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Homotopy Batalin–Vilkovisky algebras
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Abstract. This paper provides an explicit cofibrant resolution of the operad encoding Batalin–
Vilkovisky algebras. Thus it defines the notion of homotopy Batalin–Vilkovisky algebras with
the required homotopy properties.

To define this resolution, we extend the theory of Koszul duality to operads and properads
that are defined by quadratic and linear relations. The operad encoding Batalin–Vilkovisky
algebras is shown to be Koszul in this sense. This allows us to prove a Poincaré–Birkhoff–Witt
Theorem for such an operad and to give an explicit small quasi-free resolution for it.

This particular resolution enables us to describe the deformation theory and homotopy
theory of BV-algebras and of homotopy BV-algebras. We show that any topological conformal
field theory carries a homotopy BV-algebra structure which lifts the BV-algebra structure on
homology. The same result is proved for the singular chain complex of the double loop space
of a topological space endowed with an action of the circle. We also prove the cyclic Deligne
conjecture with this cofibrant resolution of the operad BV . We develop the general obstruction
theory for algebras over the Koszul resolution of a properad and apply it to extend a conjecture of
Lian–Zuckerman, showing that certain vertex algebras have an explicit homotopy BV-algebra
structure.
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Introduction

The main goal of this paper is to develop the homotopy theory of Batalin–Vilkovisky
algebras, BV-algebras for short, and to apply it to algebra, topology, geometry and
mathematical physics.

The “disadvantage with monoids is that they do not live in homotopy theory” said
Saunders MacLane in 1967. Given two homotopy equivalent topological spaces or
chain complexes, such that one of them is endowed with a monoid or an associative
algebra structure, we may transfer the binary product to the other in an obvious
way. But this transferred product will not be associative in general; it carries higher
homotopies and the resulting structure is a homotopy associative, or simply A1, space
or algebra [69]. The category of A1-algebras includes the category of associative
algebras and is stable under homotopy constructions. To this end, homotopy and
algebra meet.

To control the combinatorics of these higher homotopies, MacLane introduced
the notion of prop [48] of which operads are a particular example [55]. Operads
and props are used to encode algebraically the operations acting in certain categories.
Props model multilinear operations with many inputs and many outputs, whereas
operads model multilinear operations with many inputs but only one output. One can
do homological algebra and homotopy theory on the level of operads themselves, and
in this context there is a notion of cofibrant operad that is to operads what projective
modules are to modules. It is proved that categories of algebras over cofibrant operads
enjoy good homotopy properties [7], [5]. For example, the operad which encodes
A1-algebras is cofibrant.

The notion of Batalin–Vilkovisky algebra plays an important role in geometry,
topology and mathematical physics. Unfortunately, as with associative algebras, the
operad which governs them is not cofibrant. Therefore the first question answered
by this paper is that of providing an explicit cofibrant resolution of this operad,
algebras over which are naturally called homotopy Batalin–Vilkovisky algebras. This
conceptual definition ensures that these algebras share nice homotopy properties.

To define this resolution we extend to operads the inhomogeneous Koszul duality
theory for algebras, after [63], [29], [25], and apply it to the operad BV which
encodes BV-algebras. The resulting explicit cofibrant resolution allows us to give four
equivalent definitions of a homotopy BV-algebra, each of which we make explicit for
the different applications in the text. Our approach via Koszul duality theory gives as
a corollary an algebraic theorem: the Poincaré–Birkhoff–Witt theorem for the operad
BV itself.

Another natural question is that of lifting to the chain complex level an algebraic
structure (such as a BV-algebra) that is given on the homology. The above arguments
show that one could hope for a homotopy BV-algebra structure on the chain complex
in general. Since we define the notion of homotopy BV-algebra by a cofibrant operad,
we can prove the following lifting results in mathematical physics and in algebraic
topology: any topological conformal field theory and any double loop space of a
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topological space endowed with an action of the circle carry a homotopy BV-algebra
structure which lifts the BV-algebra structure of [23] on homology. We also show
that the cyclic Deligne Conjecture is true with the homotopy BV operad provided
here. These proofs rely on the formality of the framed little discs operad [68], [26]
and the fact that the homotopy BV operad is cofibrant.

Since the resolution we provide here for the operad BV comes from an extended
Koszul duality theory, we can make the deformation theory of homotopy BV-algebras
explicit. We describe a dg Lie algebra whose Maurer–Cartan elements are in one-to-
one correspondence with homotopy BV-algebra structures. Given such an element,
the associated twisted dg Lie algebra defines the cohomology of the homotopy BV-
algebra. This also allows us to study the obstruction theory for homotopy BV-algebras.
In the relative case, we make explicit the obstructions to lift a homotopy Gersten-
haber algebra structure to a homotopy BV-algebra structure. We apply the general
obstruction theory to prove an extended version of Lian–Zuckerman conjecture: any
topological vertex operator algebra, with N-graded conformal weight, admits a ho-
motopy BV-algebra structure which extends Lian–Zuckerman operations and which
lifts the BV-algebra structure on the BRST homology. This homotopy BV-algebra
structure is explicit, unlike in the previous applications, since the method used is
different.

Using the Koszul dual cooperad of the operad encoding BV-algebras, we can
develop several important constructions in homotopy theory for BV-algebras and ho-
motopy BV-algebras: bar and cobar constructions,1-morphisms, transfer of homo-
topy BV-algebra structures under chain homotopy equivalences and Massey products.
This allows us to formulate the formality conjecture for the Hochschild cochains in
the BV case, extending Kontsevich’s result [42]. Other applications of homotopy
BV-algebras are expected in String Topology [11], Frobenius manifolds [50], Chiral
algebras [4] and in the Geometric Langlands Programme [16].

In [76], we introduced the notion of properad which lies between the notions of
operad and prop. Properads faithfully encode categories of bialgebras with products
and coproducts, as do props, but they are simpler. Hence it was possible to develop a
Koszul duality theory on that level, which cannot be done for props since they lack,
for the moment, the required homological constructions, such as the bar construction.

The second part of this paper is composed of three appendices which introduce the
general theories for properads that we have applied to the operad BV in the first part.
The first appendix describes the Koszul duality theory for inhomogeneous quadratic
properads, and thus operads; as a direct corollary we prove the Poincaré–Birkhoff–
Witt Theorem for Koszul properads. In the second, we develop the homotopy theory
for algebras over such a Koszul operad (bar and cobar constructions, homotopy alge-
bras,1-morphisms, transfer of structure and Massey products). The third appendix
describes the deformation and obstruction theory of algebras over a Koszul properad.
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Operadic homological algebra

In this section, we recall the basic notions of homological algebra for operads such
as twisting morphisms and bar and cobar constructions. We give the four equivalent
definitions of homotopy algebras over a Koszul operad that we will use throughout
the paper, one for each section.

We refer the reader to the papers [29], [25], [17] and to the books [52], [47] for
further details.

0.1. Conventions. Throughout the text, we work over the underlying category of
differential graded modules, or chain complexes, over a field K of characteristic 0.
Because of the relationship with algebraic topology, we use the homological degree
convention: the differential maps lower the degree by 1. Hence, we work with dg
operads, dg cooperads, dg algebras and dg coalgebras, which will often be called
operads, cooperads, algebras and coalgebras. Recall that a dg operad is a monoid in
the monoidal category of dg S-modules equipped with the composite product B. A dg
cooperad is a comonoid in this monoidal category. Notice that most of the operads
and cooperads present in this paper are reduced, that is, they satisfy P .0/ D 0. The
degree of an element or map is denoted by jxj. We adopt the usual opposite grading
for the linear dual of a chain complex, .V �/n ´ .V�n/�. Let sK denote a copy of
the field concentrated in degree 1 and let s W V ! sV denote the suspension operator,
where .sV /n D sK˝ Vn�1 and s.v/ D 1˝ v.

0.2. Twisting morphisms. Let C be a dg cooperad and let Q be a dg operad. Recall
from [5] that the collection Hom.C ; Q/´ fHom.C.n/; Q.n//gn2N forms an operad
called the convolution operad. This structure induces a dg pre-Lie algebra structure
and hence a dg Lie algebra structure on the direct product of the S-equivariant maps

HomS.C ; Q/´ � Q
n2N

HomSn
.C.n/; Q.n//; @; Œ ; �

�
;

see [39].
In this convolutiondgLie algebra, we consider the Maurer–Cartan equation @.˛/C

1
2
Œ˛; ˛� D 0, whose degree �1 solutions are called twisting morphisms by analogy

with algebraic topology. The set of twisting morphisms is denoted Tw.C ; Q/.
A cooperad C is called coaugmented when the counit map splits by a morphism

of cooperads I ! C called the coaugmentation map, with cokernel denoted by xC .
When C is coaugmented, we require that twisting morphisms factor through xC ! Q.

0.3. Bar and cobar constructions. The twisting morphisms functor, Tw: coaugm.
dg coop. � dg op.! sets, is represented by the functors

� W fcoaugmented dg cooperadsg • fdg operadsg WB;

called the bar construction B and the cobar construction �.
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The cobar construction �C of a coaugmented dg cooperad .C ; dC / is defined by
the free operad F .s�1 xC/ on the homological desuspension of xC . It is endowed with
the derivation d D d2 C d1 given by the unique derivation d2 which extends the
partial decomposition map of the cooperad C plus the unique derivation d1 which
extends the differential dC of C . The bar construction BQ is defined dually by the
cofree cooperad F c.sQ/; see [25], Section 2, and [47], Chapter 5.

A conilpotent cooperad .C ; �/ is a coaugmented cooperad such that the iterated
powers of the decomposition map � minus its primitive part applied to any element
eventually vanish. The bar and cobar constructions form an adjunction between dg
operads and conilpotent dg cooperads, which is explicitly given by the set of twisting
morphisms [25], Theorem 2.17,

Homdg op..�C ; Q/ Š Tw.C ; Q/ Š Homdg coaugm. coop..C ; BQ/:

0.4. Homotopy algebras. When an operad P is Koszul, the cobar construction of
its Koszul dual cooperad P ¡ provides a quasi-free resolution of P ; see Appendix A.

P1 ´ �P ¡ ��!� P :

We define homotopy P -algebras to be the algebras over the cofibrant operad P1;
thus they share nice homotopy properties [7], [5]. A homotopy P -algebra structure
on a dg module A is a morphism of dg operads �P ¡ ! EndA.

By the preceding subsection applied to C D P ¡ and Q D EndA, a homo-
topy P -algebra structure on A is equivalently given by a twisting morphism in
Tw.P ¡; EndA/. Recall that the free P ¡-coalgebra on a dg module A is P ¡.A/ ´L

n2N P ¡.n/ ˝Sn
A˝n. Using the adjunction HomSn

.P ¡.n/; Hom.A˝n; A// Š
Hom.P ¡.n/˝Sn

A˝n; A/, one proves that

HomS.P ¡; EndA/ Š Hom.P ¡.A/; A/ Š Coder.P ¡.A//;

the space of coderivations on P ¡.A/. Under this isomorphism, the set of twisting mor-
phisms Tw.P ¡; EndA/ is in one-to-one correspondence with square zero coderivations
of degree �1, or codifferentials, Codiff.P ¡.A// on P ¡.A/.

Theorem 1 (Rosetta Stone [29], [25], [78], [58]). For any Koszul operad P in the
sense of the Appendix A, the set of homotopy P -algebra structures on a dg module
A is equal to

Homdg op. .�P ¡; EndA/ Š Tw.P ¡; EndA/ Š Homdgcoaugm: coop:.P
¡; B EndA/

Š Codiff.P ¡.A//:

The operad BV encoding Batalin–Vilkovisky algebras is Koszul in the sense of
Appendix A, though it is not quadratic or Koszul in the classical sense. In each
section of the present paper, we make the notion of homotopy BV-algebra explicit
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using one of the above equivalent definitions each time. In Section 1, we make the
quasi-free resolution �BV ¡ explicit. In Section 2, we use the definition in terms
of codifferentials on BV ¡.A/. In Section 3, we develop the deformation theory of
homotopy BV-algebras using the Lie theoretic description with twisting morphisms.
And in Section 4, we use the last two definitions to study the homotopy theory for
homotopy BV-algebras. For instance, the third definition will be shown to provide
an explicit formula for Massey products on the homology groups of any BV-algebra
or homotopy BV-algebra.

1. Resolution of the operad BV

We make a quasi-free resolution BV1 of the operad BV encoding Batalin–Vilkovisky
algebras explicit. An algebra over this resolution is a homotopy BV-algebra. The re-
sults of this section are an important example of (but can be read independently from)
the inhomogeneous quadratic Koszul theory developed in Appendix A. This allows
us to prove a Poincaré–Birkhoff–Witt theorem for the operad BV itself. At the end of
the section, it is shown that the genus 0 operadic part of a topological conformal field
theory, TCFT for short, is encoded in this algebraic notion of homotopy BV-algebra.

1.1. Batalin–Vilkovisky algebras. The Koszul–Quillen sign rule says that the im-
age under f ˝ g of x ˝ y is equal to .f ˝ g/.x ˝ y/ D .�1/jxjjgjf .x/ ˝ g.y/.
Throughout the paper, we adopt the economical convention of denoting multilinear
operations on A as elements in the endomorphism operad EndA, that is, without
making them act on the elements of A explicitly. For instance, a binary product � is
(graded) symmetric if the permutation .12/ acts trivially on it: .- � -/:.12/ D - � -.
This relation, applied to homogeneous elements, gives x � y D .�1/jxjjyjy � x.

A skew-symmetric bracket Œ ; � of degree 0 on the suspension sA of a space A

is equivalent to a symmetric bracket h ; i of degree C1 on A under the formula
h -; - i D s�1Œs.-/; s.-/� because

h ; i:.12/ D .s�1Œ ; �Bs˝s/:.12/ D �s�1.Œ ; �:.12//Bs˝s D s�1Œ ; �Bs˝s D h ; i;
which, applied to homogeneous elements, says

hy; xi D .�1/jyjs�1Œsy; sx� D .�1/jyjC1C.jxjC1/.jyjC1/s�1Œsx; sy�

D .�1/jxjjyjhx; yi:

Definition. A Batalin–Vilkovisky algebra, or BV-algebra for short, is a differential
graded vector space .A; dA/ endowed with

F a symmetric binary product � of degree 0,

F a symmetric bracket h ; i of degreeC1,
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F a unary operator � of degreeC1,

such that dA is a derivation with respect to each of them and such that

B the product � is associative,

B the bracket satisfies the Jacobi identity

hh ; i; i C hh ; i; i:.123/C hh ; i; i:.321/ D 0;

B the product � and the bracket h ; i satisfy the Leibniz relation

h -; - � - i D .h -; - i � -/C .- � h -; - i/:.12/;

B the operator satisfies �2 D 0,

B the bracket is the obstruction to � being a derivation with respect to the product �

h -; - i D � B .- � -/ � .�.-/ � -/ � .- � �.-//;

B the operator � is a graded derivation with respect to the bracket

�.h -; - i/C h�.-/; - i C h -; �.-/i D 0:

Remarks. In the literature ([23], [73] for instance), one usually defines a BV-algebra
with a degree 1 bracket Œ ; � such that Œx; y� D �.�1/.jxjC1/.jyjC1/Œy; x� and satis-
fying a Jacobi relation with different signs. This definition is equivalent to the one
above under Œx; y� D .�1/jxjhx; yi.

The relations are homogeneous with respect to the degree.
The Leibniz relation is equivalent to the fact that the operators adx.-/ ´ hx; - i

are derivations, of degree jxj C 1, with respect to the product �.
A vector space endowed just with a symmetric product � and a symmetric bracket

h ; iwhich satisfy the first three relations is called a Gerstenhaber algebra after [20].
The last relation is a direct consequence of the other axioms, but we keep it in the

definition.

The operad encoding BV-algebras is the operad defined by generators and relations

BV ´ F .V /=.R/;

where F .V / denotes the free operad on the S-module

V ´ �K2 ˚ h ; iK2 ˚� K;

with K2 the trivial representation of the symmetric group S2. The space of relations
R is the sub-S-module of F .V / generated by the relations ‘B’ given above. The
basis elements �, h ; i, � are of degree 0, 1, 1. Since the relations are homogeneous,
the operad BV is graded by this degree, termed the homological degree.

We denote by Com the operad generated by the symmetric product � and the
associativity relation. We denote by Lie1 the operad generated by the symmetric
bracket h ; i and the Jacobi relation; it is the operad encoding Lie algebra structures
on the suspension of a dg module. The operad G governing Gerstenhaber algebras is
defined similarly.
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1.2. The quadratic analogue of BV . The free operad F .V / may also be given a
weight grading, where each generator �, h ; i, � has weight one. Equivalently, the
weight is the number of internal vertices in the tree representing an element. The
homogeneous component of weight n is denoted F .V /.n/. The ideal of relations .R/

is generated by the inhomogeneous quadratic subspace

R � F .V /.1/ ˚ F .V /.2/ D V ˚ F .V /.2/;

so the operad BV is not weight graded. There are two ways to define a graded operad
from BV .

Let q W F .V / � F .V /.2/ be the projection of the free operad onto its quadratic
part and let qR denote the image of R under q. We consider the following quadratic
operad

qBV ´ F .V /=.qR/:

The quadratic relations of BV are not modified under q. The only relation which is
not quadratic is the penultimate, which measures the obstruction for the operator �

to be a derivation with respect to the product �. It becomes

q

0
@

��� ����
�

�
�

��� ��
�

� � ��
� �

���� �
��� 			

h ; i

1
A D

��� ����
�

�
�

��� ��
�

� � ��
� �

���� :

The operad qBV is bigraded, by the homological degree and the weight grading.
The weight grading of F .V / induces a filtration of BV ,

FnBV ´ �
� L

k�n

F .V /.k/
�
;

where � denotes the natural projection F .V / � BV . As usual the associated
graded operad, denoted by gr BV , is isomorphic to BV as an S-module. Since the
space of quadratic relations qR is also zero in gr BV , there is a natural epimorphism
of bigraded operads

qBV � gr BV :

Theorem 2. The operad qBV is Koszul.

