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A theory of induction and classification of tensor C*-categories
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Abstract. This paper addresses the problem of describing the structure of tensor C*-categories
M with conjugates and irreducible tensor unit. No assumption on the existence of a braided
symmetry or on amenability is made. Our assumptions are motivated by the remark that
these categories often contain non-full tensor C*-subcategories with conjugates and the same
objects admitting an embedding into the Hilbert spaces. Such an embedding defines a compact
quantum group by Woronowicz duality. An important example is the Temperley–Lieb category
canonically contained in a tensor C*-category generated by a single real or pseudoreal object of
dimension � 2. The associated quantum groups are the universal orthogonal quantum groups
of Wang and Van Daele.

Our main result asserts that there is a full and faithful tensor functor from M to a category
of Hilbert bimodule representations of the compact quantum group. In the classical case,
these bimodule representations reduce to the G-equivariant Hermitian bundles over compact
homogeneous G-spaces, with G a compact group. Our structural results shed light on the
problem of whether there is an embedding functor of M into the Hilbert spaces. We show that
this is related to the problem of whether a classical compact Lie group can act ergodically on
a non-type I von Neumann algebra. In particular, combining this with a result of Wassermann
shows that an embedding exists if M is generated by a pseudoreal object of dimension 2.
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1. Introduction

By Tannaka–Krein duality theory, a semisimple rigid tensor category admits an em-
bedding functor into the category of finite-dimensional vector spaces if and only if it
is the representation category of a quantum group. There are variants of this result de-
pending on the framework under consideration. This characterization does however
not allow one to tell whether a given tensor category admits such an embedding.

A positive result, motivated by algebraic QFT, asserts that a symmetric tensor C*-
category with conjugates M, is equivalent, after completion under direct sums and
subobjects, to the symmetric tensor C*-category of finite-dimensional representations
of a unique compact group [11]. There is a similar well-known result in the context
of algebraic geometry [8].

However, different finite groups may have equivalent representation categories
[12], [17], so the symmetry is crucial for uniqueness.

Another positive result is a theorem of [14], asserting that a semisimple rigid tensor
category with finitely many irreducibles is equivalent to a representation category of
a finite-dimensional, but not unique, weak Hopf algebra in the sense of [5], see also
[30]. However, this theorem does not say anything about whether the weak Hopf
algebras can be chosen to be a quantum group or even a group. Moreover, this
approach does not generalize easily to categories with infinitely many irreducibles,
as difficulties of an analytic nature arise.

In this paper we consider the analytic framework of tensor C*-categories with
conjugates. Now, an embedding functor is naturally required to take values in the
category Hilb of Hilbert spaces. Here, the quantum groups of the Tannaka–Krein
duality theory are compact quantum groups [50]. However, even in this case, there
are situations where there can be no such embedding.

For example, if a tensor C*-category with conjugates M has an object with an
intrinsic dimension strictly between 1 and 2, it obviously cannot be embedded into
Hilb. These cases are often related to quantum groups at roots of unity by Jones
fundamental result on the restriction of the index values [18], [48]. Ocneanu [29]
indicated that they should be understood as ‘quantum subgroups’ of the deformed
SU.2/, a program developed in [19].

But other classes are known even when there are objects with intrinsic dimension
> 2. For example, consider an irreducible inclusion of II1 factorsN �M with finite
Jones index ŒM W N� and consider the tensor C*-category ofN -bimodules generated
by NMN . This category has conjugates and the intrinsic dimension of the generator
NMN is ŒM W N�, hence � 2 if the inclusion is proper, again by the restriction of the
index values. By an easy consequence of Popa’s work [38], this category cannot be
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embedded in Hilb whenever the index is not an integer and the inclusion is amenable
in the sense of Popa, see [36]. There is a similar result for an amenable object in a
tensor C*-category with non-integral dimension [22]. (The precise relation between
the two notions of amenability has not been clarified.)

On the other hand, compact quantum groups provide examples of tensor C*-
categories with conjugates that are embedded but not amenable, as the intrinsic di-
mensions of unitary representations are often not integral.

This paper addresses the problem of describing the structure of tensor C*-catego-
ries with conjugates and irreducible tensor unit. We are interested in the case where
there is a generator with intrinsic dimension � 2. No assumption on the existence of
a braided symmetry or on amenability is made.

The tensor C*-categories M arising from subfactors have as objects the tensor
powers of an irreducible selfconjugate object x, a property expressed in terms of an
intertwinerR 2 .�; x˝x/. The tensor �-subcategory generated byR is a Temperley–
Lieb category, admitting an embedding if d.x/ � 2. All such embeddings may be
classified; they correspond to suitable compact quantum groups Ao.F / of Wang and
Van Daele. In particular, if F 2 M2.C/ these quantum groups are the quantum
SU.2/ groups of Woronowicz for deformation parameters uniquely determined by
the dimension and the reality character of x. A similar result holds if the objects
of M are the semigroup with unit generated by an object x and its conjugate Nx, the
quantum groups involved are certain Au.F /.

These remarks show that although tensor C*-categories with conjugates cannot be
embedded generically, they may contain an embeddable subcategory with conjugates.

Abstracting from the above, we start from two tensor C*-categories with con-
jugates A and M, a tensor �-functor � W A ! Hilb and a quasi-tensor functor
� W A ! M. We may suppose that the objects of M are tensor products of ob-
jects in the image of �. By [50], � determines a compact quantum group G� . We
showed in [34] that the pair �; � canonically defines an ergodic action of G� on a
C*-algebra C . When � is the functor restricting a representation to a subgroup K of
G� , this action reduces to the translation action on the quantum quotient spaceKnG� .

If M is not embeddable, the associated ergodic action cannot correspond to a true
quantum subgroup [33]. Borrowing a notion due to Mackey [24], we may talk of a
virtual subgroup.

The notions quasi-tensor functor and relaxed tensor functor are recalled in Sec-
tion 2, this extra generality is motivated by their role in the duality theorem for ergodic
actions of compact quantum groups, where they arise as spectral functors. (The spec-
tral functor of an ergodic action maps a representation to the corresponding spectral
space, thus, in particular, it takes values in the category of Hilbert spaces [34].) Note
that, unlike relaxed tensor functors, quasi-tensor functors may take a non-zero object
to the zero object.

One of the aims of this paper is to describe M as a category of representations of
the virtual subgroup. To handle the non-embeddable case, we introduce the notion of
a representation of a compact quantum group on a Hilbert bimodule over an ergodic
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C*-algebra. This is the noncommutative analogue of the bimodule of continuous
sections of an equivariant Hermitian bundle over a compact homogeneous space. We
show that these bimodule representations form a tensor C*-category with irreducible
tensor unit, Theorem 3.1.

Given an object of M, we construct a Hilbert bimodule representation ofG� , that
we regard as a representation induced from the virtual subgroup, as the associated
bimodule generalizes the bimodule of sections of the equivariant vector bundle in-
duced from a representation of a subgroup. As a right module, the induced module
turns out to be finite projective and, if � is tensorial, even free and finitely generated,
a result generalizing Swan’s theorem to a noncommutative framework.

We show that the bimodule construction yields a full and faithful tensor �-functor,
the induction functor, from M to the category Bimod˛.G� / of Hilbert bimodule
representations of G� . Note that this tensoriality property holds despite the fact that
� was only assumed to be quasi-tensor, Theorems 6.2 and 6.4.

In particular, if M is generated as a tensor C*-category by a real or pseudoreal
object x of d.x/ � 2, then it may be identified with a category of bimodule repre-
sentations for any one of a class of compact quantum groups Ao.F /. A similar result
holds if x is not selfconjugate, Theorems 6.5 and 6.6.

We then use these abstract results to investigate the case where M is an extension of
the representation category of a compact Lie groupG. We show that if the associated
ergodic C*-algebra C yields a finite type I von Neumann algebra after completion in
the GNS-representation of the unique invariant trace, then M admits an embedding
functor. In fact, we construct an explicit full tensor functor to the representation
category of a closed subgroup of G, Theorem 6.7.

This last result shows that the question of the existence of an embedding into
the Hilbert spaces is related to the open problem posed in [15] and mentioned in
the abstract on the existence of ergodic actions of classical compact Lie groups on
non-type-I von Neumann algebras. A negative answer for G would imply that the
associated ergodic von Neumann algebra is of finite type I and hence that M is
embeddable.

This is known for SU.2/ [46]. This negative result shows that if the objects of
M are generated by a single pseudoreal object of intrinsic dimension 2, M can be
embedded, and admits a full and faithful tensor �-functor to the category of represen-
tations of a closed subgroup of SU.2/, Corollary 6.9. We would like to point out the
analogy of this result with the well-known classification of subfactors of index 4 in
terms of closed subgroups of SU.2/.

The notion of full bimodule representation plays a role in this paper. An object of
Bimod˛.G/ is full if every fixed vector for the action is central (see Section 5). This
guarantees that the left module structure is naturally compatible with that of right
module representation. We show that the induced bimodule representations are full
(Propositions 8.9 and 9.4) and use this to show the embedding result. Furthermore
we use this property to show that certain ergodic actions cannot arise from a pair
of tensor functors �, � . We show for example that neither the adjoint action of a
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non-trivial irreducible representation of SU.2/ nor those with full spectrum and low
multiplicity can arise, Section 11.

