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Abstract. Quantum wire networks have recently become of great interest. Here we deal with a
novel nano material structure of a double gyroid wire network. We use methods of commutative
and noncommutative geometry to describe this wire network. Its noncommutative geometry
is closely related to noncommutative 3-tori as we discuss in detail.
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Introduction

Interfaces that can be modeled by surfaces of constant mean curvature (CMC) are
ubiquitous in nature and can now be synthesized in laboratory. Recently, Urade et al.
[23] have reported fabrication of a nano-porous silica film whose structure is related
to a specific CMC surface: the gyroid. The structure is three-dimensionally periodic
and has three components:1 a thick surface and two channels, as detailed below. The
interface between the wall and the channels approximates a double gyroid.

Urade et al. [23] have also demonstrated a nanofabrication technique in which
the channels are filled with a metal, while the silica wall can be either left in place
or removed. These novel materials open a wide field of applications due to their
topological and geometric features. The channels are a few nanometers wide and,
when filled with a conducting or semiconducting material, are expected to acquire
certain characteristics of one-dimensional quantum wires (such as a blueshift of the
spectrum and an enhanced density of states), while remaining three-dimensional in
other respects [13]. Geometrically, the one-dimensional structure appears since each
of the channels can be retracted to a skeletal graph [8], the gyroid graph.

1And so is sometimes referred to as tri-continuous.
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We will concentrate on the resulting geometry and topology of these networks
in the possible presence of a constant magnetic field. Topological quantities are of
particular physical interest as they remain stable under continuous perturbations. In
practice, those should be small as not to break the structure.

We use two approaches: the first is purely classical and the second is the quan-
tum/noncommutative approach due to Alain Connes [5]. The classical results we
provide are a study of the fundamental group of the channel. Here we determine the
fundamental group of each channel system. This group is the commutator subgroup
of the free group in three generators. A surprising result coming directly from the
gyroid geometry is that there is a new length function on the free group which is
different from the ordinary word length. With the help of this length function we
determine the shortest loops at any given point. There are 15 such topologically dis-
tinct shortest loops (30 if one includes orientation). They split into two groups which
are distinguished by their cyclic symmetry which is either of order two or three. In
both groups there are three generators using this additional symmetry. These loops
are of particular interest since numerical simulations [13] show the possibility of an
enhanced density of states in a double-gyroid quantum wire, due to states that are
nearly localized near such loops. We also calculate the flux of a constant magnetic
field through these loops. The tool is an effective unit vector. The result of the
calculation is that these effective unit vectors have a particularly simple form (see
Table 1). This fact should also be relevant for the study of the spin-orbit coupling of
the loop-localized states.

Our study of the noncommutative geometry is motivated by one of the big early
successes of the noncommutative geometry of Alain Connes. This was the descrip-
tion by Bellissard et al. of the quantum Hall effect [3]. It allowed to explain the
integer effect in terms of the noncommutative geometric properties. The underlying
geometry in that situation is the quantum 2-torus. Recently there have been further
analyses on the fractional effect using hyperbolic geometry as a model [15]. The
conceptual approach as outlined in [2] is to replace the Brillouin zone by a noncom-
mutative Brillouin zone which is given by a C*-algebra that contains the translational
symmetry operators and the Hamiltonian. In this geometry relevant quantities can
often be expressed in terms of the K-theory of this algebra. This Abelian group cap-
tures information related to the topology or better the homotopy type of the algebra
or geometric setup. These are again quantities which are stable under continuous
deformations. A prime example is the Hall conductance.

A general fact, which is pertinent to our discussion, is that the K-groups also
serve to label the gaps in the spectrum. Roughly this goes as follows. Given a gap
in the spectrum there is a projector projecting to the energy levels below the gap.
This projector in turn gives rise to a K-theory element. If one knows the ordered
K-theory, then one can also sometimes deduce if only finitely or infinitely many gaps
are possible.

In our situation, we determine the said C*-algebra for one channel in the presence
of a magnetic field and describe the K-theories. The Hamiltonian we use is the
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generalization [20], [2] of the Harper Hamiltonian [12], [2] adapted to our situation.2

We call the resulting algebra the Bellissard–Harper algebra and denote it by B. This
geometry is closely related to the noncommutative 3-torus T 3

‚. Here ‚ is a skew-
symmetric .3� 3/-matrix determined by the magnetic field. In fact we show that the
algebra is isomorphic to a subalgebra of the .4 � 4/-matrix algebra with coefficients
in the noncommutative 3-torus. By varying the magnetic field, we obtain a three-
parameter family of algebras. We prove that at all but finitely many points this
algebra is the full matrix algebra and hence Morita equivalent to T 3

‚. Since T 3
‚ is

simple at irrational ‚, one would expect this to be true on a dense set (see §3). We
not only prove that this expectation holds at the irrational points, but we are able to
extend this result to almost all rational points. At certain special values of the field
which we enumerate, however, the algebra is genuinely smaller, leading to a possibly
different K-theory. At these points the material may also exhibit special properties.

The ordered K-theory of the 3-torus is completely known [18], [17], [6] and
actually completely classifies the isomorphism classes of such tori [19], [7]. Our
algebra always injects into a T 3

‚. From this and the knowledge of the ordered K-
group of the noncommutative torus, we obtain the result that there are only finitely
many gaps possible at rational values of ‚.

Our approach to both the classical and the quantum geometry uses graph-theoret-
ical methods. The relevant graphs are the gyroid graph which is a 3-regular graph
and its quotient under the translation symmetry group. In order to give the matrix
algebras explicitly we introduce the notions of a graph representation. Using rooted
spanning trees, we are able to represent the algebra B in terms of matrices, where
they are amenable to direct computations.

As the geometry of the gyroid and its channels is quite difficult, we also treat the
honeycomb lattice as a two-dimensional analogue. Indeed, the gyroid lattice graph
(the graph onto which each channel retracts) is in many ways the three-dimensional
analogue of the honeycomb lattice, which is why when developing the more general
parts of the theory we will in parallel consider these two cases as our main examples.
Both graphs are 3-regular, and both of the graphs are not mathematical lattices but
only physical lattices.3 This means that they give rise to two groups, one which is
the space or symmetry group and the other is the group of the lattice, of which they
can be considered a subset. In the honeycomb case these are both Z2 but embedded
into R2 as the triangular lattice and its dual. For the gyroid the groups are both
Z3, but they are embedded as a body centered cubic (bcc) and a face centered cubic
(fcc) lattice in R3, which are again dual to each other. Furthermore the fundamental
group of the honeycomb lattice is the commutator subgroup of the free group on two
elements, while for the gyroid �1 is the commutator subgroup of the free group in
three generators. And in both cases we find a new length function on the free group
induced by the geometry of the lattice.

2The generalized Harper operator is also the operator underlying the noncommutative geometry of the
quantum Hall effect [3], [15].

3See §3.2 for the disambiguation of the use of the word “lattice”.
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The paper is organized as follows:
In the first section, we start with a review of the classical geometry of the gyroid

and then prove the results on the fundamental group and the smallest loops. In the
second section, we formally introduce graphs and lattices and the relevant groups
associated to them. We then define their representation in Hilbert spaces and the
associated Harper operators. Finally, we show how to obtain a matrix representation
of B using rooted spanning trees. In the third section, we apply the general theory
of the second section to the noncommutative geometry of a lattice using a Harper
operator, detailing the honeycomb and the gyroid case. Here we also briefly review
projective representations and explain how they arise in the presence of a magnetic
field. In this context, we can already show that there can only be finitely many gaps
for the gyroid at rational ‚. We also outline the general approach to calculating B

and its K-theory and the expected results. In particular, we compute the K-theory in
the commutative case in terms of a cover of a torus.

In the last section we apply the outlined strategies to calculate the algebras B and
their K-theory for Bravais lattices, the honeycomb lattice and the gyroid lattice graph.

1. The classical geometry of the double gyroid

1.1. The double gyroid and its channels. The gyroid is an embedded CMC surface
in R3 [9]. It was discovered by Alan Schoen [21]. In nature it was observed as an
interface for di-block co-polymers [10], [22]. The interface actually consists of two
disconnected surfaces. Each of them is a gyroid surface. The double gyroid (DG) is
a particular configuration of two mutually non-intersecting embedded gyroids.

A single gyroid has symmetry group I4132 while the double gyroid has the
symmetry group Ia N3d where the extra symmetry comes from interchanging the two
gyroids.4

Since CMC surfaces are mathematically hard to handle level surfaces have been
suggested as a possible approximation in [14]. The level surface approximation for
the double gyroid again consists of two level surfaces. We will call the two surface
interfaces S1 and S2. For the discussion at hand it is not relevant if the two surfaces
are actually the CMC surfaces or their level surface approximations. One example
of a DG approximation is given by the family of level surfaces [14]

Lt W sin x cosy C sin y cos z C sin z cos x D t:

A model for the double gyroid is then given by Lw and L�w for 0 � w <
p
2.

The complement R3 n G of a single gyroid G has two components. These com-
ponents will be called the gyroid wire systems or channels.

4Here I4132 and Ia N3d are given in the international or Hermann–Mauguin notation for symmetry
groups; see e.g. [11].
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There are two distinct channels, one left and one right handed. Each of these
channels contracts onto a graph, called skeletal graph in [21], [8]. We will call these
graphs �C and ��. Each graph is periodic and trivalent. We fix �C to be the graph
which has the node v0 D .5

8
; 5

8
; 5

8
/. We will give more details on the graph �C below.

The channel containing �C is shown in Figure 1. A (crystal) unit cell of the
channel together with the embedded graph �C is shown in Figure 2 and just the graph
is contained in Figure 3.
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Figure 1. The channel CC.
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Figure 2. The graph �C embedded into its channel CC.
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Figure 3. The graph �C.

In constructing the surface, one can actually start with one of these graphs and
evolve the surface from it [8]. The symmetry of one skeletal graph is that of a single
gyroid I4132.

To obtain the double gyroid one can evolve from both the graphs. The common
symmetry group of both of these graphs is Ia N3d . This symmetry group can actually
be defined already on the nodes V˙ of the two graphs �˙. The subgroup I4132 is
then determined to be the subgroup that fixes both sets of nodes (setwise).

In the case of the double gyroid S D S1 q S2, the complement C D R3 n S of
the disjoint union of the two gyroid surfaces has three connected components. These
are two channel systems CC and C�, each of which can be retracted to its skeletal
graph �˙. In fact, the skeletal graph is a deformation retract [8]. There is a third
connected component F and we will write xF D F [ S . This is a 3-manifold with
two boundary components, more precisely, @ xF D S D S1 q S2. F can be thought
of as a “thickened” (fat) surface. The thickness is fixed by the parameter w. Note
that F can be retracted to each of the two boundary surfaces Si . In fact there is a
deformation retract of F onto the gyroid.

This means that all homotopical information about the complements of the double
gyroid is encoded in the gyroid/level surface and the two skeletal graphs.

The translational symmetry group for both the gyroid and the double gyroid is the
Bravais lattice bcc. Note that we will usually use “lattice” in the physical terminology,
e.g. speak about the honeycomb lattice. The term “Bravais lattice” will be used to
denote a maximal rank mathematical lattice, i.e., a free rank n Abelian subgroup of
Rn. In order to preempt any confusion, we give precise definitions for our terminology
in §3.2.
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1.2. The skeletal graph

1.2.1. The vertices and edges. We will now describe the graph �C embedded
into R3.

Set

v0 D �
5
8
; 5

8
; 5

8

�
; v4 D �

7
8
; 5

8
; 3

8

�
;

v1 D �
3
8
; 7

8
; 5

8

�
; v5 D �

1
8
; 7

8
; 3

8

�
;

v2 D �
3
8
; 1

8
; 7

8

�
; v6 D �

1
8
; 1

8
; 1

8

�
;

v3 D �
5
8
; 3

8
; 7

8

�
; v7 D �

7
8
; 3

8
; 1

8

�
;

and let xVC D fv0; : : : ; v7g.
Furthermore Z3 acts on R3 by translations and we let VC D Z3. xVC/ be the image

of the set xVC under this action. We will sometimes call this set of points the gyroid
lattice.

Given two points v;w 2 R3 let vw D f.1 � t /v C tw j t 2 Œ0; 1�g be the
line segment joining them. Also given a point v we let Tx.v/ D v C .1; 0; 0/,
Ty.v/ D v C .0; 1; 0/, Tz.v/ D v C .0; 0; 1/ be the translated points.

Consider the following set of line segments

xE D fv0v1; v0v3; v0v4; v2v3; v4v7; v1v5;

v4 Tx.v5/; v7 Tx.v6/; v1 Ty.v2/;

v5 Ty.v6/; v2 Tz.v6/; v3Tz.v7/g:
(1)

Let EC D Z3. xE/, where again Z3 � R3 acts as a subgroup of the translation
group.

Definition 1.1. The graph �C is the graph whose vertices are VC, whose edges are
EC with the obvious incidence relations.

