ®L 14 L ar41 QL --- R ay QL m.

The para-cyclic map is
tn(ao ®L e ®L Aan ®L m) = mii11an ®L ao ®L e ®L an—1 @)L mio]-

If the left bialgebroid B above is a constituent left bialgebroid in a Hopf algebroid
with a bijective antipode S, then there is a bijective correspondence between right B-
comodules M, with coaction m + m[g] ® 1 m[1], and left coactions of the constituent
right bialgebroid of the Hopf algebroid on M, m + S(mp1]) ®ro» me, cf. A.10.
Expressing in the above formulae the right B-coaction on M in terms of this left
coaction, we obtain a para-cyclic module. Restricting to the case of a Hopf algebra
(instead of a Hopf algebroid) and applying to the obtained para-cyclic module the
functor Homy (—, k), we obtain the para-cyclic module in [12], (2.6)—(2.9). (Note
that in [12] further properties of the comodule M are assumed which ensure that the
associated para-cyclic module has a truly cyclic subobject.)

Example 5.6. Let B be a left bialgebroid over a k-algebra L and (A4, u,7n) be a
right B-comodule algebra with B-coaction a +— ajo] ® ai). Then (A4, u,n) is in
particular an R := L°P-ring. An object in B is given by the following data.

¢ The same comonads S; = A ®r (—) and S, = (—) ®r A on A-Mod-A as
constructed in Example 5.5 (replacing L by R).

* The same comonad distributive law W as in Example 5.5 (replacing L by R).

¢ The same right ¥-comodule functor (M, i) as in Example 5.5 (replacing L by
R).

¢ The left W-comodule functor U = (—) ® g A: B-Mod — A-Mod-A. For any
left B-module N, UN = N ®pr A is an A-bimodule via

ai(m ®g a)ay = ajjym Qg ajpojaaz fora,ay,a € A, m € N.
The natural transformation w: A Qr (—) ®r A — (—) Qg A Qg A is given by
wy(a @rm Qg b) = apym Qg ajg) r b.

For any left B-module N, this determines a para-cyclic object in Mod-k. Atdegree n it
is given by 4 ®4 (A‘X’R”+1 RrN Qr A) >~ A®R"T1Q L N. Forevery0 <k <n—1,
the corresponding face map is
di(ap ®g ... ®r an ®r m)
= dy @R e @R Al —1 ®R Aradk+1 @R Ak+2 @R . @R ap @R m,
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while
dn(ag @R . ®R Qn ®R )

= anlo]90 QAZ)R a @R e QAZ)R an—1 QA@R dp[1]m.
If 0 < k < n, then the degeneracy map sy is given by

Sk(a() @R e @R ap @R m)

= ay @R...@)Rak Qr 14 @RakH QR ...®ran Qg m.
The para-cyclic map is
th(ag @R . @R an @R m) = anlo] @R ap @R @R apn—1 ®R Apm.

This is a non-commutative base version of the para-cyclic module in [12], (3.5)—(3.8).
Note that in [12] further properties of the left module N are assumed which ensure
that the associated para-cyclic module has a truly cyclic subobject.

A bicontramodule of an R-coring C is an R-bimodule Y, together with a right C -
contramodule structure 8, : Hom_ g(C,Y) — Y and a left C-contramodule struc-
ture B;: Homg —(C,Y) — Y such that §, is a left R-module map, f; is a right
R-module map and

Bi o HomR,—(C» Br) = Bro Hom_,R(C, B1),

up to the (suppressed) canonical isomorphism

Hompg _(C,Hom_ g(C,Y)) = Hompg r(C ® C.Y)
~ Hom_ gr(C,Hompg _(C,Y)).

A morphism of bicontramodules is a right contramodule map as well as a left con-
tramodule map. The category of C-bicontramodules is denoted by C-Ctrmod-C.

Example 5.7. Let B be a right bialgebroid over a k-algebra R and (C, A,€) be a
right B-module coring (hence in particular an R-coring). An object in 8 is given by
the following data.
* Thecomonads S; = Hom_ g(C, —)and S, = Hompg _(C, —) onC-Ctrmod-C.
For any C-bicontramodule (Y, f;,8;), S;1Y = Hom_ g(C,Y) is a bicon-
tramodule, via the structure maps

Hompg,—(C,Hom_ r(C,Y))

Hom_ r(C,B;)
~ Hom_ gr(C,Homg _(C,Y)) ———— > Hom_ g(C,Y),

Hom_ g(C,Hom_ g(C,Y))

Hom_ r(A)Y)
~ Hom_ g(C ®g C,Y)) ——— > Hom_ r(C,Y).
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The comonad structure is given by
Hom_ gr(C ®r€,Y): S;Y — SIZY and B,:S8Y - Y.

Symmetrically, S;Y = Homg —(C,Y) is a bicontramodule via the structure
maps
Hompg _(C,Homg _(C,Y))

Hompg —(A)Y)
~ Homg,—(C ®r C,Y)) ——— > Hompg _(C.Y),

Hom_ gr(C,Homg —(C.Y))
Hom g —(C,B/)

~ Homg —(C,Hom_ gr(C,Y)) ————  Hompg —(C,Y).
The comonad structure is given by
Hompgp (e ®r C,Y): S;Y — S,ZY and f;:S,Y - Y.

The comonad distributive law

W: Hom_ g(C,Hompg —(C,—)) = Homg r(C ®; C,—)
= HOmR’—(C, HOm_’R(C, _))7

given by switching the arguments.

The right W-comodule functor M: C-Ctrmod-C — Mod-k, given by the co-
equalizer

Homp Rr(R,)

Hompg r(C.Y) Hompg r(R,Y) ——nY.

HomR.R(R,Otr)
The natural transformation i is given by the isomorphism
i: MHomg —(C,—) = Homg gr(R,—) = MHom_ g(C, —).

The left W-comodule functor U = Homg —(C, —): Ctrmod-B — C-Ctrmod-C.
For any right B-contramodule (Q,«), UQ = Hompg _(C, Q) is a C-bicontra-
module via the structure maps

Hompg, —(C,Homg —(C, Q)) =>Homg —(C ®r C, Q)

H —(A,0)
mR—) Hompg _(C, Q),

Hom_ &(C, Homg —(C, 0)) —> Homg —(C, Homg _(C. 0))
=5 Homg, —(C ®g C, Q))

H —(A,0)
PR Hompg _(C, Q),
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where w: Hom_ g(C,Hompg —(C,—)) — Homg _(C,Homg _(C,—)) is
given by
(wo (M) (c)(d) = a(h(d—)(c)).
For any right B-contramodule (Q, «), this determines a para-cyclic object in Mod-k.
It is given by MHom_ g(C®®"*! Homg _(C, Q)) =~ Homg g(C®r"t1 Q) at

degree n. Denote A(c) = ¢(1) ®r ¢(2). Forevery 0 < k < n — 1, the corresponding
face map is

(dkp™)(co ®R -+ @R Cn1)
= 0™ (co ®r - ®R ck—1 ®R A(Ck) ®R Cks1 ®R *** ®R Cn—1),
while
(dnp™)(co ®R -+ ®R Cn—1)
= a(gp(")(co(z) ®RC1 ®R " ®R Cn—1 ®R Co(1)—))-

If 0 < k < n, then the degeneracy map sy is given by

(sk9™)(co ®R -+ ®R Cnt1)

= ¢ (co ®R **+ @R Ck—1 ®R Ck€(Cks1) ®R Cky2 ®R *** ®R Cnt1).
The para-cyclic map is
(tap™)(co ®R -+ ®r n) = (9™ (c1 ®R -+ ®R ca R C0—))

for 9™ € Homg g(C®r"+1 Q).