Proof. This follows from [76], Proposition 8.4, by the distributive law method. Ob-
serve that the operad qBV is obtained from the Koszul operad G of Gerstenhaber
algebras and D´ KŒ��=.�2/ the algebra of dual numbers, an operad concentrated
in arity 1, by means of the distributive laws

��� ����
�

7�!
�

��� ��
�

� C ��
� �

���� ;

��� 			
h ; i

�

7�!
�

��� 





h ; i C ��
� �

			
h ; i :
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These define an injective map D B G � G BD Š qBV of graded S-modules and
hence [76], Proposition 8.4, proves that the operad qBV is Koszul. (The fact that
the algebra of dual numbers here is not concentrated in degree zero does not affect
the spectral sequence used in the proof there: we have E1

pq D .D¡.p/ BD/pCq and
E2

pq D 0 unless p D q D 0 since d 1 is the differential of the Koszul complex.)

Remark. The distributive law theorem for operads due to Markl in [51] cannot be
used here because it does not apply to operads with unary operations. The general
methods of [76], Section 8, are the same, but the results include unary operations
since the proofs are based on different filtrations.

As a direct corollary of the distributive law methods, we get the following explicit
description of the S-modules underlying qBV and its Koszul dual qBV ¡, with their
homological grading.

Proposition 3. There are isomorphisms of degree graded S-modules

qBV Š G BD Š Com BLie1 B KŒ��=.�2/;

qBV ¡ Š D¡ B G ¡ Š KŒı� BLie¡
1 B Com¡;

where KŒı� Š T c.ı/ is the cofree coalgebra on a degree 2 generator ı, that is, a
cooperad concentrated in arity 1.

Proof. This follows from [76], Lemma 8.1 and Proposition 8.2.

When the number of generators of a binary operad P is finite, it is convenient to
work with the Koszul dual operad

P Š D .F .V /=.R//Š ´ F .V � ˝H sgnS2
/=.R?/:

Here the Hadamard product ˝H is the arity-wise tensor product of S-modules. In
the finitely generated case, the Koszul dual cooperad P ¡ is isomorphic to

P ¡ Š S c.P Š/� ´ S c ˝H .P Š/�;

where .P Š/� denotes the component-wise linear dual of the Koszul dual operad and
where S c ´ Endc

s�1K
is the suspension cooperad of endomorphisms of the one

dimensional vector space s�1K concentrated in degree �1 (see Section 2.4 of [25]
and Section 2 of [77]). We can also consider the desuspension of operads by taking the
Hadamard product S�1P ´ S�1 ˝H P with the operad S�1 ´ EndsK. Observe
the Hadamard product of two (co)operads is again a (co)operad.

Corollary 4. The underlying S-module of the cooperad qBV ¡ is isomorphic to

qBV ¡ Š KŒı� B S cComc
1 B S cLiec;
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where Liec Š Lie� is the cooperad encoding Lie coalgebras and where Comc
1 Š

Com�
�1 is the cooperad encoding cocommutative coalgebra structures on the suspen-

sion of a dg module. The degree of the elements in

K:ıd ˝ S cComc
1.t/˝ S cLiec.p1/˝ � � � ˝ S cLiec.pt / � qBV ¡

is nC t C 2d � 2 for n D p1 C � � � C pt .

Proof. From [29], [25], we have ComŠ D Lie and Lie1
Š D Com�1.

Since qBV is a Koszul operad, its quadratic model is given by the cobar con-
struction of its Koszul dual cooperad

� qBV ¡ ´ .F .s�1qBV
¡
/; d2/ ��!� qBV � gr BV Š BV :

The S-module s�1qBV
¡
seems to be a good candidate for the space of generators

a quasi-free resolution of the operad BV itself. In the next section we perturb the
quadratic differential d2 by a linear term d1 in order to obtain a quasi-isomorphism
with the operad BV .

1.3. The Koszul dual of BV . We consider the map ' W qR! V defined by

��� ����
�

�
�

��� ��
�

� � ��
� �

���� 7�!
��� 			

h ; i

and 0 otherwise, so that the graph of ' is equal to the space of relations R (see
Appendix A.1 for the general theory).

We use the notation ˇ for the ‘commutative’ tensor product, that is, the quotient
of the tensor product under the permutation of terms. In particular, we denote by
ıd ˝L1ˇ � � � ˇLt a generic element of KŒı� B S cComc

1 B S cLiec with Li 2 S cLiec

for i D 1; : : : ; t , the elements of S cComc
1 being implicit.

Lemma 5. There is a unique square-zero coderivation d' on the cooperad qBV ¡

which extends '. It is explicitly given by

d'.ıd ˝ L1 ˇ � � � ˇ Lt / D
tP

iD1

.�1/"i ıd�1 ˝ L1 ˇ � � � ˇ L0
i ˇ L00

i ˇ � � � ˇ Lt ;

where L0
i ˇ L00

i is Sweedler-type notation for the image of Li under the binary part

S cLiec ! S cLiec.2/˝ .S cLiec ˝ S cLiec/

of the decomposition map of the cooperad S cLiec. The sign is given by "i D .jL1jC
� � �C jLi�1j/. The image of d' is equal to 0 when d D 0 or when Li 2 S cLiec.1/ D
IK for all i .
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Proof. The first claim follows from Lemma 37. It is straightforward to verify that
.R˝ V C V ˝R/ \ F .V /.2/ � R \ F .V /.2/ here.

To make d' explicit, we dualize everything and we consider the unique derivation
td' on .qBV ¡/� extending t'. The transpose map t' is equal to t'.c/ D ı�˝I ˝ l 2
KŒı�� B S�1Com�1 B S�1Lie, where c denotes the generator of S�1Com�1.2/ and
where l denotes the generator of S�1Lie.2/. Therefore, td' is equal to

td'..ı�/d ˝ L�
1 ˇ � � � ˇ L�

t /

D P
1�i<j �t

.�1/"ij .ı�/dC1 ˝ ŒL�
i ; L�

j �ˇ L�
1 ˇ � � � ˇ OL�

i ˇ � � � ˇ OL�
j ˇ � � � ˇ L�

t ;

where ŒL�
i ; L�

j � is the image �.l IL�
i ; L�

j / under the composition map S�1Lie.2/˝
.S�1Lie˝ S�1Lie/! S�1Lie of the operad S�1Lie with the generating element
l in S�1Lie.2/. The sign "ij is automatically given by Koszul–Quillen sign rule,
which is here

"ij D .jL�
i j C jL�

j j/:.jL�
1j C � � � C jL�

i�1j/C jL�
j j:.jL�

iC1j C � � � C jL�
j �1j/:

Finally, we dualize once again to get d' .

Since S�1Lie.A/ Š sLie.s�1A/, this last formula shows that the differential td'

on .qBV ¡/� is equal, up to the powers of ı�, to the Chevalley–Eilenberg boundary
map defining the homology of the free Lie algebra.

We can now define the Koszul dual of the inhomogeneous quadratic Batalin–
Vilkovisky operad.

Definition. The Koszul dual cooperad of the operad BV is the differential graded
cooperad

BV ¡ ´ .qBV ¡; d'/:

1.4. The Koszul resolution of the operad BV . Since the definition of the cobar
construction extends to dg cooperads, we can consider the cobar construction �BV ¡

of the Koszul dual dg cooperad of BV .

Definition. We denote by BV1 the quasi-free operad given by the cobar construction
on BV ¡:

BV1 ´ �BV ¡ Š .F .s�1qBV
¡
/; d D d1 C d2/:

The space of generators of this quasi-free operad is isomorphic to KŒı�BS cComc
1 B

S cLiec, up to coaugmentation. The differential d1 is the unique derivation which
extends the internal differential d' and the differential d2 is the unique derivation
which extends the partial coproduct of the cooperad BV ¡. (Recall that the partial
coproduct of a cooperad is the component of the coproduct in F .C/.2/ � C B C ,
given by trees with 2 vertices.) Therefore, the total derivation d D d1 C d2 squares
to zero and it faithfully encodes the full data of dg cooperad on BV ¡.
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Theorem 6. The operad BV1 is a resolution of the operad BV

BV1 D �BV ¡ D .F .s�1qBV
¡
/; d D d1 C d2/ ��!� BV :

Proof. This is an application of Theorem 38.

As a direct corollary of the proof of this theorem, we get the following seemingly
unrelated result.

Theorem 7 (Poincaré–Birkhoff–Witt Theorem for the operad BV ). The natural epi-
morphism qBV � gr BV is an isomorphism of bigraded operads. Thus there are
isomorphisms of S-modules

BV Š gr BV Š qBV

which preserve the homological degree.

Proof. This is an application of Theorem 39.

This algebraic result allows us to make the free Batalin–Vilkovisky algebra ex-
plicit.

Proposition 8 ([23]). The underlying module of the free Batalin–Vilkovisky algebra
on a module X is isomorphic to

BV.X/ Š qBV.X/ Š G BD.X/ Š Com BLie1.X ˚�.X//:

The result is also a corollary of Proposition 4:8 of [23], but the method is different.

Remark. Our construction of BV ¡ and BV1 is based on a particular presentation
of BV in terms of generators and relations. This method cannot be applied to the
other quadratic operad qBV 0, associated to the presentation of BV in which the
final ‘redundant’ derivation relation between � and the bracket h ; i is omitted. The
two presentations of BV are equivalent, but the induced quadratic operads qBV and
qBV 0 are not isomorphic. In fact the derivation relation between � and h ; i holds
in gr BV 0 but not in qBV 0, so in weight two qBV 0 is strictly larger than gr BV 0
and there is no PBW theorem. To apply this method one must always consider the
maximal space of relations R; see Proposition 40 in Appendix A for further details.

1.5. Homotopy BV-algebra. A homotopy BV-algebra, or BV1-algebra, or BV-
algebra up to homotopy, is an algebra over the operad BV1. Such a structure on a
dg module A is given by a morphism of dg operads

BV1 ! EndA :
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Any BV-algebra is a special case of a homotopy BV-algebra; this is the case when
the structure map BV1 ! EndA factors as the quasi-isomorphism followed by the
BV structure map,

BV1 ��!� BV ! EndA :

We will return to the explicit definition of homotopy BV-algebras in Section 2.

1.6. Relations with the framed little discs operad and double loop spaces. We
recall from Section 4 of [23] (see also [65]) the definition of the framed little discs
operad fD. Let D denote the unit disc in the plane. The space fD.n/ is the space of
maps from the disjoint union of n copies of D to D, whose restriction to each disc is
the composite of a translation and multiplication by an element of C�. The interior
of the images of the discs are supposed to be disjoint. It can be thought of as the
space of configurations of n discs, with one marked point on each boundary, inside
the unit disc D. Since we work over a field, the singular chains C�.fD/ is a dg operad
and its homology groups H�.fD/ form a graded operad.

Proposition 9 ([23]). The homology of the framed little discs operad is isomorphic
to the BV operad,

H�.fD/ Š BV :

Therefore, the framed little discs operad gives a topological model for the notion
of homotopy BV-algebras. We make this relation precise with the following key
result.

Proposition 10 ([68], [26]). The framed little discs operad is formal, i.e., the dg
operads C�.fD/ and H�.fD/ are linked by a zig-zag of quasi-isomorphisms:

C�.fD/ D X1  ��� X2 ��!� � � �  ��� X2r ��!� X2rC1 D H�.fD/ Š BV :

Theorem11. There is a quasi-isomorphismof dg operads between the operads BV1
and C�.fD/, the chains of the framed little discs operad, which lifts the resolution
BV1 ��!� BV .

Proof. Let X ��!� C�.fD/ be a cofibrant replacement of C�.fD/ in the model category
of dg operads (see [34], [5]). We consider the zig-zag coming from Proposition 10,

X ��!� C�.fD/ D X1  ��� X2 ��!� � � �  ��� X2r ��!� X2rC1 D BV ;

in the homotopy category of dg operads Ho.X; BV/. In this model category every dg
operad is fibrant, so is BV . Since X is cofibrant and BV fibrant, there is a morphism
of dg operads � W X ! BV which factors

C�.fD/ D X1 X2
��� � �� : : : X2r

��� � �� X2rC1 D BV

X

�
��

� �� �� BV



552 I. Gálvez-Carrillo, A. Tonks, and B. Vallette

(see Proposition 5:11 of [14]). Since all the maps are quasi-isomorphisms, then � is
a quasi-isomorphism. And since the dg operad BV has trivial differential, � is an
epimorphism. Finally, the morphism of dg operads � is a fibration. The operad BV1
is quasi-free and non-negatively graded, so it is a cofibrant replacement of BV . In
conclusion, there is a quasi-isomorphism of dg operads which lifts

BV1
�

��

�
��

BV �� X
����� � �� C�.fD/.

This quasi-isomorphism exists by an abstract model category argument and the
formality theorem. So it would be desirable to have a better understanding of it, for
instance in terms of a morphism to the cellular chains on a cellular decomposition of
the framed little discs operad (see [40]). This would lead to a better understanding
of the Grothendieck–Teichmüller group, see [71], [72]. We leave this interesting
question for future study or to the reader.

The main motivation for the introduction of the framed little discs operad by
Getzler [23] was to extend the recognition principle of Boardman–Vogt [7] and May
[55]: the framed little discs operad acts on the double loop space of any topological
space endowed with an action of the circle and the operad action characterises this type
of spaces [65]. Hence the homology of the double loop space of any topological space
endowed with an action of the circle carries a BV-algebra structure by Proposition 9,
where the product is the Pontryagin product and the bracket is the Browder bracket.

Corollary 12. Let X be a topological space endowedwith an action of the circle. The
singular chain complex C�.�

2X/ of the double loop space of X carries a homotopy
BV-algebra structure which lifts the BV-algebra structure on homology.

1.7. Relations with the Riemann sphere operad and topological conformal field
theory. Recall from Segal [66] that the properad of Riemann surfaces R is defined
by the moduli space of isomorphism classes of connected Riemann surfaces of arbi-
trary genus with biholomorphic maps from the disjoint union of nCm discs. Again
the images of the discs are supposed to have disjoint interiors. The images of the first
n discs form the inputs and the images of the last m discs form the outputs. The prop-
erad structure is given by sewing along the boundaries of the discs. (In the literature
one usually considers the prop freely associated to this properad, but this yields no
more information.) A space which is an algebra over R is called a Conformal Field
Theory, or briefly CFT. The singular chains C�.R/ of this topological properad is a
dg properad, and a dg module which is an algebra over C�.R/ is called a Topological
Conformal Field Theory, or briefly TCFT.

If we consider only Riemann spheres (surfaces of genus 0) with one output disc,
this collection forms a topological operad denoted by R, of which the framed little
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discs operad fD is a deformation retract. The retraction is obtained by shrinking the
complement of the output disc to a unit disc, leaving a configuration of n discs in
the unit disc with one marked point on each boundary. This result, with the help of
Proposition 9, allowed Getzler [23] to prove that the homology groups of any TCFT
carry a BV-algebra structure.

Theorem 13. There is a quasi-isomorphism of dg operads BV1 ��!� C�.R/ such
that the diagram of quasi-isomorphisms

C�.R/ �� �� C�.fD/
����

����
BV1 ��

�������������

��

BV Š H�.fD/

commutes.

Corollary 14. Any TCFT carries a homotopy BV-algebra structure which lifts the
BV-algebra structure on homology.

Thus an important part of a TCFT structure is encoded in the algebraic notion of
homotopy BV-algebra structure. For the same kind of result at the level of vertex
algebras, we refer the reader to Section 3.3.

2. Homotopy BV-algebra

We translate the results on resolutions of operads from the first section to give the
explicit definitions of homotopy BV-algebras in terms of operations and relations. The
operations carried by these homotopy algebras correspond to the generators of the
quasi-free resolutions we have described. It remains to give explicit descriptions of
the axioms the operations must satisfy. They are given by the relation .d1Cd2/2 D 0.

Throughout this section we will consider, as examples of these structures, the
Hochschild cochain complex of associative algebras.

2.1. Homotopy Gerstenhaber algebra. It was proved in Getzler–Jones [25] that
the operad G encoding Gerstenhaber algebras is Koszul, thereby defining the notion of
homotopy Gerstenhaber algebras. To give a homotopy Gerstenhaber algebra structure
on a graded vector space A is to give a morphism of dg operads

�G ¡ D .F .s�1 xG ¡/; d2/ �! .EndA; dEndA
/;

where G ¡ is the Koszul dual cooperad. Recall from [29], Proposition 4.2.14, that this
is equivalent to giving a map

m W G ¡.A/! A
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which extends to a square zero coderivation (see Tamarkin–Tsygan [73], Section 1,
for the form of these operations). Here G ¡.A/ is the cofree Gerstenhaber coalgebra,
up to (de)suspension,

G ¡.A/ D s�1G c.sA/ D s�2Comc.sLiec.sA//;

where G c is the component-wise linear dual to G . The square zero condition gives
a family of quadratic relations on the components of the map m. We will make
these relations completely explicit, using the laws for extending m to a coderivation
with respect to the Gerstenhaber coalgebra structure of G ¡.A/ (compare with [27],
Lemma 3.4 and Theorem 3.6, where the formula for iii) has to be slightly modified).