We recall:

Proposition 1.2 ([8]). CC can be deformation retracted onto the graph �C and �C
is the component of the critical graph contained in CC.

Corollary 1.3. The homotopy type of the complement T D R3 n G is the same as
that of two copies of �C. In particular each channel has the same homotopy type
as �C.

This implies that all topological invariants C˙ which are homotopy invariant are
isomorphic to those of �C. In particular, this means all homology, homotopy and
K-groups of the topological space CC or C� are determined on �C.
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1.3. The quotient graphs. Quotienting out by either the standard translation group
or the bcc lattice, we obtain the following two quotient graphs.

1.3.1. Crystallographic quotient graph. Let x�crystal
C be the graph �C=Z3 thought

of as an abstract graph. This graph has a natural map embedding into the 3-torus
R3=Z3.

Proposition 1.4. x�crystal
C is a cube embedded into the 3-torus. More precisely the

vertices of x�crystal
C are xV and the edges are the images of xE in R3=Z3.

The abstract graph is given in Figure 4 which also contains the images of the
vectors ei which name and orient all edges.
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Figure 4. The graph x�crystal
C

for the gyroid.

Proof. Since all the vertices in the fundamental domain do not lie on the boundary,
they give exactly the representatives of V in R3=Z3. The classes of the edges E�C

are given exactly by the images of the set xE in R3=Z3.

1.3.2. The (maximal) quotient graph. By modding out by Z3, we have not yet used
the full translational symmetry of �C which is the bcc lattice. A set of generators for
the bcc lattice is

f1 ´ .1; 0; 0/; f2 D .0; 1; 0/; f3 ´ 1
2
.1; 1; 1/ (2)

another set of generators which is more symmetric and we will use later on is:

g1 D 1
2
.1;�1; 1/; g2 D 1

2
.�1; 1; 1/; g3 D 1

2
.1; 1;�1/: (3)

We letL D L.�C/ be the free Abelian subgroup of R3 generated by these vectors.
We define x�C to be the abstract quotient graph �C=L.
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Proposition 1.5. x�C is the graph with four vertices and six edges, where all pairs of
distinct vertices are connected by exactly one edge.

This graph is sometimes also called the complete square. Its incidence matrix has
entries one everywhere except on the diagonal, where the entries are zero. This graph
is shown in Figure 5.

AA

BB CC

DD

e1

e2

e3

e4

e5

e6

˛1 ˛3

˛2

Figure 5. The complete square, the rooted spanning tree � (root A and edges e1, e2, e3) and
the vectors corresponding to the oriented edges, the collapsed tree x�C=� .

Proof. We see that there is an embedding of Z3 � L, where L is the bcc lattice, so
that we only have to divide x�crystal

C by the additional symmetry generated by d ´
1
2
.1; 1; 1/. Now mod Z3, T 2

d
Š id and Td (the translation by d ) simply interchanges

the vertices of x�crystal
C as follows: v0 $ v6, v1 $ v7, v2 $ v4 and v3 $ v5. Hence

we are left with four vertices, and we can choose the representatives v0; : : : ; v3.
Checking the list of edges (1) one sees that indeed the twelve edges form pairs and
one can choose the representatives vivj ; i ¤ j , i; j D 0; : : : ; 3.

Notice that this corresponds to a Z=2Z symmetry of the graph x�crystal
C . It is

given by mapping each vertex to its diagonally opposite vertex and maps the edges
accordingly.

1.4. The underlying group and lattice. There is another Bravais lattice hidden in
the geometry of the gyroid. This is the fcc lattice. The nearest neighbor positions
differ by vectors generating an fcc lattice.

This means in particular that after shifting by v0 the positions of the vertices of
�C all lie on an fcc lattice.

In order to fix notation set

e1 D v1 � v0; e2 D v3 � v0; e3 D v4 � v0;

e4 D v3 � v2; e5 D v7 � v4; e6 D v5 � v1:
(4)



632 R. M. Kaufmann, S. Khlebnikov, and B. Wehefritz-Kaufmann

Definition 1.6. Let T .�C/ be the group of R3 that is generated by

e1 D 1

4

0
@�1
1

0

1
A ; e2 D 1

4

0
@ 0

�1
1

1
A ; e3 D 1

4

0
@ 1

0

�1

1
A

e4 D 1

4

0
@11
0

1
A ; e5 D 1

4

0
@ 0

�1
�1

1
A ; e6 D 1

4

0
@�1
0

�1

1
A :

Proposition 1.7. The group T .�C/ is isomorphic to Z3. The Bravais lattice it
generates is a face centered cubic ( fcc).

Proof. There are relations among the ei given by

e1 D �e5 C e6; e2 D �e4 � e6; e3 D e4 C e5 (5)

so that we see that e3, e4, e5 are generators. These vectors are linearly independent
over Z since they are independent over R. Hence they provide a free basis and an
isomorphism to Z3. The vectors e4, �e5, �e6 are the standard primitive vectors for
the face centered cubic.

Of course there are many other choices of basis here, e.g. fe2; e4; e6g.

Proposition 1.8. The vertices of �C translated by �v6 lie on the three-dimensional
face centered cubic lattice generated by e4, e5, e6.

Proof. �C is path connected and we take v6 as the base point. Each line segments
in E corresponds to an edge. Choosing an orientation for this edge defines a vector.
Now the statement follows from the fact that the vectors corresponding to the line
segments in E and hence those of E�C

are exactly the vectors ˙e1; : : : ;˙e6.

1.5. Fundamental groups, loops and effective normal vectors. There is certain
geometric information which can even already be read off from the simple graph x�C.
Such as its fundamental group or the minimal loops starting at a given vertex. A loop
on �C is minimal if it passes through a minimal number of edges. A more general
treatment will be given in §3.

Proposition 1.9. Let F3 be the free group in three variables. The (realization) of the
graphs �C and x�C have following fundamental groups:

(1) �1.�C/ D ŒF3; F3�,

(2) �1.x�C/ D F3.

In particular �C is the maximal Abelian cover of x�C.
Since �C is homotopic to one channel, these results hold for each channel of the

gyroid.
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Proof. We start with x�C. This graph is homotopic to the wedge product of three
S1’s, whence the second claim follows.

In view of Lemma 1.10 below (more generally by Proposition 3.5), we see that
�1.�C/ is the subgroup that is the kernel of the map F3 to its Abelianization. Indeed
the sum of powers of each of the generators in a word in the group has to be zero,
which precisely means that such a word is in the kernel of the Abelianization map or
in other words, the commutator group.

Lemma 1.10. A loop on the graph x�C lifts to a loop on �C if and only if each edge
is traversed the same number of times in each direction.

Proof. The “if” direction is clear since this means that the translations have to add
up to zero. The equivalence follows from the general Proposition 3.5 by noticing that
indeed the lifts l1 D e2e

�1
6 e�1

1 , l2 D e1e
�1
5 e�1

3 , l3 D e3e4e
�1
2 give rise to the vectors

Eli D fi of (3) and are linearly independent.

Proposition 1.11. There are closed loops in the graph �C. Each minimal loop goes
through 10 sites and at each point there are 30 oriented minimal loops or 15 such
undirected loops.

Proof. A path in which one goes back and forth through an edge is homotopic to the
path in which this step is omitted. By direct calculation one can see that such a path
is given by traversing any five of the six edges. At the first step one has three choices
of edges, at the second step there are two and then again two possibilities. Here one
either returns to the original vertex or not. In the first case there are 2 completions, and
in the second case three completions to a minimal loop. Thus we have 2 � 3 � 5 D 30

possibilities. A detailed version of this enumeration is provided at the end of this
section in §1.5.1.

1.5.1. Explicit calculation of the loops. Here we give the details of the calculation
of the loops. Using Proposition 3.5, we have to look for paths that traverse each edge
the same number of times. We first look at the cases where each edge is traversed
only once in each direction. We call such a path a good path. We also have to keep
the number of these edges minimal. This already puts a simple constraint on the path.
We may not go back and forth through the same edge. Starting at the given vertex we
have to pass through two distinct edges. After this we have a choice, we can either
go back to the starting vertex (case I) or we can go to the only vertex which we have
not reached yet (case II). In case I the next oriented edge is fixed, but then we have
two choices Ia and Ib. After this we have already used five edges so that the minimal
possible number of oriented edges and hence the length of the loop is 10. Indeed, we
can complete the edge path uniquely to a good path without traversing the 6th edge.

In case II the fifth oriented edge for a good path is fixed, going opposite the
first oriented edge. There is a choice for the sixth oriented edge in the path. Either
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returning to vo (IIb) or not (IIa). The case IIb has a unique choice for a fifths oriented
edge for a good path and this has a unique completion to a good path involving five
edges, again giving a loop of length 10. In case IIa, we again have two choices for the
fifth oriented edge (IIa1) and (IIa2). Both these choices have a unique completions
to good paths again of length 10.

IIb

I II

Ia Ib

IIa IIa1 IIa2

Figure 6. The combinatorial cases for the minimal loops of the gyroid.

It remains to treat the cases where an edge is traversed more that once in each
direction. Since we are not allowed to go back and forth on one edge the choices for
the first three oriented edges are as above. Now in case I we could go along the first
oriented edge again, but this would lead us to traverse at least six edges and hence
would not be minimal. At the next step of case I the choices are precisely Ia or Ib and
traversing an edge twice in the same direction would not be minimal. For case II, the
first stage where one could use an oriented edge twice for IIa is the fifth edge. But
then one would need at least six edges counting multiplicities. After fixing the fifth
oriented edge one can only increase the number of traversed oriented edges by not
choosing a good path. Finally in case IIb again the first edge with a choice to traverse
an edge twice in one orientation is at the fifth oriented edge, but as before this would
lead to a path of length greater than 10.

So all in all we have 2 � 3 D 6 choices for the first two edges and then once these
are fixed 5 choices for a good path. This means in all there are 30 such oriented paths.
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1.5.2. Explicit loops. On the graph x�C there is a symmetry group of order 6 pre-
serving the base point and the spanning tree � which permutes the vertices B , C and
D. This is precisely the group that gives us the six first choices.

In order to write down a shorter list, we will make the following observations.
Since the inverse of a minimal path is a minimal path, we can cut down the number
to 15. Now since each of the paths traverses five edges, it misses one. There are two
cases: (1) the edge that is missed is incident to v0, i.e., e1, e2 or e3, and in case (2) it is
not, i.e., e3, e4, e6. Case (1) corresponds to IIa1 and IIa2, which case (2) corresponds
to Ia, Ib and IIb. In case (1) the vertex v0 is traversed one additional time except at
the start and end of the path and in case (2) it is traversed an additional two times.
This decomposes the loops into two pieces of length 5 in case (1) or three pieces of
length 3, 3, 4; 3, 4, 3; 4, 3, 3 in case (2) for Ia, Ib, IIb respectively. With each loop, its
cyclic permutation of these components is also a loop. There are 2 such loops in case
(1) and 3 such loops in case (2). This also explains the 15 loops as 15 D 3 � 2C 3 � 3
and permutes the cases IIa1, IIa2; and Ia, IIb and Ib cyclically.

We give here a list of 6 basic loops which may be useful for further discussion.
To obtain all 30 one should cyclically permute the blocks and take full inverses of
the loops. We give the loops as an edge path as well as their decomposition into the
basis loops l1, l2, l3.

loop as an edge path in the ei ’s in basis li Neff edge missed

e2.�e4/e5e6.�e2/ e3e4.�e6/.�e5/.�e3/ .l1l2l3/�1.l1l2l3/ .1; �1; 0/ e1 missing

e1.�e5/e4.�e6/.�e1/ e3e5e6.�e4/.�e3/ .l2l3l1/.l3l1l2/�1 .0; 1; �1/ e2 missing

e1.�e5/e4.�e6/.�e1/ e2.�e4/e5e6.�e2/ .l2l3l1/.l1l2l3/�1 .1; 0; �1/ e3 missing

e1.�e5/.�e3/ e2.�e6/.�e1/ e3e5e6.�e2/ Œl2; l1� .1; 1; 0/ e4 missing

e1e6.�e2/ e3e4.�e6/.�e1/ e2.�e4/.�e3/ Œl�1
1 ; l3� .0; �1; �1/ e5 missing

e1.�e5/e4.�e2/ e3e5.�e1/ e2.�e4/.�e3/ Œl2; l3� .�1; 0; �1/ e6 missing

Table 1. A generating set the shortest loops and their effective normal vectors.

Remark 1.12. It is interesting to note that the explicit isomorphism F3 ! �1.x�C/
given on the generators ˛i of F3 by ˛i 7! li induces a new length on F3 as the minimal
length in the letters ei . It is this length that remembers the structure of the gyroid. The
computation above is a good example of this. The three examples of commutators
are minimal elements of ŒF3; F3� which are not the identity in the length in ˛i or li .
They are of length 4. In the ei their length is 10. The other examples are of length
6 in the ˛i , so not minimal in this metric, but they are minimal in the ei being of
length 10.