Here we have interpreted induction in terms of bimodule representations. How-
ever we may also induce from representations of the virtual subgroup to Hilbert
space representations ofG� , except that such representations need no longer be finite-
dimensional. However after completing our categories under infinite direct sums, we
show that induction and restriction are a pair of adjoint functors, Theorem 10.1.

In conclusion, we draw the reader’s attention to an incomplete list of papers where
related results may be found, although some from different perspectives, [1], [5], [7],
[9], [13], [16], [21], [26], [27], [31], [33], [42], [44].

The paper is organized as follows. Section 2 establishes notation and recalls
results that we shall need. In Section 3, we explain the notion of a representation
of a compact quantum group on a Hilbert C*-bimodule and we introduce the tensor
C*-category Bimod˛.G/. In Section 4 we review Mackey’s induced representation
and Frobenius reciprocity from the standpoint of bimodule representations. In the
next section, we introduce the notion of full bimodule representation and discuss the
example of quantum quotients. In Section 6 we illustrate the main ideas and results of
this paper. Sections 7–9 are dedicated to the induction functor into the tensor category
of Hilbert C*-bimodules. In Section 7 we give the algebraic construction of bimodule
and introduce an inner product starting from a pair .�; �/ and show positivity of the
inner product when � is tensorial in Section 8, leading to the Hilbert C*-bimodule
representation of the compact quantum group G� associated with � . In Section 9 we
show that there is a unique extension of the induction functor to a tensor functor. In
Section 10 we show that if we instead define an induction functor taking values in
the category of unitary representations of G� on Hilbert spaces, then .�; Ind/ is an
adjoint pair of functors. Sections 11 and 12 are dedicated to the analysis of ergodic
actions of compact groups. In Section 11 we classify full bimodule representations
of compact groups on finite type I von Neumann algebras and use the classification
in the following section to derive results on the problem of embedding into Hilbert
spaces. A few computations in an appendix conclude the paper.

2. Notation and preliminaries

2.1. Tensor C*-categories with conjugates. We shall work with tensor C*-cate-
gories defined as in [11]. By MacLane’s theorem [25], we may and shall assume that
the tensor product is strictly associative. The tensor product between objects u and
v will be denoted by u˝ v and between arrows S and T by S ˝ T . The n-th tensor
power of an object uwill be denoted by un. The tensor unit, denoted by �, will always
be assumed irreducible:

.�; �/ D C:
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An object Nu of a tensor C*-category A is a conjugate of u if there are arrows

R 2 .�; Nu˝ u/; xR 2 .�; u˝ Nu/
satisfying the conjugate equations

xR� ˝ 1u B 1u ˝R D 1u; R� ˝ 1 Nu B 1 Nu ˝ xR D 1 Nu:

IfR, xR is a solution of the conjugate equations for u, any other solution is of the form
X��1 ˝ 1u BR and 1u ˝X B xR, where X 2 . Nu; Qu/ is an invertible intertwiner. xR is
uniquely determined by R.

We will always take 1� as the solution of the conjugate equations for �.
An object u is called real or pseudoreal if we may choose Nu D u (i.e., u selfcon-

jugate), and a solution of the form xR D R or xR D �R respectively.
We shall say that A has conjugates if every object has a conjugate. In this case,

every object is a direct sum of minimal projections. A solution of the conjugate
equations .R; xR/ is said to be standard if

R� B 1 Nu ˝ Y BR D xR� B Y ˝ 1 Nu B xR; Y 2 .u; u/:
The X 2 . Nu; Qu/ taking one standard solutions to another is unitary. The intrinsic
dimension of an object is defined as d.u/ D kRk2, where R is part of a standard
solution. Equivalently, d.u/ is the minimal value of kRkk xRk for all solutions. We
refer to [22] for details.

Fix objects u, v of A and pick a solution Ru, xRu and Rv , xRv of the conjugate
equations for u and v respectively, and define the associated antilinear map,

A 2 .v; u/! A
� ´ R�

v ˝ 1 Nu B 1 Nv ˝ A� ˝ 1 Nu B 1 Nv ˝ xRu; 2 . Nv; Nu/:
This map depends on the choice of conjugates: changing the solution of the conjugate
equations using invertibles X 2 . Nu; Qu/ and Y 2 . Nv; Qv/, A� becomes X B A� B Y �1.

We stress that the notation Ru refers to a particular solution of the conjugate
equations for u but does not necessarily imply a choice for each object u.

Example. In the category Hilb any solution of the conjugate equations for a finite-
dimensional Hilbert space H is of the form

R DP
h

�h ˝ j�1�h; xR DP
k

 k ˝ j k;

where j is an antilinear invertible map to another Hilbert space xH and . k/ and .�h/
are orthonormal bases of H and xH respectively. We shall use the notation jH to
emphasize that j refers to the object H . For A 2 .H;K/, the associated � is given
by A� D jKAj�1

H . In particular,  � D jH for  2 H .
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If .Ru; xRu/, .Rv; xRv/ are solutions for u and v respectively,Ru˝v ´ 1 Nv˝Ru˝
1v B Rv and xRu˝v ´ 1u ˝ xRv ˝ 1 Nu B xRu is a solution for u˝ v, called the tensor
product solution. Similarly, R Nu ´ xRu and xR Nu ´ Ru the solution for Nu, called the
conjugate solution.

The main properties of � are the following:

.A B B/� D A� B B�
; .A˝ B/� D B� ˝ A�

for the tensor product solution.

2.2. Quasitensor functors. Although all tensor categories may be assumed to be
strict, it is well known that one may meet functors preserving the tensor structure
only up to a natural equivalence. Here we need the notion of quasi-tensor functor
whose definition we recall. A �-functor � W A ! M is called quasi-tensor if there
are isometries Q�u;v 2 .�u ˝ �v; �u˝v/ such that

�� D �; (2.1)

Q�u;� D Q��;u D 1�u
; (2.2)

Q��
u;v˝w B Q�u˝v;w D 1�u

˝ Q�v;w B Q��
u;v ˝ 1�w

(2.3)

and natural in u, v,

�.S ˝ T / B Q�u;v D Q�u0;v0 B �.S/˝ �.T /; (2.4)

for objects u, v, w, u0, v0 of A and arrows S 2 .u; u0/, T 2 .v; v0/. The above
definition was given in [34] in a different form, in connection with the study of
ergodic actions of compact quantum groups on unital C*-algebras. The equivalence
with the above definition was shown in [35]. If all the isometries Q�u;v are unitary,
.�; Q�/will be called a relaxed tensor functor. In particular, a strict tensor functor, or
simply a tensor functor, is a quasi-tensor functor with Q�u;v ´ 1�u˝�v

for all objects
u, v. Note that a quasi-tensor functor may take a non-zero object to the zero object.
Examples arise from ergodic actions (cf. also Section 2.4).

Notice that, since we are dealing with isometries, (2.3) implies the associativity
property,

Q�u˝v;w B Q�u;v ˝ 1�w
D Q�u;v˝w B 1�u

˝ Q�v;w :
Hence both sides of this equation define the same intertwiner Q�u;v;w 2 .�u ˝ �v ˝
�w ; �u˝v˝w/. Iterating, we get, for any finite sequence u D .u1; : : : ; un/ of objects
of A, with n � 2, an unambiguous arrow

Q�u1;:::;un
2 .�u1

˝ � � � ˝ �un
; �u1˝���˝un

/:

We set Q�u D 1�u
for a sequence of length 1. Q� is a natural transformation, i.e., for

Si 2 .ui ; vi /,
�.S1˝S2˝� � �˝Sn/ B Q�u1;u2;:::;un

D Q�v1;v2;:::;vn
B�.S1/˝�.S2/˝� � �˝�.Sn/:
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We remark however that (2.3) is stronger than associativity. It also implies a cat-
egorical analogue of Popa’s commuting square condition in the theory of subfactors,
see [34] and references there. If A has conjugates, so do objects in the image of �.
In detail, if .�; Q�/ W A ! M is a quasi-tensor functor and if .R; xR/ is a solution of

the conjugate equations for u and Nu in A then yR´ Q��Nu;u B�.R/, yxR´ Q��Nu;u B�. xR/
is a solution of the conjugate equations for �u in M, called the image solution. In
particular, d.�u/ � d.u/.

Image solutions yRu, yxRu and yRv , yxRv associated to u and v define a map � on the
arrow space .�u; �v/ in M and we have

�.A/
� D �.A�

/:

If .�; Q�/ W A!M and .�; Q�/ W M! N are quasi-tensor functors, the composi-
tion �� becomes quasi-tensor with natural transformation �. Q�u;v/ B Q��u;�v

[35]. A
composition �� of two quasi-tensor functors will always be implicitly understood as
a quasi-tensor functor with this natural transformation.

2.3. Ergodic C*-actions of compact groups. Let ˛ W G ! Aut.C/ be a continuous
ergodic action of a compact groupG on a unital C*-algebra C . The finiteness theorem
for the noncommutative ergodic space C and the multiplicity bound theorem assert
respectively that the uniqueG-invariant state of C is a trace, and that the multiplicity
of an irreducible representation of G in ˛ is bounded above by its dimension. Fur-
thermore, any von Neumann algebra with an ergodic action of a compact group is
necessarily hyperfinite [15].