Given elements ak 2 sA, a permutation � 2 Sn and an interval Œi; j � D fi; i C
1; : : : ; j g, i � j � n, we will use the notation

aŒi;j � ´ ai ˝ aiC1 ˝ � � � ˝ aj ;

a�
Œi;j � ´ a��1.i/ ˝ a��1.iC1/ ˝ � � � ˝ a��1.j /

in .sA/˝.j �iC1/.
The cofree Lie coalgebra Liec.sA/ on the dg module sA is given by

Liec.sA/ D L
p�1

.sA/˝p:

Here .sA/˝p is the quotient of the .sA/˝p by the images of the shuffle maps

shi;p�i W .sA/˝i ˝ .sA/˝.p�i/ �! .sA/˝p .1 � i � p � 1/;

shi;p�i .aŒ1;i� ˝ aŒiC1;p�/ D
P

�2Shi;p�i

.�1/"a�
Œ1;p�

:

The sum is over the set Shi;p�i of all .i; p � i/-shuffles, and .�1/" is the Koszul
sign associated to the reordering of the tensor factors ak 2 sA. This result is due to
Ree [64]. We refer to [47], Chapter 1, for more details and the following operadic
interpretation: the morphism of operads Ass � Com, equivalent to the forgetful
functor from commutative and associative algebras to associative algebras, induces
a morphism on the level of the Koszul dual cooperads Ass¡ � Com¡. After desus-
pension, it gives a morphism of cooperads Assc � Liec, whose kernel is equal to
the image of the shuffle maps.

We now write W D Liec.sA/ and turn to the construction of Comc.sW /. It is
well known that the free cocommutative coalgebra Comc.sW / on a graded space sW

is given by
Comc.sW / D L

t�1

.sW /ˇt Š L
t�1

st
V

tW:

Here .sW /ˇt is the space of symmetric tensors in .sW /˝t which we identify with the
exterior power

^t
W , up to sign and a change of grading as discussed in Section 1.1.
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Furthermore any family of maps m0
t W

^t
W ! W of degrees t � 2 extends to a

coderivation zm on Comc.sW / by

zm.w1 ^ � � � ^ wt /

D P
ItJ Df1;:::;tg

.�1/"C"0C"00
s˝jJ jm0

jI j.wi1 ^ � � � ^ wijI j
/ ^ wj1

^ � � � ^ wjjJ j
:

Here .�1/"C"0
is the shifted Koszul sign, and "00 D jI j � jJ j. The shifted Koszul sign

associated to a permutation � of tensor factors is the usual Koszul sign multiplied by
the sign of � itself. Partitions I t J can equivalently be regarded as (un)shuffles of
f1; : : : ; tg.

Throughout the text we will simply denote any tuple .q1; : : : ; qt / by q.

Definition. Consider integers t � 1 and `k; rk � 0, qk � 1, pk D `k C qk C rk for
each k D 1; : : : ; t , and let

Pk D
P

1�i�k�1

pi ; Lk D
P

1�i�t

`i C P
1�i�k�1

qi :

Then a straight .l; q; r; p/-shuffle is a p-shuffle (i.e., a .p1; : : : ; pt /-shuffle) � satisfy-
ing the following extra property for each k D 1; : : : ; t :

�ŒPk C `k C 1; Pk C `k C qk� D ŒLk C 1; LkC1�:

By a straight .q; p/-shuffle we mean a straight .l; q; r; p/-shuffle for some values of
`k; rk � 0 with `k C rk D pk � qk .

Less formally, a straight shuffle may be thought of as a permutation � of a concate-
nation X of t strings of lengths pk , each of which contains a non-empty distinguished
interval of length qk , with lk elements on the left and rk elements on the right. For
example,

X D 1 2 3 4 j 5 6 7 8 j 9 10 11 j 12 13:

For the permutation to be a straight shuffle it must satisfy following conditions:

˘ the orders of the elements within the t strings are preserved by � (shuffle),

˘ the distinguished intervals appear unchanged and contiguously in the image
(straight).

For example, one possible straight shuffle of X is

9 1 2 5 6 10 11 12 13 7 3 8 4:

More precisely, it is a straight ..1; 0; 1; 0/; .1; 2; 2; 2/; .2; 2; 0; 0/; .4; 4; 3; 2//-shuffle.

Definition. For any map

mq D mq1;:::;qt
W .sA/˝q1 ^ � � � ^ .sA/˝qt �! sA .qk � 1/;
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and integers pk � qk we define the straight shuffle extension

mp
q D mp1;:::;pt

q1;:::;qt
W .sA/˝p1 ^ � � � ^ .sA/˝pt �! .sA/˝p0

.p0 D 1C
tP

kD1

.pk � qk//;

aŒ1;p1� ^ � � � ^ aŒPt C1;PtC1� 7�!
P
�

.�1/"C"0
a�

Œ1;L1�
˝mq1;:::;qt

.a�
ŒL1C1;L2�

^ � � � ^ a�
ŒLt C1;LtC1�

/˝ a�
ŒLtC1C1;PtC1�

:

Here � runs over all straight .q; p/-shuffles and the integers Pk , Lk are as above.
The sign .�1/" is the Koszul sign associated to the reordering of the ai 2 sA, and
"0 D t � ja�

Œ1;L1�
j.

From the straight shuffle of X above, for example, we see that one of the terms
in the expression

m
4;4;3;2
1;2;2;2.aŒ1;4� ^ aŒ5;8� ^ aŒ9;11� ^ aŒ12;13�/ 2 .sA/˝7

is

˙a9 ˝ a1 ˝m1;2;2;2.a2 ^ aŒ5;6� ^ aŒ10;11� ^ aŒ12;13�/˝ a7 ˝ a3 ˝ a8 ˝ a4:

Remarks. The straight shuffle extension m
p
q is a multilinear map of the same homo-

logical degree as mq and inherits the same (skew-)symmetry properties.
If we allowed pj > 0 but qj D 0 for some 1 � j � t , then the straight shuffle

extension would vanish since elements in the image lie in that of the shuffle map
shpj ;p0�pj

.

The straight shuffle extension is well defined on the quotients .sA/˝pk . That is,
if 1 � i � pj � 1 then the image of the composite m

p1;:::;pt
q1;:::;qt

.1 ^ shi;pj �i ^ 1/ in

.sA/˝p0
is zero. An element in the image is a sum of terms, indexed by all straight

.`k; qk; rk; pk/t
kD1

shuffles � and all .i; pj�i/-shuffles 	 . For each .�; 	/, let x and y

be the lengths of the subintervals of Œ1; i � and ŒiC1; pj � given by the intersections with
	�1Œ j̀ C1; j̀ Cqj �. Now the terms for given x; y � 1 may be grouped together into
terms containing a factor mq1;:::;qt

.1^ shx;y ^1/, and hence these vanish. Collecting
the terms for which x or y is zero gives elements in the image of the straight shuffle
extensions m

p1;:::;i;pj �i;:::;pt

q1;:::;x;y;:::;qt
, which by the previous remark also vanish.

Examples. For t D 1 we observe that m0 DP
q�p m

p
q reduces to the usual formula

for the extension of a degree �1 map
P

mq W Liec.sA/ ! sA as a coderivation on
the cofree Lie coalgebra Liec.sA/.

For t D 2 a result of Fresse [18], Lemma 1.3.5, says that a Lie bracket m1;1 W sA^
sA! sA extends to a shuffle bracket Liec.sA/^Liec.sA/! Liec.sA/. The straight
shuffle extension

P
m

p1;p2

1;1 coincides with this shuffle bracket.
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Now the cofree G ¡-coalgebra on a graded space A is given by

G ¡.A/ D s�2Comc.sLiec.sA// Š L
p1�			�pt

st�2..sA/˝p1 ^ � � � ^ .sA/˝pt /;

so that a degree �1 map m W G ¡.A/! A is equivalent to a family of maps

mq D mq1;:::;qt
W .sA/˝q1 ^ � � � ^ .sA/˝qt �! sA; t; qk � 1;

of degrees t � 2.

Lemma 15. Let m W G ¡.A/ ! A be a degree �1 map and let mq W .sA/˝q1 ^ � � � ^
.sA/˝qt �! sA be the associated equivalent family of maps.

The map
m0 DP

m
p
q W G ¡.A/! Liec.sA/

defined by the straight shuffle extensions is the unique coderivation with respect to the
Lie coalgebra structures which extends m. Moreover the map zm W G ¡.A/ ! G ¡.A/

defined by

zm.w1^� � �^wt / D P
ItJ Df1;:::;tg

.�1/"C"0C"00
sjJ jm0.wi1^� � �^wijI j

/^wj1
^� � �^wjjJ j

;

is the unique extension of m0 as a coderivation of cocommutative coalgebras.
Finally zm W G ¡.A/! G ¡.A/ is the unique extension of m to a degree�1 coderiva-

tion of G ¡-coalgebras.

Proof. Let us introduce the following non-commutative version of the operad G : the
operad G is the operad encoding algebras defined by a degree 0 associative product
? and by a degree 1 Lie bracket h ; i satisfying the Leibniz relation

h -; - ? - i D .h -; - i ? -/ C .- ? h -; - i/:.12/;

This operad was already introduced in [57] where it was shown that it does not
satisfy the distributive law assumption. Hence it is actually isomorphic to a non-trivial
quotient of Ass BLie1.

Recall that the morphism of operads Ass � Com induces the morphism between
the Koszul dual cooperads � W Ass¡ � Com¡, equivalent to the morphism of coop-
erads Assc � Liec after desuspension. These morphisms extend to a morphism of
operads G � G and to a morphism of cooperads … W G¡ � G ¡ as follows. The
Koszul dual operad of G is G itself [25] and the Koszul dual operad GŠ of G is the
operad generated by an associative product � of degree 1 and by a commutative and
associative product � of degree 0, which satisfy the left and right Leibniz relations:

.- � .- � -// D ..- � -/ � -/C .- � .- � -//:.12/;

..- � -/ � -/ D ..- � -/ � -/:.23/C .- � .- � -//:
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A GŠ-algebra induces a G Š D G -algebra by anti-symmetrizing the associative product
to define a Lie bracket. This functor is in one-to-one correspondence with a morphism
of operads G Š ! GŠ, which induces the morphism of cooperads … W G¡ � G ¡

by linear duality and suspension. Once again, the operad GŠ does not satisfy the
distributive law assumption, but G¡ is a (non-trivial) sub-S-module of S cComc

1 B
S cAssc and the morphism of cooperads … W G¡ � G ¡ is equal to the composite

G¡ � S cComc
1 B S cAssc � S cComc

1 B S cLiec Š G ¡:

The unique Lie coderivation which extends m W G ¡.A/! A is equal to the com-
posite

G ¡.A/
z�G ¡ .A/�����! S cLiec B .AIG ¡.A//

ScLiecB.AIm/���������! S cLiec.A/;

where z�G ¡ W G ¡ ! S cLiecB.I IG ¡/ is the part of the decomposition map G ¡ ! G ¡BG ¡

of the cooperad G ¡ composed only by elements of S cLiec on the left hand side of the
composite product B and by identities I and only one element from G ¡ on the right
hand side. The morphisms of cooperads � W Ass¡ � Lie¡ and … W G¡ � G ¡ induce
the commutative diagram

G¡
z�G¡ ��

…
����

S cAssc B .I IG¡/

�B.I;…/
����

G ¡
z�G ¡ �� S cLiec B .I IG ¡/:

Therefore, it is enough to understand the formula on the level of G¡ and then
pass to the quotient by the image of the shuffle maps. In order to understand how
m.….A// W G¡.A/! G ¡.A/! A extends to a coderivation of coassociative coalge-
bras G¡.A/! S cAssc.A/, we make the linear dual of the map z�G¡.A/ explicit, up
to signs and (de)suspensions, as follows.

Let P be the non-commutative analogue of the operad governing Poisson algebras;
it is defined in the same way as the operad G but with a degree 0 Lie bracket. Its Koszul
dual operad P Š of P is the operad modelling algebras endowed with an associative
product� and a commutative and associative product �, both of degree 0, which satisfy
the left and right Leibniz relations aforementioned.

The underlying S-module of the operad P Š is a (non-trivial) quotient of the com-
posite product Com B Ass. Therefore the free P Š-algebra on A is a quotient of the
free commutative algebra on the free associative algebra on A and any of its elements
can be written in the form A1 ˇ � � � ˇ At , with A1; : : : ; At 2 xT .A/´P

n�1 A˝n,
the tensor module on A. For any element a 2 A, the Leibniz relations imply

a � .A1 ˇ � � � ˇ At / D
tP

kD1

A1 ˇ � � � ˇ .a˝ Ak/ˇ � � � ˇ At
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and

.A1 ˇ � � � ˇ At / � a D
tP

kD1

A1 ˇ � � � ˇ .Ak ˝ a/ˇ � � � ˇ At :

Hence, the �-product Ass B .A; P Š.A// ! P Š.A/ of elements of A with one of
P Š.A/ is, due to the associativity of the product �, given by

� .a0
1 ˝ � � � ˝ a0

r ˝ .A1 ˇ � � � ˇ At /˝ a00
1 ˝ � � � ˝ a00

s /

DP
.a0

I1
˝ A1 ˝ a00

J1
/ˇ � � � ˇ .a0

It
˝ At ˝ a00

Jt
/;

where the sum runs over the partitions I1t� � �tIt D Œ1; r� and J1t� � �tJt D Œ1; s�,
with possibly empty sets, and where a0

Ik
is equal to a0

i1
˝ � � � ˝ a0

il
, with Ik D fi1 <

� � � < ilg, and similarly for the a00. Finally, this map is the exact linear dual to the one
given by the straight shuffles.

From this it follows that the extension zm is also a coderivation with respect to the
cobracket, and with respect to the coproduct by definition. Uniqueness holds since
G ¡.A/ is cofree.

The formula for zm given by the straight shuffle extensions m
p
q enables us to expand

the condition m B zm D 0 for m to define a codifferential on G ¡.A/. Hence we can
give an explicit presentation of the axioms for homotopy Gerstenhaber algebras:

Proposition 16. A homotopy Gerstenhaber algebra is a dg module .A; dA/ with a
family of maps

mp1;:::;pt
W .sA/˝p1 ^ � � � ^ .sA/˝pt �! sA; p1 � � � � � pt ; t; pk � 1;

of degree t � 2, with m1 D dA and which satisfy the following conditions for wk 2
.sA/˝pk , k D 1; : : : ; t ,

P
ItJ Df1;:::;tg

IDfi1<���<ir g¤¿

J Dfj1<���<jt�r g

.�1/"C"0C"00
mp0;pj1

;:::;pjt�r

� P
q1;:::;qr �1

qk�pik

m
pi1

;:::;pir
q1;:::;qr

.wi1 ^ � � � ^ wir / ^ wj1
^ � � � ^ wjt�r

�
D 0:

Here p0 D 1CP
.pik � qk/, "00 D r.t � r/ and .�1/"C"0

is the shifted Koszul sign
associated to the reordering of the wk .

Homotopy Gerstenhaber algebra structure on the Hochschild cochain complex
(Deligne conjecture). Let .A; 
/ be an associative algebra. Its deformation com-
plex is given by the Hochschild cochain complex CH�

.A/ ´ Hom.A˝�; A/ D
EndA. To fit in with our homological degree convention the degree of an element of
Hom.A˝n; A/ is equal to�n. This space forms a non-symmetric operad, therefore the
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direct sum of its components is endowed with a Lie bracket Œf; g� and non-symmetric
brace operations ff gfg1; : : : ; gkg. More precisely, if we denote by f Bi g the com-
posite of the map f with the map g at the i th-input, the first brace operation is defined
by

ff gfgg ´
nP

iD1

.�1/.i�1/.m�1/f Bi g D
nP

iD1

.�1/.i�1/.m�1/

g

��� ���

i

f









������
���� ����

for f 2 Hom.A˝n; A/ and g 2 Hom.A˝m; A/. Since it is a pre-Lie operation, it
induces a Lie bracket by anti-symmetrization. With our degree convention, this Lie
bracket is an operation of degree C1. We refer the reader to [20] for details on this
classical topic.

The boundary map of the Hochschild cochain complex is given by @�.f / ´
Œ
; f �, using 
 2 Hom.A˝2; A/. One can also define the cup product using the
second brace operation:

f [ g D f
gff; gg ´ 
 B .f ˝ g/ D
f

��� ����
g

���
����




��� ��� :

The cup product is associative and has degree 0. In [22], Gerstenhaber and
Voronov introduced an operad generated by a binary (cup) product and general .1Ck/-
ary (brace) operations satisfying the same relations as the cup product and the brace
operations on CH�

.A/; see also [25]. They call any algebra over this operad, a “ho-
motopy Gerstenhaber” algebra. However this operad is neither equal nor equivalent
to the quasi-free Koszul resolution G1 of the operad G of Gerstenhaber algebras,
which gives the notion of Gerstenhaber algebra up to homotopy. Therefore, we
choose to denote it GV after Gerstenhaber–Voronov and call the associated alge-
bras, Gerstenhaber–Voronov algebras. Hence, the previous constructions yield a
morphism of operads GV ! EndCH�

.A/.
Using the brace operations, Gerstenhaber proved in [20] that the commutativity

of the cup product and the Leibniz relation between the cup product and the Lie
bracket hold, but only up to homotopy. Therefore, the cohomology HH�

.A/ carries a
Gerstenhaber algebra structure. This led Deligne to ask if it was possible to lift this
structure to a homotopy Gerstenhaber algebra structure on CH�

.A/. This problem
was solved by Tamarkin, among others, who proved the following theorem.

Theorem 17 ([70]). There is a homotopy Gerstenhaber algebra structure on Hoch-
schild complex CH�

.A/ which lifts the Gerstenhaber algebra structure on its coho-
mology. Moreover, this structure factors through the operad G V :

G1 ! GV ! EndCH�
.A/ :
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Notice that this G1-structure is not completely explicit since it relies on Etingof–
Kazhdan quantisation of Lie bialgebra or equivalently on Drinfeld’s associators (see
[73]).