1.5.3. Effective normal vector. One distinguishing feature of the different loops is
their spatial orientation. This for instance has an effect on the flux through a surface
bounded by such a loop.
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We assume a constant magnetic field. In this case if S is a surface bounding a loop
L D ei1 ; : : : ; ein , let fj ´ Pj

kD1
eij . Then, by Stokes, we can just integrate over the

surface given by the union of the triangles defined by .fj ; fj C1/, j D 1; : : : ; n�1. If
Nj D fj � fj C1 D fj � ej C1 and Neff ´ Pn�1

j D1Nj , then we have for the magnetic
flux through S

ˆ D
“

S

B dS D
X

j

1

2
B �Nj D 1

2
B �Neff

The values for Neff are listed for the basic loops. Notice that inversion of a loop
inverts the normal vector, while the cyclic permutation of the components leaves the
effective normal vector invariant.

1.6. Thequantumgraph. In order to promote the skeletal graph to a quantum graph,
we will fix a Hilbert space and a Hamiltonian. Here we follow the terminology that
a quantum graph is graph with an associated Hilbert space and a Hamiltonian on it.
In this paper we will use the generalized Harper Hamiltonian [2], [20].

The original Harper Hamiltonian [12] is obtained for a cubic lattice by using the
tight-binding approximation and Peierls substitution for the quasi momentum [16].

In the next section we will give the general theoretical setup for this using graphs,
groups and representations. For the gyroid the notions such as graphs and groups
have been introduced above, so that the reader may substitute these in the general
definitions below.

2. Graph representations and matrix Harper operators

One idea in studying the noncommutative aspects of a given system is to give a K-
theoretic gap labeling for the Hamiltonians. For this one considers an algebra B

generated by the Hamiltonian and the symmetries. If everything is commutative then
this algebra is basically the C*-algebra of functions on the Brillouin zone/torus. We
will make these ideas precise using physical and mathematical lattices as defined
below.

2.1. Graph language. For us a graph or an abstract graph � will be a collection
of vertices V.�/ and a collection of edges E.�/ which run between vertices up to
bijections preserving the incidences. Each edge can have two orientations. An edge
together with an orientation is called an oriented edge. Each oriented edge Ee has a
starting vertex s.Ee/ and a target vertex t .Ee/. A graph � is called finite if both V.�/
and E.�/ are finite sets.

A graph naturally becomes a topological space if the edges are replaced by inter-
vals. This space is called the realization of the graph. In more technical terms the
data above gives a one-dimensional CW-complex and we take the realization of this
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complex. When we talk about topological properties of a graph, like its fundamental
group, we always mean the topological properties of its realization.

A graph is connected if its realization is connected. This means that one can travel
to all vertices from any given vertex along the edges. A tree is a connected graph
whose realization is contractible (i.e., the graph has no loops). A choice of root of a
tree is simply a choice of a vertex and a rooted tree is a tree together with a choice
of a root. Given a graph � a subgraph � is called a spanning tree if it is a tree and
the vertices of � are all of the vertices of � . To have a spanning tree � needs to be
connected. In this case there are usually several choices of spanning trees. A rooted
spanning tree is a spanning tree together with the additional choice of a root.

Proposition 2.1. Let x� be a finite graph and � be a rooted spanning tree. Let v0 be
the root. Then �1.x�/ ´ �1.x�; v0/ D Fn, where Fn is the free group in n variables
and n D jE.x�/j � jE.�/j.

Proof. Consider the graph x�=� obtained by contracting all edges of the subgraph � .
This is the graph which only has one vertex v0 and all the edges are loops. The two
graphs x� and x�=� are homotopy equivalent and hence have the same fundamental
group. The graph x�=� embeds into the plane with n punctures with each loop going
around one puncture. To obtain a compatible embedding of � , one blows up the
only vertex of x�=� into the tree � and both graphs are homotopy equivalent to the
punctured plane. x� is thus homotopy equivalent to the wedge product of n circles
S1. It is well known that the first homotopy group of this space is the free group in
n generators.

An embedded graph is a graph � together with an embedding of it realization
into an Rn. Some properties we discuss depend on such an embedding or are derived
from it.

Example 2.2. We have so far considered x�crystal
C and x�C as abstract graphs and we

have considered �C both as an abstract as well as an embedded graph. The properties
of having a certain number of loops at a given point are properties of the abstract
graph, while the proof made use of the embedding. The effective normal vectors are
properties of the embedding of the skeletal graph �C into R3.

2.2. Graph Harper operator

Definition 2.3. A C*-representation �� of a graph � is given by the following data:

� a collection of separable Hilbert spaces Hv , one for each v 2 V.�/;
� a collection of isometries UEe W Hs.Ee/ ! Ht.Ee/ for each oriented edge Ee such

that UEeU Ee0 D 1 whenever Ee and Ee0 are the two orientations of the same edge.
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Remark 2.4. This construction can also be stated in more categorical terms. It is a
certain quiver representation. A finite graph � also generates a groupoid (that is a
category in which all morphisms are invertible) and in this setting a representation is
a functor from the groupoid to the category of separable Hilbert spaces.

Definition 2.5. Let �� be a representation of a finite graph x� and write Hx� ´L
v2V.x�/ Hv . Define the graph Harper operator H on Hx� by

H ´
X

oriented edges Ee
UEe;

where we have (ab)used the notationUEe to denote the partial isometry on Hx� induced
by the operator of the same name.

2.3. Matrix actions

2.3.1. General setup. Fix some finite index set I , an index o 2 I , and order on I
such that o is the smallest element. Fix isomorphic Hilbert spaces Hi ; i 2 I and let
�i W Ho ! Hi be fixed choice of isomorphisms. We allow a choice of �o. It might
be that �o D id but this is not necessary.

Set H D L
i2I Hi .

In this situation there is an action of MjI j.End.Ho// on H given as follows. Let
A 2 MjI j.End.Ho// be an endomorphism valued matrix. Then the action of A on
H is given by

H D
M
i2I

Hi

˚i ��1
i����! H ˚jI j

o

A��! H ˚jI j
o

˚i �I���! H :

Vice versa, given an endomorphismH 2 End.H / there is a corresponding matrix
M.H/ 2 MjI j.Ho/ given by

H ˚jI j
o

˚i �i���! H
H��! H

˚i ��1
i����! H ˚jI j

o :

That is, if ˆ D L
i �i , then M.H/ D ˆ�1 BH Bˆ.

2.3.2. Matrix action for the graph Harper operator. In order to write the Harper
operator of §2.2 as a matrix according to §2.3.1 we need to fix several choices. We
will assume that the graph � is connected. First there is a choice of base vertex vo

and a choice of order on all vertices in which the base vertex is the smallest. Then
for each vertex v we choose a fixed path pv – that is, a sequence of ordered edges
Ee1; : : : ; Eek – from vo to v. We then set �v ´ �Eek

B � � � B �Ee1
W Hvo

! Hv . If v D vo

we also allow the choice �vo
´ id W Hvo

! Hvo
. This corresponds to the empty

path.
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Given such a choice, we obtain the action �p1;:::;pn
as above. We call the resulting

matrix the graph Harper operator in matrix form.
Given a rooted spanning tree � of � , choose v0 to be the root, and then there is

a unique shortest path on � from v0 to any vertex vi of � , which we can view as a
path on � . Thus we get the data needed. Again a convenient choice of paths is given
by a spanning tree. We sometimes write H�;� for the corresponding graph Harper
operator in matrix form.

Remark 2.6. Any two matrix Harper operators are conjugate. This follows simply
by making a base change.

3. C*-geometry of Harper Hamiltonians on lattices

For lattices there are different definitions and connotations in the mathematics and
physics literature. We will use the adjectives “mathematical” and “physical” to dis-
tinguish the two. As a reference in the physics literature for the definition of lattices
we use [1].

3.1. Translation action. The additiveAbelian group Rn acts on itself by translation.
Write Tw.v/ D v C w. For a subset S 2 Rn and a subgroup L � Rn we denote by
L.S/ the set of all translates of points in S under the action of all elements of L.

3.2. Lattices: mathematical, physical and Bravais

Definition 3.1. A mathematical lattice with a basis of rank m in Rn is an injective
group homomorphism �L W Zm ,! Rn. If m D n then such a lattice is called a
Bravais lattice with a basis.

If � is a mathematical lattice with a basis, we letL ´ �L.Zm/ be its image. This
is a discrete subgroup of Rn, which is isomorphic to Zn. We will refer to L as a
mathematical/Bravais lattice.

A Bravais subgroup or sublattice is a subgroup L0 � L which is a Bravais lattice.
Any Bravais lattice L acts by translations on Rn and a primitive cell is a fundamental
domain for this action. In general a cell is a fundamental domain for a Bravais
subgroup L0 of L.

Example 3.2. The integer points Zn � Rn are a Bravais lattice, which we call the
crystallographic lattice. A crystallographic cell is a primitive cell for this lattice. The
unit cube is a primitive cell. The cube of length 2 is a cell that is not primitive.

As a definition for a lattice in the physical sense, we will take the following
convention:
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Definition 3.3. A subset ƒ � Rn is a lattice if there is a finite set V � Rn and a
Bravais lattice L such that ƒ D L.V /.

The tuple .L; V / is called a crystal structure or a lattice with a basis.5 We will
not use the latter terminology as it is mathematically confusing.

Notice that givenƒ neitherL nor V are uniquely defined. We can and will mostly
chooseL to be maximal and V to be minimal or primitive. In this case we call .L; V /
a primitive crystal structure. Sometimes L is called the space group.

Still there is of course a choice in fundamental domain and hence a choice in V ,
but for any two such choices there is a unique bijection. In fact if we let xV be a set of
orbits of the L action; then it is unique and any V is just a choice of representatives.
It is also easy to see when L is minimal. L is minimal if and only if the number of
orbits j xV j is minimal.

3.3. Graphs and lattices. To develop a general theory, we will deal with two cases.
The usual case is that given a lattice we obtain a graph by adding edges to the nearest
neighbors. But is convenient to also allow that we already have an embedded graph
�ƒ whose vertices are the set ƒ. In this case, we will let �ƒ stand for this chosen
graph.

3.3.1. Canonical graph of a lattice. Given a lattice ƒ without a pre-chosen graph
define the graph �ƒ of ƒ to be the graph whose vertices are the elements of ƒ and
whose edges are the line segments between nearest neighbors. This graph is naturally
embedded in Rn and we will sometimes make use of this.

3.3.2. Quotient graphs. Given a choice of symmetry groupL forƒ, we also define
the quotient graph x�ƒ.L/ as �ƒ=L � Rn=L. This is the abstract graph whose
vertices are given by xV and whose edges are given by the set of orbits of edges of
�ƒ.

If L is a maximal group we will just write x�ƒ.
If the unit cell is a cell for L corresponding to a subgroup L0, we also define the

crystallographic quotient graph of ƒ to be the graph x�ƒ.L
0/.

3.4. Group of a lattice. A lattice ƒ also generates a discrete subgroup of Rn as
follows: using the natural embedding �ƒ � Rn we can think of any directed edge Ee
of �ƒ of �ƒ simply as a vector in Rn. Then there is an associated translation operator
TEe . Notice that as vectors the translates of all the oriented edges correspond to one
another. This means that the set of vectors Ee is given by one vector in each orbit of
oriented edges of the embedded graph �ƒ. This set is in bijection with the oriented
edges of x�ƒ and we will not distinguish between them in the notation. That is, we
write Ee for both the oriented edge of the abstract graph x�ƒ and the vector in Rn it is

5Usually one would include labels such as atom labels to V .
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in bijection with. We will enumerate the set of vectors fEeg as Eei . These vectors then
give a symmetric group of generators of an Abelian subgroup of Rn, which we call
the lattice group T .ƒ/ of ƒ. It is the group generated by the Eei This group consists
of all elements of the form

T .ƒ/ ´ ˚ P
i ai Eei j ai 2 Z

�
:

Proposition 3.4. T .ƒ/ is a mathematical lattice.

Proof. To generate the group we only need one choice of orientation per edge. Let
Eej , j 2 J , be such a choice. This choice defines a map ZJ ! Rn. The image of this
group is a torsion-free Abelian group and hence by the structure theorem for Abelian
groups a free Abelian group of rank � jJ j.

T .ƒ/ also naturally acts by translations on Rn.

3.5. Fundamental group. The graph �ƒ is a covering space for x�ƒ. Since we
know the fundamental group of x�ƒ by Proposition (2.1), this information can be
used to calculate the fundamental group of �ƒ. In order to do the computation,
we will have to fix some notation. We fix a rooted spanning tree � of x�ƒ and set
n ´ jE.x�ƒ/j � jE.�/j. By contracting � we obtain a surjection � W x�ƒ ! ^n

iD1S
1,

which by Proposition (2.1) induces an isomorphism on fundamental groups. We
fix generators of �1.^n

1S
1/ and choose lifts l1; : : : ; ln of them. By definition each

loop li is a sequence of directed edges Eei1 ; : : : ; Eeik.i/
for some k.i/. We set Eli ´

Eei1 C � � � C Eeik.i/
.