Recall that if ˇ is an automorphic action of a closed subgroup K of G on a von
Neumann algebra F , the induced von Neumann algebra is defined by:

Ind.F /´ ff 2 L1.G;F / j f .kg/ D ˇk.f .g//; k 2 K; g 2 Gg
D .L1.G/ x̋ F /�˝ˇ ;

where � is left translation of K on L1.G/. If F is a C*-algebra, the von Neumann
tensor product x̋ is replaced by the minimal one, and L1-functions by continuous
ones. The induced algebra carries the induced action 	 ofG given by right translation.

As recalled in [47], combining the above results with an imprimitivity theorem
of Takesaki [43] for locally compact group actions on von Neumann algebras allows
one to reduce the study of ergodic actions on von Neumann algebras to those on
finite factors. Indeed, any ergodic action of a compact group G on a von Neumann
algebra C is induced by an action of a closed subgroup K on a matrix algebra or on
the hyperfinite II1 factor R.

Wassermann has shown the important result that G D SU.2/ acts ergodically
only on (finite) type I von Neumann algebras [46]. For more results in this direction
see also [28]. It is not yet known whether there are any ergodic actions of compact
classical Lie groups on the hyperfinite II1 factor R, a problem raised in [15].
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2.4. Ergodic C*-actions of compact quantum groups. We refer to [51] for the
general definition of a compact quantum group. IfG D .Q; 
/ is a compact quantum
group, Rep.G/will denote the category of unitary finite-dimensional representations
of G.

The theory of ergodic actions of compact quantum groups on unital C*-algebras
has been initiated in [4], [37]. Recall from [37] that an action of G on a unital
C*-algebra C is a unital �-homomorphism

˛ W C ! C ˝Q;

where ˝ denotes the minimal tensor product of C*-algebras, such that ˛ ˝ � B ˛ D
�˝
 B ˛ and with the property that ˛.C/C˝Q is dense in C ˝Q. The action is
called ergodic if C˛ ´ fc 2 C j ˛.c/ D c ˝ I g D C. Recall that C has a unique
faithful state invariant under the action of G, but, unlike in the group case, is not a
trace in general [49]; see also [45].

2.5. Spectrum, multiplicity maps, spectral functor and duality theorem. The
spectrum of an action ˛ of a compact quantum group G on C , denoted by sp.˛/, is
the set of all unitary representations u of G for which there is a faithful linear map
T W Hu ! C intertwining the representationuwith the action˛. This means that ifuij
are the coefficients ofu in some orthonormal basis ofH , there are linearly independent
elements c1; : : : ; cd 2 C , with d the dimension of u, such that ˛.ci /´P

j cj˝uj i .
The linear span of all the ci ’s, as u varies in the spectrum, is a dense invariant �-
subalgebra of C , denoted by Csp [37].

Examples of ergodic actions are the quantum quotient spaces C.KnG/ by a com-
pact quantum subgroupK. As in the classical case,C.KnG/ is the fixed point algebra
under a suitable action ofK on the Hopf C*-algebra of G, with action of G given by
restricting the coproduct. This action is usually called the translation action [45]; see
also [33]. C.KnG/sp is linearly spanned by the matrix coefficients fuk; i

g, where
u varies in the set of unitary finite-dimensional representations of G, k in the set of
fixed vectors for the restriction u�K and . i / is an orthonormal basis.

For any representation u, consider the space Lu of all linear intertwiners T ,
not necessarily faithful, between u and ˛. Lu becomes a Hilbert space with inner
product hS; T i ´ P

i T . i /S. i /
�, with . i / an orthonormal basis of Hu. For

an irreducible u, Lu ¤ 0 precisely when v 2 sp.˛/. The dimension of Lu is the
multiplicity of u in ˛. Lu is known to be finite-dimensional if ˛ is ergodic [4]. The
complex conjugate vector space xLu, is called the spectral space associated with u.
For any u 2 Rep.G/, associate the map

cu W Hu ! xLu ˝ C ; cu. /´P
k

xTk ˝ Tk. /;

where Tk is any orthonormal basis ofLu. Note that cu does not depend on the choice
of orthonormal basis. The cu’s are called multiplicity maps in [34].
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We can represent cu as a rectangular matrix whose i -th row is given by the multiplet
Ti D .Ti . 1/ : : : Ti . d // transforming like u under ˛.

The set of all coefficients fcui;j D Ti . j /; i; j g forms a linear basis for the dense
�-subalgebra Csp as u varies over a complete set of irreducible representations of
sp.˛/, [37], [2], [34].

The map u 7! Lu can be extended to a functor L W Rep.G/ ! Hilb from the
category Rep.G/ of unitary finite-dimensional representations of G to the category
of Hilbert spaces. If A 2 .u; v/ and T 2 Lv then T BA W Hu ! C lies in Lu. L is a
contravariant �-functor, hence it is convenient to pass to the dual Hilbert spaces, that
we naturally identify with the spectral spaces xLu. We thus get a covariant �-functor,
xL, the spectral functor of the ergodic action. The spectral functor and the multiplicity
maps are related by xLA ˝ I B cu D cv B A, A 2 .u; v/, for any u; v 2 Rep.G/.

For example, the spectral functor of a quantum quotient space C.KnG/maps the
representation u of G to the Hilbert space of fixed vectors of the restriction u�K .

There is a natural isometric inclusion

zxLu;v W xLu ˝ xLv ! xLu˝v

identifying a simple tensor xS˝ xT with the complex conjugate of the element ofLu˝v
defined by ˝� 2 Hu˝Hv ! S. /T .�/: It has been shown in [34] that .xL; zxL/ is
a quasi-tensor functor and that .C ; ˛/ may be reconstructed almost entirely from xL.
In detail, xL keeps complete information on the dense �-subalgebra Csp, its maximal
C*-norm and the restricted action ˛ �Csp . (However, xL does not keep track of the
original C*-norm of C , a feature already present in Woronowicz’version of Tannaka–
Krein duality [50].) Moreover, any quasi-tensor functor .�; Q�/ W Rep.G/! Hilb is
the spectral functor of an ergodic action of G on a unital C*-algebra.

For completeness, we recall that the spectral functor is a relaxed tensor functor if
and only if the quantum multiplicity of every irreducible equals its quantum dimen-
sion. We refer to [2] for the notion of quantum multiplicity and to [34] for the proof
of this fact. In the group case, this means that the multiplicity of every irreducible
equals its dimension.

Note that the finiteness theorem fails for compact quantum groups, as the Haar
measure is not a trace in general. On the other hand, the multiplicity bound theorem
holds, provided multiplicity and dimension are replaced by their noncommutative
analogues [4], [2].

2.6. Hilbert modules and Hilbert bimodules over C*-algebras. We refer to [3],
[20] for the definition of a (right) Hilbert module X over a C*-algebra C . The C -
valued inner product will be denoted by h � ; � i and we shall assume C -linearity on the
right. We recall in particular that if C D C,X is just a Hilbert space. Any C*-algebra
C gives rise to the Hilbert module, X D C , with inner product hc; c0i ´ c�c0. This
is usually called the trivial Hilbert module. More generally, if H is a Hilbert space,
we may form the algebraic tensor productH ˇC , which is a pre-Hilbert module with
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the obvious module structure and inner product

h ˝ c;  0 ˝ c0i D h ; 0ic�c0:

The completion will be denoted by H ˝ C . We shall only consider Hilbert modules
over unital C*-algebras. A Hilbert C -module X is called full if the inner products
hx; x0i span a dense subspace of C .

If X and X 0 are Hilbert modules over C , LC .X;X
0/ denotes the Banach space

of bounded adjointable maps from X to X 0.
A Hilbert module X over C will be called a Hilbert bimodule if there is a left

action of C onX given by a unital �-homomorphism C ! LC .X;X/. For example,
the trivial module becomes a Hilbert bimodule in the obvious way. If X 0 is another
Hilbert bimodule over C , CLC .X;X

0/ denotes the set of elements T 2 LC .X;X
0/

commuting with the left actions.
The great advantage of Hilbert bimodules versus Hilbert modules is that we may

form tensor products,X˝C Y see [3], [6]. The category with objects Hilbert bimod-
ules over C and arrows .X;X 0/´ CLC .X;X

0/ is a tensor C*-category with tensor
unit given by the trivial Hilbert bimodule.

3. Bimodule representations of compact quantum groups

In this section we define unitary representations of compact quantum groups on
Hilbert modules or Hilbert bimodules over unital C*-algebras. These representations
may be regarded as the noncommutative analogues of the G-equivariant Hermitian
bundles over compact spaces introduced by Segal [40], where G is a compact group.

In the following general definition we shall not assume our modules to be finite
projective (this would correspond to local triviality in the commutative case, by Swan’s
theorem [41]), even though we shall eventually be interested in finite projective Hilbert
modules.

Let us fix an action .C ; ˛/ of a compact quantum group G D .Q; 
/ on a uni-
tal C*-algebra C . By a Hilbert module representation of G, or simply a module
representation, we mean a C-linear map

v W Xv ! Xv ˝Q;

where Xv is a Hilbert C -module, Q is regarded as the trivial Hilbert Q-module and
Xv ˝ Q denotes the exterior tensor product of Hilbert modules, a Hilbert module
over C ˝Q, see [3] for details, such that

hv.x/; v.x0/iC˝Q D ˛.hx; x0iC /; x; x0 2 Xv; (3.1)

v.xc/ D v.x/˛.c/; x 2 Xv; c 2 C ; (3.2)

v ˝ 1Q B v D 1Xv
˝
 B v; (3.3)

v.Xv/1Xv
˝Q is dense in Xv ˝Q: (3.4)
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The simplest example of a module representation is the trivial representation, v D ˛
on the trivial Hilbert C -module. It will be denoted by �.