2.2. Homotopy quadratic BV-algebra. Since qBV is a Koszul operad in the clas-
sical sense, the notion of homotopy quadratic BV-algebra may be defined by a slight
modification of Proposition 16. For a dg module A,

qBV ¡.A/ D KŒı�˝ G ¡.A/ Š
1L

dD0

L
p1�			�pt

s2dCt�2..sA/˝p1 ^ � � � ^ .sA/˝pt /;

where the 2d -fold suspension arises from the power ıd .

Proposition 18. A homotopy quadratic BV-algebra is a dg module .A; dA/ together
with a family of maps

md
p1;:::;pt

W .sA/˝p1 ^ � � � ^ .sA/˝pt �! sA; d � 0; t � 1; p1 � � � � � pt ;

of degree 2d C t � 2, with m0
1 D dA. The quadratic relations that these operations

must satisfy are expressed by saying that for each d � 0 and t; p1; : : : ; pt � 1, the
following expression is zero:

tP
rD1

P
d 0Cd 00Dd

ItJ Df1;:::;tg

.�1/"C"0C"00
md 00

p0;pj1
;:::;pjt�r

� X
q1;:::;qr �1

qk�pik

m
pi1

;:::;pir Id 0

q1;:::;qr
.wi1 ^ � � � ^ wir / ^ wj1

^ � � � ^ wjt�r

�
:

Here I D fi1 < � � � < irg, J D fj1 < � � � < jt�rg, p0 D 1 CP
.pik � qk/,

wk 2 .sA/˝pk , and m
p1;:::;pr Id 0

q1;:::;qr
is the straight shuffle extension of md 0

q1;:::;qr
to

.sA/˝p1 ^ � � � ^ .sA/˝pr . The sign .�1/"C"0
is the shifted Koszul sign associated to

the reordering of the wk , and "00 D r.t � r/.

HomotopyqBV-algebra structure onHochschild cochain complex. Let us pursue
the example of the Hochschild complex of an associative algebra A. We suppose now
that A has a unit 1. This extra datum allows us to define the following square-zero
unary operator

�.f /´ ff gf1g D
nP

iD1

.�1/.i�1/f Bi 1 D
nP

iD1

.�1/.i�1/

1
i

f









������
���� ����

:
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The operator � defines a map from Hom.A˝n; A/ to Hom.A˝n�1; A/, so � has
degreeC1 with our degree convention. It easy to check that the cup product and the
brace operations commute with �.

Proposition 19. There is a homotopy qBV-algebra structure on the Hochschild com-
plex CH�

.A/ of any unital associative algebra A, which is given by the homotopy
Gerstenhaber algebra of Theorem 17 and the operator �.

Proof. Consider the homotopy Gerstenhaber algebra structure provided by Theo-
rem 17. The only other non-trivial higher operation is m1

1 D �; the other mk
p1;:::;pt

are null for k � 1. To prove that these operations satisfy the relations of a homotopy
qBV-algebra, one has just to check that the mp1;:::;pt

commute with �. Since the
homotopy Gerstenhaber algebra factors through G V and since � commute with the
operations coming from GV , this concludes the proof.

Notice that many of higher operations vanish in this qBV1-algebra structure (and
indeed in the homotopy Gerstenhaber algebra structure of Theorem 17). Notice also
that the operator � is well defined but vanishes on the cohomology level. (The reader
may check that the degree C2 operator sending a cochain f to ff gf1; 1g defines a
homotopy between � and the zero map).

2.3. Homotopy BV-algebras. A homotopy BV-algebra is given by the same op-
erations as a homotopy quadratic BV-algebra, but with a linear perturbation of the
relations they have to satisfy.

Theorem 20. A homotopy BV-algebra is dg module .A; dA/ together with a family
of maps

md
p1;:::;pt

W .sA/˝p1 ^ � � � ^ .sA/˝pt �! sA; t � 1; d � 0; p1 � � � � � pt ;

of degree 2d C t � 2, with m0
1 D dA. The relations Rd

p1;:::;pt
that these operations

must satisfy are expressed by saying that for each d � 0, t; p1; : : : ; pt � 1 and
wr D ar

Œ1;pr �
2 .sA/˝pr , the following expression is zero:

tP
rD1

P
d 0Cd 00Dd

ItJ Df1;:::;tg

.�1/"C"0C"00
md 0

p0;pj1
;:::;pjt�r

� P
q1;:::;qr �1

qk�pik

m
pi1

;:::;pir Id 00

q1;:::;qr
.wi1 ^ � � � ^ wir / ^ wj1

^ � � � ^ wjt�r

�

C
tP

rD1

P
p0

r Cp00
r Dpr

.�1/"000
md�1

p1;:::;pr�1;p0
r;p00

r ;prC1;:::;pt

.w1 ^ � � � ^ ar
Œ1;p0

r �
^ ar

Œp0
r C1;pr �

^ � � � ^ wt /:
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Here I D fi1 < � � � < irg, J D fj1 < � � � < jt�rg, p0 D 1 CP
.pik � qk/, and

m
p1;:::;pr Id 0

q1;:::;qr
is the straight shuffle extension of md 0

q1;:::;qr
to .sA/˝p1 ^ � � � ^ .sA/˝pr .

The sign .�1/"C"0
is the shifted Koszul sign associated to the reordering of the ak ,

"00 D r.t � r/ and "000 D jw1j C � � � C jwr�1j.
If d D 0, or if each pk D 1, the linear terms are not present in the relations. In

particular:

� the operations m0
p1;:::;pt

give A the structure of a homotopy Gerstenhaber alge-
bra,

� the operations m0
1;:::;1 give sA the structure of a (strong) homotopy Lie algebra,

� the operations m0
p give A the structure of a homotopy commutative algebra.

That is, there are inclusions of the operads G1, .Lie1/1 and C1 into BV1, which
are split by corresponding projections. (Recall that a homotopy commutative algebra
or C1-algebra is an A1-algebra whose operations vanish on the image of the sum
of the non-trivial shuffles; see [47], Section 13.1.13).

Remark. One more naturally regards the structure of a homotopy BV-algebra A in
terms of maps on A itself rather than on the suspension sA, and we may consider a
homotopy BV-algebra as given by multilinear maps

md
p1;:::;pt

W A˝p1 ˝ � � � ˝ A˝pt �! A; t � 1; d � 0; pk � 1;

of degrees 2d C nC t � 3, where n DPt
kD1 pk . These must be symmetric under

permutation of the blocks A˝pk , vanish on the images of the shuffle maps on each
block, and satisfy the above conditions Rd

p1;:::;pt
with the appropriate changes of sign.

Homotopy BV-algebra structure on Hochschild cochain complex (cyclic Deligne
conjecture). If we consider a Frobenius algebra, i.e., a unital associative algebra
endowed with a symmetric invariant non-degenerate bilinear form, then one can
transfer Connes’ boundary map from Hochschild homology to define an operator �

on cohomology [74], [28], [56]. In this case, HH�
.A/ carries a BV-algebra structure.

The so-called Cyclic Deligne Conjecture amounts to proving that this structure can
be lifted to a homotopy BV-algebra structure on the cochain level CH�

.A/.

Theorem 21 (Cyclic Deligne conjecture). Let A be a Frobenius algebra. There is
a homotopy BV-algebra structure on its Hochschild cochain complex which lifts the
BV-algebra structure on Hochschild cohomology and such that

BV1 ��!� C�.fD/! EndCH�
.A/:

Proof. Costello proved in [12] that the Riemann sphere operad acts on CH�
.A/, and

Kaufmann proved in [40] that C�.fD/ acts on CH�
.A/. Finally, we conclude the proof

with Theorem 13.
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This conjecture was proved with various topological models in [40], [75], [12],
[43]. To the best of our knowledge, the operads involved in these proofs are not
cofibrant, whereas the dg operad BV1 is. So this provides a canonical model for the
cyclic Deligne conjecture.

Now we would like to conjecture, as in [73], that this homotopy BV-algebra
structure on the Hochschild cochain complex is formal under some assumptions on
the algebra A, like A D C 1.M/ the algebra of smooth functions on a manifold.
To phrase this conjecture, we need the notion of 1-morphism for homotopy BV-
algebras, which comes in Section 4.

2.4. Related definitions of homotopy BV-algebras in the literature. Getzler
showed in [23], Proposition 1.2, that a BV-algebra may be equivalently defined
as an associative and commutative dg algebra .A; dA; �/ equipped with a degree 1
square-zero chain map � of order � 2. That is, the bracket defined by

ha; bi ´ �.a � b/ � .�a/ � b � .�1/jaja � .�b/

satisfies the Leibniz relation

0 D ha; b; ci3 ´ ha; b � ci � ha; bi � c � .�1/jbj.jajC1/b � ha; ci:
More generally a notion of order may be defined as follows.

Definition. Let � be a linear map on a commutative associative algebra A. Define a
sequence of higher brackets h: : :in W Aˇn ! A of degree j�j by hai1 ´ �.a/ and,
recursively,

ha1; : : : ; an�1; an; a0
ninC1 ´ ha1; : : : ; an�1; an � a0

nin
� ha1; : : : ; anin � a0

n � .�1/"an � ha1; : : : ; an�1; a0
nin;

where " D janj.j�j C ja1j C � � � C jan�1j/. Then � has order � n if h: : :inC1 is
identically zero.

Several definitions of the order of a differential operator appear in the literature
[1], [33], [44], and the sequence of brackets is termed the Koszul hierarchy. When
needed, we will denote the higher brackets induced by an operator � by h: : :i�n . In
the context of commutative associative algebras the various definitions coincide (see
for example [2]) and may be restated as

ha1; : : : ; anin D P
ItJ Df1;:::;ng

jI jDr�1

.�1/n�rC"�.ai1
� � � � � air / � aj1

� � � � � ajn�r
:

Here " is the Koszul sign associated to the reordering of the ak . It is now clear the
brackets are graded symmetric, and the brackets and order are well defined even for
non-homogeneous �.
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Proposition 22 ([6], [2], [10], [45], [80]). If � is a square-zero operator of homo-
geneous degree k on a commutative associative algebra A, then the hierarchy of
higher brackets fh: : :is�k�1�

n g associated to s�k�1� defines a L1-algebra structure
on .s�1A; s�k�1�/, the desuspension of A with s�k�1� for differential.

Under this correspondence, a homogeneous square-zero operator � has order
� n if and only if the induced L1-algebra structure on s�1A is an Ln-algebra, that
is, the structure operations flkg vanish for k > n.

In case the operator � is not homogeneous we may consider the following defi-
nition, see [45]:

Definition. A commutative BV1-algebra consists of a dg commutative algebra
.A; dA; �/ and a square-zero operator � whose homogeneous components �k W A� !
A�Ck satisfy

��1 D dA; �k D 0 if k is even or k < �2;

and

�k has order � .k C 3/=2.

This generalises the notion of BV-algebra, for which the operator is just � D
dA C �1, with �1 of order � 2, though it conserves the strict associativity of the
product. For any n � 0, the operator s�2n�2n�1 of order� n induces an Ln algebra
on s�1A with differential s�2n�2n�1. The exact relation between the two definitions
is the following.

Proposition 23. Specifying a commutative BV1-algebra is equivalent to specifying
a homotopy BV-algebra in which all structure maps are zero except possibly m0

2 and
the operations md

1;:::;1.

The operad for commutative BV1-algebras is a quotient of BV1, given by
identifying generators s�1ıd ˝L1 ˇ � � � ˇLt to zero unless each Li has arity 1, or
unless d D 0, t D 1 and L1 has arity 2.

Proof. Let A be a homotopy BV-algebra in which all structure maps are identically
zero except m0

2 and the maps md
1;:::;1. In this case the only relations Rd

p1;:::;pt
in which

not all terms vanish are R0
2, R0

3, the Rd
1;:::;1 and the Rd

1;:::;1;2. First the relations R0
2 and

R0
3 are equivalent to saying that �´ m0

2 is a chain map, which defines an associative
and commutative product of degree 0. Let us denote �2d�1 ´ md

1 the operator of
degree 2d � 1 for d � 0, with ��1 D dA. The relations Rd

1;:::;1;2 are equivalent to

md
1;:::;1 D h: : :i�2dC2n�3

n for d � 0; n � 1:

Therefore the operations md
1;:::;1 are completely characterised by the �2dC2n�3. Now

the relation Rd
1;:::;1;2 for d D 0 says that m0

1;:::;1 is a derivation with respect to � , which



566 I. Gálvez-Carrillo, A. Tonks, and B. Vallette

is equivalent, by the above equality, to �2n�3 having order � n. We can consider
the sum � ´ ��1 C �1 C �3 C : : : , which is well defined by the definition of a
homotopy BV-algebra. The relations Rd

1 are equivalent for � to square to zero. So
A is a commutative BV1-algebra.

In the other direction, given a commutative BV1-algebra A, we define

m0
2 ´ �; md

1 ´ �2d�1; md
1;:::;1 D h: : :i�2dC2n�3

n

and the other md
p1;:::;pt

to be 0. By the previous analysis, all the relations of a

homotopy BV-algebra are satisfied, except for the Rd
1;:::;1, which is satisfied by the

definition of the md
1;:::;1 in terms of higher brackets and because �2 D 0.

Therefore in a commutative BV1-algebra, there is a family of Ln-algebras, one
for each n, given up to suspension by

f�2n�1; h: : :i�2n�1

2 ; : : : ; h: : :i�2n�1
n g or equivalently by fmn

1; mn�1
1;1 ; : : : ; m0

1;:::;1g:
Tamarkin and Tsygan [73] gave a more general definition of BV1-algebra struc-

ture. This is also expressed in terms of higher order operators, not on A itself but
on the free Gerstenhaber algebra G .s�1A�/ on the desuspension of the linear dual
of A. Using a dual formulation of Theorem 1, a homotopy Gerstenhaber algebra
structure is specified by a differential ��1 of degree �1 on the free Gerstenhaber al-
gebra G .s�1A�/ when A is finite dimensional. They define a homotopy BV-algebra
structure extending this G1-structure as an odd square zero operator � on G .s�1A�/

which can be written as a sum of homogeneous components

� D ��1 C�Lie C�1 C�3 C�5 C � � � ;
where �2d�1 has degree 2d � 1 and order � d C 1 with respect to the commutative
product of G .s�1A�/, for d � 1. The operator �Lie is the unique order � 2 operator
on G .s�1A�/ Š Com B Lie1.s�1A�/, with respect to the commutative product,
which extends the bracketing of two elements of Lie1.s�1A�/, the free Lie1-algebra
on s�1A�. So it has degree 1. They also require that each operator �1�2d respects
the decreasing filtration given by the length of Lie-words in G .s�1A�/.

The following Proposition was observed in [73], Remark 2.8, though Koszul
duality for inhomogeneous quadratic operads was not yet known.

Proposition 24. Specifying a BV1-algebra structure � in the sense of [73] for
which each �2d�1 has order� 1 and is a derivation with respect to the Lie1-algebra
structure of G .s�1A�/ is equivalent to specifying a homotopy BV-algebra structure
in the sense of this paper.

Proof. Let .A; �/ be a BV1-algebra in the sense of [73] such that each �2d�1 has
order� 1 and is a derivation with respect to the Lie1-algebra structure of G .s�1A�/.
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This is equivalent to requiring that each �2d�1 is a derivation with respect the Ger-
stenhaber algebra structure on G .s�1A�/. Considering the linear dual, each �2d�1

induces a degree 2d � 1 coderivation t�2d�1 on the cofree Gerstenhaber coalgebra
G c.sA/. Hence the sum d ´ t��1C ı�1˝ t�1C ı�2˝ t�3C ı�3˝ t�5C � � � is
a generic degree �1 coderivation on qBV ¡.A/ Š KŒı�˝ .s�1G c.sA//. The above
definition of �Lie and Lemma 5 show that the induced map ı�1˝ t�Lie on qBV ¡.A/

is equal to the degree �1 coderivation d' B A. Finally, the degree �1 coderivation
d C d' BA squares to zero, which is equivalent to a homotopy BV-algebra structure
by Theorem 1.

To conclude, the definition of homotopy BV-algebra given here lies between the
definition of [45], which is given by an operad that is not a cofibrant replacement
of the operad BV , and the definition of [73], which is actually an algebra over a
properad (or a prop).

The Koszul resolution P1 ��!� P of an operad P defines the notion of homo-
topy P -algebra. Recall that, in Koszul duality theory, the symmetry of the defining
operations of P remains strict in the homotopy version; only the relations between
these operations being relaxed up to homotopy.

In [65], Salvatore and Wahl began to extend the Koszul duality theory to operads
in the category of H-modules, where H is a cocommutative Hopf algebra. The Hopf
algebra is meant to encode other group actions than the permutations of elements
and it often comes from the homology algebra of a topological group. In the case
of the circle S1, we work with the algebra of dual numbers D Š H�.S

1/ with the
obvious coproduct. So the category of dg D-modules is the category of mixed chain
complexes. With a proper action of D on G , a G -algebra in dg D-modules is a
BV-algebra.