Proposition 3.5. Letƒ be a lattice with graph �ƒ and finite quotient graph x�ƒ. Let
� be a rooted spanning tree for x�ƒ and set n ´ jE.x�ƒ/j � jE.�/j. If the vectors Eli
are linearly independent, then �1.�ƒ/ D ŒFn; Fn�. Furthermore a loop on x�ƒ lifts to
a loop on �ƒ if and only if it traverses each edge the same number of times in each
direction.

Proof. We need to compute which loops on x�ƒ lift to loops on �ƒ and which do not.
Given a loop l on x�ƒ it can be written as a word in the basis loops li , sayw D Q

j l
�.j /
ij

where �.j / D ˙1. Fixing a pre-image of v0 given by the rooted spanning tree, this
lifts to an edge path on �ƒ given by the sequences of vectors Eei1 ; : : : ; Eeik.i/

. Notice
that l�1

i gives rise to the sequence �Eeik.i/
; : : : ;�Eei1 . These vectors form a closed

loop if and only if they all sum up to E0. Now each l˙1
i contributes ˙Eli to the sum.

This means that w lifts to a loop if and only if
P

j �.j /
Eli D E0. Since by assumption

the Eli are linearly independent, this happens if and only if for fixed i the sum of the
exponents of the occurring li is zero, and this happens precisely if the image of w in
the Abelianization Ab.Fn/ ´ Fn=ŒFn; Fn� D Zn is 0. This means that the covering
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group of the cover �ƒ ! x�ƒ is Ab.Fn/, which is a normal subgroup of Fn and
hence the covering group of �ƒ is ŒFn; Fn�. The last statement follows immediately
by noticing that this is true for the Eli and hence also for their summands Eeij .

3.6. Main examples

3.6.1. The honeycomb lattice. The honeycomb lattice (see Figure 7) is an example
of a physical lattice. To make things precise, we letƒhex � R2, which is the Bravais
lattice generated by �e1 ´ .1; 0/ and e3 ´ 1

2
.1;�p

3/. We set e2 D �e1 � e3 D
1
2
.1;

p
3/. A “dual” Bravais lattice ƒt

hex generated by f2 ´ e2 � e1 D 1
2
.�3;p3/

and f3 ´ e3 � e1 D 1
2
.3;

p
3/ acts via translation onƒhex. There are precisely three

orbits of this action. These are the A, B and C lattices, where we fix the A lattice
to be the orbit of .1; 0/, the B lattice to be the orbit of .�1; 0/, and the C lattice to
be the orbit of .0; 0/. The lattice ƒhc is then defined to be the union of the A and B
sublattices. In ƒhc there are three nearest neighbors as indicated in Figure 7.

The symmetry group is Z2 embedded as the “dual” Bravais lattice above. The
group T .ƒhc/ is again isomorphic to Z2, but it is the original triangular lattice gen-
erated by e1 and e3. See Figure 7. This defines the graph �ƒhc .

A

B

e1

e2

e3

f3

f2

Figure 7. The honeycomb latticeƒhon, the generators fi for L.ƒhon/ and the generators ei of
T .ƒhon/.

3.6.2. The gyroid lattice graph. The gyroid lattice is given by the set of vertices
VC of �C of §1. It is also a physical lattice. Here the symmetry group is the space
group of I4132, which is the body centered cubic (bcc) lattice. The group T .ƒ/ is
actually the face centered cubic (fcc) lattice as shown in Proposition 1.8.

3.7. Hilbert space of a lattice. Given a lattice or in general a countable set ƒ, we
define its Hilbert space to be Hƒ ´ l2.ƒ/, which is the set of square summable
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complex sequences indexed by ƒ. There is an alternative way to think about a
sequence .a� W 	 2 ƒ/ as a function  on ƒ. Given a sequence as above, the
function is given by f .	/ ´ a�. Vice versa, given  the sequence is obtained by
setting a� ´  .	/.

Given an action of a groupG onƒ there is an induced action ofG on l2.ƒ/ given
by g .	/ ´  .g�1.	// for g 2 G and  2 l2.ƒ/.

A standard basis for l2.ƒ/ is given by the functions vl.l
0/ D ıl;l 0 .

If ƒ is a lattice then there is a unitary representation of ƒ on H D l2.ƒ/, given
via the translation operators Tl.vl 0/ D vlCl 0 .

Given a latticeƒ and fixing a translation group L, we can decompose the Hilbert
space Hƒ by breaking it down in terms of the orbits of L. More precisely, labeling
each orbit by a vertex in x� , we obtain the direct sum decomposition

Hƒ D
M
Nv2x�

H Nv; (6)

where Hv D l2.L.v// for any v which represents the class of Nv.

3.8. Partial isometries andprojections. In general we get a representation ofL.ƒ/
on Hƒ. Notice that there is in general no representation of T .ƒ/ on Hƒ. We do have
a partial action, which is given by partial isometries. If Ee is an edge from v tow in x� ,
then it induces an isomorphismVEe W Hw ! Hv simply by settingVEe .l/ D  .l�Ee/.
This induces a partial isometry on all of H .ƒ/.

Another way to describe this partial isometry is as follows. Consider Hƒ. Since
T .ƒ/ � ƒ, after shifting ƒ so that 0 2 ƒ, we have HT .ƒ/ � Hƒ, and moreover
T .ƒ/ acts on HT .ƒ/ via translation operators TEe . If P is the orthogonal projection
of HT .ƒ/ to Hƒ then VEe D PTEeP . If furthermore Pv is the projection onto Hv �
HT .L/, then we can further decompose the action into componentsUw;v

Ee D PvTEePw .

Notice that in principle there could be a directed edge e0 ¤ e with Ee0 D Ee as vectors
in Rn. This happens for e.g. the cube in §1.3.1. In this case there will be more
components or super selection sectors to use physics terminology.

3.9. Projective representations. Up to now we have insisted that the translation
operators are a bona fide representation of the translations groups.

It turns out that to accommodate such physical data as a magnetic field one should
only expect a projective representation. This is also in accord with general quantum
theory, where representations are always only expected to be projective.

This is also one of the sources of noncommutativity, the second being that one
does not expect the symmetries of the system to commute with the Hamiltonian on the
nose. One actually has a choice either to preserve the commutativity of the symmetry
operators or to preserve that the symmetry operators commute with the Hamiltonian.
We recall some standard facts from representation theory.
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3.9.1. Cocycles. A U.1/ 2-cocycle for a group G written as c 2 Z2.G;U.1// is a
map c W G �G ! U.1/ such that

c.u; v/c.uv;w/ D c.u; vw/c.v; w/;

which is called a cocycle condition.
Notice that if c is a U.1/ 2-cocycle for G and H � G is a subgroup, then its

restriction cjH W H �H ! U.1/ is a U.1/ 2-cocycle for H .

Definition 3.6. A morphism � W G ! U.H / is called a projective representation
with cocycle c if �.1G/ D idH , that is, the identity 1G of G maps to the identity
operator idH and �.u/�.v/ D c.u; v/�.uC v/.

Example 3.7. A cocycle c is called trivial if c.u; v/ D s.u/s.v/s�1.uv/ for some
group morphism s W G ! U.1/. Given a trivial group cocycle one can always perturb
or scale an existing representation � to a projective representation �c with cocycle
c by setting �c.u/ ´ s.u/�.u/. With the same formula one can scale a projective
representation with a cocycle c0 to one with the cocycle cc0.

Remark 3.8. We will be dealing with Abelian groups G, viz. Zn, for which we will
use the usual additive notation of 0 and C for the identity and group operation.

In the case of a freeAbelian group and its Hilbert space, given any cocycle, one can
also twist the standard representation to a projective representation with that cocycle.

Lemma 3.9. Let L ' Zn � Rn be a lattice and ˛ 2 Z2.L; U.1//. Then the
operators Ul which operate on HL via

Ul.vl 0/ D ˛.l; l 0/vlCl 0 ;

where vl is the standard basis, satisfy

UlUl 0 D ˛.l; l 0/UlCl 0 ; UlUl 0 D �.l; l 0/Ul 0Ul with �.l; l 0/ D ˛.l;l 0/
˛.l 0;l/

: (7)

Proof. Straightforward calculation.

Lemma 3.10. Let B be a bilinear form on Rn. Then ˛B.u; v/ ´ e
i
2 B.u;v/ is a

2-cocycle for Rn. Ifƒ � Rn is a lattice and ei are generators for this lattice, then the
algebra of operators Ul of the ˛ twisted representation is generated by the operators
Ui ´ Uei

.

Proof. First we calculate

˛B.u; v/˛B.uC v;w/ D exp. i
2
ŒB.u; v/C B.uC v;w/�/

D exp. i
2
ŒB.u; v/C B.u;w/C B.v;w/�/;

˛B.u; v C w/˛B.v; w/ D exp. i
2
ŒB.u; v C w/C B.v;w/�/

D exp. i
2
ŒB.u; v/C B.u;w/C B.v;w/�/:
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Secondly, if l D P
aiei , then

Q
U

ai

i / Ul by the formulas (7).

3.9.2. Noncommutative tori. A standard example which will be important in the
following is given by the projective action of Zn on H .Zn/ with the cocycle ˛ given
by choosing an anti-symmetric bilinear form B D 2� y‚ on Rn and then restricting
the cocycle. This yields a cocycle which we call ˛y‚ ´ ˛B.u; v/ D ei� y‚.u;v/.

In this case the operators Ui ´ Uei
generate the algebra of operators Ul . These

generators satisfy

UiUj D e2�i‚ij TjTi ; ‚ij D y‚.ei ; ej / (8)

This follows from (7); �.Ui ; Uj / D ei�‚ij e�i�‚ji D e2�i‚ij by anti-symmetry of
‚. In general:

Definition 3.11. For a fixed anti-symmetric .n� n/-matrix‚ the C*-algebra gener-
ated byn unitary operatorsUi on a separable Hilbert space satisfying the commutation
relations (8) is called a noncommutative torus and denoted by T n

‚.

Note that T n ´ T n
0 is the commutative C*-algebra corresponding to the torus

T n D .S1/�n under the Gelfand–Naimark theorem.

Example 3.12. n D 2: In this case the skew-symmetric matrix can be written
as ‚ D 


�
0 1�1 0

�
. And ˛.l; l 0/ D expŒi�
.l ^ l 0/�, where for l D .l1; l2/ and

l 0 D .l 01; l 02/: l ^ l 0 ´ det
�

l1 l 0
1

l2 l 0
2

�
and accordingly �.l; l 0/ D e2�	l^l 0

. This case is

written as T 2
	

.

Remark 3.13. As usual, once a basis bi for Rn is fixed, there is a bijection between
anti-symmetric bilinear forms y‚ and skew-symmetric matrices ‚ given by ‚ij D
y‚.bi ; bj /. If thus choice of basis has been made, we will write˛‚. In our applications,
the basis bi will be given to us by a choice of basis for the Bravais lattice L.

3.9.3. Wannier or magnetic translation operators. In case of magnetic field there
is a standard cocycle and representation coming from theB-field. This was first used
in [12]. A magnetic field B in mathematical terms is a 2-form on Rn.

If we assume that theB-field is constant, then this is nothing but a skew-symmetric
bilinear form on Rn, thus giving rise to a cocycle ˛B as above. This cocycle can now
be restricted to any lattice in Rn. Furthermore in this situation, we can choose a
magnetic potential A. This is a 1-form on Rn such that dA D B . This form exists
since dB D 0, and as Rn is contractible, xH�.Rn/ D 0, i.e., the reduced cohomology
vanishes so that every closed form is exact.

In this case the cocyle is trivial and the twisted action can be rewritten as

Ul 0 .l/ D e�i
R .l�l0/

l
A  .l � l 0/:
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Remark 3.14. If
Pn

iD1mi D 0 is a closed cycle of vectors bounding a simply
connected polygonal region D with vertices v1; : : : ; vn such that viC1 D vi C mi ,
then Um1

: : : Umn
D e�iF id, where F is the flux of B throughD. Furthermore, if B

has a nonsingular vector potential A such that curl.A/ D B , then F D R
D
BdS DP

i

R 1

0
mi � A.vi Cmi t / dt .

This means that given two elements l , l 0 we have

UlUl 0 D �.l; l 0/Ul 0Ul ; �.l; l 0/ D ei
R

R BdS ;

where R is the rectangle spanned by the vectors l and l 0.

Example 3.15. In the square lattice, if we choose a constant magnetic field in z-
direction EB D Ek orB D 2�
dx^dy, then we can chooseA D 1

2
.˛1y dxC˛2x dy/

with 2�
 D ˛2 � ˛1. Setting U ´ Ue1
and V D Ue2

we obtain UV D e2�i	V U

and this is just ei� where � D R
D
BdA is the flux through the domain full square A

spanned by e1 and e2. The resulting algebra is T 2
	

.