Note that if C D C this definition reduces to the notion of a strongly continuous
unitary representation of a compact quantum group on a Hilbert space; see [1], [51].

On the other hand, as mentioned at the beginning of the section, if C is com-
mutative and G is a compact group, this notion reduces to that of a G-equivariant
Hermitian bundle, the equivariance property being expressed by (3.2).

One can form the C*-category Mod˛.G/with objects the module representations
of G and arrows

.v; v0/´ fT 2 LC .Xv; Xv0/ j v0 B T D T ˝ 1Q B vg:
Note that .�; �/ can be identified with the fixed point algebra C˛ .

We are interested in module representations of a compact quantum group where
Xv is a Hilbert bimodule. v will be called a (Hilbert) bimodule representation of G
if in addition to (3.1)–(3.4),

v.cx/ D ˛.c/v.x/; c 2 C ; x 2 Xv: (3.5)

As an example, the trivial representation � is a bimodule representation, that we
shall denote by the same symbol.

We denote by Bimod˛.G/ the category with objects Hilbert bimodule represen-
tations and arrows .v; v0/ between two of them the space of intertwining operators
in Mod˛.G/ which in addition intertwine the left actions of C . If u, v are two ob-
jects of Bimod˛.G/ we define, for x 2 Xu, y 2 Xv , the tensor product bimodule
representation u˝ v by

u˝ v.x ˝ y/ D u.x/13v.y/23;
an element of Xu ˝C Xv ˝ Q. (3.2) and (3.5) show that u ˝ v is well defined on
the algebraic bimodule tensor productXu ˇC Xv and that (3.1), (3.2) , (3.3) and (3.5)
hold. The validity of (3.1) implies that u˝v extends uniquely to a bounded C-linear
map

u˝ v W Xu ˝C Xv ! Xu ˝C Xv ˝Q;

and the above equations still hold whereas (3.4) holds by construction. The tensor
product of two intertwiners is now well defined and intertwines the tensor product
representations. Note that if v is an object of Bimod˛.G/, v ˝ � and � ˝ v are
equivalent to v in Bimod˛.G/. This leads to the following result.

Theorem 3.1. The category Bimod˛.G/ with objects Hilbert bimodule representa-
tions of G and arrows the bimodule intertwining operators is a tensor C*-category.
The tensor unit is the trivial representation � and .�; �/ D fc 2 Z.C/ j ˛.c/ D c˝I g,
the set of central fixed points. There is an obvious faithful �-functor Bimod˛.G/!
Mod˛.G/.

We shall only consider ergodic actions, hence .�; �/ D C.
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4. The induced C*-bimodules for compact groups

We recall Mackey’s definition [23] of a representation induced from a closed subgroup
of a compact group and the Frobenius reciprocity theorem in the form later generalized
to tensor C*-categories.

Our discussion has points in common with [39]. The main point is that we
shall pass from Hilbert space representations to Hilbert bimodule representations.
The module approach to induction is particularly convenient in the compact case
as it provides finite-dimensional objects by Swan’s theorem [41] and moreover the
induction functor has good tensorial properties (cf. Theorem 4.1).

4.1. Mackey’s induced representation and Frobenius reciprocity. Let K be a
closed subgroup of a compact group G and v a (unitary, finite-dimensional) repre-
sentation of K on the Hilbert space Hv . Mackey’s induced representation Ind.v/ is
defined as right translation by elements of G on the Hilbert space of L2 functions �
on G with values in Hv satisfying

�.kg/ D v.k/�.g/; k 2 K; g 2 G;
where the inner product h�; �0i D R

KnGh�.g/; �0.g/id� involves the unique normal-
ized G-invariant measure � on KnG.

The main result is the Frobenius reciprocity theorem, asserting that there is an ex-
plicit linear isomorphism from the intertwining space .u�K ; v/ to .u; Ind.v//, taking
an intertwiner S to the intertwiner T , where T . /.g/ D S.u.g/ /. The Frobenius
isomorphism is natural in u and v, and hence makes restriction and induction into a
pair of adjoint functors. (In Section 10, we will briefly recall the notion of an adjoint
pair of functors. For details we refer the reader to MacLane’s book [25].) Conse-
quently, the spectrum of the induced representation Ind.v/ is the set of all irreducible
G-representations u for which .u�K ; v/ is nonzero. Another consequence is that any
irreducible representation v of K, and hence any v, is a subrepresentation of some
restriction to K of a representation u of G. Finally, the explicit form of the isomor-
phism shows that if T 2 .u; Ind.v// all the functions T . / are continuous. This last
remark leads to the next step.

4.2. Replacing Hilbert spaces with Hilbert bimodules. Since we do not loose any
information on the arrows, we may replace Hilbert spaces with Hilbert bimodules.
More precisely, we pass from the Hilbert space of the induced representation to the
space Cv of continuous Hv-valued functions � as above, which is a bimodule over
the commutative C*-algebra C.KnG/ of continuous functions on the quotient space
in the obvious way. Cv has an inner product given by pointwise evaluation of the
inner product of Hv ,

h�; �0i.g/´ h�.g/; �0.g/i:
This inner product is constant on each left cosetKg as v is unitary, andCv becomes a
Hilbert bimoduleoverC.KnG/. Hence Ind.v/becomes a HilbertC.KnG/-bimodule
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representation of G in the sense of the previous section, where ˛ is given by right
translation by elements of G on the quotient space. Note that Cv is the bimodule of
continuous sections of the classical equivariant vector bundle induced from v.

4.3. The induction functor and Swan’s theorem. We thus have a �-functor

Ind W Rep.K/! Bimod˛.G/;

taking an object v of Rep.K/ to Ind.v/ and an arrow T 2 .v; v0/ to the arrow
Ind.T / 2 .Ind.v/; Ind.v0// defined by Ind.T /�.g/ D T �.g/. We shall refer to Ind
as the induction functor.

If u�K is the restriction of a representation u ofG toK, there is a natural faithful
bimodule map,

U W Cu�K
! Hu ˝ C.KnG/; U�.g/ D u.g�1/�.g/:

U is invertible, and hence surjective, with inverse given by U�1�.g/ D u.g/�.g/.
Hence Cu�K

is free as a right (and left) module. Moreover, U becomes unitary when
Hu˝C.KnG/ is regarded as a Hilbert bimodule. Note that the tensor product action
u ˝ ˛ of G on Hu ˝ C.KnG/ is a Hilbert bimodule representation of G and U
becomes a unitary intertwiner from Ind.u�K/ to u˝ ˛ in Bimod˛.G/.

Let now v be a generic unitary finite-dimensional representation of K, and con-
sider a restricted representation u�K containing v as a subrepresentation. An iso-
metric intertwiner in .v; u�K/ defines an isometric intertwiner in .Ind.v/; Ind.u�K//
between the associated Hilbert bimodules representations, via the induction functor.
Therefore Ind.v/ is a subobject of Ind.u�K/. Moreover, composition with the map
U as above, gives rise to an isometry of Hilbert modules from Cv toHu˝C.KnG/.
Hence Cv is a finite projective module. This is essentially Rieffel’s proof [39] of
Swan’s theorem [41].

Taking into account the previous remark, we may conclude that bimodule repre-
sentations of the form u˝ ˛ suffice to generate the category of all induced bimodule
representations via subobjects. This viewpoint will play a role in the next sections.

On the other hand, the naturality of the Frobenius isomorphism shows that any
element of .Ind.v/; Ind.v0// is of the form Ind.T / for a unique T 2 .v; v0/, and so
Ind is a full functor.

4.4. Tensorial properties of the induction functor. We next analyse the behaviour
of Ind under tensor products. We may consider the tensor product of Hilbert bi-
modules, Cu ˝ Cv ´ Cu ˝C.KnG/ Cv . There are obvious isometric inclusions of
G-bimodule representations Cu ˝ Cv ! Cu˝v . These maps are in fact surjective,
and hence unitary, as, given isometries S 2 .u; u0�K/ and T 2 .v; v0�K/, mod-
ule bases for Cu and Cv are given by the functions .xi ´ g ! S�u0.g/ i / and
.yj ´ g! T �v0.g/�j / respectively, where  i and �j are orthonormal bases of the
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Hilbert spaces of u0 and v0. Hence, as u˝ v is a subrepresentation of .u0˝ v0/�K , a
module basis for Cu˝v is given by the functions g! S�˝T �u0˝ v0.g/ i ˝�j D
xi .g/˝ yj .g/. Thus Cu˝v can be naturally identified with Cu ˝ Cv . It follows that
Ind is a relaxed tensor functor in the sense recalled in Sect. 2. We summarize this
discussion in the following theorem, essentially a geometric form of the Frobenius
reciprocity theorem.

Theorem 4.1. The induction functor Ind W Rep.K/ ! Bimod˛.G/ is a full and
faithful �-functor into the bimodule representation category ofG, where ˛ is given by
right translation ofG on C.KnG/. For any v 2 Rep.K/, the C.KnG/-bimodule Cv
of Ind.v/ is finite projective. In particular, if v is the restriction of a representation
of G, Cv is free. The natural unitaries Cu ˝ Cv ! Cu˝v make Ind into a relaxed
tensor functor.