This is a non-commutative base version of the para-cyclic module in [5], p. 4
(though note the minor difference of using a left or a right module coalgebra C). In
[5] additional properties of the contramodule Q are assumed so that the associated
para-cyclic module has a cyclic subobject.

Example 5.8. Let B be a right bialgebroid over a k-algebra R and (C, A, €) be a left
B-comodule coring with coaction ¢ — [l R ¢l Then (C, A, €) is in particular
an L := R°P-coring. An object in B is given by the following data:

* The same comonads S; = Hom-_ ;(C,—) and S, = Homy _(C,—) on
C-Ctrmod-C as constructed in Example 5.7 (replacing R by L);

* the same distributive law W as in Example 5.7 (replacing R by L);

* the same right W-comodule functor (11,7) as in Example 5.7 (replacing R by
L);

¢ the left W-comodule functor LI = Homyz _(C,—): B-Mod — C-Ctrmod-C.
For any left B-module N, UN = Homy, _(C, N) is a bicontramodule via the
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structure maps

Homy, —(C,Homy _(C,N)) =>Homy _(C ®, C,N)

Homy, —(A,N)
ST Homy —(C, N),

Hom_ ; (C,Hom; —(C. N)) —% Hom_(C., Hom, _(C, N))
—=5Homy —(C ®, C,N)

Homy, — (A,N)
OmL—) Hom; _(C,N),

where w: Hom_ 1 (C,Homy _(C,—)) - Homy _(C,Hom; _(C, —))isgiven
by
(wn (M)(e)(d) = dThd ) (c).

For any left B-module N, this determines a para-cyclic object in Mod-k. At degree
n, it is given by MHom_ ; (C®L"*! Homy _(C, N)) =~ Homy ;(C®L"t1 N).
Denote A(c) = c¢(1) ®L ¢(2). Forevery 0 < k < n — 1, the corresponding face map
is

(drp™)(co ®L +++ ®L Cnu1)

— <,0(n)(C0 ®L -+ QL ck—1 QL A(ck) L Ck+1 ®L -+ QL Cn—1),
while

(dn0™)(co QL -+ ®L Cn_1)
= Co(l)[_l](p(n)(c()(Z) R c1 QL -+ R Cn—1 QL CO(I)[O])-

If 0 < k < n, then the degeneracy map sy, is given by
(sk0™)(co ®L *+* ®L cnr1)
=™ (co®L ++ ®L ck—1 ®L k€(Ck+1) OL Ckt2 ®L = ®L Cnt1)-
The para-cyclic map is
(ta@ ™) (co ®L -+ ®L ) = c([)_l]go(”)(cl QL+ QL ¢y VL c([)o]),

for 9™ € Homy 1 (C®L"+1 N).

6. The cyclic duality functor

The functor recently known as the cyclic duality functor, appeared first in Connes’
work [8]. In its original form it is an isomorphism between the category of cyclic
objects and the category of cocyclic objects in a given category. It was extended
in [18] to an isomorphism between certain full subcategories of the categories of
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para-cyclic, and of para-cocyclic objects. The objects of these full subcategories are
those para-(co)cyclic objects whose para-(co)cyclic morphisms are isomorphisms at
all degrees. The aim of the current section is to extend cyclic duality to a functor
between appropriate subcategories of #4 and 8 in Definitions 2.1 and 4.5, respectively.

Connes’s cyclic duality functor (in the extended form in [18]) and also its dual
version (from a subcategory of the category of para-cyclic objects to a subcategory
of the category of para-cocyclic objects) both will be denoted by (<).

Denote by A the full subcategory of 4 in Definition 2.1, whose objects
(17, T, ®,MN,i, U, w) obey the property that @, i and w are natural isomorphisms.
In the category % in Definition 2.2, introduce the full subcategory P> whose ob-
jects have para-cocyclic morphisms which are natural isomorphisms at all degrees.
Clearly, the functor Z* in Theorem 2.3 induces a functor Z**: A% — £*. Sym-
metrically, introduce the full subcategory 8> of the category 8B in Definition 4.5,
for whose objects (S, Sy, ¥, M, i, L, w) the natural transformations ¥, i and w are
isomorphisms. By Theorem 4.7, there is an induced functor Z} : 8> — £, where
P> is the full subcategory of &, for whose objects the para-cyclic morphisms are
natural isomorphisms at all degrees. Finally, denote by 4. the full subcategory of
A, for whose objects (77, T, @, M, i, U, w) the codomain category € of the right
®-module functor M possesses coequalizers. Symmetrically, denote by B, the full
subcategory of B, for whose objects (S7, S», ¥, M, i, L, w) the codomain category
€ of the right W-comodule functor M possesses equalizers. Restrictions of the functor
Z** to A} and ZJ to B, are denoted by the same symbols Z** and ZJ.

Theorem 6.1. Using the notation in the paragraph preceding the theorem, there
exists a functor (=): AS — B such that the diagram

ax O o

Px——= P
=
commutes up to a natural isomorphism.
Symmetrically, there exists a functor (=): B — A™ such that the functors

Z**(=) and Z/jf-a are naturally isomorphic.

The proof of Theorem 6.1 goes through a series of lemmata.

Recall that for the Eilenberg-Moore category M’ of amonad 7': M — M, there
is a forgetful functor U: MT — M, with object map (M, 0) — M and acting on
the morphisms as the identity map. The forgetful functor U has a left adjoint F, with
object map M +— (TM,mM) and morphism map f — Tf.
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Lemma 6.2. Let (T, my, u;) and (Ty, m,, u,) be monads on the same category M
and ®: T, T; — T; T, be a distributive law which is a natural isomorphism. Consider
the induced monad (1.1) and the forgetful functor U : MTITr M

(1) There is a comonad (Tl d;.e;) on MTTr such that UT; = TU, Ud; =
Tiu;U and Ue; (M, 0) = ¢ o Tyur M for any T;T-algebra (M, 0).

(2) There is a comonad (Tr,dr,er) on MTTr such that UT = T,U, Ud,
Tyu,U and Uer (M, 0) = 0 ou; T, M for any T; T -algebra (M, o).

(3) There is a comonad distributive law ®: TlT — T Tl suchthatU® = &~ 1U.

Proof. (1)§y Beck’s classical theorem [1], p. 122, the distributive law & induces
a monad (77, m;, ;) on the category of T,-algebras such that the forgetful functor
U,: MTr — M satisfies

Urfl =TNU,, Uy =mU,, Uyt =uU.