3.10. Harper operator for a lattice ƒ and with graph �ƒ. In this section we
construct a Harper operator for a given latticeƒ and a graph for the lattice �ƒ. Asso-
ciated to each such lattice there is a natural separable Hilbert space Hƒ. The Harper
operator is an operator on Hƒ which is obtained by giving a graph representation of
x� . To do this we fix a maximal translational symmetry group L for ƒ (see §3.2).
Using the techniques of §2 we obtain a Harper operator as we discuss in detail below.
This operator together with the representation of the translation groupL defines a sub-
algebra of the endomorphism algebra of Hƒ, which we call the Bellissard–Harper
algebra and denote by B.�ƒ; L; ˛/ or B for short. Here we allow for projective
representations acting with the cocycle ˛, e.g. via a magnetic field (see §3.9.3). If
�L, L and ˛ D ˛B with B D 2�i y‚ is fixed, we write By‚ for the corresponding
Bellissard–Harper algebra.

Furthermore again using §2, we can get a a matrix representation for the Harper
operator and the action of L. These matrices are elements of a matrix algebra with
coefficients in the algebra generated by the operators corresponding toL. Fixing �ƒ,
L, a path basis, a basis for L and a magnetic field B D 2� y‚, we arrive at an algebra
of matrices, which we call B‚. The details are given below.

3.10.1. Graph representation of x� . To put ourselves in the situation of §2.3.1, we
will decompose Hƒ as

Hƒ D
M
Nv2x�

H Nv;

where Hv D l2.L.v// for any v which represents the class of Nv.
We also fix a 2-cocycle ˛B corresponding to a skew-symmetric bilinear form or,

equivalently, a constant B-field. This gives us the Hilbert space part of the data of a
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graph representation �x� . We define the isomorphisms as UEe . For this we use the fact
that an oriented edge of x� has a natural representation as a vector Ee (see 3.4).

Definition 3.16. The Harper operatorHƒ is defined to be the graph Harper operator
Hx� on Hƒ corresponding to the graph representation �� .

The Bellissard–Harper (BH)-algebra B.�ƒ; L; ˛B/ is the C*-algebra of operators
on Hƒ generated by the projective representation ofL and the graph Harper operator.

Remark 3.17. The operator Hƒ also generates random walks and is related to a
discrete difference operator as follows. Let �ƒ be a k-regular graph, which means
that each vertex has valence k. Then � D k � Hƒ acts as the difference operator.
We have �.‰/.l/ D .

P
EeWs.Ee/Dl ‰.l/ � ‰.TEe.l///, where the sum is over “nearest

neighbors” as defined by �ƒ.

3.10.2. A matrix representation of the Bellissard–Harper algebra. In order to
get a matrix representation, we fix a vertex vo of x�ƒ and a choice of paths pv from
vo to v. We will call such a choice a choice of path basis. Again a convenient way to
fix such data is to specify a spanning tree.

We then get a matrix representation of the Harper operator and the operators
coming from the projective representation of L.

Theorem 3.18. Fixing a choice of path basis and a basis for L, the corresponding
faithful matrix representation of B.�ƒ; L; ˛B/ is a sub-C*-algebra B‚ of the C*-
algebraMjV.x�/j.T n

‚/.

Proof. Before passing to the matrix representation, all the operators involved are
shifted translation operators, those coming fromL and those coming fromL.ƒ/. First
we have to show that the operators fromL still act as operators fromLwhen restricted
to Hvo

, but this is clear since they are diagonal in the direct sum decomposition (6).
Thus the operators in question are conjugates, Upv

UlU
�

pv
/ Ul for any Ul 2 T n

‚.

Here ‚ is the matrix obtained from y‚ D 1
2�
B by using the choice of basis of L.

Secondly, for l 0 2 T .ƒ/, Upv
Ul 0U �

p0
v

/ Ul 00 acts as a translation operator which
preserves the vo summand. This means that the sum of vectors l 00 D �pv C l 0 � p0

v

is actually in L. Hence the assertion follows.

Notice that different choices of path basis may lead to different representations,
but all these representations are isomorphic; moreover they are conjugates of one
another. The effect of changing the basis ofL is to replace the matrix‚with its basis
transform ‚0, but as C*-algebras T n

‚ D T n
‚0 – only the presentation has changed –

with the base change acting as an endomorphism.

Corollary 3.19. If ‚ is rational then the spectrum of Hƒ has finitely many gaps.
Moreover, the maximal number is determined by the entries of ‚.
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Proof. Since there is an injection of B‚ intoMjV.x�/j.T n
‚/, we can restrict the tracial

states to B‚. The image of the tracial states of T n
‚ is known to be S D Z CP

ij 
ij Z � R [6], [7]. We fix a faithful tracial state � and then have �.P�/ 2
Œ0; jV.x�/j� \ S for any gap projection P�. We thus see that there are only finitely
many possible gaps if all the 
ij are rational.

3.11. Geometry of B. In general, we are given a lattice ƒ and perhaps the graph
�ƒ. We can then obtain a family of BH-algebras by choosing different cocycles
˛

2� y‚. We will call an element of this family By‚. Now we have already shown that
such an algebra has a faithful matrix representation B‚ � Mk.T

n
‚/where k depends

on � . It is interesting to note that this family of subalgebras has different geometries
and K-theories depending on the choice of ‚. Generically one would expect

Expectation 3.20. If ‚ is generic (i.e., all entries are irrational), then B‚ D
MjV.x�/j.T n

‚/, which is Morita equivalent to T n
‚.

Whether this expectation is met is of course dependent on the choices. It is true
for all the cases we will study. The main motivation is that the noncommutative torus
at generic ‚ is simple, i.e., there are no two-sided ideals. This usually allows one to
find that all the elementary matrices are in the algebra and hence the algebra is the
full matrix ring. The details of our particular calculations given in §4 also illuminate
this expectation.

An open question is what happens at non-generic values of‚, i.e., if one or more of
the entries of‚ are rational. This again heavily depends on the entries ofHƒ. In the
cases we study below either B‚ D MjV.x�j.T n

‚/ again, or it is a genuine subalgebra.
This is for instance a good new source of such algebras and for families in which the
K-theory may jump.

The commutative case B0 is also very interesting. Here we can characterize
the C*-algebra B0 by the space it represents via the Gelfand–Naimark theorem.
For this we need some terminology. For each character or C*-algebra morphism
� W T n ! C, there is an induced C*-algebra morphism N� W Mk.T

n/ ! Mk.C/ for
any k. We fix k D jV.x�/j. We say Hƒ is generic if it has k distinct eigenvalues
in T n or, equivalently, if there is a character � of T n such that N�.H/ has k distinct
eigenvalues.

We call a point � of T n degenerate if N�.H/ has eigenvalues with higher multiplic-
ities. The action of L gives an inclusion i W T n ! B0. Given a character of B0, we
also get a character of T n by pull-back along i . We call a point � of B0 degenerate
if i�.�/.H/ has eigenvalues with higher multiplicity.

Theorem 3.21. If Hƒ is generic, then B0 D C �.X/, whereX is a generically k-fold
cover of the torus T n. This cover is ramified over the locus of degenerate points and
is moreover a quotient of the trivial k-fold cover. Here the identifications are along
degenerate points of X .
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Proof. First observe that the trivial k-fold cover of T n has the C*-algebra
T nŒe1; : : : ; ek�=R, where the ei are self-adjoint and generate a semisimple alge-
bra. This means that the relations R are equivalent to the equations eiej D ıij ei andP
ei D 1. Here the ei can be understood as the projectors to each of the copies.
Secondly we characterize B0. It is certainly a quotient of the C*-algebra T ŒH �,

where H is a new self-adjoint generator which commutes with the previous gen-
erators. The way to understand its quotient is as follows. By the theorem of
Caley–Hamilton we know that the characteristic polynomial p of H annihilates H :
p.H/ D 0. We claim this is the only relation. Indeed if there were any other relation
r , then we could write r D r 0 C r 00 with r 0 2 .p.H// and r 00 a polynomial in H
of degree less than k. This relation would hold after applying any character �, i.e.,
N�.r/ D 0. Since N�.r 0/ D 0 we also get N�.r 00/ D 0. But generically there are k dis-
tinct eigenvalues, so that for generic choices of � the minimal polynomial of N�.H/
is the characteristic polynomial. Thus, as a polynomial in H , the degree of r 00 must
be bigger or equal to k, which means that r 00 D 0. Hence B0 D T nŒH �=pŒH�.

We can now give the C*-morphisms corresponding to the geometric continuous
maps: Fk

1 T
n

� ��

�1 ����������
X

�2
����

��
��

��

T n

Let 	i 2 T n be the eigenvalues ofH as a matrix with coefficients in the commu-
tative ring T n. Then the map � is given by H 7! P

	iei . The maps �1 and �2 are
just the inclusion maps. There are sections sk of �1, given by sending ej 7! ıj;k1,
which give rise to sections Qsk D � B sk . The corresponding C*-map is given by
H 7! 	k . From this the claims follow readily.

4. Results for the Bravais, honeycomb and gyroid lattices

4.1. The Bravais lattice cases

4.1.1. The Zn case. In case ƒ D Zn, we see that L D T .ƒ/ D Zn and x�ƒ is the
graph with one vertex and n loops.

From the graph x�ƒ we can already read off that �1.�ƒ/ D ŒFn; Fn� according
to Proposition 3.5, since the condition is obviously satisfied. Minimal loops are of
length 4 and there are

�
n
2

�
unoriented loops.

Fixing a cocycle ˛ by fixing an anti-symmetric matrix‚ (recall that this is equiv-
alent to fixing a constant B-field), the corresponding Harper operator is just

HZn D
nX

iD1

Uei
C U�1

ei
D

nX
iD1

Ui C U �
i ;
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where ei are the standard unit basis vectors of Rn and Ui are the generators of the
noncommutative n-torus T n

‚.
The algebra generated by the representation ofL D Zn is just the noncommutative

torus T n
‚, and since H 2 T n

‚, the algebra B‚ is also the noncommutative torus
B‚ D T n

‚.

4.1.2. Other Bravais lattices. Ifƒ is the set of points of a Bravais lattice, then again
L D T .ƒ/ D ƒ. For the graph x�ƒ we need the information which of the distances
between vertices of ƒ are minimal, or we need the additional data of a graph �ƒ.
This information is also crucial in determining �1.

Let ej , j 2 J , be the collection of these minimal vectors and fix an orientation Eej
for each of them. Asƒ D L is a subgroup, 0 2 ƒ, and the minimal vectors are given
by the 	 2 ƒwith minimal length. Again fix a cocycle ˛ by fixing the anti-symmetric
matrix ‚. Then

Hƒ D
X
j 2J

UEej
C U �

Eej
:

The algebra generated by L is always T n
‚, and since Hƒ 2 T n

‚, we again obtain
B‚ D T n

‚.

Example 4.1. The triangular lattice. This is the lattice spanned by the vectors e1 D
.1; 0/ and e2 D .1

2
;

p
3

2
/ in R2. In this case the graph x�ƒ has one vertex and three

loops with the six oriented edges corresponding to ˙e1, ˙e2, ˙.e1 � e2/. Hence the
condition of Proposition 3.5 is not met. One can compute the fundamental group by
elementary methods.

The choice of ‚ is given by ‚ D 

�

0 1�1 0

�
. The Harper operator is given by

Hƒtri D Ue1
C U �

e1
C Ue2

C U �
e2

C Ue1�e2
C U �

e1�e2

D U1 C U �
1 C U2 C U �

2 C U3 C U �
3 ;

where U1U2U3 D ei�	 id. Since H 2 T 2
	

, the BH-algebra is B‚ D T 2
	

in the
notation of Example 3.12.

4.2. The honeycomb lattice

4.2.1. Classical geometry. The honeycomb latticeƒ D ƒhon is the two-dimensional
lattice specified in §3.6.1. Its quotient graph x�ƒ is the graph with two vertices and
three edges depicted in Figure 8.

We set e1 D .�1; 0/, e2 D 1
2
.1;

p
3/ and e3 D 1

2
.1;�p

3/. We choose the rooted
spanning tree � (root A, sole edge e1 as indicated in Figure 8). The loops ˛ and ˇ lift
as l2 D e2.�e1/ and l3 D e3.�e1/. We see that El2 D 1

2
.�3;p3/ and El3 D 1

2
.3;

p
3/.

Thus the condition of Proposition 3.5 is met and we obtain
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AA

BB

e1 e2e3

˛ ˇ

Figure 8. The graph x�ƒ for the honeycomb lattice, the spanning tree � (root A, sole edge e1)
together with a set of oriented edges, the quotient graph x�ƒ=� .

Proposition 4.2. We have
�1.�ƒ/ D ŒF2; F2�:

At each point of the lattice there are six directed or three undirected minimal loops
of length 6.

Proof. It is clear by inspection that there are no loops of length 2 and 4, and the loops
through an oriented edge twice will give length bigger than 6. To get a minimal loop,
we need to pass through each edge exactly once in each direction, if possible. This
can be done by fixing the first edge, and then choosing among the two left over edges
the second returning edge. Now everything is fixed. One has to leave the vertex by
the last edge and one concludes a cycle of six edges by choosing the only possible
non-traversed edge oriented without using an oriented edge twice. This of course
gives the known three unoriented loops at each vertex.