5. Full bimodule representations

In this section we introduce a notion central to this paper, that of a full bimodule
representation of a compact quantum group G. This is a compatibility condition
between the left and right bimodule structure of a Hilbert C*-bimodule carrying a
representation of G. As we shall see, in the classical case, triviality of the bimodule
structure means that every induced bimodule representation is full. The importance
of this notion is that all induced bimodule representations of compact quantum groups
constructed in this paper are full.

In the noncommutative situation, C.KnG/ with the translation action is replaced
by a compact quantum group G acting ergodically on a unital C*-algebra C . The
action will be denoted by ˛. It would be too restrictive to consider just quantum quo-
tient spacesKnG, asG can act on far more noncommutative C*-algebras. Following
Mackey, we may regard the ergodic action .C ; ˛/ as arising from a virtual subgroup.

Restricting or inducing a representation now looses its strict meaning. What is
left is the analogue of Ind.u�K/, which may be defined as acting on the free Hilbert
module Hu ˝ C . More precisely, it is easy to see that the map u˝ ˛ defined by

u˝ ˛. ˝ c/´ u. /13˛.c/23 2 Hu ˝ C ˝Q;  2 Hu; c 2 C ;

is a Hilbert module representation of G on Hu ˝ C .
Given T 2 .u; v/, with u, v 2 Rep.G/, define T ˝ 1C W Hu ˝ C ! Hv ˝ C by

T ˝ 1C . ˝ c/ D T ˝ c then T ˝ 1C 2 .u˝ ˛; v ˝ ˛/ in Mod˛.G/.

Proposition 5.1. The map Rep.G/ ! Mod˛.G/, taking u ! u ˝ ˛ and T 2
.u; v/! T ˝ 1C , is a faithful �-functor between C*-categories.

The previous proposition is a very weak form of Theorem 4.1 and our aim is
to generalize it to the noncommutative setting. This involves giving Hu ˝ C a left
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module structure making u˝ ˛ into a Hilbert bimodule G-representation for all u.
Although classical induction corresponds to the simplest solution (trivial bimodule
structure), in noncommutative case, it is not obvious how to select ergodic actions
.C ; ˛/ in such a way that the module representation u ˝ ˛ can be completed to a
bimodule representation. Even if this is the case, many left module structures will
not be relevant, and we claim that a compatibility condition between left and right
module structure is needed. This may already be seen for a compact group G acting
on a noncommutative C*-algebra C .

In this case the most natural left module structure on Hu ˝ C is the obvious left
multiplication by elements of C . With this left C -action, the right Hilbert module
representation u˝ ˛ becomes a Hilbert bimodule representation.

However, an intertwiner between two such bimodule representations, being a
bimodule map, must lie in B.Hu;Hu0/˝Z.C/;whereZ.C/ is the centre of C . Hence
these intertwiners do not see the noncommutativity of C , in contrast to the module
intertwining spaces, where .�; u˝˛/ is the space of multiplets � D .c1; : : : ; cd /, with
ci 2 C and ˛.ci / DP

j cj ˝ u�
j i , d being the dimension of u. As u varies over the

irreducible spectral representations of G, the linear span of the corresponding ci ’s is
a dense invariant �-subalgebra, cf. Sect. 2.

Hence the natural left action on Hu ˝ C gives rise to a tensor category which
does not allow one to reconstruct C , but only its centre. It would be desirable to
use instead a left C -action on Hu ˝ C where all the module G-intertwiners become
bimoduleG-intertwiners. This leads us to the notion of full bimodule representation.

Definition. Let G be a compact quantum group. A fixed vector � for a module
representation v on Xv is an element � 2 Xv such that v.�/ D � ˝ I . The set of
fixed vectors for v is precisely the intertwining space .�; v/ in Mod˛.G/. A bimodule
representation v will be called full if every fixed vector � for the underlying module
G-representation is central: �c D c� for c 2 C .

Note that the trivial representation is full since ˛ is ergodic.
The next result shows that if G is a group, classical induction is characterized

among functors u! u˝˛ from Rep.G/ to Mod˛.G/ by the property that under the
natural left action each u˝ ˛ becomes a full bimodule representation.

Proposition 5.2. LetG be a compact group and ˛ an ergodic action of G on a unital
C*-algebra C . Then the natural left C -action turns u˝ ˛ into a full representation
for all u 2 Rep.G/ if and only if C is commutative. In this case, C D C.KnG/ for
a closed subgroup K, unique up to conjugation, where ˛ acts by right translation,
˛gf .g

0/ D f .g0g/, f 2 C.KnG/. Hence u ˝ ˛ corresponds to the classical
induced representation Ind.u�K/.

Proof. If C is commutative, c D c for c 2 C ,  2 Hu ˝ C and u 2 Rep.G/.
Hence any module intertwiner between u˝ ˛ and u0 ˝ ˛ is a bimodule intertwiner.
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In particular, u˝ ˛ is full for all u. Conversely, assume that all the u˝ ˛ are full.
We have already seen that a fixed vector � for u˝ ˛ has the form � DP

j  j ˝ ci
for an orthonormal basis . j / ofHu where cj transforms like the complex conjugate
representation u� D .u�

ij / under ˛. Since � is supposed central, the elements ci
are central in C . If u varies in the spectrum of ˛, we get a dense commutative �-
subalgebra of C , hence C is commutative. As is well known, when ˛ is an ergodic
action on a unital commutative C*-algebra, the action is right translation onC.KnG/
by elements of G for a closed subgroup K of G, unique up to conjugation. Hence
u˝ ˛ can be identified with Ind.u�K/.

Of course, we expect that, requiring all u˝ ˛ to be full bimodule representations
for some left module structure, selects a proper subclass of ergodic actions. This is
indeed the case, as we shall see (cf. Sect. 6 and references there to later sections).

The situation becomes significantly worse if G is a quantum group, where the
natural left action onHu˝C may not even lead to a bimodule representation structure
on u˝ ˛.

Proposition 5.3. LetG be a compact quantum group, u 2 Rep.G/ and ˛ an ergodic
action of G on a unital C*-algebra C . Then u˝ ˛ is a bimodule representation for
the natural left module structure if and only if all coefficients of the irreducibles in
the spectrum of ˛ commute with the coefficients of u.

Proof. C is generated as a Banach space, by the entries of rectangular matrices .cvi;j /
transforming like irreducible G-representations

˛.cvi;j / D
P
p

cvi;p ˝ vp;j :

These entries are linearly independent [37], [2], [34] and the conclusion follows from
(3.5) .

We next discuss examples of full bimodule representations arising from quantum
quotients.

Examples fromquantumquotients. LetG D .Q; 
/be a compact quantum group,
and K a quantum subgroup. G acts on the quotient space KnG by right translation,
given by restricting the coproduct
 ofG. One can consider the left C.KnG/-action
on Hu ˝ C.KnG/ defined as follows. For c 2 C.KnG/, consider the element
�u.c/ 2 L.Hu/˝Q defined by

h i ˝ I; �u.c/ j ˝ I i ´P
h

u�
hi
cuhj ;

where . i / is an orthonormal basis of Hu. It is easy to check that this element is
independent of the choice of orthonormal basis. One could show directly that�u.c/ 2
L.Hu/ ˝ C.KnG/ and that �u makes u ˝ ˛ into a full bimodule representation.
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However, we refrain from giving complete details, as this will be proved in more
generality in Sect. 8. We just verify that it is full. If � ´P

 j ˝ cj 2 Hu ˝ C is a
fixed vector, i.e., 
.ci / DP

j cj ˝ u�
j i , then

c� DP
k

 k ˝ h k ˝ I; �u.c/�i D
P
k;j;h

 k ˝ u�
hk
cuhj cj

whereas
�c DP

k

 k ˝ ckc;

hence we need to show that for every c 2 C.KnG/,
P
h;j

u�
hk
cuhj cj D ckc

for all k. On the other hand, for a quotient space, we can find a K-fixed vector  of
Hu such that cj D u�

�;j , and the desired equality follows from the unitarity of u; see,
e.g., Section 2 in [34].

We are thus left with the problem of finding full Hilbert bimodules that lead to
an induction functor with good tensorial properties. We shall show that tensor C*-
categories with conjugates provide a natural solution to this problem, as well as large
classes of ergodic actions of compact quantum groups, among them the compact
quantum quotient spaces. However, many more will be discussed in Section 6.

6. Main results

In this section we illustrate the main ideas and results. Proofs will be given in later
sections.

We start with a pair of tensor C*-categories A and M related by a quasi-tensor
functor � W A ! M. The category A is assumed to be embeddable into Hilbert
spaces and we then pick a tensor functor � W A! Hilb. We will assume that A has
conjugates.

The simplest example is provided by a closed subgroup K of a compact group
G. We may choose � W Rep.G/ ! Hilb the embedding functor and � W Rep.G/ !
Rep.K/ the tensor functor restricting a representation of G to K.

Note however that this example has certain special features, like the fact that
M D Rep.K/ is embeddable, or that � is tensorial. In general, M is not assumed
to be embeddable, and, as recalled in Section 2, a quasi-tensor functor �, unlike a
relaxed tensor functor, may take a nonzero object to a zero object.