Moreover, the category (MT7) Tt of T;- algebras is isomorphic to the category of 7; 7’--
algebras. Consider the forgetful functor U : (MTr)Tl — MT’ ~and its left adjoint
Fy. The composite functor U Fis equal to T while Tl = F Ul is a comonad on
(MT’)T/ ~ MTITr | Its comultiplication is given by FlulUl FIUI — FlTlUl =
FlUlFlUl and the counit is Q; : FlUl(M 01) = (TIM myM) — (M, g;) for any
T -algebra (M, 9;). Since the composite functor U, U ; differs from the forgetful
functor U : MT!Tr — M by the isomorphism (MT’)TI =~ MTiTr | the comonad T}
obeys the required properties.

Part (2) follows by applying the same reasoning as in part (1) to the distributive
law &~ 1.

Forany T; T,-algebra (M, o), the T; T,-actions on 7 (M, Q) and 7, (M, o) are given
by the respective morphisms p;: T;T, T;M — T;M and p,: T;T,T,M — T, M,
where

B = Tio o Tou T, M o my T, M o T, M, ©.1)

pri=Troo T, Tyuy M o @M o Tym, M. (6.2)

(3) The composite monad 737, in (1.1) induces a monad Cat(M, T;T,) on the
category Cat(-M, M) of functors M — M. The natural transformation ®~! yields a

morphism of its algebras (7; Ty, Tym, om; T, T, o Ty ®T,) — (T, T;, Tym; o ® ' T; 0
Tym, T;). Indeed, using string computation, we have

LT LTLLT. TTLLT LT T

(R
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where for the first and the third equations one uses the definition of distributive laws
and the second relation follows by ®~! o ® = 7, 7;. Comparing these actions with
(6.1)and (6. 2) this implies the existence of a natural transformation o: Tl T — T Tl
such that U® = &~1U. Since the forgetful functor U reflects isomorphisms, d is
a natural isomorphism. Using that U is faithful, it is easy to check that since P is a
monad distributive law, ® is a comonad distributive law. O

For an object (77,7, ®,M: M — €,i,U: D — M, w) of A, consider the
forgetful functor U : MT/Tr — M and the natural transformations & : T;U — U
and &, : T,U — U, given for any T;T,-algebra (M, ¢) by the morphisms

&1I(M,0) :=00Tiu,M and & (M,0) :=0owuT,M. (6.3)

Since coequalizers in € exist by assumption, we can define a functor {1: M7/ Tr — €
via the coequalizer

né; )/ 2N
NTHU ——= nU — 1 (6.4)
né&qoiU

in the category of functors. For any Tj Ty-algebra (M, o), p(M, 0): MM — {1(M, o)
is the coequalizer of Mo o MTju, M and Mo o Mu;T, M o iM. For any morphism
fi(M,0) - (M’ o) in MT1Tr the composite p(M’, o) o M f coequalizes the
parallel morphisms in (6.4) (evaluated at (M, 0)). Hence we can define A f as the
unique morphism for which {1 f o p(M, @) = p(M’,¢') o 11 f.

Lemma 6.3. Consider an object (Tj, Tr, P, n, i,U,w) of AY. For the forgetful
functor U: MTiTr — M, the monads Tl and T in Lemma 6.2 and the functor fin
(6.4), there are natural isomorphisms 0; : HTI — nU and 9, : I‘IT — MU such that

0 opﬁ i U = né& and 0, opﬁ 0ilU = ng;.

Proof. By definition, IeIYA} is the coequalizer of the natural transformations M7,&; o
N®~'U and Mm,U o iT,U. Since ® is an isomorphism, this is equivalent to the
coequalizer of N7,& and Mm, U 0iT,U cN®U = iU oMm;U oi "' T;U, where we
used that (M, 7) is a right ®-module functor, cf. first condition in (1.3). Using that is
an isomorphism, we conclude that I‘IT is the coequalizer of i "'U o T, & 0i T}U =
MT;& and NMm;U. The coequalizer

T\T;U U ey

m;U

is split, as (M, &;(M, o)) is a Tj-algebra for any 7;7,-module (M, ). Hence it
is preserved by composing with M on the left. Thus, by the universal property of
coequahzers there is a unique natural isomorphism 6, : I‘lT — MU such that 0, o
pT o iU = Mé&;. The existence of the isomorphism 6 : I‘ITl — MU 1is proven
similarly. O
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Lemma 6.4. Consider an object (T;, T,, ®,M,i, U, w) of A). Then T, is a left
module functor for the composite monad T;T, in (1.1). Hence there is a functor
O: & — MTiTr with object map and morphism map

Oy .= (T, uY,w 'YomuY oTywY o Tym, UY) and 0f :=T,U f.

Proof. Unitality of the given T; T,-action is immediate by unitality of the multiplica-
tions of 77 and 7,. Associativity is checked as follows.

nT.nTT.u nTTTT.u TTLTT.u LTTLT.T.U TT.TTLT.u TTLT.T.U TT.TT.T.u TT,TLT,T.U

The first and the fourth equalities follow by using that (U, w) is a left ®-module
functor, cf. first identity in (1.4). The second equality follows by associativity of m,..
Naturality is used in the third equality, and also in the last two ones, in the case of
the last equality together with the associativity of m; and of m,.. The fifth equality is
a consequence of the fact that ® is a distributive law. O

Proof of Theorem 6.1. Let (T;, T, ®,M,i, U, w) be an object in A, with 1: M —
€ and U: D — M. First we show that the septuple (fl, YA’,, CT) ﬁzA L, w) is an
object of B, where U: MT!Tr — M is the forgetful functor, the comonads TA} and
YA} and the comonad distributive law ® are constructed as in Lemma 6.2, the functor
{1 is defined by (6.4), the functor 0 is constructed as in Lemma 6.4, while i and @
are given by the relations

i =000, and U :=T,w 'od L. (6.5)

The following string computation proves that WY : T,y - T,0Y isa morphism
in MT1Tr for any object Y in D.

LTTT.u TLTT.U LTLT.U LT LT.0 T U

\
y

J

)
(
\
\
-

@

T. T, u T.T.U T, T,UT T, UT T U

Here we used the form of the 7;7,-actions on fl (M, o), T, (M, o) and 1Y, for
any 7;T,-algebra (M, o) and for any object ¥ of £; see relations (6.1), (6.2) and
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Lemma 6.4. For the first, second and third equalities we also used that ® is a distribu-
tive law and that the multiplication of a monad is a natural transformation. Hence w
can be regarded as a natural transformation 7; — T,.Ll.