Remark 4.3. In the generators ˛, ˇ, these loops are given by the elements Œl2; l3�˙1,
Œl�1

2 ; l3�
˙1 and Œl2; l�1

3 �˙1.
It is interesting to note that the map x�ƒ ! x�ƒ=� induces a new length function

on the free group F2 which is not symmetric in symmetric generators. For instance,
the commutator Œl�1

2 ; l�1
3 � has length 8 in this metric, whereas all other commutators

listed above have length 6 in the generators ei .

Remark 4.4. There is another observation. Given a loop on �ƒ it decomposes into
blocks of loops on x�ƒ. Here we could take the loop l1 D e1.�e2/ e3.�e1/ e2.�e3/

which decomposes into 3 blocks. Now cyclically permuting these blocks, we also
get a loop on �ƒ, and of course the inverse of any loop is a loop so that the loop l1
generates all six loops.

4.2.2. Quantum geometry. Fixing a constant magnetic fieldB D 2� y‚ amounts to
choosing an anti-symmetric bilinear form y‚ on R2. We will use the induced cocycle
both on L and on T .ƒ/. The matrix ‚ is the matrix of y‚ with respect to the basis
.f2; f3/ of L. It is completely determined by its value y‚.f2; f3/. The cocycle
induced on T .ƒ/ will also play a role. It is fixed by the value y‚.e1; e2/. We fix the
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notation that


 ´ y‚.f2; f3/; q ´ e2�i	 and � D y‚.�e1; e2/; � ´ ei�� : (9)

The values of � and 
 are not independent:


 D �3� and q D N�6:

This follows from the elementary calculation


 D y‚.f2; f3/ D y‚.e2 � e1; e3 � e1/

D y‚.e2; e3/C y‚.e2;�e1/C y‚.�e1; e3/C y‚.�e1;�e1/

D y‚.e2;�e1/ � � C y‚.�e1;�e2/ D �3�:
The Hilbert space H D l2.ƒhon/ splits

Hhon D HA ˚ HB ;

where A and B are the vertices as indicated in Figure 8. The six oriented edges ˙ei ,
i D 1; : : : 3, of x�ƒ give rise to three partial isometry operators U˙i :

Ui ´
�
0 0

Uei
0

�
; U�i ´

�
0 U�ei

0 0

�
;

where Uei
and U�ei

D U�1
ei

D U �
ei

are the isomorphisms as in §3.8.
The Harper Hamiltonian now reads:

Hƒ D
3X

iD1

Ui C U�1
i D

�
0 U �

e1
C U �

e2
C U �

e3

Ue1
C Ue2

C Ue3
0

�
:

In order to put it into a matrix form with coefficients in T 2
	

, we again choose the
spanning tree � as indicated in Figure 8.

The Hamiltonian now reads

Hƒ;� D
�

0 1C U � C V �
1C U C V 0

�
2 M2.T

2
	 /;

where we have used the operators U ´ �Uf2
and V D N�Uf3

. We have

UV D qV U or UV U � D qV: (10)

The symmetry algebra generated by the translations Ufi
is isomorphic to T 2

	
on

HA ˚ HA. It acts via the representation defined by �.Uf2
/ D diag.Uf2

; �2Uf2
/ D

diag. N�U; �U / and �.Uf3
/ D diag.Uf3

; N�2Uf3
/ D diag.�V; N�V /.

Proposition 4.5. If q ¤ ˙1, then B‚ D M2.T 2
	
/ and hence is Morita equivalent

to T 2
	
.
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Proof. The strategy of proof is to show that the elementary matrix E12 2 B‚. If
this happens, we get that all elementary matrices are in B‚, since E21 D E�

12,
E11 D E12E21 and E22 D E21E12 and then B‚ D M2.T 2

	
/.

The method to obtainE12 is by direct calculation using the commutation relations
(10).

The first step is to set X D �. N�2U/�. N�2V �/H�.V /�.U �/ and then set X1 D
1

1� Nq ŒH � NqX�. Note we are using the assumption q ¤ 1. Then

X1 D
�
0 1

1� Nq Œ.1 � N�2/C .1 � N�4/U � C .1 � �4/V �
1 0

�
:

In step two, we set X2 D H �X1�.1C U C V / D �
0 ��
0 0

�
, where explicitly

�� D BU � C CV � CDU CEV C F U �V CGV �U

with

B D C D �4.1 � �2/

1 � �6
; D D 1 � �2

1 � �6
; E D N�2. N�2 � 1/

1 � �6
;

F D �2.1 � N�4/

1 � �6
; G D �2.�4 � 1/

1 � �6
:

Notice that �6 D Nq ¤ 1 by assumption. The coefficients do not vanish if �4 ¤ 1 and
�2 ¤ 1. But �2 D 1 implies that �6 D 1, and �4 D 1 implies that �12 D 1 and so
�6 D q D ˙1. If q ¤ ˙1, then all the coefficients are non-zero. We can obtain E12

in several steps by setting X3 D X2 � �.U /X2�.U
�/, X4 D X3 � �.V /X3�.V

�/,
X5 D �.U /X4�.U

�/� qX4 and finally obtain E12 D X5 � �. 1
. Nq�q/.1� Nq2/

U �V /X5,
where for the last step we need the assumption q ¤ �1.

The situation for q D �1 is more complicated. Notice that in this case T 2
1
2

is not

simple. For instance, there is a � homomorphism of � W T 2
1
2

! Cliff.�Id2/ ˝ C,

where Cliff.�Id2/˝ C is the Clifford algebra over C of the standard quadratic form
given by the negative of the .2� 2/-identity matrix Id2. If i and j are the usual basis
vectors, then �.U / D i , �.V / D j .

We let J ´ ker � D h1C U 2; 1C V 2i.
There is also an algebra involution ^ on T 2

1
2

given by yU D �V , yV D �V .

Proposition 4.6. If q D �1 and �4 ¤ 1, then B‚ D M2.T 2
1
2

/. If q D �1 and

�4 D 1, then B‚ is the subalgebra of M2.T 2
1
2

/ given by matrices of the form

�
a b
Ob Oa

�
C J; a; b 2 T 2

1
2

; J 2 M2.J/: (11)
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Proof. In the case q D �1 we can at first proceed as in the proof of Proposition 4.5.
As X1 we obtain

X1 D
�
0 1

2
Œ.1 � N�2/C .1 � �4/.U � C V �/�

1 0

�
:

Here the two cases split dependent on whether �4 D 1 or �4 ¤ 1.
We will deal with the case �4 ¤ 1 first. We set zX2 D zX1 � �.U / zX1�.�

2U �/,
zX3 D zX2 C �.U / zX2�.�

2U �/. Then 1
.1�
4/.1C
4/

zX3 D E21, hence we get E12 D
E�

12 2 B‚, and so B‚ is the full matrix algebra.
If q D �1 and �4 D 1, then, since q D N�6 D �1, we get N�2 D �1 and

X1 D I D E12 CE21 2 B‚. Furthermore, we get

X2 D
�
0 1C U � C V � � U � V �
1 0

�
:

SettingY3 ´ 1
2
�.U /ŒX2C�.U /X2�.�U �/� and zY3 D 1

2
�.V /ŒX2��.U /X2�.�U �/

we get

Y3 D
�
0 1C U 2

0 0

�
2 B‚; zY3 D

�
0 1C V 2

0 0

�
2 B‚:

Let B 0 be the algebra above given in (11). It is easy to check that B 0 is indeed
a C*-algebra since M2.J/ is a two-sided ideal of M2.T

2
1
2

/ and ^ commutes with �.

Now U � C U and V � C V are both in J so that

H D
�

0 1C U � C V �
1 � U � � V � 0

�
C

�
0 0

U C U � C V C V � 0

�
2 B 0:

Furthermore certainly the operators of L are in B 0 so that the inclusion B‚ � B 0
holds.

On the other hand, sinceL � B‚, all the matrices diag.a; Oa/ are in B‚ and by the
above I 2 B‚ so that all matrices of the form

�
a b
Ob Oa

�
are in B‚. Furthermore since the

matrices .1CU 2/E21 and analogously .1CV 2/E21 are in B‚, taking products with
I D E12 CE21, we obtain that all the matrices of M2.J/ � B‚. Hence B 0 � B‚,
as claimed.

We now analyze the case of q D 1. Let .x/ be the principal (algebra) ideal
generated by x in T 2

0 . Set J1 D .1CU CV /, J2 D .1CU � CV �/ and J12 D J1J2.

Proposition 4.7. If q D 1 and � D ˙1, then B‚ D C �.X/, where X is the double
cover of the torus S1 �S1 ramified at the points .e2�i 1

3 ; e2�i 2
3 / and .e2�i 1

3 ; e2�i 2
3 /.

If q D 1 and � ¤ ˙1, then B‚ is equal to the matrix C*-subalgebra of M2.T 2
0 /

given by matrices in the C*-subalgebra

�.T 2/C
�
J12 J2

J1 J12

�
: (12)
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Proof. The first statement follows from Theorem 3.21 for � D 1. The eigenvalues of
H in T 2

0 are ˙p
.1C U C V /.1C U � C V �/, which exist by continuous operator

calculus since the operator under the square root is self-adjoint of the form AA� and
hence has nonnegative real spectrum. The points of the space X equivalent to B0

where these two eigenvalues coincide are given by precisely the points above.
For � D �1, we remark that B‚ D B0, by using the involution U 7! �U ,

V 7! �V .
If q D 1, but � ¤ ˙1, we actually know that � is a sixth root of unity and

�2 D 3 D e2�i 1
3 or �2 D 2

3 , and in these cases �4 D � ¤ 1. Let B 0 be the algebra
of (12). Since J �

1 D J2 and both of them are algebra ideals, it is clear that B 0 is a
C*-subalgebra. Then it is clear that B‚ � B 0. In order to prove the reverse inclusion,
we notice that 1

1�

ŒH � �.U /H�2�.U �/� D .1C U C V /E21 2 B‚. Hence also

.1C U � C V �/E21 2 B‚ as well as .1C U C V /.1C U � C V �/E11 2 B‚ and

.1C U C V /.1C U � C V �/E22 2 B‚. This together with the action of L shows
that B 0 � B‚.

In the notation of equation (9):

Theorem 4.8. If q ¤ ˙1, the algebra B‚ has the K0-group Z ˚ Z. If � D ˙1,
then K0.B‚/ D Z3.

Proof. For ˛ ¤ 1 this directly follows from Proposition 4.5 below. For the commu-
tative case q D 1, � D ˙1, this follows from the fact that the double cover of the
torus obtained by identifying two pairs of points of two tori has the corresponding
K0-group.

4.3. The gyroid

4.3.1. The lattice and sublattice Hilbert spaces. The lattice �C has the Hilbert
space H�C

D l2.�C/.
The subspace H�C

decomposes naturally into subspaces Hi where Hi D HZ3.vi /

and Z3.vi / denotes the set of all translates under Z3 of vi . Thus H� D L7
iD0 Hi .

This is the composition corresponding to x�crystal
C . In order to write down the Hamil-

tonian effectively, we will put together the summands in pairs:

H� D HA ˚ HB ˚ HC ˚ HD; (13)

where HA D H0 ˚ H6, HB D H1 ˚ H7, HC D H3 ˚ H5, HD D H2 ˚ H4.
This corresponds to passing from x�crystal

C to x�C and to our general setup of graph
Hamiltonians.
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4.3.2. Cocycles for R3. As discussed, choosing a magnetic field corresponds to a
projective representation of �C by unitary operators on H�C

with a cocycle ˛. We
recall this here in a more familiar three-dimensional setting.

A skew-symmetric bilinear form B translates to a more well-known expression
as follows. Let i , j , k be the standard unit vectors on R3, and set Bx D B.j; k/,
By D B.k; i/ and Bz D B.i; j /. If EB D .Bx; By ; Bz/, then

B.m;m0/ D EB � .m �m0/; ˛B.m;m
0/ D exp.i 1

2
EB � .m �m0//:

Indeed ˛B is a cocycle since

B � .m �m0/C B � ..mCm0/ �m00/ D B � .m �m0 Cm �m00 Cm0 �m00/
D B � .m � .m0 Cm00//C B � .m0 �m00/:

The physics interpretation of this is that B is a fixed constant magnetic field, and
then ˛B.m;m

0/ is the magnetic flux through the triangle spanned by m an m0.

4.3.3. Cocycles for the gyroid. The maximal translation group L for �C is the bcc
lattice spanned by the vectors fi given in (2) or gi (3). The lattice group T .�C/
is the fcc lattice spanned by the vectors e4, e5, e6. By restricting a cocycle given
by a vector EB on R3, we obtain a cocycle for each of these lattices. Since both the
fcc and the bcc lattices are Bravais lattices, these are precisely all cocycles coming
from cocycles based on anti-symmetric forms y‚ D 1

2�
B stemming from a magnetic

field B .
We will use the basis .gi / to fix the matrix representation ‚ of y‚.