By Woronowicz duality, the embedding � defines a compact quantum group G�
such that every object u 2 A has an associated representation Ou 2 Rep.G� / on the
Hilbert space �u. The arrow spaces of Rep.G� / are the images under � of the arrow
spaces of A, . Ou; Ov/ D �..u; v//.
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The pair .�; �/ determines canonically a unital C*-algebra, C and an ergodic
action ˛ of G� on C . This fact has been shown in [34] in the special case where
� W A ! M is a tensor functor. To see that this holds in our more general setting
consider the composed �-functor

F W A ��!M! Hilb;

where the second functor is the so called minimal functor x 2 M ! .�; x/ 2
Hilb, which is quasi-tensor; see [34]. Since composition of quasi-tensor functors is
quasi-tensor (cf. Section 2.2), so is F . Thus there is a unique quasi-tensor functor
.�; Q�/ W Rep.G� /! Hilb such that the following diagram commutes:

A
F ��

� ����������� Hilb

Rep.G� /.

�

��

It follows that .�; Q�/ is the spectral functor of an ergodic C*-action of G� (cf. Sec-
tion 2.5), and this is .C ; ˛/. The following simple remark clarifies matters.

Proposition 6.1. For a fixed � W A ! Hilb, let .�; Q�/ W A ! M, .�0; Q�0/ W A !
M0 be a pair of quasi-tensor functors. If there is a full relaxed tensor functor
.�; Q�/ W M!M0 such that �� D �0, then the associated ergodic C*-actions .C ; ˛/
and .C 0; ˛0/ are conjugate.

Proof. By 8.4 in [34] two ergodic actions are conjugate if their spectral functors are

related by a quasi-tensor natural unitary transformation. Explicitly, if .xL; zxL/ and

.xL0; zxL0/ are the spectral functors of the actions, we need a unitary Uu W xLu ! xL0
u

for each u 2 Rep.G� /, natural in u, such that Uu˝v B zxLu;v D zxL0
u;v B Uu ˝ Uv and

U� D 1�. Now the spectral space of the ergodic action constructed from .�; �/ is
xLu ´ .�; �u/, and similarly for .�; �0/. Note that �, as a map between the Hilbert
spaces .�; �u/ and .�; �0

u/ is isometric and in fact unitary, since � is a full functor.
An easy computation shows that the collection of these unitaries satisfies the needed
relations.

Our first result concerns the construction of induced bimodule representations.
The construction reduces to .C ; ˛/ for u D �.

Theorem 6.2. Pick an object u of A with 1�u
¤ 0.

(a) The linear space BHu obtained quotienting
P
v.�v; �u/ ˝ �v by the linear

subspace generated by elements of the form M B �.A/ ˝  �M ˝ �.A/ B  can
be naturally completed into a nonzero full Hilbert module Hu over C , with a faithful
left action of C making it into a Hilbert bimodule over C . Hu depends only on �u.
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(b) There is a unique, full, bimodule representation, Ind.�u/, of G� on Hu with

Ind.�u/M ˝  DM ˝ Ov 
forM 2 .�v; �u/,  2 �v , Ov being the representation of G� on �v .

Theorem 6.2 will be proved in Sections 7 and 8. In Section 8, we shall see that
the map Ind W �u ! Ind.�u/ extends to a �-functor Ind W M� ! Bimod˛.G� / on
the full C*-subcategory M� of M whose objects are those in the image of �. It will
be called the induction functor.

In Section 8, we shall also prove the following analogue of Swan’s theorem in our
framework. The assumptions are those of Theorem 6.2. Ind� denotes the composed
functor.

Theorem 6.3. (a) For any object u of A there is a natural isometric intertwiner of
Hilbert module representations Su 2 .Ind.�u/; Ou˝ ˛/. In particular, if � is relaxed
tensor, then Su is unitary. Hence Hu is always finite projective as a right module and
free if � is relaxed tensor.

(b) For any arrowA 2 .u; v/, Ind�.A/ corresponds to the restriction of �.A/˝I
to the space of the associated subrepresentation of Ou˝ ˛ under Su.

In other words, for any arrowA 2 .u; u0/ in A, the following diagram commutes.

Ind.�u/
Ind�.A/ ��

Su

��

Ind.�u0/

Su0

��
Ou˝ ˛ �.A/˝I �� Ou0 ˝ ˛.

Note that if � is just quasi-tensor, M� may not be a tensor category. We ask,
however, whether Ind extends tensorially to the smallest full tensor subcategory
M�̋ of M generated by M�. Somewhat surprisingly, the answer is that it does.
Sections 9 and 10 will be devoted to discussing the following result, a generalization
of Theorem 4.1 to a noncommutative framework.

Theorem 6.4. The induction functor Ind W �u 2 M� ! Ind.�u/ 2 Bimod˛.G� /
extends uniquely to a full and faithful strict tensor functor to a strict tensor category
of Hilbert bimodule representations

Ind W M�̋ � Bimod˛.G� /:

Furthermore, .Ind; �/ gives rise to an adjoint pair of functors.

Since Ind is a strict tensor functor, the composed functor Ind� W A! Bimod˛.G� /
is quasi-tensor, relaxed tensor or strict tensor according as� is. The associated natural
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transformation eInd� is computed in Section 9. Moreover, since Ind is full, we may
regard it as an isomorphism between the original functor .�; Q�/ and .Ind�; eInd�/. In
the following commutative diagram, the dotted arrows summarize our construction
from the given pair .�; �/.

Hilb A
��� � ��

Ind� ��

M�̋

Ind
����

Bimod˛.G� /.

Remark. Combining Theorems 6.3 and 6.4 yields an explicit description of the quasi-
tensor functor � W A!M�̋ in terms of � and the ergodic action .C ; ˛/. This is then
used for the embedding results, Theorem 6.7 and Corollaries 6.8 and 6.9.

We next give two applications of our results, that originally motivated our work.
The first concerns a tensor C*-category with conjugates whose object set contains a
distinguished generating element. We give two results, corresponding to the selfcon-
jugate or non-selfconjugate case.

Theorem 6.5. Let M be a tensor C*-category with objects �, x, x2, …, where
x is a real or pseudoreal object defined by a solution R 2 .�; x2/ of the conju-
gate equations with kRjj2 � 2. Let F 2 Matn.C/ be an invertible matrix with
Tr.FF �/ D Tr..FF �/�1/ D kRk2. Then there is a full and faithful tensor functor
M ! Bimod˛.Ao.F //, where ˛ is the ergodic action of Ao.F / on C associated to
.�; �/.

Theorem 6.6. If the set of objects of M is generated, as a semigroup, by x and
a conjugate Nx, with intrinsic dimension d.x/ � 2, then conclusions analogous to
Theorem 6.5 hold where the quantum group is now Au.F /.

Examples. Note that any spectral functor of an ergodic action of a compact quantum
group arises from some pair .�; �/, as we may choose for � W Rep.G/! Hilb the em-
bedding functor and for� the spectral functor of the action,�´ xL W Rep.G/! Hilb.
(Recall that xL is quasi-tensor by [34], cf. Section 2.) On the other hand, many exam-
ples of noncommutative ergodic spaces are known to arise from pairs .�; �/, with � as
above, but where � is tensorial or relaxed tensorial. For example, compact quantum
quotients (completed in the maximal C*-norm) C.KnG/ arise from the restriction
functor � W Rep.G/ ! Rep.K/ [34]. The examples with high multiplicities of [2]
are associated with the composition � of a tensorial isomorphism with the embed-
ding functor, � W Rep.G/ ' Rep.G0/ ! Hilb. Examples of categories of the type
described in Theorems 6.5 and 6.6 arise from inclusions of II1 factors N � M with
finite Jones index. The ergodic action corresponding to the real object NMN is made
explicit in [36]. For any finite index inclusion of infinite factors described by an
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endomorphism 	 with d.	/ � 2, the tensor C*-category generated by 	 and N	 is of
the form described in Theorem 6.6.

The proofs of Theorems 6.5 and 6.6 will be given at the end of Section 10. The
next application concerns tensor categories M extending the representation category
of a compact group. The following results, discussed in Sections 11 and 12, shed light
on the problem of recognizing which tensor categories can be embedded into Hilbert
spaces. They are obtained combining our bimodule construction with the work of
Takesaki [43], Høegh-Krohn, Landstad and Størmer [15] and Wassermann [46].

In the following theorem G is a compact Lie group, and we fix a distinguished
faithful representation u such that every irreducible of G is a subrepresentation of a
tensor power of u. We denote by �G be the full subcategory of Rep.G/ with objects
�, u, u2, ….

Theorem 6.7. Let G be a compact Lie group with a distinguished faithful represen-
tation u, and let � W �G !M be a tensor functor. Let C be the ergodic C*-algebra
associated with � and the embedding functor � of �G into the category of Hilbert
spaces. Assume that the von Neumann algebra C 00 generated by C in the GNS repre-
sentation of the unique G-invariant trace is of type I and letK be a closed subgroup
ofG such thatL1.KnG/ ' Z.C 00/ as ergodicW �-systems. Then there is a full and
faithful tensor functor � W M�̋ ! Rep.K/.

Notice that in the above theorem M�̋ is simply the full subcategory of M with
objects the tensor powers of �u.

Remark. As we shall see in Section 11, the functor � is naturally associated with
�. However, the set of objects in the image of � in general does not generate all
the representations of K under tensor products, subobjects and direct sums. In fact,
in the particular case where each irreducible of G has multiplicity in C equal to
its dimension, then � maps each object to the trivial representation of K. Hence
M�̋ admits a tensor functor to a full subcategory of the category of Hilbert spaces.
Furthermore, any full multiplicity ergodic action of G on a type I von Neumann
algebra arises from a relaxed tensor functor �, its spectral functor.