By naturality of p in (6.4) and by Lemma 6.2,

pﬁz oMT,u,U = fid, o pTA},
pT7 oNTyuU = fid; o pTy,
pfrfl ond U = Ielé o pﬁfr.
Using Lemma 6.3 (in the first and third equalities), the second relation in (1.3) on i
and unitality of &, (in the second equality) and the first equality in (6.5) defining i (in
the fourth equality), we see that
pYA"l oMU ong oi” U = 91_1 oMN&roilU oMU oNE oi U
=07 ongoi”'U
. (6.6)
=07 06,0 pT,
=io pT,.
The first condition in (4.1) for (1, i ) can be expressed as commutativity of the in-

ner square in the diagram below. Since pT, is a natural epimorphism, the above
considerations imply that it holds true if and only if the outer square in

i—1
nr,.u nT,;U nu nT;U

ATy nTyu; U

nTrurU ﬁdrl lﬁdl

N iTr o a AD . o T - 5
I_ITr2 — > nNT; T, > N7, T; > HT[Z I_lTl‘-U
pT? L L >
pT;Tr pTrTy rT}
nT2U nT,T.U = NT.T,U NTAU —= AT?
My TrUonTyond~ Ui~ TrU ne~lu My Ty Uonimy Uoi ~ TjU pT?

commutes, which follows from the compatibility of ® and i with the units u; and
u, of both monads and unitality of the multiplication m;; cf. the following string
computation.
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n 7., U n 7., U n 7. U

-1

&

r

N U nnT U nnT U n TLU

Slmllarly, by (6.6), by naturahty of P and Lemma 6.2, the second condition in (4.1)
for (1, z) i.e., the identity (le; oi = fle,, holds true if and only of the outer square in

._l U
U a2y MY nru

nr,
pTA"r Pfl
ner/ \ lna
AT, —— N7,
. .

commutes, which follows by the unitality of & and the definition of p via the co-
equalizer in (6.4).

Next we prove that (L, i) satisfies the conditions in (4.1). Since U is faithful,
applying it to the first relation in (4.1) we obtain an equivalent condition. In view
of Lemma 6.2 and the construction of @ via the second equality in (6.5), it takes the
form

a
PN

T?w ™ o T, @ ' Lo @ ' T, Uy Tyw™ o Ty @ U oTyu; T, U
=TT, UoT,w tod L.

This holds true by the computation below, where we use the compatibility between
the unit of 77 with ® and w, and the fact that u; is a natural transformation.

T. T,T.U . 7,1, U
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The second relation in (4.1) may be proved analogously, showing that it is equivalent
to the fact that w is compatible with the multiplications of 7; and 7. Consequently
(fl, 7., ®,8,i, W) is an object of B.

Next we define the functor (=) on morphisms. Let (G, ¢;, ¢r, A, 7, V, @) be amor-
phism in . Its image in 8> under (=) will be denoted by (G.G1.Gr N7V, D).
The functor G : M’ T/TF — MTiTr is defined, for (M, p) in cM’T/T;, by é(M, p) =
(GM, p), where

p=GpoqT/M oTig,M. (6.7)

On a morphism f in M’ T/T’/, we put Gf = Gf. Infact, G is the lifting of G (in
the sense that UG = GU’), which is induced by the monad morphism ¢; 7} o T;q,,
cf. Lemma 1.4 and [14], Lemma 1. Since

T1G(M. p)

= (T,GM, T;Gp o Tyq; T/M o T2q, M o Tyu; T,GM om;T,GM o T;®GM),
GT/(M, p)

= (GT/M,GT/po GT/u;T/M o Gm;T/M o GT/®'M o q;T}T/M o Tyq, T/ M),

we can check easily that gy M : T,GM — GTI’ M is a morphism of T;T,-algebras
with respect to the above actions. Hence one may define g : YA}(A} — (A;YA"I’ by
Ug;(M,p) := ¢;M and, proceeding similarly, one may take §,: 7,G — éfr’ to
be defined by UG, (M, p) := ¢, M.

The left square in the following diagram is commutative by naturality, if choosing
the upper ones of the parallel arrows. It is commutative also choosing the lower
ones of the parallel arrows, by (1.5) and naturality. Therefore, universality of the
coequalizer in the top row implies the existence of a unique natural transformation
7, rendering commutative the diagram.

NGE&jong, U’ pé
N GU' ————=nGU’ nG
nGé&,ong, U’ oiGU |
|
JTT/U/OI_Iqu/ zU’ |
|
AITE) '
!/ i / . o
ATTIU AU

ATVELoni’U’ AP

Finally, we put U := ¢, U oT,w. We need to show that this defines indeed a
natural transformation &: OV — (A}Ifll; that is, that ¢, L oT,w commutes with the
T;T,-actions on UV = T, UV and UG = GT/.. For a diagrammatic proof
see the following computation, where for the first and third equations one uses that
(G, q;) and (G, g,) are morphisms of monads. The second and the fourth relations
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follow by (1.6). In the first three equalities we also use that all maps are natural
transformations.

T, T.T. UV T, T UV T, T UV T, T, UV T T, U Vv

We turn to proving that the so constructed datum (G, §;, Gy, A, 7, V, @) yields a
morphism in 8. In order to check that (G, §,) is a comonad morphism, it suffices to
show that

UG, T oUT,g, oUd,G =UGd! o UG,

and

Ue,G = UGe. o Ug,,

since the forgetful functor U is faithful. By Lemma 6.2, the first condition is equiv-
alent to

4T/ U o Trqy U o Tou, GU' = GT/u,U' 0 q,U’,

which holds true since (G, ¢,) is a monad morphism and by naturality. The second
condition holds true by construction of the functor G (cf. (6.7)) and the relations in
Lemma 6.2 on e, and e,.. Symmetrically, (G, g;) is a comonad morphism as well.
By faithfulness of U, the first condition in (4.2) is equivalent to

¢ T/U o T,qiU' o @ 'GU' = GO 'U 0 q;T/U’ © Tyq, U,

which holds true by (1.2). The second conditionin (4.2) Ais Equivalent to commutativity
of the inner square in the following diagram. Since p7, G is a natural epimorphism,
it follows by the constructions of the morphisms §,, §; and 7 any by the equality
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(6.6) that the second condition in (4.2) holds true if and only if the outer square in

ng,U’ A xT/U’ P
nT,GU’ nGT/U — AN T/U
1 , rT;G l GT’ y —1yyr
i~lgu pGT; AU
n o G ana BT A
nnGU’ A7,6 ——=nGT! - AT AT T]U
Nq; U’ ATTE]
nGT/U’ iG Al AU’
nGe, A'u; U’
aaa 08  aaa T/ PP r
nGgu’ NG ——=NGT) ——— ATy A T]U
Mu; GU’ p?]é Tpéj, \ /\p/fl/
nT,GU’ ; NGT/U" ——=AN"T/U’ A'T]
Nng, U xT/U N T’

commutes. This follows by the compatibility of g; with u;, naturality and (1.5).
Finally, by faithfulness of U, (4.3) is equivalent to

GT/w ™' oG W oq; T/ W oTyq, W oT) Ty
= ¢, T/ U oT,qr U oT?w o T,w ™' v od™!

This holds true by naturality, (1.2) and (1.6). This finishes the construction of the
functor (=). It is straightforward to see that it is a functor indeed, i.e., it preserves
identity morphisms and composition.