In this context, they defined the Koszul dual of a D-equivariant quadratic operad.
One can continue much further and define the cobar construction of D-equivariant
cooperads. Applying this construction to the Koszul dual of G , one would get a notion
of “homotopy BV-algebra” where the � operator will still strictly square to zero, this
relation not being relaxed up to homotopy. This notion would be equivalent to a
homotopy BV-algebra, as defined here, where only m1

1 and the m0
p1;:::;pt

would not
be trivial. The only non-trivial relations would be R0

p1;:::;pt
, which are the G1-algebra

relations, and R1
p1;:::;pt

, which would say that the failure for m1
1 to be a derivation

with respect to m0
p1;:::;pt

is

tP
rD1

P
p0

r Cp00
r Dpr

˙m0
p1;:::;pr�1;p0

r ;p00
r ;prC1;:::;pt

:

Notice that this structure differs from that of Proposition 19 exactly by this last term.
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3. Deformation theory of homotopy BV-algebras

We apply the methods of [58], [59] to the resolution of Section 1 in order to give
a Lie theoretic description of homotopy BV-algebras. This allows us to define the
deformation theory, that is, the cohomology theory, for BV-algebras and homotopy
BV-algebras. We apply the general obstruction theory of algebras over a Koszul
properad of Section C.2 to this case. This method allows us to prove an extended
version of the Lian–Zuckerman conjecture: there exists a homotopy BV-algebra
structure on vertex operator algebras which extends the operations defined by Lian–
Zuckerman that induce a BV-algebra structure on homology. Finally, we show that
the obstructions to lift a G1-algebra structure to a homotopy BV-algebra structure
live in negative even cohomology groups of the G1-algebra.

3.1. Convolution Lie algebra. Recall from 0.2 that for any dg operad Q, the space
of equivariant maps g´ HomS.BV ¡; Q/ carries a dg Lie algebra structure, called
the convolution Lie algebra, such that any morphism of dg operads � W BV1 ! Q is
equivalent to a twisting morphism BV ¡ ! Q, still denoted � . Hence if Q D EndA

for a dg module A, twisting morphisms encode homotopy BV -algebra structures on
A. After Section 1 and Section 2, this gives a third equivalent definition of homotopy
BV-algebras: homotopy BV-algebra structures are in one-to-one correspondence with
Maurer–Cartan elements in the convolution Lie algebra g, see Theorem 1.

Since the Koszul dual cooperad BV ¡ is weight graded, the convolution algebra
g is also weight-graded, g Š Q

n�0 g.n/, where g.n/ D HomS.BV ¡.n/
; Q/, by

Proposition 51. The differential on Q induces a weight 0 differential @0 on g and
the internal differential d' on BV ¡ induces a weight C1 differential @1 on g. This
result is used in Section 3.3 to endow vertex algebras with a homotopy BV-algebra
structure.

By Proposition 55, we know that the Koszul dual cooperad BV ¡ admits a relative
grading BV ¡Œn� such that BV ¡Œ0� D G ¡ and Proposition 3 shows that BV ¡ Š KŒı�BG ¡

as graded S-modules. In this case, the relative grading is equal to the power of ı. So
BV ¡ is an extension of the Koszul dual cooperad G ¡ of the Gerstenhaber operad. This
proves that the convolution Lie algebra governing homotopy BV-algebra structures is
a formal extension of the convolution Lie algebra governing homotopy Gerstenhaber
algebras, twisted by an extra differential.

Proposition 25. The convolution dg Lie algebra g´ HomS.BV ¡; Q/ is isomorphic
to gG ŒŒ„��´ gG ˝KŒŒ„��, where gG is the convolution dg Lie algebra HomS.G ¡; Q/

associated to the Gerstenhaber operad G . The formal parameter „ has degree �2.
The differential @ on gG ŒŒ„�� is the sum of two terms @ D @0 C @1, where @0 is the
derivation freely extended from that of gG and where @1 raises the power of „ by 1.

Proof. By Proposition 3, we have

HomS.BV ¡; Q/ Š HomS.KŒı� B G ¡; Q/ Š HomS.G ¡; Q/˝ KŒŒ„��;
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with „ D ı�. By the cooperad structure on BV ¡, this is an isomorphism of Lie
algebras. The result about the differentials is then straightforward.

3.2. Deformation complex. Section 2 of [59], applied here, defines the deformation
complex of morphisms from the operad BV1. In this section, we present only the case
Q D EndA for simplicity, but the general case is similar. Consider the convolution Lie
algebra g D HomS.BV ¡; EndA/ whose twisting morphisms correspond to homotopy
BV-algebra structures. Once given such a twisting morphism � , we consider the
twisted differential on g defined by

@� .f /´ @.f /C Œ�; f � D dEndA
B f � .�1/jf jf B d' C Œ�; f �:

Definition. The chain complex g� ´ .HomS.BV ¡; EndA/; @� / is called the defor-
mation complex of the homotopy BV-algebra structure � on A.

This defines the “cohomology of A with coefficients in itself”, also called the
tangent homology, for any BV-algebra or homotopy BV-algebra. As usual, these
(co)homology groups are the obstructions to formal deformations of the BV-algebra
or homotopy BV-algebra structure � as in [21]. To study the formal deformations,
we use the following Lie algebra structure on the deformation complex.

Proposition 26. The Lie bracket Œ ; � induces a twisted dg Lie algebra structure on
g� . This dg Lie algebra is isomorphic to

g� Š .gG ŒŒ„��; @0 C @1 C Œ�;��; Œ ; �/:

Proof. The differential of any dg Lie algebra twisted by a Maurer–Cartan element
always induces a twisted dg Lie algebra structure. The final isomorphism comes from
Proposition 25.

Hence the underlying space defining the cohomology of homotopy BV-algebras
is the formal extension of that defining the cohomology of homotopy Gerstenhaber
algebras. We apply this result in Section 3.4.

3.3. Obstruction theory applied to topological vertex operator algebras. In par-
allel to Theorem 13, we prove that a large class of vertex operator algebras carry
a homotopy BV-algebra structure. To do so, we describe an obstruction theory for
homotopy BV-algebras. More precisely, Lian and Zuckerman described in [46] op-
erations acting on a topological vertex operator algebra, which induce a BV-algebra
structure on the BRST (co)homology (the underlying homology). In this paper, they
ask whether this structure can be lifted off-shell (on the chain level) with “higher ho-
motopies” [46], p. 638. We fully prove this Lian–Zuckerman conjecture here: there
exists an explicit homotopy BV-algebra structure on topological vertex operator alge-
bras which extends the operations defined by Lian and Zuckerman and which induces
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the BV-algebra structure on the BRST (co)homology. Huang has also investigated
operadic formulations of vertex operator algebras, in terms of (partial) algebras over
the Riemann sphere and framed little discs operads [36], [37].

The weight filtration on BV ¡ induces a decomposition of the convolution Lie
algebra

g D Q
n�0

g.n/; g.n/ D HomS.BV ¡.n/
; EndA/;

and homotopy BV-algebra structures on a dg module .A; dA/ are in one-to-one cor-
respondence with degree �1 elements

� D �1 C �2 C � � � W BV ¡ ! EndA; �n W BV ¡.n/ ! EndA;

satisfying the sequence of Maurer–Cartan equations

@0.�n/C @1.�n�1/C 1
2

P
kClDn

Œ�k; �l � D 0 (MCn)

for n � 1. Notice that here @0.�n/ is equal to @A.�n/´ dEndA
B �n. See Section C.2

for compete details in the general case of quadratic-linear operads.

Theorem 27. Let .A; dA/ be a dg module and suppose we are given a commutative
product of degree 0, a skew-symmetric bracket of degree 1 and a unary operator of
degree 1 such that the differential dA is a derivation with respect to them, that is, a
morphism of S-modules

�1 W BV ¡.1/ ! EndA

of degree �1 satisfying @A.�1/´ dEndA
B �1 D 0.

If H�2.HomS.BV ¡.n/; EndA/; @A/ D 0 for all n � 2, then this structure extends
to a homotopy BV-algebra structure on A.

Proof. This follows from Theorem 53.

We can define a homotopy BV-algebra structure on a topological vertex operator
algebra, TVOA for short, closely following the G1-case described in detail in [19].
Consider .A; -.i/-; Q; G; L; F / a TVOA, bigraded as usual by the conformal weight
s and the fermionic grading r ,

A D L
s2Z

As D L
r;s2Z

As
r ;

see [41], Definition 2.4, or [38], Section 5.9, for the full definition. We will assume
here the conformal weight is always non-negative, that is, s 2 N. The TVOA axioms
include the supercommutator relation

G.1/Q.0/x CQ.0/G.1/x D sx if x 2 As:
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For s > 0 the complex .As; dA/ is therefore contractible, with contracting homotopy
1
s
G.1/.

Lian and Zuckerman [46] considered the algebraic structure on A given by

x � y ´ x.�1/y; fx; yg ´ .�1/jxj.G.0/x/.0/y; �x´ G.1/x;

and showed that these operations induce a BV-algebra structure on the BRST coho-
mology H�A with respect to the differential operator dA ´ Q.0/. They gave explicit
first chain homotopies to make up for the failure of the G1-structure to hold on A

itself, and conjectured the existence of a family of higher homotopies [46], p. 638.
Note that all the operations are of conformal weight zero and it is the fermionic
grading that gives us the homological degree.

Theorem 28. A topological vertex operator algebra A, with conformal weights in N,
carries an explicit homotopy BV-algebra structure homogeneous with respect to the
conformal weight, which extends the above operations in conformal weight zero and
which induces the Lian–Zuckerman BV-algebra structure on the BRST cohomology
H �A.

Proof. The first key argument, going back to [32], p. 623, is the following. When a
TVOA is concentrated in non-negative conformal weight, the (weight zero) operations
- � -, f-; -g and � endow A0 with a BV-algebra structure. The first homotopies for the
BV relations described in [46], (2.14), (2.16), (2.23), (2.25), (2.28), involve terms of
the form v.i/t , where v; t 2 A0 and i � 0. Since the product .i/ has weight �i � 1,
all these term vanish. In particular, the product and bracket of Lian and Zuckerman
are already appropriately (skew) symmetric here.

Then we consider the morphism of dg S-modules �1 W BV ¡.1/ ! EndA of degree
�1 by taking the product and bracket defined by the graded (skew-)symmetrizations
of � and f ; g. The image of the arity 1 summand is equal to the operator defined in
conformal weight s D 0 by G.1/ and by the zero operator elsewhere. By the preceding
remark, the extension/restriction

N� W BV ¡ ! EndA0

of �1 to BV ¡ on the source and to EndA0 on the target is a twisting morphism.
Next we use the obstruction theory of Theorem 52 to extend N� beyond A0. Since

we are looking for a homotopy BV-algebra structure which respects the conformal
weight, we already know the image of all the operations on A0. Let us denote
NA´L

s�1 As . We work by induction on the weight grading n � 1 of the twisting
morphism �1C � � �C �nC : : : to define its image on NA. The induction is initiated by
the definition of �1. Using the isomorphisms

HomS.BV ¡; EndA/ Š HomK.BV ¡.A/; A/

Š HomK.BV ¡.A/; A0/˚ HomK.BV ¡.A/; NA/
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we see that the component of �nC1 on the first direct summand is null for n � 1.
Since 1

s
G.1/ is a contracting homotopy on the chain complex .As; dA/ for each s > 0,

the second direct summand is acyclic with the explicit contracting homotopy 1
s
G.1/

on .HomK.BV ¡.A/; As/; @A/. We can then conclude the proof by Theorem 27. In
fact, from the more general Theorem 52, we know that the obstruction to the existence
of �nC1 2 HomK.BV ¡.nC1/.A/; NA/ is the homology class of

Q�nC1 ´ @1.�n/C 1
2

P
kClDnC1

k;l�1

Œ�k; �l �;

which vanishes here thanks to the contracting homotopy G.1/. Let us denote by EndA

the summand of EndA made up of operations landing in NA, and by H the contracting
homotopy on .HomK.BV ¡.A/; NA/; @A/ induced by the 1

s
G.1/ on each As . Therefore

the explicit image of �nC1 into EndA is given by

projEndA
B �nC1 D H.@1.�n/C 1

2

P
kClDnC1

k;l�1

Œ�k; �l �/:

Following the method of [35], one can go even further and define the notion of
homotopy unital BV-algebra. In the same way, a TVOA with non-negative conformal
weight should carry such a structure, with strict homotopy unit. Moreover, we conjec-
ture that the converse should be true. Namely, the data of a TVOA with non-negative
conformal weight should be equivalent to a strict unital homotopy BV-algebra. Here
is a table, comparing these two algebraic structures, which sustains this conjecture.

TVOA strict uBV1-algebra
-.�1/- - � -

Y W A! EndAŒŒz˙1�� higher binary homotopies
vacuum j0i unit 1

operators L; F bigraded decomposition V s
r

operator Q differential d

operator G operator � and higher homotopies

This would generalize the well-known fact that the data of a vertex algebra with
trivial operations -.n/- 	 0, for n � 0, is a equivalent to a unital commutative dg
algebra [38, Section 1:4].

We may also associate to any smooth Calabi–Yau n-manifold M a sheaf of homo-
topy BV-algebras in a manner parallel to [19], Section 5, for homotopy Gerstenhaber
algebras. One first recalls from [32], [31] that two particular TVOAs, termed the
chiral de Rham complex and the complex of chiral vector fields, may be constructed
from the algebra of functions on Cn. By the result above, we then have correspond-
ing homotopy BV-algebra structures locally for each point x 2M . Now using [49],
Theorem 4.2, one checks that if the first Chern class c1.M/ vanishes, these local
structures may be glued to produce a sheaf on M .
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More generally, this result should be applicable to chiral algebras of the geometric
Langlands program, as in Beilinson–Drinfeld [4].

3.4. Relative obstruction theory. In this section, we show that the obstructions to
lifting a G1-algebra structure to a homotopy BV-algebra structure already live in
particular cohomology groups of the G1-algebra.

Proposition 25 proved that the convolution Lie algebra which governs homotopy
BV-algebras is a formal extension of that of homotopy Gerstenhaber algebras: g Š
gG ŒŒ„��. Given a homotopy Gerstenhaber algebra structure �0 on A, the obstructions
to lifting it to a homotopy BV-algebra structure are given by the following proposition.

Proposition 29. Let � D �0C�1C� � �C�n 2Qn
kD0 gG ˝„kK be an element which

satisfies the (MC)k-equations up to k D n in .g; @/. We consider

Q�nC1 ´ @1.�n/C 1
2

P
kClDnC1

k;l�1

Œ�k; �l �:

(1) In gG ˝„nC1K, we have @�0 . Q�nC1/ D 0, that is, Q�nC1 is a cycle of degree �2.

(2) There exists an element �nC1 2 gG ˝ „nC1K such that �0 C �1 C � � � C �nC1

satisfies the (MC)k-equations up to k D nC 1 in .g; @/ if and only if the class
of Q�nC1 in H�2.gG ˝ „nC1K; @�0/ vanishes.

Proof. It is the application of Theorem 52 to the convolution Lie algebra of Proposi-
tion 25.

Concretely, Proposition 29 applies as follows.

Theorem 30. Suppose that �0 is a G1-algebra structure on a dg module A. If the
negative even cohomology groups of the G1-algebra A vanish, that is, if
H�2n.HomS.G ¡; EndA/; @�0/ D 0 for n � 2, then this structure can be extended
to a homotopy BV-algebra structure.

Proof. For n � 1, the chain complex .gG˝„nC1K; @�0/ is isomorphic to .gG ; @�0/˝
.„nC1K; 0/, with „ of degree �2.

In other words, the negative even cohomology groups of a G1-algebra measure
the obstructions to lift it to a homotopy BV-algebra structure. This result comes
from the fact that the operator � in the definition of a BV -algebra is induced by the
topological action of the circle, see [23], [24].

The same theorem holds for general morphisms of dg operads G1 ! Q, and
provides obstructions to lifting them to morphisms BV1 ! Q.
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4. Homotopy theory of homotopy BV-algebras

The previous resolution of the operad BV in terms of a small explicit dg cooperad
BV ¡ allows us to define the homotopy theory for BV-algebras and homotopy BV-
algebras. Following the general methods of [25], refined in Appendix B to apply to
inhomogeneous quadratic Koszul operads, we introduce the bar and cobar construc-
tions between BV-algebras and BV ¡-coalgebras. We extend this bar construction to
homotopy BV-algebra which allows us to define the notion of1-morphisms. Finally
we show how to transfer homotopy BV-algebra structures across homotopy equiva-
lences. Applied to the homology of a homotopy BV-algebra A, this result defines the
Massey product of H.A/, which contains the homotopy data of A.

4.1. Barandcobar constructions. The morphism of dg operads BV1D�BV ¡ !
BV is equivalent to a twisting morphism � W BV ¡ ! BV by Theorem 2.17 of [25],
see also Theorem 1. This twisting morphism is equal to the composite

� W BV ¡ D qBV ¡ � sV
s�1

��! V � BV :

Proposition 2:18 of [25] applied to this twisting morphism proves the existence of a
bar-cobar adjunction between dg BV-algebras and dg BV ¡-coalgebras:

B� W dg BV -algebras ˛ dg BV ¡-coalgebras W �� :

Explicitly, the bar construction of a dg BV-algebra A is equal to

B�A´ BV ¡.A/;

and the differential is given by the isomorphism of chain complexes

BV ¡.A/ D .BV ¡ B� BV/ BBV AI
see Appendix B for more details. Dually, the cobar construction of a BV ¡-coalgebra
C is equal to ��C ´ BV.C /.

Since the operad BV is Koszul in the quadratic-linear sense given in Appendix A,
this adjunction has the following properties.

Proposition 31. For any dg BV-algebra A, the counit of the bar-cobar adjunction is
a quasi-isomorphism of dg BV-algebras: ��B�A ��!� A.

Proof. This is an application of Proposition 45.