4.3.4. Graph representation and graph Harper operator on H�C
. We fix a vec-

tor B . This fixes the corresponding cocycle ˛.v;w/ ´ ei 1
2 B �.v�w/. Now consider

the graph representation as defined in §3.10, where the order of the vertices is A, B ,
C , D.

Using the fixed cocycle ˛ above, we obtain the partial isometries corresponding
to elements of T .�C/. These are Ui ´ Uei

according to the list (4) as discussed in
§3.8.

In Hilbert space decomposition (13) the graph Harper operator Hx� becomes the
.4 � 4/-matrix

Hx�C
D

0
BB@
0 U �

1 U �
2 U �

3

U1 0 U �
6 U5

U2 U6 0 U4

U3 U �
5 U �

4 0

1
CCA :

Recall that Ui D �.ei / and U �
i D U�1

i D U�ei
.
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4.3.5. Matrix Harper operator. We choose the rooted spanning tree � (root A,
edges e1, e2, e3) as indicated in Figure 5. Using this we obtain the matrix Harper
operator

Hx�C;� D

0
BB@
0 1 1 1

1 0 U �
1 U

�
6 U2 U �

1 U5U3

1 U �
2 U6U1 0 U �

2 U4U3

1 U �
3 U

�
5 U1 U �

3 U
�
4 U2 0

1
CCA μ

0
BB@
0 1 1 1

1 0 A B�
1 A� 0 C

1 B C � 0

1
CCA

according to §3.10.2. The coefficients can be expressed in terms of the operators of
the magnetic translation operators of the bcc lattice. We fix U ´ Uf1

, V ´ Uf2

and W ´ Uf3
for the fi listed in (2). Then

A D aV �W; B D bW U �; C D cW �UV;
where

a D ˛.e2;�e6/˛.e2 � e6;�e1/

˛.�f2; f3/
;

b D ˛.�e3;�e5/˛.�e3 � e5; e1/

˛.f3;�f1/
;

c D ˛.�e2; e4/˛.�e2 C e4; e3/

˛.�f3; f1/˛.�f3 C f1; f2/
:

4.3.6. Choices and notation. In order to proceed we fix some convenient basis and
notation. First we change from the basis fi to the basis

g1 D �f2 C f3; g2 D �f1 C f3; g3 D f1 C f2 � f3

for the bcc lattice B . We see that A D a0Ug1
, B D b0Ug2

; C D c0Ug3
again for

fixed constants a0 D ˛.�e1;�e6/˛.�e1 �e6; e2/, b0 D ˛.�e3;�e5/˛.�e3 �e5; e2/

and c0 D �˛.�e2; e4/˛.�e2 C e4; e3/. The operators A, B , C again generate the
C*-algebra of the noncommutative torus T 3

‚, where ‚ is the matrix of the bilinear
form in the basis gi . Explicitly:


12 D 1
2�
B � .g1 � g2/; 
13 D 1

2�
B � .g1 � g3/; 
23 D 1

2�
B � .g2 � g3/:

We write ˛1 ´ e2�i	12 D ˛2.g1; g2/, N̨2 ´ e2�i	13 D ˛2.g1; g3/ and ˛3 ´
e2�i	23 D ˛2.g2; g3/. This means for the commutators

AB D ˛1BA; AC D N̨2CA; BC D ˛3CB:

4.3.7. Matrix action of T.�C/. Given the choice of the spanning tree � also deter-
mines the action of T .�C/.

It will be convenient to introduce forth roots of the ˛i :

�1 D e
�
2 i	12 ; �2 D e

�
2 i	31 ; �3 D e

�
2 i	23 ; ˆ D �1�2�3
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and the matrices

ƒ1 D diag.1; �1; �2; �1�2/; ƒ2 D diag.1; �1; �1�3; �3/;

ƒ3 D diag.1; �2�3; �2; �3/:

By definition ˛1˛2˛3 D ˆ4.
Then the action � is given by the matrices

�.A/ D ƒ1 diag.A;A;A;A/;

�.B/ D ƒ2 diag.B;B;B;B/;

�.C / D ƒ3 diag.C; C; C; C /:

Note the following which makes the calculations quite a bit simpler:

ƒ1ƒ
�
2 D diag.1; 1; x̂ ; ˆ/; ƒ2ƒ

�
3 D diag.1;ˆ; x̂ ; 1/; ƒ1ƒ

�
3 D diag.1;ˆ; 1; x̂ /:

4.3.8. Calculation of B‚ and K�.B‚/

Proposition 4.9. If ˆ ¤ 1, then the BH-algebra B‚ is the full matrix algebra
B‚ D M4.T 3

‚/.

Proof. The strategy is to again show that enough elementary matrices are in B‚.
This will be done in a case by case study. We will present the first case in detail.

Assume that ˛1 ¤ ˆ2, ˛2 ¤ ˆ and ˛3 ¤ ˆ. Then we have to do six steps to
obtain E34. These are

X1 D H � �.AB�/H�.BA�/;
X2 D X1 � �.BC �/X1�.CB

�/;
X3 D X2 � �.AC �/X2�.CA

�/;
X4 D ˆ N̨1X3 � �.AB�/X3�.BA

�/;
X5 D x̂˛3X4 � �.BC �/X4�.CB

�/;
X6 D ˆ N̨2X5 � �.AC �/X5�.CA

�/:

The resulting matrix is

.1� x̂ 2˛2˛3/.1�ˆ N̨3/.1� x̂˛2/.ˆ N̨1 � x̂ 2˛2˛3/. x̂˛3 �ˆ N̨3/.ˆ N̨2 � x̂˛2/E43;

and the factor is invertible by assumption. This provides E43, E34 D E�
43, E33 D

E34E43 and E44 D E43E34. Now to get the other elementary matrices, we first as-
sume that�1 ¤ 1. Then setY1 D HE44� N�3�.C /E34,Y2 D �3Y1��.B�/Y1�.B/ D
�3. N�1 �1/E24 andE14 D Y1 � N�3�.B/E24, which guarantees that all theEij 2 B‚.
If �1 D 1, then we use Z0

2 D N�3Y1 � �.C /H�.C �/ D N�3.1 � ˛3
x̂ /E24, so since

˛3 ¤ ˆ, we obtainE24 andE14 (as above) and hence again the whole matrix algebra.
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The arguments for the cases ˛1 ¤ ˆ, ˛2 ¤ ˆ2, ˛3 ¤ ˆ and ˛1 ¤ ˆ, ˛2 ¤ ˆ,
˛3 ¤ ˆ2 are analogous.

Now by pure logic it follows that B‚ is the full matrix in all cases except the three
cases ˛i D ˆ2, j̨ D ˛k D ˆ for fi; j; kg D f1; 2; 3g. We treat only one of these
since the other two follow symmetrically. So assume that ˛1 D ˆ2, ˛2 D ˛3 D ˆ.
In this case the story is similar but faster.

We keepX1,X2 as above. Then ifˆ ¤ x̂ we setX 0
3 D ˆ��.BC �/X2�.CB

�/ D
.1 � ˆ/.1 � x̂ .ˆ � x̂ /E13 and again obtain the full matrix algebra using HE11 to
obtain the needed elementary matrices. If ˆ D x̂ , then, since ˆ ¤ 1, we have
ˆ D �1, hence ˛2 D ˛3 D �1 and so �2 ¤ N�2 since otherwise �2 D ˙1 and
˛2 D �4

2 D 1. Thus we get X 00
3 D N�2X2 � �.A/X2�.A

�/ D 4. N�2 � �2/E13 with
the factor being invertible. Again we are done.

Proposition 4.10. If ˆ D 1 and not all ˛i D N̨ i D ˙1, then the BH-algebra B‚ is
equal to the full matrix algebra B‚ D M4.T 3

‚/.

Proof. As before this follows from an explicit representation of the generators Eij

as expressions in B‚. Since not all ˛i D 1, there must be some ˛i ¤ 1. We will
assume that ˛3 ¤ 1. The other calculations are symmetric. Again one has two cases.
Either ˛2 D N̨2 or not. In the second case, we set Y1 D H � �.BC �/H�.CB�/ and
Y2 D ˛2Y1 D �.AC �/Y1�.AB

�/. Put Y3 D ˛3
N�1

N�2
3Y2 � �.C /H�.C �/ and Y4 D

N�1�2Y3��.A/H�.A�/ D .1� N̨3/.˛3� N̨3/.˛3
N�2

N�2
3 � N�2

2�3/. N�1�2�˛2� N�2
N�2
2/E43.

Now as ˛3 ¤ 1: Y4 ¤ 0 if �2 ¤ 1. If �2 D 1, we must have �1 ¤ 1 because
otherwise �3 would also be 1. In this case, we proceed analogously to obtain E24.
In both cases we obtain the full matrix algebra following the strategy used in the
previous proof.

Finally, we deal with the case that ˛2 D N̨2: If ˛2 D 1 then ˛1 D N̨3. It follows
that ˛1 ¤ N̨1, and we are done by an analogous calculation. Indeed, if ˛1 D N̨1 then
also ˛3 D N̨3 and all ˛i are real, which we excluded.

If ˛2 D �1, then ˛1 D � N̨3. It follows that ˛1 ¤ N̨1, and we are done by an
analogous calculation. If ˛1 D � N̨3, then ˛1 D N̨1 again means that all three ˛i are
real, which was excluded.

Proposition 4.11. If ˆ D 1 and all of the ˛i D 1, then the BH-algebra B‚ is a
proper subalgebra of the full matrix algebra B‚ ¨ M4.T 3/.

Proof. We will show this using the character� W T 3 ! C defined by�.A/ D �.B/ D
�.C / D 1. This character induces an algebra morphism N� W M4.T 3/ ! M4.C/, and
we will show that N�.B‚/ ¨ M4.C/, which implies the result. We note that

N�.H/ D

0
BB@
0 1 1 1

1 0 1 1

1 1 0 1

1 1 1 0

1
CCA D F � Id with F D

0
BB@
1 1 1 1

1 1 1 1

1 1 1 1

1 1 1 1

1
CCA :
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Since ˛i D �4
i , all the �i must be fourth roots of unity and furthermore �1�2�3 D 1.

There are again three cases.
The first is that all �i D 1. Then N�.�.A// D N�.�.B// D N�.�.C // D Id.

Therefore N�.B‚/ D h N�.H/i � M4.C/. Now F n D 4n�1F and so N�.H/n D
id C .

Pn
iD1

�
n
i

�
4i�1/F so that N�.B‚/ is the two-dimensional subalgebra of M4.C/

spanned by Id and F .
The second case is that all �2

i D 1 and only one �i D 1. We will assume that
�1 D 1, �2 D �1, �3 D �1. The rest of the cases are symmetric.

In this case the image of N� is the 6-dimensional subalgebra of matrices of the form
0
BB@
a b c c

b a c c

d d e f

d d f e

1
CCA :

Let B 0 be the subalgebra above. It is an exercise to check that this is indeed a
subalgebra. Then N�.�.A// D N�.�.B// D N�.�.C // D diag.1; 1;�1;�1/ so that
N�.B‚/ � B 0. On the other hand, P1 D E11 CE22 D 1

2
.Id C diag.1; 1;�1;�1// 2

N�.B‚/ and P2 D E33 C E44 D 1
2
.Id � diag.1; 1;�1;�1// 2 N�.B‚/. And hence

all the Pi N�.H/Pj , i; j D 1; 2, are in N�.B‚/. These are the .2 � 2/ block matrices
making up N�.H/. But the span of these matrices is precisely B 0.

The final case is that exactly one �2
i D 1. We will treat the case �1 D 1, �2 D i ,

�3 D �i . The rest is again symmetric. In this case N�.B‚/ is the 10-dimensional
matrix algebra of matrices of the form

0
BB@
a b c d

b a c d

e e g h

f f k l

1
CCA :

Let B 00 be the subalgebra above. Again it is an exercise to check that B 00 is in-
deed a subalgebra. In the current case we have N�.�.A// D N�.�.B// D N�.�.C // D
diag.1; 1; i;�i/, so it follows that N�.B‚/� B 00. Now N�.�.A//2 D diag.1; 1;�1;�1/
so that P1, P2 above are in N�.B‚/. Furthermore we have �1

2i
. N�.�.A//P2 N�.H/P2 �

iP2 N�.H/P2 D E34 and 1
2i
. N�.�.A//P2 N�.H/P2 D iP2 N�.H/P2 D E43, which im-

plies thatE33; E34; E43; E44 2 N�.B‚/. The other generators of B 0 are now given by
P1, P1 N�.H/P1, P2 N�.H/P1, E44P2 N�.H/P1, P1 N�.H/P2E33 and P1 N�.H/P2E33,
which are all in N�.B‚/.

The trickiest case is the case in which all the ˛i are real and not all equal to 1.