It remains to construct a natural 1s0m0rphlsm T ZX( ) — Z/*’T ). For a given
object (17, Ty, ®,M,i,U, w) in AX, let (Tl, 7., ®,0,i,0, w) denote the object in
B>, constructed as in the first part of the proof. The para-cyclic object Zj: =
Z:(YA}, YA}, dA?, Iel, ?, Ifl, w) associated to the latter object as in Theorem 4.7 is given,
at any non-negative degree n, by the functor ﬁfln 10, The para-cocyclic object
Z** = Z*(T;, Ty, ®,1, i, U, w) in Theorem 2.3 (and thus also its cyclic dual) is
given at degree n by M7}’ *11. The desired natural transformation t,, is defined as
the composition of the two morphisms

Spn+15 01?1”6 B n nTi'w n+1
I_ITZ U—)I_IUTZ |_J=|_|Tl Trl_|—>|_|Tl L. (6.8)

Clearly t,, is a natural isomorphism. We claim that z, is also an isomorphism of
para-cyclic objects between 2: and the cyclic dual Z*% of Z**. Applying Connes’s
cyclic duality functor (in the form it can be found in [18]) to Z**, for every degree
n the para-cyclic morphism 7, : TI”HI_I — FITI”HU of Z** comes out as

~

th=i'T Uon® 'T T Uo-conT ' Lon T w™!
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On the other hand, by Theorem 4.7, the para-cyclic morphism 7, : ﬁﬁ”“ﬁ —
ﬁﬁ”“lfl of Z} is given by

N N

l‘An =? lnIiIOIQI&) ln_IIjOIel

PN N

(o} l"_2|j0~-~oﬁ ln_quIjOﬁ ln@,

~

for every n. Since pYA"”H {is an epimorphism, 7,, commutes with these para-cyclic
morphisms if and only if

fp oty o pf”“lj =1, 01l 0 pf"“ﬁ. (6.9)

For the proof of this relation, using string computations, see the following sequence
of equations.

nnTT,u N4, NPT, 0 nOLTT, u N T ' T U

nn " v n 7, 'u n T, T'u N T T'u N T LU

Taking into account the formulae that give f, and t,,, on one hand, and the defining
relation of §; in Lemma 6.3 together with the definition of &, in (6.3), on the other
hand, one can see that the first diagram represents the left-hand side of (6.9). In view
of the definition of the maps In, IA,, Wy, ® and 0, , the last diagram corresponds to the
right-hand side of (6.9). To deduce the first equality we use n times the compatibility
relation between the multiplication of 7, and ®. The second relation is a consequence
of the fact that the string and the stripe may be unknotted, by using repeatedly the
relation ®~1o® = T, T;. For the third equation one uses that (1, i ) is right ®-module
functor, i.e., the first condition in (1.3). The last relation follows by using that w is
natural.

For0 <k <n,letdy := ﬁflke;?l”_klfl be the face maps of Z. For0 < k < n,
the face maps of Z** are ék = I‘Ile_lmlTl”_kl_l while c?o = I‘ITl”_lml L Of,l_l.
We prove next that the operators 7. are compatible with these face maps, i.e., for
0<k<n,

dy o Ty © pf[’“lﬁl =T,_10 c?k o pfl”Hlj. (6.10)

If 1 <k < n, then proceeding as in the case of the para-cyclic operator one can see
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that the string representation of (6.10) is the following.

n T‘l ﬂk—l T‘l T‘ljwln—k‘—lTT U n T‘l jwlk—l n jvljwln—k—lTr L

g

l le:—l le /Tln,—k—l 7-[ U n /le—l 71[ Tl'n,—k—l 71[ U

Visibly this equality holds, as the multiplication of a monad is a natural transformation
and & is a distributive law. Finally, by the definition of para-cyclic objects, c?o =
aAV,, o fn_ I and dAO = a?n o tAn_ 1. Thus, in view of relation (6.9) and of the fact that (6.10)
holds for k = n, we conclude that (6.10) also holds for k = 0. One proves in a
similar way that the operators 7. are compatible with the codegeneracy maps.

Our final task is to prove naturality of this isomorphism . For an arbitrary
morphism

¢:=(G,q1.qr. N7,V 0): (T, T, ®,N,i,U,w) — (T;,T;, @, ', i", L, w)

in AX, let ¢ = (G.G1,Gy, A, 7,V,®) denote the corresponding morphism in B.
Since p is a natural epimorphism, it is sufficient to prove that

At oGy o pT IOV = Luotevio pTiHiy, 6.11)

where "Z* = Zf(f) (cf. Theorem 4.7), 2* = Z/*;E) (cf. Theorem 2.3), and 74
and t, are morphisms constructed as in (6.8), corresponding to the domain and the
codomain of ¢, respectively. The string representations of both sides of (6.11) are
given in the first and last terms of the following sequence of equations.

nniTrT U v nnhLh1'T u v nn1T u v nnhi1'T u v nn1T u v

A ﬂ’T;m Tt/ I A H’T/" Tl/ U A m,Tlrn Tl/ u A Tlm T/ I AT Tlm Tt/ u

Recall that g': T'G — GT/" is defined inductively by ql1 = ¢q; and ql"+1 =

q1 Tl’ "o T1q; . The first identity follows by applying (1.5), while the second one is
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obtained by using repeatedly (1.2) and naturality. The third equation follows as g, is
a morphism of monads and the last equality is a consequence of (1.6).
The statements about the functor (=) : B — 4> are proven symmetrically. [

7. Back to the examples

In this section we return to the examples in Sections 3 and 5. We show that they all
belong to » and B, respectively, whenever the occurring bialgebroids correspond
to a Hopf algebroid with a bijective antipode and the occurring (co(ntra))modules
are (co(ntra))modules of the Hopf algebroid (cf. Appendix). In light of Theorem 6.1,
in this case we may apply the functor = to any of these examples. The examples in
Section 3 and Section 5 turn out to be pairwise related via the functor=.

Example 7.1. Let H be a Hopf algebroid over base algebras L and R, with a bijective
antipode S, and A be a left H-module algebra. This means that A is a left module
algebra of the constituent left bialgebroid Hy, so there is a corresponding object
(T;, Ty, ®,M,i, U, w) of A in Example 3.1. Obviously, using the forgetful functor
F: H-Comod — Hp-Comod, we can construct another object

(T;, T,, ®,M,i,UF, wF) (7.1)

of A. We claim that (7.1) belongs to A (hence to 4, since Mod-k possesses
coequalizers). Indeed, ® and i are obviously isomorphisms. The inverse of wgyy is
given, for a left H-comodule M with coaction m > mI=1 @ p m!% of the constituent

right bialgebroid, by
AQL M —- M Q. A, aQ@rmr> mlo] Rr S_l(m[_l])a.

Thus we can apply to (7.1) the functor ~. The resulting object of B> can be obtained
from the object in Example 5.5, by composing on the right the left comodule functor
U: Comod-Hy — A-Mod-A in Example 5.5 with the forgetful functor Comod-H —
Comod- Hy, and with the isomorphism /s : H-Comod — Comod-H induced by the
bijective antipode S, cf. A.10.

Example 7.2. Let H be a Hopf algebroid over base algebras L and R, with a bijective
antipode S, and A4 be a right H-comodule algebra. Then A is in particular a right
comodule algebra of the constituent right bialgebroid. Hence there is a corresponding
object of +4 as in Example 3.2. We claim that it belongs to A™ (hence to A ). Indeed,
® and i are obviously isomorphisms. The inverse of wy is given, for any right H -
module N, by

ARrRN — NQ®®rA, a@®rm i—>mS_1(a[1]) ®R ajo)

where a — a[o) ® afy] denotes the coaction of the constituent left bialgebroid. Thus
we can apply the functor = The resulting object of 8 can be obtained from the object
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in Example 5.6, by composing on the right the left comodule functor U: H-Mod =
Hp-Mod — A-Mod-A in Example 5.6 with the isomorphism /!, : Mod-H —
H -Mod induced by the bijective antipode S, cf. A.9.