Since we work over a field of characteristic 0, every S-module is exact [25], †-split
[34] or †-cofibrant [5]. Therefore the category of dg BV-algebras admits a model
category structure in which the weak equivalences are quasi-isomorphisms. In this
language, the previous proposition shows that the bar-cobar construction provides a
cofibrant replacement functor for dg BV-algebras.
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4.2. Bar construction for homotopy BV-algebras and 1-morphisms. We saw in
Theorem 1 that a homotopy BV-algebra structure is equivalently defined by a square
zero coderivation of the cofree BV ¡-coalgebra BV ¡.A/. This last construction is
called the bar construction of the homotopy BV-algebra A and denoted B	A ´
BV ¡.A/.

Any dg BV-algebra A is particular example of a homotopy BV-algebra on which
both bar constructions coincide: B�A Š B	A.

Let A and B be two homotopy BV-algebras and let BV ¡.A/ and BV ¡.B/ be their
bar constructions. An 1-morphism between A and B is a morphism of dg BV ¡-
coalgebras BV ¡.A/! BV ¡.B/. It is equivalent to a map BV ¡.A/! B satisfying
a certain relation. An 1-morphism is called an 1-quasi-isomorphism if the first
component I.A/ Š A ! B is a quasi-isomorphism. Since 1-morphisms can be
composed, the homotopy BV-algebras with1-morphisms form a category, which is
denoted BV1-alg.

The aforementioned functors form the following commutative diagram.

dg BV -alg� �

��

B�

� dg BV ¡-coalg

��

BV1-alg
B�

����������������

Proposition 32 (Rectification). For any homotopy BV-algebra A, there is an 1-
quasi-isomorphism of homotopy BV-algebras

A ��!� ��B	A;

where the right hand side is a dg BV-algebra.

Proof. This is a direct application of Proposition 46 to the Koszul operad BV .

4.3. Transfer of structure and Massey products for homotopy BV-algebras. In
this section, we apply the general results of Sections B.3 and B.4 to the case of
homotopy BV-algebras.

Let .V; dV / and .W; dW / be two homotopy equivalent chain complexes:

.V; dV /h0
		 i ��

.W; dW / h




p
�� ;

IdV � pi D dV h0 C h0dV ; IdW � ip D dW hC hdW :

Theorem 33 (Transfer theorem for homotopy BV-algebras). Let

i W .V; dV /! .W; dW /

be a homotopy equivalence of chain complexes. Any homotopy BV-algebra structure
on W induces a homotopy BV-algebra structure on V such that i extends to an
1-quasi-isomorphism.
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Theorem 34 (Massey products for homotopy BV-algebras). Let A be a homotopy
BV-algebra. There is a homotopy BV-algebra structure on the homology H.A/ of
the underlying chain complex of A, which extends its BV-algebra structure and such
that the embedding i W H.A/ � A extends to an1-quasi-isomorphism of homotopy
BV-algebras.

Proposition 35. For any homotopy BV-algebra A, one can reconstruct the homotopy
type of A from the homotopy BV-algebra structure of H.A/.

Applied to TCFT, these homotopical results show the following theorem.

Theorem 36. The homology groups H.X/ of any TCFT X carry a homotopy BV-
algebra structure, which extends the BV -structure of [23] and which allows to re-
construct the homotopy type of X .

In view of the results of Section 1.7, this theorem gives another way of lifting the
BV-algebra structures of [23].

4.4. Homology and cohomology of BV-algebras and homotopy BV-algebras.
After [25, Section 4:3], we know that the André–Quillen homology of an algebra
over an operad with trivial coefficients is given by the left derived functor of the
functor of indecomposable elements. Here we can use the functorial cofibrant reso-
lutions ��B�A ��!� A and �	B	A ��!� A to compute André–Quillen homology of
BV-algebras and homotopy BV-algebras respectively:

HBV
�

.A/ D H��1.xB�A/ D H��1.BV
¡
.A/; d�/;

HBV1
�

.A/ D H��1.xB	A/ D H��1.BV
¡
.A/; d	/:

More generally, one can define the André–Quillen homology and cohomology
of BV-algebras and homotopy BV-algebras with coefficients, following [30], [60].
The functorial cofibrant resolutions ��B�A ��!� A and �	B	A ��!� A provide
explicit chain complexes which compute these homology and cohomology theories,
as explained in [60].

A. Koszul duality theory

The theory of Koszul duality was originally developed by Priddy in [63] for filtered
associative algebras with relations containing only quadratic and linear terms. The
main examples are the Steenrod algebra and the universal enveloping algebra of a
Lie algebra. This allowed him to provide quasi-free hence projective resolutions
for modules over these algebras. Positselski later extended this theory to filtered
associative algebras whose relations are written with quadratic, linear and constant
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terms in [61], see also Polishchuk–Positselski [62]. As a corollary, he gets quasi-
free hence cofibrant resolutions for the algebra itself. Theorem 10.2 of [9] shows
that these two kinds of resolutions, projective modules and cofibrant algebras, are
obtained at once. Koszul duality theory for graded quadratic associative algebras
was later extended to graded quadratic operads by Ginzburg–Kapranov [29] and
Getzler–Jones [25].

Recall that an operad is a monoid in the monoidal category .S-Mod; B; I / of S-
modules with the composition product B. An operad is an algebraic object which
encodes operations with several inputs but one output. To model operations with
several outputs, we introduced in [76] the notion of properad which is a monoid in the
monoidal category .S-biMod; �; I / of S-bimodules. The monoidal product, denoted
� here, is based on graphs which represent the composition scheme of operations
with several inputs and several outputs. Since the monoidal category of S-modules
is a sub-monoidal category of that of S-bimodules, an operad is a particular example
of properad, where all the operations have exactly one output. Koszul duality theory
was extended from graded quadratic operads to graded quadratic properads in [76].
From now on we assume that the reader is familiar with this theory.

In this section we further extend Koszul duality theory to properads, hence to
operads, when the relations contain quadratic and linear terms. Moreover, it applies to
properads which are not necessarily concentrated in homological degree 0 and which
may contain unary operations. As a direct corollary, we obtain a Poincaré–Birkhoff–
Witt Theorem for Koszul properads, analogous to that for associative algebras in [62],
[8]. From this theory, we explain how to make the two types of resolutions explicit:
at the level of properads and at the level of algebras over a properad.

A.1. Filtered properads with quadratic and linear relations. Let P be a properad
which admits a presentation of the form P D F .V /=.R/, where .R/ is the ideal
generated by R � F .V /.1/ ˚ F .V /.2/ D V ˚ F .V /.2/. The superscript .n/

indicates the weight of the elements. In the free properad F .V /, the weight of
an element is defined by the number of generating elements from V used to write it.
Equivalently, it is equal to the number of vertices of the underlying graph representing
an element. This means that P has a space of generators V and quadratic and linear
relations R. The space of relations is supposed to be homogeneous with respect to
the homological degree.

Let q W F .V / � F .V /.2/ be the projection onto the quadratic part of the free
properad. We denote by qR the image under q of R, so qR � F .V /.2/ is the quadratic
part of the relations of P . We consider the quadratic properad

qP ´ F .V /=.qR/:

We further assume that R \ V D f0g. If it is not the case, one just has to reduce
the space of generators V . Under this assumption, there exists a morphism of S-bi-
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modules ' W qR! V such that R is the graph of '

R D fX � '.X/; X 2 qRg:

The natural grading of the free properad F .V / by the number of generators
induces the filtration

Fn ´ �.
L
k�n

F .V /.k//

on P , where � denotes the natural projection F .V / � P . We denoted the associated
graded operad by gr P . The relations qR hold in gr P . Therefore, there exists an
epimorphism of graded properads

p W qP � gr P :

It is always an isomorphism in weight 0 and 1. In weight 2, p is an isomorphism if
and only if qR D q.fV ˚ F .V /.2/g \ .R//. Therefore p is not an isomorphism in
general. At the end of this appendix, we will prove that p is an isomorphism when
the properad P is Koszul.

A.2. Koszul dual dg coproperad. Recall that the Koszul dual coproperad qP ¡ of
qP is the cofree coproperad generated by sV with relators in s2qR (see Section 2 of
[77])

qP ¡ ´ C.sV; s2qR/;

where s denotes the homological degree shift by C1. It is a sub-coproperad of the
cofree coproperad F c.sV / on sV .

We associate to ' the composite map

qP ¡ � s2qR
s�1

��! s qR
s'�! sV:

By Lemma 15 of [58], there exists a unique coderivation Qd' W qP ¡ ! F c.sV / which
extends this map. The following lemma gives the conditions for Qd' to induce a square
zero coderivation on the Koszul dual coproperad qP ¡.

We will write R˝V for the subspace of F .V / of linear combinations of connected
graphs with 2 vertices, the lower one labelled by an element of R and the upper one
labelled by an element of V , denoted by R �.1;1/ V in [58]. The subspace V ˝R is
defined similarly.

Lemma 37. The coderivation Qd' W qP ¡ ! F c.sV / restricts to a coderivation d' on
the sub-coproperad qP ¡ � F c.sV / if fR˝ V C V ˝Rg \ F .V /.2/ � qR.

The coderivation d' satisfies d'
2 D 0 if fR ˝ V C V ˝ Rg \ F .V /.2/ �

R \ F .V /.2/.
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Proof. By the universal property which defines C D C.sV; s2qR/ (see Appendix B
of [77]), it is enough to check that Qd'.C .3// � C .2/ D s2qR. The space s2qR˝ sV

is the subspace of F c.sV /.3/ consisting of graphs with 3 vertices indexed by sV

whose lower part with 2 vertices lives in s2qR. Dually, we consider sV ˝ s2qR.
With these notations, we have C .3/ D s2qR˝ sV \ sV ˝ s2qR. Hence any element
Y 2 C .3/ be can written Y DP

s2X ˝ sv DP
sv0 ˝ s2X 0, with X; X 0 2 qR and

v; v0 2 V . The explicit description of Qd' given by Lemma 22 of [58] gives

Qd'.Y / DP
s'.X/˝ sv �P

sv0 ˝ s'.X 0/
DP

.s'.X/ � s2X/˝ sv CP
sv0 ˝ .s2X 0 � s'.X 0//:

We identify F .V / with F c.V / and we consider the natural suspension map F c.V /!
F c.sV /. So Qd'.Y / lives in the image of fR˝ V C V ˝Rg \F .V /.2/ in F c.sV /.
Hence the coderivation Qd' restricts to C if fR˝ V C V ˝Rg \ F .V /.2/ � qR.

Since d' is a coderivation, to show that d'
2 D 0, it is enough to prove that the

projection of d'
2 onto the generators sV of C vanishes. Once again, by the universal

property of C , we only have to check here that d'
2.C .3// D 0. By the previous

argument, this condition is equivalent to

fR˝ V C V ˝Rg \ F .V /.2/ � '�1.0/ D R \ F .V /.2/:

Notice that the second condition implies the first one.

Definition. Under the conditions of Lemma 37, the Koszul dual dg coproperad of P

is the dg coproperad
P ¡ ´ .C.sV; s2qR/; d'/:

A.3. Koszul duality theory. We extend Koszul duality theory to the quadratic-linear
case as follows.

Definition. The properad P is called a Koszul properad if it admits a quadratic-linear
presentation P D F .V /=.R/ such that

(1) R \ V D f0g,
(2) fR˝ V C V ˝Rg \ F .V /.2/ � R \ F .V /.2/,

(3) its associated quadratic properad qP ´ F .V /=.qR/ is Koszul in the classical
sense.

Condition (1) deals with the minimality of the space of generators. It implies that
the space of relations can be written as the graph of a map ' W qR! V . Condition (2)
corresponds to the maximality of the space of relations. It states that R should contain
all the quadratic relations obtained by composing relations in R with one element
above or below. It implies that ' extends to a codifferential d' on the Koszul dual
coproperad qP ¡.
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In the example of the operad BV given in Section 1, the presentation satisfies
these three conditions. But the presentation without the derivation relation between
the operator � and the Lie bracket h -; - i does not satisfy condition (2) since this
relation is obtained by composing the inhomogeneous relation between h -; - i and
�-� by � above and below.

The bar-cobar constructions of associative algebras and coalgebras was extended
to properads in Section 4 of [76] (see also Section 3 of [58]). The cobar construction
is a functor which produces a quasi-free properad from a dg coproperad. Recall that
a quadratic properad P is Koszul if and only if the cobar construction of its Koszul
dual coproperad is a resolution of P , �P ¡ ��!� P . In the quadratic-linear case, we
consider the cobar construction of the Koszul dual dg coproperad P ¡ D .qP ¡; d'/,
which we denote by P1 ´ �P ¡. More precisely, the underlying S-bimodule of
the cobar construction �P ¡ of the dg coproperad .qP ¡; d'/ is the free properad
F .s�1qP ¡/ on the desuspension of the augmentation coideal of qP ¡. Its differential
d is the sum of two terms d1 and d2, where d1 is the unique derivation which extends
d' and where d2 is the unique derivation which extends the partial coproduct of the
coproperad qP ¡. Since d' is a square zero coderivation of the coproperad qP ¡, we
get d 2 D 0 by Proposition 4:4 of [76].

In the Koszul case, the next theorem shows that algebras over P1 give the explicit
notion of homotopy P -algebras.

Theorem 38. Let P be a Koszul properad. The cobar construction of its Koszul dual
dg coproperad P ¡ is a resolution of P ,

�P ¡ ��!� P :

Proof. Let C ´ s�1qP ¡ be the desuspension of the augmentation coideal of the
coproperad qP ¡. So, the underlying S-bimodule of �P ¡ is F .C/.

Let us consider the new “homological” degree induced by the weight of elements
of qP ¡ minus 1. We call this grading the syzygy degree since it corresponds to the
syzygies of the quasi-free resolution of qP and therefore of P . Hence, the syzygy
degree of an element of F .C/ is equal to the sum of the weight of the elements which
label its vertices minus the number of vertices. Since the weight of C is greater than
1, the syzygy degree on F .C/ is non-negative.

The internal differential d1 of F .C/ induced by d' and the differential d2 induced
by the partial coproduct of the coproperad C lower the syzygy degree by 1. So we
have a well-defined non-negatively graded chain complex.

We consider the filtration Fr of �P ¡ D F .C/ based on the total weight, which
is defined for any graph labelled by elements of C by the sum of the grading of the
operations indexing its vertices. We denote this grading by .r/. The two components
of the differential map d D d1 C d2 satisfy

d2 W Fr ! Fr and d1 W Fr ! Fr�1:
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The filtration Fr is therefore stable under the differential map d . Since it is bounded
below and exhaustive, the associated spectral sequence E�

rs converges to the ho-
mology of �P ¡ by the classical convergence theorem of spectral sequences (see
Theorem 5.5.1 of [81]). Hence, Fr induces a filtration Fr on the homology of �P ¡

such that

E1
rs Š Fr.HrCs.�P ¡//=Fr�1.HrCs.�P ¡//μ gr.r/.HrCs.�P ¡//:

The first term of this spectral sequence is equal to E0
rs D F .C/

.r/
rCs , which is

made of the elements of syzygy degree equal to r C s and grading equal to .r/. The
differential map d 0 is given by d2. Since the properad qP is Koszul, the spectral
sequence collapses at page 1 and it is equal to E1

rs D qP .r/. Therefore, E1
rs is

concentrated in the line r C s D 0: E1
rs Š qP .r/ for r C s D 0, and E1

rs D 0 for
r C s ¤ 0.

In conclusion, the convergence theorem gives

E1
r;�r Š qP .r/ Š E1

r;�r Š gr.r/.H0.�P ¡//;

E1
r;s Š 0 Š E1

r;s Š gr.r/.HrCs.�P ¡// for r C s ¤ 0:

With the syzygy degree, we have H0.�P ¡/ D P . The quotient gr.r/.H0.�P ¡//

is equal to gr.r/ P . Therefore, the morphism �P ¡ ��!� P is a quasi-isomorphism.

This spectral sequence proof gives the following Poincaré–Birkhoff–Witt result
directly.

Theorem 39 (Poincaré–Birkhoff–Witt theorem for the properad P ). When P is a
Koszul properad, the natural epimorphism qP � gr P is an isomorphism of bi-
graded properads, with respect to the weight grading and the homological degree.
Therefore, the following S-bimodules, graded by the homological degree, are isomor-
phic

P Š gr P Š qP :

Proof. This is a direct corollary of the previous proof.

This theorem allows us to give the following equivalent definition of the notion
of a Koszul properad.

Proposition 40. The properad P is Koszul if and only if it admits a quadratic-linear
presentation P D F .V /=.R/ satisfying the conditions

(1) R \ V D f0g,
(20) R D fV ˚ F .V /.2/g \ .R/,

(3) its associated quadratic properad qP ´ F .V /=.qR/ is Koszul in the classical
sense.
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Proof. When a properad P is Koszul, the Poincaré–Birkhoff–Witt isomorphism in
weight 2 implies that qR D q.fV ˚ F .V /.2/g \ .R//, which is equivalent to R D
fV ˚ F .V /.2/g \ .R/ under condition (1), R \ V D f0g. In the other direction,
condition (20) always implies condition (2).

In this equivalent definition, condition (20) states that the space of relations R

should be maximal among the generating spaces for the ideal of P . Such a condition
can be hard to check in practice. But this proposition shows that if one finds a
quadratic and linear presentation of a properad, which satisfies (1), (2) and (3), then
the space of relations R is maximal.

Remark. This presentation of Koszul duality for properads with quadratic and linear
relations includes and extends the classical case of quadratic properads. If P has
a quadratic presentation, then the map ' is equal to 0. Hence the Koszul dual dg
coproperad has a trivial differential. It is therefore equal to the classical Koszul dual
coproperad. Since qP D P , the two definitions of a Koszul properad coincide.

Recall that a representation of a properad, of the form P ! EndA, is called a
P -gebra structure on A after [67]. (We drop the article “al” from the Arabic word
“al-jabr” to try and encompass the various notions of algebras, coalgebras, bialgebras,
etc.)