Proposition 4.12. Let ˆ D 1 and let all the ˛i be real, but not all ˛i D 1. If all the
�i are different, we either have B‚ D M4.T‚/ or else B‚ ¨ M4.T‚/.
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Proof. Since not all ˛i D 1, there must be exactly one ˛i D 1 with the other two
being equal to �1. We will deal with the case ˛3 D 1, ˛2 D ˛3 D �1. The
others are similar. Consider X D H C �.BC �/H�.CB�/. Then X2 D 12E11

and X2 D HE11 D E21 C E31 C E41. We know that �1 ¤ �2, �1 ¤ �3 and
X3 ´ �1X2 � �.A/X2�.A

�/ D .�1 � �2/E31 C .�1 � �3/E41. Here we get two
cases.

If �2 ¤ �3, then we obtain �2X3 � �.A/X3�.A
�/ D .�2 � �3/.�1 � �3/E31,

and we have successively E31, E41, E21 and their transposes in B‚. But this is a set
of generators.

In case �2 D �3, we see that P1 D 1
�1��2

X2 D E31 C E41. Hence also
E12; E21; E22 2 B‚. Furthermore, P2 D P1E12 D E32 C E42 2 B‚ and Q1 D
Id �E11 �E22 D E33 CE44 2 B‚, Q2 D Q1HQ1.

We shall use the morphism � W T 3
‚ ! Cl ´ Cliff.

�
1 0
0 1

�
/˝ C given by �.A/ D

�.B/ D e1, �.C / D e2, where ei , i D 1; 2, are the generators of the Clifford algebra
which satisfy e2

i D 1 and e1e2 C e2e1 D 1. The map � induces an algebra morphism
N� W M4.T 3

‚/ ! Cl.
Claim: The image of N� is given matrices of the form0

BB@
a b e e

c d f f

g h k l

g h l k

1
CCA ;

which is a free rank 10 Cl proper submodule of M4.Cl/ and in turn B‚ is a proper
submodule of M4.T 3

‚/.
To prove the claim, we again check both inclusions. Let B 0 be the subalgebra

above. Notice that Id 2 B 0,

N�.H/ D

0
BB@
0 1 1 1

1 0 e1 e1

1 e1 0 e2

1 e1 e2 0

1
CCA 2 B 0;

N��.A/ D N��.B/ D e1 diag.1; �1; �2; �2/ 2 B 0, N��.C / D e2 diag.1; �1; �2; �2/ 2
B 0 so that N�.B‚/ � B 0. On the other hand the algebra B 0 is generated byE11, E12,
E21, E22, P1, P T

1 , P2, P T
2 , Q1, e2 N�.Q2/ D E34 CE43, which are all in N�.B‚/ so

that B‚ � N�.B‚/.

Theorem 4.13. If ˆ ¤ 1 or ˆ D 1 and at least one ˛i ¤ 1 and all �i are different,
then B‚ D M4.T 3

‚/ and K.B‚/ D Z4.
If �i D 1 for all i , then K.B‚/ D K.X/, where X is the cover of the 3-torus

given by Theorem 3.21.

Proof. The only thing that remains to be proved is that H is generic. Indeed this
can be done by direct computation. We will not give the eigenvalues here as they are
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quite long expressions. But notice that for �.A/ D �1, �.B/ D 1; �.C / D �1 the
matrix N�.H/ has the four distinct eigenvalues ˙p

5, ˙1.

Acknowledgments. We would like to thank J. Bellissard, M. Dadarlat, M. Kontse-
vich, M. Marcolli and A. Schwarz for enlightening discussions. Foremost, we wish to
thank H. W. Hillhouse for sparking the interest in this project and many discussions.

RK thankfully acknowledges support from NSF DMS-0805881 and the Humboldt
Foundation. He also thanks the Institut des Hautes Etudes Scientifiques, the Max-
Planck-Institute for Mathematics in Bonn and the Institute for Advanced Study for
their support as well as the University of Hamburg for its hospitality. While at the
IAS, RK’s work was supported by the NSF under agreement DMS-0635607.

BK thanks the Department of Physics at Princeton University for its hospitality
and thankfully acknowledges support from the NSF under the grant PHY-0969689.

Any opinions, findings and conclusions or recommendations expressed in this
material are those of the authors and do not necessarily reflect the views of the
National Science Foundation.

References

[1] N. W. Ashcroft and N. D. Mermin, Solid state physics. Holt, Rinehart and Winston, New
York 1976.

[2] J. Bellissard, Gap labelling theorems for Schrödinger operators. In From number theory
to physics (Les Houches, 1989), Springer-Verlag, Berlin 1992, 538–630. Zbl 0833.47056
MR 1221111

[3] J. Bellissard, A. van Elst, and H. Schulz-Baldes, The noncommutative geometry of
the quantum Hall effect. J. Math. Phys. 35 (1994), 5373–5451. Topology and physics.
Zbl 0824.46086 MR 1295473

[4] A. L. Carey, K. C. Hannabuss, V. Mathai, and P. McCann, Quantum Hall effect on the hy-
perbolic plane. Comm. Math. Phys. 190 (1998), 629–673. Zbl 0916.46057 MR 1600480

[5] A. Connes, Noncommutative geometry. Academic Press, San Diego, CA, 1994.
Zbl 0818.46076 MR 1303779

[6] G. A. Elliott, On the K-theory of the C�-algebra generated by a projective representa-
tion of a torsion-free discrete abelian group. In Operator algebras and group represen-
tations, Vol. I, Monogr. Stud. Math. 17, Pitman, Boston 1984, 157–184. Zbl 0542.46030
MR 731772

[7] G.A. Elliott and H. Li, Strong Morita equivalence of higher-dimensional noncommutative
tori. II. Math. Ann. 341 (2008), 825–844. Zbl 1153.46045 MR 2407328

[8] K. Grosse–Brauckmann, On gyroid interfaces. J. Colloid Interface Sci. 187 (1997),
418–428.

[9] K. Große-Brauckmann and M. Wohlgemuth, The gyroid is embedded and has constant
mean curvature companions. Calc. Var. Partial Differential Equations 4 (1996), 499–523.
Zbl 0930.53009 MR 1415998

http://www.emis.de/MATH-item?0833.47056
http://www.ams.org/mathscinet-getitem?mr=1221111
http://www.emis.de/MATH-item?0824.46086
http://www.ams.org/mathscinet-getitem?mr=1295473
http://www.emis.de/MATH-item?0916.46057
http://www.ams.org/mathscinet-getitem?mr=1600480
http://www.emis.de/MATH-item?0818.46076
http://www.ams.org/mathscinet-getitem?mr=1303779
http://www.emis.de/MATH-item?0542.46030
http://www.ams.org/mathscinet-getitem?mr=731772
http://www.emis.de/MATH-item?1153.46045
http://www.ams.org/mathscinet-getitem?mr=2407328
http://www.emis.de/MATH-item?0930.53009
http://www.ams.org/mathscinet-getitem?mr=1415998


The geometry of the double gyroid wire network 663

[10] D. A. Hajduk, P. E. Harper, S. M. Gruner, C. C. Honeker, G. Kim, E. L. Thomas, and
L. J. Fetters, The gyroid: a new equilibrium morphology in weakly segregated diblock
copolymers. Macromolecules 27 (1994), 4063–4075.

[11] T. Hahn (ed.), International tables for crystallography. Vol. A, 5. ed., reprinted with
corrections, Springer-Verlag, Dordrecht 2005.

[12] P. G. Harper, Single band motions of conduction electrons in a uniform magnetic field.
Proc. Phys. Soc. A 68 (1955), 874–878.

[13] S. Khlebnikov and H. W. Hillhouse, Electronic structure of double-gyroid nanostructured
semiconductors: Perspectives for carrier multiplication solar cells. Phys. Rev. B 80 (2009),
115316.

[14] C. A. Lambert, L. H. Radzilowski, and E. L. Thomas, Triply periodic level surfaces as
models for cubic tricontinous block copolymer morphologies. Phil. Trans. R. Soc. Lond.
A 354 (1996), 2009–2023.

[15] M. Marcolli andV. Mathai, Towards the fractional quantum Hall effect: a noncommutative
geometry perspective. In Noncommutative geometry and number theory, Aspects Math.
E37, Vieweg, Wiesbaden 2006, 235–261. Zbl 1105.81068 MR 2327308

[16] G. Panati, H. Spohn, and S. Teufel, Effective dynamics for Bloch electrons: Peierls
substitution and beyond. Comm. Math. Phys. 242 (2003), 547–578. Zbl 1058.81020
MR 2020280

[17] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-groups of cer-
tain cross-product C�-algebras. J. Operator Theory 4 (1980), 93–118. Zbl 0474.46059
MR 587369

[18] M.A. Rieffel,C�-algebras associated with irrational rotations. Pacific J. Math. 93 (1981),
415–429. Zbl 0499.46039 MR 623572

[19] M. A. Rieffel and A. Schwarz, Morita equivalence of multidimensional noncommutative
tori. Internat. J. Math. 10 (1999), 289–299. Zbl 0968.46060 MR 1687145

[20] T. Sunada, A discrete analogue of periodic magnetic Schrödinger operators. In Geometry
of the spectrum (Seattle,WA, 1993), Contemp. Math. 173, Amer. Math. Soc., Providence,
RI, 1994, 283–299. Zbl 0805.47028 MR 1298211 (95i:58185)

[21] A. H. Schoen, Infinite periodic minimal surfaces without self-intersections. NASA Tech-
nical Note D-5541. Washington, DC, 1970. Zbl 1071.53507

[22] M. F. Schulz, F. S. Bates, K. Almdal, and K. Mortensen, Epitaxial relationship for
hexagonal-to-cubic phase transition in a book copolymer mixture. Phys. Rev. Lett. 73
(1994), 86–89.

[23] V. N. Urade, T.-C. Wei, M. P. Tate, J. D. Kowalski, and H. W. Hillhouse, Nanofabrication
of double-gyroid thin films. Chem. Mater. 19 (2007), 768–777.

Received October 5, 2010

R. M. Kaufmann, Department of Mathematics, Purdue University, 150 N. University Street,
West Lafayette, IN 47907-2067, U.S.A.

E-mail: rkaufman@math.purdue.edu

http://www.emis.de/MATH-item?1105.81068
http://www.ams.org/mathscinet-getitem?mr=2327308
http://www.emis.de/MATH-item?1058.81020
http://www.ams.org/mathscinet-getitem?mr=2020280
http://www.emis.de/MATH-item?0474.46059
http://www.ams.org/mathscinet-getitem?mr=587369
http://www.emis.de/MATH-item?0499.46039
http://www.ams.org/mathscinet-getitem?mr=623572
http://www.emis.de/MATH-item?0968.46060
http://www.ams.org/mathscinet-getitem?mr=1687145
http://www.emis.de/MATH-item?0805.47028
http://www.ams.org/mathscinet-getitem?mr=1298211 (95i:58185)
http://www.emis.de/MATH-item?1071.53507


664 R. M. Kaufmann, S. Khlebnikov, and B. Wehefritz-Kaufmann

S. Khlebnikov, Department of Physics, Purdue University, 525 Northwestern Avenue, West
Lafayette, IN 47907-2036, U.S.A.

E-mail: skhleb@physics.purdue.edu

B. Wehefritz–Kaufmann, Department of Mathematics and Department of Physics, 150 N.
University Street, Purdue University, West Lafayette, IN 47907-2067, U.S.A.

E-mail: ebkaufma@math.purdue.edu


	The classical geometry of the double gyroid
	The double gyroid and its channels
	The skeletal graph
	The vertices and edges

	The quotient graphs
	Crystallographic quotient graph
	The (maximal) quotient graph

	The underlying group and lattice
	Fundamental groups, loops and effective normal vectors
	Explicit calculation of the loops
	Explicit loops
	Effective normal vector

	The quantum graph

	Graph representations and matrix Harper operators
	Graph language
	Graph Harper operator
	Matrix actions
	General setup
	Matrix action for the graph Harper operator


	C*-geometry of Harper Hamiltonians on lattices
	Translation action
	Lattices: mathematical, physical and Bravais
	Graphs and lattices
	Canonical graph of a lattice
	Quotient graphs

	Group of a lattice
	Fundamental group
	Main examples
	The honeycomb lattice
	The gyroid lattice graph

	Hilbert space of a lattice
	Partial isometries and projections
	Projective representations
	Cocycles
	Noncommutative tori
	Wannier or magnetic translation operators

	Harper operator for a lattice  and with graph _
	Graph representation of "0278
	A matrix representation of the Bellissard–Harper algebra

	Geometry of  B

	Results for the Bravais, honeycomb and gyroid lattices
	The Bravais lattice cases
	The Zn case
	Other Bravais lattices

	The honeycomb lattice
	Classical geometry
	Quantum geometry

	The gyroid
	The lattice and sublattice Hilbert spaces
	Cocycles for R3
	Cocycles for the gyroid
	Graph representation and graph Harper operator on ==========H__+
	Matrix Harper operator
	Choices and notation
	Matrix action of T(_+)
	Calculation of ==========B_ and K_*(==========B_)


	References