Example 7.3. Let H be a Hopf algebroid over base algebras L and R, with a bi-
jective antipode S, and C be a right H-module coring. This means that C is a
right module coring of the constituent right bialgebroid Hpg, so there is a corre-
sponding object (77, T, ®,M,i, U, w) of A in Example 3.3. Using the forgetful
functor F: H-Ctrmod — Hpg-Ctrmod, we can construct another object
(T;, T,,®,N,i, UF, wF) of A. We claim that the modified object belongs to A™
(hence to A). Indeed, ® and i are obviously isomorphisms. The inverse of wrg is
given, for a left H -contramodule Q with structure maps «z : Homz _(H, Q) — QO
and «g: Homp _(H, Q) — O, by

Hom_ g(C, Q) = Homg,—(C, Q), f > (c > ar(f(cS™H(-)).

Therefore we can apply the functor ~. The resulting object of B> can be ob-
tained from the object in Example 5.7, by composing on the right the left comodule
functor U: Ctrmod-Hr — C-Ctrmod-C in Example 5.7 with the forgetful functor
Ctrmod-H — Ctrmod- Hg and with the isomorphism /g : H-Ctrmod — Ctrmod-H
induced by the bijective antipode S, cf. A.11.

Example 7.4. Let H be a Hopf algebroid over base algebras L and R, with a bijective
antipode S, and C be a left H-comodule coring. Then C is in particular a left
comodule coring of the constituent left bialgebroid. Hence there is a corresponding
object of 4 as in Example 3.4. We claim that it belongs to A (hence to AJ).
Indeed, ® and i are obviously isomorphisms. The inverse of wy is given, for any
right H-module N, by

Hom_ 7 (C,N) — Homz _(C,N), [ (c+ f(c®)s71([F1y),

where ¢ > cl71 @ ¢l denotes the coaction of the constituent right bialgebroid.
Thus we can apply the functor =, The resulting object of B> can be obtained from
the object in Example 5.8, by composing on the right the left comodule functor
U: H-Mod = Hpg-Mod — C-Comod-C in Example 5.8 with the isomorphism
IS__I1 : Mod-H — H-Mod induced by the bijective antipode S, cf. A.9.

Example 7.5. Let H be a Hopf algebroid over base algebras L and R, with a bijective
antipode S, and C be a left H-comodule coring. Then C is in particular a left
comodule coring of the constituent left bialgebroid. Hence there is a corresponding
object of B as in Example 5.1. We claim that it belongs to 8> (hence to B,).
Indeed, W and i are obviously isomorphisms. The inverse of wy is given, for any
left H-module N, by

N®,C—C®. N, m®,cr cle, s (" m,
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where ¢ > cl71 @ ¢l denotes the coaction of the constituent right bialgebroid.
Thus we can apply the functor =, The resulting object of A* can be obtained from
the object in Example 3.5, by composing on the right the left comodule functor
U: Mod-H = Mod-Hg — C-Comod-C in Example 3.5 with the isomorphism
Is: H-Mod — Mod-H induced by the bijective antipode S, cf. A.9.

Example 7.6. Let H be a Hopf algebroid over base algebras L and R, with a bi-
jective antipode S, and C be a right H-module coring. This means that C is a
right module coring of the constituent right bialgebroid Hpg, so there is a corre-
sponding object (77, T, W, M, i, U, w) of B in Example 5.2. Making use of the
forgetful functor F': Comod-H — Comod-Hpg, we can construct another object
(T;, T,,¥,N,i, UF, wF) of 8. We claim that the modified object belongs to 8>
(hence to B,°). Indeed, W and i are obviously isomorphisms. The inverse of wray is
given, for aright H-comodule M with coaction m > m[g] ® mq] of the constituent
left bialgebroid, by

MRrRC -CQRrM, mQOrcH cS_l(m[l]) ®R Mo]-

Thus we can apply the functor =. The resulting object of A can be obtained from
the object in Example 3.6, by composing on the right the left comodule functor
U: Hr-Comod — C-Comod-C in Example 3.6 with the forgetful functor
H-Comod — Hg-Comod and with the isomorphism IS__I1 : Comod-H — H-Comod
induced by the bijective antipode S, cf. A.10.

Example 7.7. Let H be a Hopf algebroid over base algebras L and R, with a
bijective antipode S, and A be a left H-module algebra. This means that A4 is
a left module algebra of the constituent left bialgebroid Hj,, so there is a corre-
sponding object (77, T, W, M,i, U, w) of B in Example 5.3. Making use of the
forgetful functor F: Ctrmod-H — Ctrmod-Hy, we can construct another object
(T}, T,,¥,N,i,UF, wF) of 8. We claim that the modified object belongs to B>
(hence to B,°). Indeed, W and i are obviously isomorphisms. The inverse of wg is
given, for a right H -contramodule (Q, ¢z, ¢g) by

Homg,—(4, Q) — Hom_1 (4. Q). g+ (a+ ar(g(S™'(-)a))).

Thus we can apply the functor =. The resulting object of A* can be obtained
from the object in Example 3.7, by composing on the right the left comodule functor
U: Hr-Ctrmod — A-Mod-A4 in Example 3.7 with the forgetful functor H-Ctrmod —
Hj -Ctrmod and with the isomorphism [ 5_11 : Ctrmod-H — H -Ctrmod induced by
the bijective antipode S, cf. A.11.

Example 7.8. Let H be a Hopf algebroid over base algebras L and R, with a bijective
antipode S, and A be a right H-comodule algebra. Then A is in particular a right
comodule algebra of the constituent right bialgebroid. Hence there is a corresponding
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object of B as in Example 5.4. We claim that it belongs to 8> (hence to B,).
Indeed, ¥ and i are obviously isomorphisms. The inverse of wy is given, for any left
H-module N, by

Hompg (A, N) — Hom_ g(4,N), g+ (a+— S (ap))g(a)),

where a — a[g) ® afy] denotes the coaction of the constituent left bialgebroid. Thus
we can apply the functor ~. The resulting object of 4 can be obtained from the
object in Example 3.8, by composing on the right the left comodule functor LI: Mod-
H = Mod-H; — A-Mod-A in Example 3.8 with the isomorphism /s : H-Mod —
Mod- H induced by the bijective antipode S, cf. A.9.

A. Appendix: Modules, comodules and contramodules of Hopf algebroids

In this appendix we shortly review algebraic structures over non-commutative base
algebras, which are used to construct the examples in the paper. For more information
on them we refer to [2]. Structures as R-rings, R-corings, bialgebroids and Hopf
algebroids below, generalize the notions of an algebra, a coalgebra, a bialgebra and
a Hopf algebra over a commutative ring, respectively.

Throughout, let k be a commutative, associative and unital ring. By an algebra R
we mean an associative and unital algebra over k. The enveloping algebra R @ R°P
is denoted by R°. We tacitly identify R°-modules with R-bimodules.