Definition. When P is a Koszul properad, we define a homotopy P -gebra as a gebra
over the quasi-free resolution P1 ´ �P ¡.

The notion of homotopy P -gebra can be defined as a gebra over a cofibrant
resolution of P . When P is Koszul, there is a canonical choice for such a cofibrant
replacement, namely �P ¡.

A.4. Resolutions of modules. Another application of Koszul duality theory for
associative algebras is to provide quasi-free, thus projective, resolutions for modules
over a Koszul algebra. There are two main applications: in algebraic topology to
compute the derived functors Tor and Ext, see [63], and in algebraic geometry to
study syzygies, see [15]. We extend these resolutions to the properadic case.

For three S-bimodules M , N and O , let us denote by .M IN / � O the part of
.M ˚ N / � O linear in N . It is given by two-levelled graphs with vertices of the
first level labelled by elements of M , except for one labelled by an element of N , and
with the vertices of the second level labelled by elements of O . Dually, we define
M � .N IO/ as the part of M � .N ˚ O/ linear in O . Let f W M ! M 0 and
g W N ! O be two morphisms of S-bimodules. We denote by f �0 g W M � N !
M 0 � .N IO/ the morphism of S-bimodules where we apply f to every element of
M and g to every element of N but only one each time. For example, if .N; d/ is
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a dg S-bimodule, then the obvious extension of the differential to M � N may be
expressed precisely as

M � N
IdM �0d�����!M � .N IN / � M � .N ˚N /!M � N:

Any twisting morphism ˛ 2 Tw.C ; Q/ between a (coaugmented) dg coproperad
C and a dg properad Q induces a unique square zero derivation Nd˛ on the free left
Q-module Q � C on C which extends the composite

C
.1/����! .I I xC/ � C

.IdI I˛/�IdC��������! .I IQ/ � C ! Q � C ;

where .1/� is the component of the decomposition map � W C ! C�C on .I I xC/�C .

Definition. The chain complex Q �˛ C ´ .Q � C ; d˛ D dQ�C C Nd˛/ is called the
left twisted composite product of Q and C . Similarly, one can define a right twisted
composite product C �˛ Q and a two-sided composite product Q �˛ C �˛ Q.

We refer the reader to Sections 3:4 and 7:3 of [76] for more details and complete
formulas.

The morphism P1 D �.P ¡/! P is equivalent to a twisting morphism � W P ¡ !
P according [58], Proposition 17, which is given by

� W P ¡ � sV
s�1

��! V � P :

This twisting morphism defines a twisted composite product P �� P ¡ �� P called
the Koszul complex.

Theorem 41. For any Koszul properad P , the twisted composite product is quasi-
isomorphic to P as P -bimodule:

P �� P ¡ �� P ��!� P :

Proof. Once again, we consider another “homological degree”, the total weight of
the elements of P ¡ this time. The two parts d' and Nd� of the differential map
lower this degree by 1. The natural filtration on P and the weight grading on P ¡

induce an exhaustive and bounded below filtration Fr on P �� P ¡ �� P . The
differential maps satisfy Nd� W Fr ! Fr and d' W Fr ! Fr�1. Therefore, E0 is equal
to gr P � N� P ¡ � N� gr P where N� W P ¡ ! gr P is the associated twisting morphism
and where d 0 D Nd N� . By Corollary 39, E0 is the twisted composite product qP �Q�
qP ¡ �Q� qP of the Koszul quadratic properad qP , with Q� W qP ¡ ! qP the Koszul
twisting morphism. Therefore, it is quasi-isomorphic to qP as an S-bimodule. So
the convergence theorem for spectral sequences implies

E1
r;�r Š qP .r/ Š E1

r;�r Š gr.r/ P ;

E1
r;s Š 0 Š E1

r;s for r C s ¤ 0:
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Finally, P �� P ¡ �� P is quasi-isomorphic to gr P , which is equal to P as an
S-bimodule by the PBW theorem of Corollary 39.

Definition. We define the relative composite product M �P N of a right dg P -
module M , � W M � P !M , and a left dg P -module N , 
 W P � N ! N , by the
following coequalizer:

M � P � N
IdM �� ��
��IdN

�� M � N �� �� M �P N .

Corollary 42. Let P be a Koszul properad. For any right P -module M and any left
P -module N , we have a quasi-isomorphism

M �� P ¡ �� N ´M �P .P �� P ¡ �� P / �P N ��!� M �P N:

Proof. Once again, we use the total weight of the elements of P ¡ for the “homological
degree”. Let us first prove the result with N D P , that is M �� P ¡ �� P ´
M �P .P �� P ¡ �� P / ��!� M . Since M �P .P �� P ¡ �� P / is given by the
short exact sequence

0!M � P � .P �� P ¡ �� P /!M � .P �� P ¡ �� P /

!M �P .P �� P ¡ �� P /! 0;

it induces a long exact sequence in homology. By Proposition 3.5 of [76], the ho-
mology groups of the two first chain complexes vanish in degree greater than 1.
Therefore we have Hn.M �P .P �� P ¡ �� P // D 0 for n � 1. In degree 0,
the long exact sequence is equal to M � P � I ! M � I ! M �P I , so
H0.M �P .P �� P ¡ �� P // D M �P I . We apply the same method again to
M �� P ¡ �� N Š .M �P .P �� P ¡ �� P // �P N to conclude the proof.

For instance, with M D P and N D I (resp. with M D I and N D P ),
this corollary shows that the Koszul complex P �� P ¡ (resp. P ¡ �� P ) is quasi-
isomorphic to I . For M D P and any N , this construction provides a quasi-free left
P -module which is a resolution of N .

When P D R is concentrated in arity .1; 1/, it is a Koszul algebra R, for instance
the universal enveloping algebra of a Lie algebra, the Steenrod algebra and the free
symmetric algebra [63]. In this case, the above construction provides us with a
functorial projective resolution of R-modules M : R ˝� R¡ ˝� M ��!� M . Notice
that in algebraic geometry, people are looking for the minimal (quasi-)free resolution
of a module over an algebra, see [15]. Condition (1) is the minimality condition and
the resolution provided here is (quasi-)free.

Finally, when A is a P -gebra, the construction

P �� P ¡.A/´ .P �� P ¡ �� P / �P A ��!� A

is a resolution of A as a quasi-free left P -module. So, if P is an operad, it gives a
quasi-free P -algebra equivalent to A, which we analyse in the next appendix.
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B. Homotopy theory for algebras over a Koszul operad

In this appendix, we suppose that P is an operad. (For a general properad P , as
opposed to an operad, the notion of free P -gebra does not exist and there is no
model category structure on the category of P -gebras; this category does not admit
coproducts.)

In this context, we define the bar and cobar constructions for algebras over an
inhomogeneous Koszul operad using the general theory of twisting morphism for
(co)algebras over a (co)operad of [25], see also [60] for a Lie theoretical approach.
This allows us to define a bar construction for homotopy P -algebras and a weaker
notion of morphism, called1-morphism. We show that any P1-algebra is1-quasi-
isomorphic to a P -algebra. We prove that P1-algebra structures transfer through
homotopy equivalences with explicit formulae. Applied to the homology of a P1-
algebra, this result defines the Massey products for P1-algebras.

B.1. Bar and cobar constructions. Let ˛ W C ! Q be a twisting morphism be-
tween a coaugmented dg cooperad C and a dg operad Q. To any dg C -coalgebra
.C; �C / and any dg Q-algebra .A; �A/, we associate the following operator on
Hom.C; A/:

?˛.'/ W C �C��! C B C
˛B'��! Q B A

�A�! A:

A twisting morphism with respect to ˛ is a map ' W C ! A of degree 0 which is a
solution of the Maurer–Cartan equation

@.'/C ?˛.'/ D 0:

We denote the space of twisting morphisms with respect to ˛ by Tw˛.C; A/. This
bifunctor Tw˛ W dg C -coalgebras � dg Q-algebras ! Sets is represented by the
following functors.

To any dg Q-algebra .A; �A/, we define its bar construction B˛A on the underlying
module C.A/. Since it is a cofree C -coalgebra, there is a unique coderivation d2 which
extends

C.A/ D C B A
˛BIdA���! Q B A

�A�! A:

The coderivation d2 is equal to the composite

C B A
�.1/BIdA������! .C B .I I xC// B A

.IdC B.IdI I˛//BIdA�����������! .C B .I IQ// B A Š C B .AIQ B A/

IdC B.IdAI�A/��������! C B A;

where �.1/ is the component of the decomposition map � W C ! C BC on C B.I I xC/.
Hence d2 squares to 0. Finally, we endow C.A/ with the total square zero coderivation
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d ´ dC B IdA C IdC B0 dA C d2 to define B˛A´ .C.A/; d/. The bar construction
B˛ is a functor from dg Q-algebras to dg C -coalgebras such that

B˛A D .C.A/; d/ Š ..C B˛ Q/ BQ A; d˛/:

(The notations B0, B˛ and d˛ are the analogues for operads of �0, �˛ and d˛ of
Appendix A.)

The cobar construction �˛C of a dg C -coalgebra .C; �C / is defined dually.
There is a unique derivation d2 on Q.C / which extends

C
�C��! C B C

˛BIdC����! Q B C:

This derivation is equal to the composite

Q B C
IdQB0�C������! Q B .C IC B C /

IdQB.IdC I˛BIdC /�����������! Q B .C IQ B C / Š .Q B .I; Q//.C /

�.1/BIdC�����! Q B C;

so it squares to 0. We consider the total square zero derivation d ´ dQ B IdC C
IdQ B0 dC Cd2, which defines the cobar construction of C , �˛C ´ .Q.C /; d/. The
cobar construction �˛ is a functor from dg C -coalgebras to dg Q-algebras such that

�˛C D .Q.C /; d/ Š ..Q B˛ C/ BC C; d˛/:

Theorem 43 ([25], Theorem 2.18). Let ˛ W C ! Q be a twisting morphism from a
conilpotent dg cooperad C to an operad Q. The bar and cobar constructions form a
pair of adjoint functors

B˛ W dg Q-algebras ˛ dg C -coalgebras W�˛;

whose natural bijection satisfies

HomdgQ-alg:.�˛C; A/ Š Tw˛.C; A/ Š HomdgC -coalg:.C; B˛A/

for any dg Q-algebra A and any dg C -coalgebra C .

Let Q D P be an inhomogeneous quadratic operad and let C D P ¡ be its Koszul
dual dg cooperad. These results applied to the twisting morphism � W P ¡ ! P define
the following pair of adjoint functors

B� W dg P -algebras ˛ dg P ¡-coalgebras W�� :

Remark. When P is a finitely generated binary quadratic operad, there is a Lie-
theoretical interpretation of the aforementioned results. For any dg P ¡-coalgebra C
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and any dg P -algebra A, the space of maps Hom.C; A/ can be endowed with a Lie
bracket Œ ; � of degree �1 such that ?˛.'/ D 1

2
Œ'; '�, [60], Theorem 2.1.1. In this

case, the equation @.'/ C ?˛.'/ D 0 is the Maurer–Cartan equation in this dg Lie
algebra. These properties still hold in the inhomogeneous quadratic case.

Lemma 44. When the left twisted composite product Q B˛ C is acyclic, then the
counit of the adjunction is a quasi-isomorphism �A W �˛B˛A ��!� A for every dg
Q-algebra A.

Dually, when the right twisted composite product C B˛ Q is acyclic then the unit
of the adjunction is a quasi-isomorphism �C W C ��!� B˛�˛C for every dg C -coal-
gebra C .

Proof. First observe that �˛B˛A Š .Q B˛ C/.A/ and B˛�˛C Š .C B˛ Q/.C /. We
can then use standard filtrations and Künneth formula to conclude the proof.

The following proposition is the extension of Theorem 2:25 of [25] to the inho-
mogeneous case.

Proposition 45. When P is a Koszul operad, the counit of the bar-cobar adjunction
is a quasi-isomorphism of dg P -algebras,

��B�A ��!� A

and the unit of the adjunction is a quasi-isomorphism of dg P ¡-coalgebras

C ��!� B���C:

Proof. This is direct Corollary of Lemma 44 and Corollary 42.

Since we work over a field of characteristic 0, every S-module is exact [25], †-
split [34] or †-cofibrant [5]. Therefore the category of P -algebras admits a model
category structure in which weak equivalences are quasi-isomorphisms and fibra-
tions are epimorphisms. In this homotopical language, the weight of P ¡ induces a
suitable filtration on P ¡.A/ which makes the bar-cobar construction into a cofibrant
replacement functor for P -algebras.

B.2. Bar construction for P1-algebras and 1-morphisms. In this section we
apply Theorem 43 to a twisting morphism different from �, in order to define a bar
construction for homotopy P -algebras and the notion of1-morphisms.

Recall from Proposition 18 of [58] that any twisting morphism factors through
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two universal twisting morphisms. Applied to �, it gives

�P ¡

g�

���
�

�
�

P ¡

f� ���
�

�
�

	

����������
� �� P

BP

�

����������

where g� W �P ¡ ! P is a morphism of dg operads and f� W P ¡ ! BP is a morphism
of dg cooperads. Theorem 43 applied to the twisting morphism � W P ¡ ! �P ¡ D P1
gives the following a pair of adjoint functors:

B	 W P1-algebras ˛ dg P ¡-coalgebras W�	:

The bar construction B	 is called the bar construction of a homotopy P -algebra A.
It is equal to

B	A D .P ¡.A/; d/ D ..P ¡ B� EndA/ BEndA
A; d� /;

where � W P ¡ ! EndA denotes the twisting morphism defining the P1-algebra struc-
ture on A. This construction corresponds to the fourth equivalent definition in Theo-
rem 1 of a homotopy P -algebra structure on a dg module A in terms of a square zero
coderivation on the quasi-free dg P ¡-coalgebra P ¡.A/.

A homotopy P -algebra is a “strict” P -algebra if and only if the twisting morphism

� W P ¡ ! EndA factors as P ¡ ��! P ! EndA. In this case, both bar constructions
agree since

B	A D .P ¡B� EndA/BEndA
A Š ..P ¡B�P /BP EndA/BEndA

A Š .P ¡B�P /BP A D B�A:

The various bar and cobar functors form the following commutative diagram.

dg P -alg.� �

��

B�

� dg P ¡-coalg.

��

P1-alg.
B�

�������������

A morphism between algebras over an operad is a map f W A! A0 which strictly
commutes with the operad action. When P is a Koszul operad, we can define a
weaker notion of morphisms as follows. Let A and A0 be two P1-algebras. An
1-morphism between A and A0 is a morphism of dg P ¡-coalgebras between the
associated bar constructions B	A D P ¡.A/! B	A

0 D P ¡.A0/. It is equivalent to a
map P ¡.A/! A0 satisfying a certain relation, see Chapter 10 of [47] for an exhaustive
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study. An 1-morphism is called an 1-quasi-isomorphism if the first component
I.A/ Š A ��!� A0 is a quasi-isomorphism. By definition, 1-morphisms can be
composed. They share nice homotopy properties; see for instance Section B.3. From
now on we will only consider the category of P1-algebras with their1-morphisms.

The following theorem was proved in [13], Proposition 3, for homogeneous Koszul
operads.

Proposition 46 (Rectification). Let P be a Koszul operad. For any homotopy P -
algebra A, there is an1-quasi-isomorphism of homotopy P -algebras

A ��!� ��B	A;

where the right hand side is a dg P -algebra.

Proof. Proposition 45 applied to the dg P ¡-coalgebra B	A provides a quasi-isomor-
phism of dg P ¡-coalgebras B	A ��!� B���B	A D B	��B	A.

B.3. Transfer of homotopy structures. Let .V; dV / and .W; dW / be two homotopy
equivalent chain complexes:

.V; dV /h0
		 i ��

.W; dW / h




p
�� ;

IdV � pi D dV h0 C h0dV ; IdW � ip D dW hC hdW :

Theorem 47 (Transfer Theorem). Let P be a Koszul operad and let i W .V; dV / !
.W; dW / be a homotopy equivalence of chain complexes. Any P1-algebra structure
on W induces a P1-algebra structure on V such that i extends to an 1-quasi-
isomorphism.

One can start with a P -algebra structure on W , but the transferred structure on V

will be a P1-algebra structure in general. This theorem provides a homotopy control
of the transferred structure: the starting P1-algebra and the transferred one are related
by an explicit1-quasi-isomorphism. This result follows from the general principle
that algebra structures over cofibrant operads transfer through quasi-isomorphisms,
see [7], [5]. We do not use model category arguments to prove this result here.
Instead, we give explicit formulas. The proof relies on the following lemma and on
the equivalent definitions of P1-algebra structures given in Theorem 1.

Lemma 48 ([79], Theorem 5.2). Let V be a chain complex homotopy equivalent to a
chain complex W . There is amorphismof coaugmented dg cooperads ‰ W B EndW !
B EndV , which extends


 2 EndW .n/ 7! p 
 i˝n 2 EndV .n/:
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Since the category of augmented (unital) dg operads is equivalent to the category
of non-unital dg operads, we can equivalently apply the bar construction to non-
unital dg operads. It is the case in the aforementioned lemma, where the underlying
S-module of B EndW is F c.s EndW /.

Since ‰ is a morphism of cooperads to a cofree cooperad, it is completely char-
acterized by its projection onto the cogenerators F c.s EndW / ! s EndV , which is
defined as follows. A basis of F c.s EndW / is given by trees labelled by elements
of s EndW . Let T ´ T .s
1; : : : ; s
k/ be such a tree. The image of T under ‰ is
defined by the suspension of the following composite: we label every leaf of the tree
T .
1; : : : ; 
k/ with i W V ! W , every internal edge by h and the root by p.
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This composite scheme defines a map in s EndV . Since the degree of h isC1, the
degree of ‰ is 0. Notice that this result is independent of the operad P .