At the other extreme, if C is commutative, as happens in particular if M has
permutation symmetry, see [34], then we get the following result, generalizing an
important step in [11] towards proving the abstract duality theorem for compact
groups.

Corollary 6.8. If C is commutative, and hence C D C.KnG/ as ergodicC*-systems,
then �.�u/ D u�K . Hence the completion of the image of � under subobjects contains
any irreducible of K.
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It is still an open problem whether ergodic actions of classical compact Lie groups
G on von Neumann algebras are always of type I. By Theorem 6.7, a positive answer
for a specific group G would guarantee the existence of an embedding for all tensor
C*-categories M containing the representation category of G and having the same
objects. Wassermann has shown this to be true for G D SU.2/ [46]. Taking the
known abstract characterization of Rep.SU.2// into account [10], see also [32], [34],
we obtain the following embedding result for tensor C*-categories containing a dis-
tinguished pseudoreal object of dimension 2. No permutation symmetry is assumed.

Corollary 6.9. Let M be a tensor C*-category whose object semigroup is generated
by a pseudoreal object x of dimension 2, i.e., with an intertwiner R 2 .�; x2/ such
that

R� ˝ 1x B 1x ˝R D �1x; kRk2 D 2:
Then there is a closed subgroup K of SU.2/ and a full and faithful tensor functor
M! Rep.K/.

Remarks and more results. A non-trivial problem is to construct new examples
of or even classify the quasi-tensor functors � W A ! M, for a given embeddable
tensor C*-category A. Our results connect this problem to that of classifying the
ergodic C*-actions of the quantum groupG� associated to an embedding � of A. On
one hand, as recalled in the examples previously discussed, every spectral functor of
an ergodic action of G� on a unital C*-algebra arises in this way. Even for ergodic
C*-actions of compact groups, where there are important results, not a lot is known
(cf. Section 2). In the quantum case very little is known, but it is already clear that
there are many new aspects.

Motivated by our applications, we are especially interested in the case where
� is tensorial or relaxed tensorial. The reconstruction results, Theorems 6.2 and
6.4, then lead to the problem of classifying those ergodic actions .C ; ˛/ where the
module representations u˝ ˛ (or a subrepresentation on a projective module in the
quasi-tensor case) can be made into full bimodule representations.

Not all ergodic actions, even of compact groups can arise in this way. In Section 11
we classify full bimodule representations arising from ergodic actions of compact
groups on type I von Neumann algebras. This provides an obstruction to the existence
of full bimodule representations (and hence to the existence of relaxed tensor functors
� W A ! M) in the case of low but nonzero multiplicities. For example, we derive
that neither the ergodic actions with full spectrum and irreducibles of low multiplicity
nor the adjoint action by a non-trivial irreducible representation of SU.2/ can arise.

7. Algebraic bimodules from pairs of functors

As in the previous section, we start with tensor C*-categories A and M and we
assume that A has conjugates. Let .�; Q�/ W A ! M be a quasi-tensor functor
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and � W A ! Hilb a tensor functor into the category of Hilbert spaces. We have an
associated unital C*-algebra C , the completion of a canonical dense �-subalgebra ıC .
In this section we generalize that construction at the algebraic level to get bimodules
over ıC . The norm completion and the quantum group action will be considered in
the next section.

7.1. The algebraic bimodules ıHu. Pick an object u of A. Let ıHu be the linear
space

P
v.�v; �u/ ˝ �v , the sum being taken over the objects of A, quotiented by

the linear subspace generated by elements of the form

M B �.A/˝  �M ˝ �.A/ B  :
Notice that, as the objects involved have conjugates [34], [35], and tensor units are
irreducible, we are actually taking a sum of finite-dimensional vector spaces [22]. It
should be noted that the bimodule ıHu in fact depends only on �u.

We next introduce a multiplication and adjoint,

� W ıHu � ıHu0 ! ıHu˝u0 ; � W ıHu ! ıH Nu;

to get a structure analogous to a �-algebra. These operations will be used in Section 8
to simplify computations, the multiplication � also plays a role in Section 9.

7.2. The multiplication � ��. For simple tensors � D L˝ 2 ıHu,  DM ˝� 2
ıHu0 , with L 2 .�w ; �u/, M 2 .�v; �u0/,  2 �w , � 2 �v , set

� � ´ Q�u;u0 B .L˝M/ B Q��
w;v ˝ . ˝ �/:

It is easy to check that these maps are well defined and associativity follows from
that of the functors � and � . In particular, ıH� is an algebra, denoted above by BC .
Note that the multiplication depends in general on u and u0 and not only on �u,
�u0 . However, if u0 (or u) is the tensor unit, it depends only on �u (or �u0) as
Q�u;� D Q��;u D 1�u

. Hence

ıHu is a BC -bimodule depending just on �u:

7.3. The functor �. We define a functor, denoted by � for the moment, from M�

to the category of ıC -bimodules. After the norm and the quantum group action have
been introduced, � will be the induction functor Ind.

Given Y 2 .�u; �u0/, we define a map

�.Y / W ıHu ! ıHu0 ; �.Y /.M ˝  /´ .Y BM/˝  :
It is easily checked that �.Y / is a bimodule map so � is a covariant functor, from
the full subcategory M� of M whose objects are the images of objects of A into the
category of BC -bimodules.
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7.4. The adjoint ��. We next define an adjoint on these bimodules. Here matters
are slightly more complicated.

As recalled in Section 2.2, if .�; Q�/ is a quasi-tensor functor and ifR, xR defines a

conjugate for an object u, then yR´ Q��Nu;u B�.R/ and yxR´ Q��
u; Nu B�. xR/ is a solution

of the conjugate equations for �u, the image solution of R, xR under � [34].
Fixing an object u 2 A and a solution R, xR of the conjugate equations for u, we

associate an antilinear map � W Hu ! H Nu in the following way. Choose solutions of
the conjugate equations v ! Rv; xRv of for all objects of A. Set

.M ˝  /� ´M
� ˝ jv 

for M 2 .�v; �u/,  2 �v , where � W .�v; �u/ ! .� Nv; � Nu/ is defined using image
solutions under � of the chosen solutionsRv; xRv for the running objects v appearing
in the sum and R, xR for the fixed object u respectively and jv ´ j�v corresponds to
�.Rv/ and �. xRv/ as in Section 2.1. Notice that � is well defined by the compatibility
properties with B,� and � , see Sections 2.1 and 2.2. Moreover, � is independent of the
choice v ! Rv; xRv in A for the running objects v, as ifY 2 . Nv; Qv/ is an invertible,M �

and jv becomeM � B�.Y �1/ and �.Y /jv B respectively. However, if we change
the solution of the conjugate equations for u using anX 2 . Nu; Qu/, .M˝ /� becomes
.�.X/M �/ ˝ .jv / D �.�.X//.M ˝  /�, hence the associated � changes. This
unpleasant feature will play no role in the construction of the bimodule representation.

We note that for u D � the �-operation is independent and makes ıC into a unital
�-algebra.

7.5. Compatibility of the various operations

Proposition 7.1. Let u, u0 be objects of A. If � 2 ıHu and � 0 2 ıHu0 , then
.� � � 0/� D � 0� � �� and ��� D �, where we have used tensor product solutions
of the conjugate equations for u˝ u0 and conjugate solutions for Nu.

Proof. Write � ´ L ˝  and � 0 ´ M ˝ � with L 2 .�w ; �u/,  2 �w , M 2
.�v; �u0/, � 2 �v . We may compute .� �� 0/� using image of a tensor product solution
of the conjugate equations for w and v. The first result follows from

.�u;u0 B L˝M B Q��
w;v/

� D � xu0; Nu BM � ˝ L� B Q��Nv; xw I
see Section 2.1 for the compatibility properties of � with˝ and B and Corollary 13.3
for the explicit computations of ��

w;v
� and ��

u;u0 . The second result follows from
M �� DM when a solution of the conjugate equation and successively the conjugate
solution is used.

Remark. Some care is required in using this proposition. For example, if u is
pseudoreal and irreducible and we use R 2 .�; u2/ to define �� in Hu, we must use
�R to define ��� in Hu.
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Proposition 7.2. For Y 2 .�u; �u0/, � 2 ıHu, � 0 2 ıHu0 , A 2 .u; z/, A0 2 .u0; z0/,

.�.Y /�/� D �.Y �
/��;

�.�.A˝ A0//� � � 0 D �.�.A//� � �.�.A0//� 0:

The last item to be introduced in this section is a sesquilinear form on the bimodules
ıHu. It will be shown to be positive in the next section, allowing us to pass from the
algebraic to the analytic level.

7.6. The sesquilinear form on the bimodules ıHu. We retain the notation of sub-
sect. 7.4 and define a BC -valued form on ıHu by setting

h�; � 0i ´ �.�.R/�/.�� � � 0/: (7.1)

The explicit formula, for � D M ˝  , � 0 D M 0 ˝  0, with M 2 .�v; �u/,  2 �v ,
M 0 2 .�v0 ; �u/,  0 2 �v0 , is

h�; � 0i ´ . yR� BM � ˝M 0 B Q��Nv;v0/˝ .jv ˝  0/:

Remark. This form does not depend on the chosen solution of the conjugate equations
for u. Indeed, if we change solution using an invertibleX , thenM � becomes �.X/ B
M �. This cancels the simultaneous change of yR�, which becomes yR�B�.X�1/˝1�u

.