A.1. An R-ring is a monoid in the monoidal category of R-bimodules. In fact, an
R-ring A is equivalent to a k-algebra A, together with an algebra map (: R — A.
Denoting the multiplication in an R-ring A by u: A ® g A — A, there is an induced
monad

(=) ®r A, (=) ®r i1, () Or V) (A.1)

on the category Mod-R of right R-modules. Algebras of this monad are equivalent
to right modules of the k-algebra A. Symmetrically, algebras for the monad

(AQR (=) L ®R ().t ®R () (A2)

on the category R-Mod of left R-modules are equivalent to left modules of the k-
algebra A. Note that the same formulae (A.1) and (A.2) define monads also on the
category R-Mod-R of R-bimodules, with respect to the R-actions

r(p@ra)r =rpQ®gar’ and r(a Qg p)r' =ra Qg pr’ (A.3)
forr,#’ € R,a € A, p € P and any R-bimodule P.

A.2. For our considerations, R°-rings are of special interest. Note that an R®-ring is
equivalent to an algebra B, together with algebra maps s: R — Bandf: R®® — B
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such that s(r)t(r’) = t(+")s(r) for all , ¥’ € R. The maps s and ¢ are known as the
source and target maps, respectively. An immediate example of an R®-ring is the
algebra Endg (R) of k-linear endomorphisms of R. It is an algebra via composition
of endomorphisms and source and target maps are

R — Endg(R), r = r(=), R°® — Endg(R), r — (—)r.
Any R®-ring B carries four commuting R-actions:
reb=s(r)b, bar=tr)b, rvb=>bt(r), b<r=bs(r).

In terms of these actions, the following construction can be performed. Take first the
R-module tensor product

B®rB:=BQ;B/{b4r®b —b®rw» b forallb,b’ € B, r e R}
and then the k-submodule
BxgrB := {Zbi®Rbl{ € BRrB | Zrbbi®Rbl{ = Zbi@)]qbl{dr for all r € R}.

B x g B is known as the Takeuchi product, and it is easily checked to be an R®-ring
with factorwise multiplication and source and target maps

R— BxgB, r—>s(r)Qrlp, R® > BxgB, r+— 1 Qgrt(r).

A.3. An R-coring is a comonoid in the monoidal category of R-bimodules. That
is, an R-coring is an R-bimodule C equipped with an R-bilinear coassociative co-
multiplication A: C — C ®pg C possessing an R-bilinear counit €: C — R. For
the comultiplication we use the index notation ¢ — c¢(1) ®g ¢(2), where implicit
summation is understood.

Any R-coring C induces a comonad

() ®QrC.(-) Qr A, (—) Qr €) (A.4)

on Mod-R. Coalgebras of this comonad are called right C -comodules. Explicitly, this
means right R-modules M, equipped with a right R-linear coaction M — M ®r C,
subject to coassociativity and counitality constraints. For a right coaction, the index
notation m +— mo)® grm(q] is used (with lower, or with upper indices), where implicit
summation is understood. Symmetrically, coalgebras for the comonad

(C®r(-).AQr(-).€Qr(-)) (A.5)

on R-Mod are called left C-comodules. For the coaction on a left C-comodule, we
use the index notation m +— m[_1] ® g mg] (with lower or with upper indices), where
implicit summation is understood. Morphisms of (right or left) C-comodules are
morphisms of coalgebras for the appropriate comonad ((A.4) or (A.5)). Thatis, (right
or left) R-module maps which are compatible with the C-coaction.
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Note that the same formulae (A.4) and (A.5) define comonads also on R-Mod-R,
with respect to the R-bimodule structures as in (A.3).
To an R-coring C, one can associate also monads. The triple

(Hom_ r(C,—),Hom_ r(A,—),Hom_ r(€,—)) (A.6)

is a monad on Mod-R (where we used standard hom-tensor identities to identify
Hom_ r(C ®r C,—) = Hom_ gr(C,Hom_ g(C,—)) and Hom_ g(R, —) = Mod-
R). Algebras of this monad are called right C-contramodules, cf. [11], [3]. Sym-
metrically, left C -contramodules are algebras of the monad

(Homg,—(C,—),Hompg —(A,—),Homg (€, —)) (A7)

on R-Mod. Morphisms of (right or left) C-contramodules are morphisms of algebras
for the appropriate monad ((A.6) or (A.7)). That is, (right or left) R-module maps
which are compatible with the contramodule structure.

Note that the same formulae (A.6) and (A.7) define monads also on R-Mod-R,
with respect to the R-bimodule structures

(rfr)(c) =rf(r'c) and (rgr')(c) = g(cr)r’

forr,r" € R,c € C, f € Hom_ gr(C, P), g € Hompg —(C, P) and any R-bimodule
P.

Ad. A left R-bialgebroid [24], [20] is an R®-ring (B, s, t) that also possesses an
R-coring structure (B, », «, A, €) subject to the following compatibility axioms:

e The comultiplication A: B — B ®pg B factorizes through B xr B;
* corestriction of A is a homomorphism of R®-rings B — B X B;
e the map B — Endg(R), b — €(bs(—)) is a homomorphism of R°-rings.

Some equivalent forms of the definition can be found e.g. in [6]. The notion of a right
R-bialgebroid is obtained symmetrically, by interchanging the roles of the R-actions
(», <) and (>, <1) in an R®-ring, given by multiplication on the right, and on the left,
respectively. For more details we refer to [15] or [2].

A.5. Modules of an R-bialgebroid B are modules of the underlying k-algebra B.
Since B is an R®-ring, there is a forgetful functor from the category of (left or right)
B-modules to the category of (left or right) R°-modules, equivalently, to the category
of R-bimodules. By [22], Theorem 5.1, the category of left (resp. right) modules of a
left (resp. right) bialgebroid is a monoidal category, with monoidal product given by
the R-module tensor product. Left (resp. right) module algebras of a left (resp. right)
bialgebroid B are defined as monoids in the monoidal category of left (resp. right)
B-modules. B-module algebras are thus in particular R-rings. By the same principle,
left (resp. right) B-module corings are comonoids in the monoidal category of left
(resp. right) B-modules. They are in particular R-corings.
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A.6. Comodules of a (left or right) R-bialgebroid are comodules of the constituent R-
coring. As a consequence of the bialgebroid axioms, any right comodule M of a right
R-bialgebroid B can be equipped also with a unique left R-action such that the range
of the coaction m +—> ml9 ® R mU lies within the center of the R-bimodule M ® rRB.
That is, for any m € M and r € R, rm® @g m!l = ml% @& t(r)m! (where
t: R°® — B is the target map). This equips any B-comodule with an R-bimodule
structure and the category of right B-comodules becomes monoidal with respect to
the R-module tensor product (cf. [2], Theorem 3.18). In other words, there is a strict
monoidal ‘forgetful’ functor from the category Comod- B of right B-comodules to R-
Mod-R. Symmetrically, also the category of left comodules of a right R-bialgebroid
is monoidal, via @ ger. In the same way, categories of left and right comodules of
a left R-bialgebroid are monoidal, with respect to the R-module tensor product and
the R°P-module tensor product, respectively. Left (resp. right) comodule algebras of
a left or right bialgebroid B are defined as monoids in the monoidal category of left
(resp. right) B-comodules. B-comodule algebras are in particular R-rings or R°P-
rings (depending on the monoidal product of the appropriate comodule category).
By the same principle, left (resp. right) B-comodule corings are comonoids in the
monoidal category of left (resp. right) B-comodules (hence they are R or R°P-corings).