Proof of Transfer Theorem. Let � 2 Tw.P ¡; EndW / be a P1-algebra structure on
W . By Theorem 1, this twisting morphism is equivalent to a morphism of augmented
dg cooperads f� W P ¡ ! B EndW . We compose it with the morphism of augmented
dg cooperads ‰ W B EndW ! B EndV . The resulting composite ‰ f� is a morphism
of augmented dg cooperads which endows V with a P1-algebra structure.

The formula for the extension of i to an1-quasi-isomorphism between the trans-
ferred structure on V and the P1-algebra structure on W is given by the same formula,
except that we now label the root of the tree by the homotopy h and not by p. The
proof that this gives an1-morphism is straightforward. For more details, we refer
the reader to Chapter 10 of [47].

B.4. Massey products. Since the homology of the operad P1 is equal to the operad
P , the homology H.A/ of a P1-algebra A carries a natural P -algebra structure. By
doing this, we lose a large amount of data, namely the homotopy type of A. We apply
the preceding section to endow H.A/ with a P1-algebra structure which extends
this P -algebra structure. Moreover we show how to recover the homotopy type of A

from this data.
Let .A; d/ be a chain complex. As usual, we denote by Bn ´ Im.d W AnC1 !

An/ the image of the boundary map d . Since we work over a field K, each An is
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isomorphic to Bn ˚Hn ˚Bn�1, after a choice of section. Under this isomorphism,
the differential d sends the direct summand Bn˚Hn to 0 and its restriction to Bn�1

is an isomorphism. This splitting shows that the homology H.A/ is a deformation
retract of A,

.H.A/; 0/
�� i ��

.A; d/ h




p
���� ;

where the homotopy h W An ! AnC1 is 0 on Hn ˚ Bn�1 and is the inverse of d

on Bn.

Theorem 49 (Massey products). Let P be a Koszul operad and let A be a P1-
algebra. There is a P1-algebra structure on the homology H.A/ of the underlying
chain complex of A, which extends its P -algebra structure and such that the embed-
ding i W H.A/ � A extends to an1-quasi-isomorphism of P1-algebras.

Proof. The first two points follow directly from Theorem 47. Because the morphism
of coaugmented dg cooperads ‰ extends 
 2 EndA.n/ 7! p 
 i˝n 2 EndH.A/.n/,
the image of P ¡.1/ in EndH.A/, given by the transferred structure, corresponds to the
P -algebra structure on A.

One can also prove that the P1-algebra structure on the homology H.A/ is
independent of the choice of section for the homology of A: any two such transferred
structures are related by an1-isomorphism whose first map is the identity on H.A/.
We refer to Chapter 10 of [47] for a proof of this fact.

When A D C �

sing.X/ is the singular cochain complex of a topological space, it is
endowed with an associative cup product. This associative algebra structure transfers
to an A1-algebra structure on the singular cohomology H �

sing.X/. These operations
were originally defined by Massey in [53], so they are called the Massey products.
In general, we call the P1-operations on the homology of a P1-algebra the Massey
products.

Whereas the differential on H.A/ is equal to 0, the P1-algebra structure on H.A/

is not trivial. In this case, the relations satisfied by the P1-algebra operations on
H.A/ do not involve any differential. Hence the operations of weight 1 satisfy the
relations of a P -algebra. But the higher operations exist and contain the homotopy
data of A. This result is well known in algebraic topology, where one uses the Massey
product with three inputs to detect the non-trivial linking of the Borromean rings [54].

Proposition 50. For any Koszul operad P and any P1-algebra A, one can recon-
struct the homotopy type of A from the P1-algebra structure of H.A/.

Proof. Let us denote by Q{ W H.A/! A the extension of i to an1-quasi-isomorphism.
By definition of1-quasi-isomorphism and since �� preserves quasi-isomorphisms
between quasi-cofree P ¡-coalgebras (use the filtration based on the weight of P ¡), it
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induces the following quasi-isomorphism of dg P -algebras

��B	H.A/

�B�Q{����! ��B	A:

The latter dg P -algebra is1-quasi-isomorphic to A by rectification (Theorem 46).

B.5. Homology and cohomology of P -algebras and P1-algebras. After [25,
Section 4:3], we know that the André–Quillen homology of an algebra over an
operad with trivial coefficients is given by the left derived functor of the functor
of indecomposable elements. Here we can use the functorial cofibrant resolutions
��B�A ��!� A and �	B	A ��!� A to computeAndré–Quillen homology of P -algebras
and P1-algebras respectively:

HP
�

.A/ D H��1.xB�A/ D H��1. xP ¡.A/; d�/;

HP1
�

.A/ D H��1.xB	A/ D H��1. xP ¡.A/; d	/:

More generally, one can define the André–Quillen homology and cohomology
of P -algebras and P1-algebras with coefficients, following [30], [60]. The functo-
rial cofibrant resolutions ��B�A ��!� A and �	B	A ��!� A provide explicit chain
complexes which compute these homology and cohomology theories, as explained
in [60].

C. Deformation and obstruction theory

In this third appendix, we develop the deformation theory and the obstruction theory
for gebras over a Koszul properad.

C.1. Deformation theory. In this section, we give a Lie theoretic description of
homotopy P -gebra structures when P is a Koszul properad: we make precise the dg
Lie algebra governing homotopy P -gebra structures.

Let P be a Koszul properad. Recall that for any dg properad Q, the differ-
ential on the space of S-equivariant maps HomS.P ¡; Q/ is defined by @.f / ´
dQ B f � .�1/jf jf B d' . It is shown in [58] that .HomS.P ¡; Q/; @/ is endowed
with a dg Lie algebra structure. We call it the convolution dg Lie algebra, or sim-
ply the convolution algebra, and we denote it by g ´ .HomS.P ¡; Q/; @; Œ ; �/. Its
Maurer–Cartan equation is

@.�/C 1
2
Œ�; �� D 0:

The solutions of the Maurer–Cartan equation in this convolution algebra which vanish
on the coaugmentation map of the cooperad P ¡ are called twisting morphisms and
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the associated set is denoted by Tw.P ¡; Q/. They are in one-to-one correspondence
with morphisms of dg properads from P1 to Q (Proposition 17 of [58]):

Tw.P ¡; Q/ Š Homdg properads.P1; Q/:

Applied to the endomorphism properad, Q D EndA, of a dg module A, it shows
that structures of homotopy P -gebras on A are in one-to-one correspondence with
twisting morphisms of Tw.P ¡; EndA/, cf. Theorem 1 in the operad case. Since P

is Koszul, the underlying coproperad qP ¡ of its Koszul dual dg coproperad P ¡ D
.qP ¡; d'/ is graded by an extra weight induced by that of the cofree coproperad. We
denote this weight grading by P ¡.n/. With this convention, P ¡ satisfies P ¡.0/ D I ,
P ¡.1/ D sV and P ¡.2/ D s2qR. Therefore, the convolution Lie algebra g is also
graded by this weight, g.n/ ´ HomS.P ¡.n/; Q/. The differential on the Koszul dual
dg coproperad lowers this grading by one, d' W P ¡.n/ ! P ¡.n�1/. These properties
of P ¡ transfer to the convolution algebra as follows.

Proposition 51. For any Koszul properad P and any dg properad Q, the underlying
Lie algebra structure of the convolution dg Lie algebra g´ .HomS.P ¡; Q/; @; Œ ; �/

has an extra grading such that g D Q
n�0 g.n/. Its differential is the sum of two

anti-commuting square-zero derivations @ D @0C@1 such that the first one preserves
this grading @0 W g.n/ ! g.n/ and the second one raises it by one, @1 W g.n�1/ ! g.n/.

Proof. We define g.n/ by g.n/ ´ HomS.P ¡.n/; Q/ for n � 0. The differential @0 is
given by the differentials dQ of Q and the differential @1 is given by the differential
d' on P ¡. Since dQ is a square-zero derivation on the properad Q, @0 is a square-zero
derivation on g which preserves the weight. Since d' is a square-zero coderivation
on the coproperad P ¡, @1 is a square-zero derivation on g which raises the weight by
one, @1 W g.n�1/ ! g.n/.

When P is a quadratic Koszul properad the differential @1 vanishes.

C.2. Obstruction theory. We prove a general theorem about Maurer–Cartan ele-
ments in graded dg Lie algebras. We apply it to the convolution Lie algebras associated
to Koszul properads. This defines an obstruction theory and a relative obstruction
theory for homotopy P -gebras.

Let .g; @/ be a dg Lie algebra whose underlying Lie algebra structure is isomorphic
to g DQ

n�0 g.n/. We further assume that the differential @ is the sum of two square-
zero derivations @ D @0 C @1 such that @0 W g.n/ ! g.n/ and @1 W g.n�1/ ! g.n/.

Any element of g can be written as a series � D �0C �1C � � �C �nC � � � . Under
this decomposition, the Maurer–Cartan equation is equivalent to

@0.�n/C @1.�n�1/C 1
2

P
kClDn

Œ�k; �l � D 0 (MCn)



594 I. Gálvez-Carrillo, A. Tonks, and B. Vallette

in g.n/ for any n � 1 and to the equation .MC0/: @0.�0/C 1
2
Œ�0; �0� D 0, this last

one being the Maurer–Cartan equation in the dg Lie algebra .g.0/; @0/. Recall that a
solution � to the Maurer–Cartan equation is required to have homological degree�1.

Notice that g is an extension of the Lie algebra g.0/ by
Q

n�1 g.n/. Given a
Maurer–Cartan element �0 in .g.0/; @0/, we associate the twisted differential @�0 ´
@0C Œ�0;�� on g. It defines a square-zero derivation on g, which preserves the weight
g.n/.

Theorem 52. Let .g D Q
n�0 g.n/; @ D @0 C @1/ be a dg Lie algebra satisfying

@0 W g.n/ ! g.n/ and @1 W g.n�1/ ! g.n/. Let � D �0 C �1 C � � � C �n 2 Qn
kD0 g.k/

be an element which satisfies the .MC/k-equations up to k D n in .g; @/. We consider

Q�nC1 ´ @1.�n/C 1
2

P
kClDnC1

k;l�1

Œ�k; �l �:

In g.nC1/, we have @�0 . Q�nC1/ D 0, that is, Q�nC1 is a cycle of degree �2 in the dg
Lie algebra .g; @�0/.

There exists an element �nC1 2 g.nC1/ such that �1 C � � � C �nC1 satisfies the
.MCk/-equations up to k D n C 1 in .g; @/ if and only if the class of Q�nC1 in
H�2.g.nC1/; @�0/ vanishes.

Proof. By the definition of Q�nC1, we have

@�0. Q�nC1/ D @�0.@1.�n//C 1
2

P
kClDnC1

k;l�1

@�0.Œ�k; �l �/:

Since @0 and @1 anticommute, we get @0.@1.�n// D �@1.@0.�n//. Since @�0 is a
degree �1 derivation, we get

@�0.Œ�k; �l �/ D Œ@�0.�k/; �l � � Œ�k; @�0.�l/� D Œ@�0.�k/; �l �C Œ@�0.�l/; �k�:

And since @1 is a degree �1 derivation, we have

@1.Œ�0; �n�/ D Œ@1.�0/; �n� � Œ�0; @1.�n/�:

Finally, we get

@�0. Q�nC1/ D �@1.@�0.�n//C Œ@1.�0/; �n�C P
kClDnC1

k;l�1

.Œ@�0.�k/; �l �/:

For any n, the equation .MCn/ is

@�0.�n/ D �@1.�n�1/ � 1
2

P
kClDn
k;l�1

Œ�k; �l � D � Q�n:
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So the induction hypothesis gives

@�0. Q�nC1/ D 1
2

P
kClDn
k;l�1

@1Œ�k; �l �C Œ@1.�0/; �n�

� P
kClDnC1

k;l�1

Œ@1.�k�1/; �l � � 1
2

P
aCbCcDnC1

a;b;c�1

ŒŒ�a; �b�; �c�:

Once again, since @1 is a degree �1 derivation, we get

@0. Q�nC1/ D �1
2

P
aCbCcDnC1

a;b;c�1

ŒŒ�a; �b�; �c�;

which vanishes by Jacobi identity.
Since the equation .MCnC1/ is @�0.�nC1/ D � Q�nC1, the second assertion is

proved as well.

Therefore, the homology groups H�2.g.n/; @�0/, for n � 1, are the obstructions to
the existence of Maurer–Cartan elements. Concretely, Theorem 52 applies as follows.

Theorem 53. Let P D F .V /=.R/ be a Koszul properad and let .A; dA/ be a
dg module. Suppose we are given a set of operations on A, �1 W V ! EndA

such that dA is a derivation with respect to them, @A.�1/ D dEndA
B �1 D 0.

If H�2.HomS.P ¡.n/; EndA/; @A/ D 0 for n � 2, then �1 extends to a homotopy
P -gebra structure on A.

Proof. By Proposition 51, the convolution Lie algebra g ´ .HomS.P ¡; EndA/ is
graded and any twisting morphism satisfies �0 D 0. It remains to apply Theorem 52
to this particular case where �0 D 0.

This general method applies to the classical quadratic case as well. It was used
in the particular case of homotopy Lie algebras in [3] and in the case of homotopy
Frobenius bialgebra structures on differential forms of a closed oriented manifold
in [82]. We apply this extended version to prove the existence of a homotopy BV-
algebras algebra structure of vertex algebras in Section 3.3.

C.3. Relative obstruction theory. Now we study a relative version of the previous
method. Let P D F .V /=.R/ be a Koszul properad composed of two properads in the
following way. Suppose that the space of generators V splits into two, V D V0˚V1,
such that the space of relations splits into three R D R0 ˚ R1 ˚ R01 with R0 �
F .V0/.2/, R1 � V1˚F .V1/.2/, R01 � V0˚F .V0˚ V1/.2/. (The subscripts 0 and
1 should not be confused with the homological degree). We further assume that qR01

is generated by elements given by a sum of 2-vertex graphs with exactly one vertex
indexed by V0 and the other indexed by V1. We denote by P0 ´ F .V0/=.R0/ the
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associated quadratic properad and by P1 ´ F .V1/=.R1/ the associated quadratic-
linear properad. Therefore the properad P is a quotient of the coproduct, or free
product, P0 _P1 by the ideal generated by R01:

P Š P0 _P1

.R01/
:

In this case, the Koszul dual coproperad P
¡
0 is a sub-coproperad of P ¡. Moreover,

the diagram of graded coproperads

P
¡
0

� � ��
� �

��

P ¡
� �

��
F c.sV0/

� � �� F c.sV0 ˚ sV1/

commutes. The assumption on R01 proves that P ¡ is a coproperad graded by the
number of sV1.

Lemma 54. Under the previous assumptions on the presentation of the properad
P , the underlying coproperad of P ¡ has an extra grading P ¡Œn�, called the relative
grading, which satisfies P ¡Œ0� D P

¡
0. Its differential d' lowers this relative grading

by 1, d' W P ¡Œn� ! P ¡Œn�1�.

Proof. Under the assumptions on the presentation of P , any map ' associated to it
satisfies s�1' W F c.sV1/.2/ ! sV1 and s�1' W F c.sV0 ˚ sV1/.2/ ! sV0. Hence, it
lowers the number of elements of sV1 by 1. And so does the differential d' .

We get the following direct corollary.

Proposition 55. For any Koszul properad P satisfying the above assumptions and
for any dg properad Q, the underlying Lie algebra structure of the convolution dg
Lie algebra g´ .HomS.P ¡; Q/; @; Œ ; �/ has an extra grading, g D Q

n�0 gŒn�. Its
differential is the sum of two anti-commuting square zero derivations @ D @0 C @1

such that the first one preserves this grading @0 W gŒn� ! gŒn� and the second one
raises it by one, @1 W gŒn�1� ! gŒn�.

Moreover, the sub dg Lie algebra .gŒ0�; @0/ is equal to the convolution dg Lie
algebra HomS.P0

¡; Q/.

Proof. The proof is similar to that of Proposition 51, with the relative grading this
time.

Once again, any element of g is a series: � D �0C �1C � � � C �nC � � � . And the
Maurer–Cartan equation decomposes with respect to the weight as aforementioned.
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Theorem 56. Let P be a Koszul properad with a presentation satisfying the above
assumptions and let .A; dA/ be a dg module. Suppose we are given a homotopy
P0-gebra structure on A: �0 W P

¡
0 ! EndA such that @0.�0/ C 1

2
Œ�0; �0� D 0. If

H�2.HomS.P ¡Œn�; EndA/; @�0/ D 0 for n � 1, then �0 extends to a homotopy P -
gebra structure on A.

Proof. This is a direct corollary of Proposition 55 and Theorem 52.

Conceptually, the coproperad P ¡ is an extension of the coproperad P
¡
0 D P ¡Œ0�

by
L

n�1 P ¡Œn�. Hence,
L

n�1 P ¡Œn� is a P
¡
0-comodule. Dually, the convolution Lie

algebra g is an extension of gŒ0� by
L

n�1 gŒn�. So
L

n�1 gŒn� is a twisted dg module
over the twisted dg Lie algebra .gŒ0�; @�0/. It naturally carries the obstructions to lift
a Maurer–Cartan element of gŒ0� to the whole of g.

This theorem applies, for instance, when P0 and P1 are Koszul properads and
when qR01 defines a distributive law, as in Theorem 2. In this case, the Koszul dual
coproperad has the following form P ¡ Š P

¡
1 � P

¡
0. And the convolution Lie algebra

is equal to g Š HomS.P
¡
1 � P

¡
0; EndA/ (see Section 3.1 and Section 3.4 for an

application).
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