A.7. Contramodules of a (left or right) R-bialgebroid are contramodules of the con-
stituent R-coring. As a consequence of the bialgebroid axioms, any left contramodule
(Q,a: Homg (B, Q) — Q) of aright R-bialgebroid B can be equipped also with
aright R-action

qr = a(e(s(r)—)q).

forq € Q,r € R, such that Q becomes an R-bimodule. This construction yields a
‘forgetful’ functor from the category B-Ctrmod of left B-contramodules to R-Mod-
R. Symmetrically, also right contramodules of a right R-bialgebroid and left and
right contramodules of a left R-bialgebroid possess canonical R-bimodule structures.
Note, however, that the category of contramodules of an arbitrary bialgebroid is not
known to be monoidal.

A.8. A Hopfalgebroid H consists of a left bialgebroid structure (H, sr, tr, Ar,€r)
over a base algebra L, and a right bialgebroid structure (H, sg,tr, AR, €g) over a
base algebra R, on the same k-algebra H , together withak-modulemap S: H — H,
called the antipode. These structures are subject to the axioms

® SRO€EROIlL =1 ,IRCEROS, = SL,SL O€L OIR =IR,I] ©€L 0©SR = SR,

* (AR®LH)oAL = (H®RrAL)oAgand (AL®rH)oAr = (HQ®LAR)oAL,

o S(tr(Dhtr(r)) = sr(r)Sh)sp(l) forallh € H,l € Landr € R,

e uro(H ®r S)oAr =spoerand up o (S @z H)o Ap = sgro¢€g,
where ugr: H ® g H — H denotes multiplication in the R-ring sg: R — H and
ur: H ®, H — H denotes multiplication in the L-ring sz : L — H. Note that



A categorical approach to cyclic duality 535

the second axiom is meaningful because of the first axiom and the fourth axiom is
meaningful because of the third one.

These axioms imply that the algebras L and R are anti-isomorphic, and the an-
tipode is a bialgebroid morphism from the constituent left bialgebroid to the opposite-
coopposite of the right bialgebroid, and also from the constituent right bialgebroid to
the opposite-coopposite of the left bialgebroid.

A.9. Modules of a Hopf algebroid H are by definition modules of the underlying
k-algebra. In this way the category of (left or right) H-modules coincides with the
(left or right) module category of any of the constituent bialgebroids. Hence both
categories of left and right H-modules are monoidal. A (left or right) module algebra
of a Hopf algebroid H is defined as a monoid in the monoidal category of (left or
right) H-modules. Similarly, a (left or right) module coring of a Hopf algebroid H
is defined as a comonoid in the monoidal category of (left or right) H-modules.

If the antipode S of a Hopf algebroid H is bijective, then itinduces an isomorphism
Is: H-Mod — Mod-H between the categories of left and right H-modules. This
isomorphism takes a left H-module N to N as aright H-module with actionn <h =
S~Y(h)n. On the morphisms Ig acts as the identity map. A similar isomorphism
Ig—1: H-Mod — Mod-H is obtained by replacing S by S~1.

A.10. Right comodules of a Hopf algebroid H over base algebras L and R are
triples (M, or,0Rr), where M is a right L-module and a right R-module, (M, or.)
is a right comodule of the constituent left bialgebroid, (M, gr) is a right comodule
of the constituent right bialgebroid such that both coactions are comodule maps for
the other bialgebroid as well. That is, oy, is a right R-module map, og is a right
L-module map and the compatibility conditions

(M ®1 Ar)oorL = (0L ®r H)ogor and (M ®rAr)oor = (0r®L H)ooL

hold. It follows that the right R-, and L-actions on M commute, i.e., M is a right
R ® L-module. Morphisms of H-comodules are defined as comodule maps for
both constituent bialgebroids. Right comodules of a Hopf algebroid H and their
morphisms constitute the category Comod-H . The category H-Comod of left H -
comodules is defined symmetrically.

The category of (left or right) comodules of a Hopf algebroid is monoidal and the
forgetful functors to the comodule categories of the constituent bialgebroids are strict
monoidal [2], Theorem 4.9. A (left or right) comodule algebra of a Hopf algebroid
H is defined as a monoid in the monoidal category of (left or right) H-comodules.
Similarly, a (left or right) comodule coring of a Hopf algebroid H is defined as a
comonoid in the monoidal category of (left or right) H -comodules.

If the antipode S of a Hopf algebroid H is bijective, then it induces an isomorphism
Is: H-Comod — Comod-H. Take a left H-comodule M, with coaction m >
m[_1] ®L m[o) of the constituent left L-bialgebroid and coaction m > ml=1 @ gm0l
of the constituent right R-bialgebroid. The isomorphism /s takes it to M as a
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right H -comodule, with right R, and L-actions induced by the algebra isomorphism
R =~ L° and with coaction m — ml% ®; S=1(ml=1) of the constituent left L-
bialgebroid and coaction m + mpg ®g S~!(m[—1)) of the constituent right R-
bialgebroid. On the morphisms /g acts as the identity map. A similar isomorphism
Ig—1: H-Comod — Comod-H is obtained by replacing S by S~!.

A.11. Right contramodules of a Hopf algebroid H over base algebras L and R are
triples (Q, «r, ®r), where Q is aright L-module and a right R-module, (M, «y) is a
right contramodule of the constituent left bialgebroid, (M, «r) is aright contramodule
of the constituent right bialgebroid such that both structure maps o7 and «g are
contramodule maps for the other bialgebroid as well. That is, ¢y, is a right R-module
map, og is a right L-module map and the compatibility conditions

ar o Hom_ 1 (H,aR) = ag o Hom_ r(AL, H)
and

ag oHom_ g(H,ar) = ar o Hom_ (AR, H)

hold. It follows that the right R-, and L-actions on Q commute, i.e., Q is a right
R ® L-module. Morphisms of H -contramodules are defined as contramodule maps
for both constituent bialgebroids. Right contramodules of a Hopf algebroid H and
their morphisms constitute the category Ctrmod-H . The category H -Ctrmod of left
H -contramodules is defined symmetrically.

If the antipode S of a Hopf algebroid H is bijective, then it induces an isomorphism
Is: H-Ctrmod — Ctrmod-H . Take a left H-contramodule Q, with structure map
ar: Homy _(H, Q) — Q as a contramodule of the constituent left L-bialgebroid
and structure map ag: Hompg _(H, Q) — Q as a contramodule of the constituent
right R-bialgebroid. The isomorphism /g takes it to Q as a right H -contramodule,
with right R, and L-actions induced by the algebra isomorphism R = L° and with
structure maps

Hom_(H,Q) — Q. frar(foS™),
and

Hom_g(H,Q) > 0, g+ ar(goS™).
On the morphisms it acts as the identity map. A similar isomorphism
Ig—1: H-Ctrmod — Ctrmod-H
is obtained by replacing S with S~!.
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