We conclude this section with an explicit computation of the right-hand side
needed later.

Lemma 7.3. For � D M ˝  , � 0 D M 0 ˝  0, M 2 .�v; �u/, M 0 2 .�v0 ; �u/,
 2 �v ,  0 2 �v0

h�; � 0i D . ORv� B 1� Nv
˝ .M � BM 0/ B Q��Nv;v0/˝ .jv ˝  0/:

In particular, the form depends only on �u.

Proof. We have

yR� BM � ˝M 0

D yR� B Œ. ORv� ˝ 1� Nu
B 1� Nv

˝M � ˝ 1� Nu
B 1� Nv

˝ yxR/˝M 0�

D ORv� ˝ yR� B 1� Nv
˝M � ˝ 1� Nu

˝ 1�u
B 1� Nv

˝ yxR˝ 1�u
B 1� Nv

˝M 0

D ORv� B 1� Nv
˝ .M � BM 0/:

We have already noted that the form does not depend on the solution of the conjugate
equations for v and u and see now that it does not change if we replace u by another
object u0 such that �u D �u0 .
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8. The induced Hilbert bimodule representations

In this section we consider both the analytic aspect of the bimodules ıHu and the
quantum group action, leading to the proof of Theorems 6.2 and 6.3.

Recall that G� was defined in Section 6 as the compact quantum group defined
by the functor � via Woronowicz duality. Let ˛ be the action of G� on ıC defined by
˛.M˝ / DM˝ Ov. / forM 2 .�v; �/, 2 �v , where Ov denotes the representation
of G� on �v . ıC is known to have a maximal C*-norm and ˛ to extend uniquely to
an ergodic action of G� on the completed C*-algebra C [34].

8.1. Positivity of the sesquilinear form. Given objects u, v 2 A, � 2 �v , we let

Lu.�/ W ıHu ! ıHv˝u

be the operator of left multiplication by 1�v
˝ � 2 ıHv on BHu, hence obviously a

right module morphism. Now set

Lu.�/
� W ıHv˝u ! ıHu; Lu.�/

� ´ �.�.R�
v ˝ 1u//Lv˝u.jv�/:

If we change solutions of the conjugate equations using an invertible X 2 . Nv; Qv/, it
is not difficult to verify that, by Lemma 8.2 (c) below, Lu.�/� does not change.

Lemma 8.1. h;Lu.�/��i D hLu.�/; �i.

Proof. We have

h;Lu.�/��i D �.�.R�
u//.

� � .�.�.R�
v ˝ 1u//.1�v

˝ �/� � �//
D �.�.R�

u B 1 Nu ˝R�
v ˝ 1u//� � .1�v

˝ �/� � �
D hLu.�/; �i:

The second equality follows from Proposition 7.2 while in the last we have chosen
product solutions of the conjugate equations for v ˝ u.

As we shall soon see, the C -valued form h � ; � i is positive, so that Lu.�/� is
the adjoint of Lu.�/ as the notation suggests. These maps satisfy the following
properties.

Lemma 8.2. (a) �. Q�r;w B 1�r
˝ Y B Q��

r;u/Lu.�/ D Lw.�/�.Y /, Y 2 .�u; �w/,
(b) Lu.�/�Lu. / D h�; i,
(c) ��.A˝ 1u/Lu.�/ D Lu.�.A/�/,
(d)

P
i Lu.�i /Lu.�i /

� D �. Q�z;u B Q��
z;u/;where �i is an orthonormal basis of �z .
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For u D � the corresponding maps ıC ! ıHz , ıHz ! ıC will simply be denoted
by L.�/ and L.�/�. By (d), we have

X
L.�i /L.�i /

� D 1
for any orthonormal basis .�i / of �z . We shall use this relation to define a faithful
right module map Sz W ıHz ! �z ˝ ıC by

Sz� ´
X

i

�i ˝ L.�i /��;

clearly independent of the choice of the orthonormal basis.
We are now ready to show positivity of the sesquilinear form of ıHu.

Proposition 8.3. If �z ˝B C is considered as a right prehilbertian BC -module, the
map Sz satisfies

hSz�; Sz� 0i D h�; � 0i; �; � 0 2 ıHz :

Hence BHz is a finite projective, right prehilbertianmodule over ıC with the sesquilin-
ear form defined in (7.1) and Sz is an isometric right BC -module map. Its adjoint
S�
z W �z ˝ ıC ! ıHz is given by

S�
z . ˝ I / D 1�z

˝  
for  2 �z .
Proof. We have

hSz�; Sz� 0i DP
i

hL.�i /��; L.�i /�� 0i DP
i

h�; L.�i /L.�i /�� 0i D h�; � 0i:

Hence h�; �i is a faithful, positive, BC -valued inner product on BHz andSz an isometry.
We next compute the adjoint of Sz . If � 2 ıHz ,  2 �z , then

h�; S�
z ˝ I i D hSz�;  ˝ I i

DP
i

h�i ˝ L.�i /��;  ˝ I i
DP

i

.�i ;  /h�; 1z ˝ �i i D h�; 1z ˝  i;

as required.

We next compute the range projection Pz D SzS
�
z to see when Sz is unitary. If

 2 �z , then

Pz. ˝ I / D Sz.1�z
˝  /

DP
i

�i ˝ L.�i /�.1�z
˝  /

DP
i

�i ˝ ..�.R�
z / B Q� Nz;z B Q��Nz;z/˝ .jz�i ˝  //:
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Corollary 8.4. If Q� Nz;z B Q��Nz;z B �.Rz/ D �.Rz/ (e.g., when � is relaxed tensor),
then Sz is unitary, and hence BHz is a free right BC -module.

Proof. We now have

�.R�
z / B Q� Nz;z B Q��Nz;z ˝ .jz�i ˝  / D �.R�

z /˝ .jz�i ˝  /
D 1� ˝ �.R�

z /jz�i ˝  D h�i ;  i:
Hence Pz is the identity projection.

We conclude the subsection noting that property (c) of Lemma 8.2 implies that S
is a natural transformation from �� to � ˝ I , i.e., when A 2 .u; u0/, the following
diagram commutes:

ıHu

��.A/ ��

Su

��

ıHu0

Su0

��
�u ˝ ıC

�.A/˝I �� �u0 ˝ ıC .

This will be used at the end of the section when proving Theorem 6.3, the generalized
form of Swan’s theorem.

8.2. ıHu is algebraically full

Proposition 8.5. Let u be an object of A with 1�u
¤ 0. Then the coefficients h�; � 0i,

�, � 0 2B Hu, span BC .

Proof. Choose v D u, v0 D u ˝ v00, M D 1�u
, M 0 D M 00 B Q��

u;v00 with M 00 2
.�u˝�v00 ; �u/, D j�1

u �i , 0 D j�1
u �i˝ 00 in (7.1), where .�i / is an orthonormal

basis of � Nu and  00 2 �v00 . Summing over i gives

. yR�
u B 1� Nu

˝ .M 00 B Q��
u;v00/ B Q��Nu;u˝v00/˝ .�.Ru/˝  00/

D . yR�
u B 1� Nu

˝ .M 00 B Q��
u;v00/ B Q��Nu;u˝v00 B �.Ru ˝ 1v00//˝  00

D . yR�
u B 1� Nu

˝ .M 00 B Q��
u;v00/ B Q��Nu;u˝v00 B Q�u˝ Nu;v00 B �.Ru/˝ 1�v00 /˝  00

D . yR�
u B 1� Nu

˝M 00 B yRu ˝ 1�v00 /˝  00:

Now recall, see e.g. [22], that if 	, � , � are objects of a tensor C*-category with
conjugates, the map

T 2 .	˝ �; �/! 1 N� ˝ T BR� ˝ 1	 2 .�; N	˝ �/
is a linear isomorphism. Hence X ´ 1� Nu

˝M 00 B yRu ˝ 1�v00 is a generic element

of .�v00 ; � Nu ˝ �u/ and can, in particular, be any element of the form X D yRu B Y
where Y 2 .�v00 ; �/. Hence the linear span of the coefficients of the inner product on
BHu is BC as it contains any element of the form Y ˝  00.
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8.3. A useful formula for the left ıC -action on ıHu. As xi ´ S�
u . i ˝ I / D

1�u
˝  i , where . i / is an orthonormal basis of �u, is a Hilbert module basis, we

need only specify hxi ; c � xj i for c 2 ıC .

Proposition 8.6. If c D T ˝ � 2 ıC , with T 2 .�v; �/, � 2 �v , then

hxi ; c � xj i D . yR�
u B 1� Nu

˝ T ˝ 1�u
B Q��Nu;v;u/˝ .ju i ˝ � ˝  j /:

Example. LetK � G be an inclusion of a compact quantum groups. Then we have a
tensor functor� W Rep.G/! Rep.K/ taking a representation u ofG to its restriction
u�K to the subgroup; see, e.g., [33]. Hence BHu is a free module. BC is the canonical
dense �-subalgebra of C.KnG/ . The above formula then gives:

hxi ; c � xj i DP
r

u�
ricurj ; c 2 ıC.KnG/;

see [34]. This example was discussed at the end of Section 5.

Example. Let G be a compact quantum group acting ergodically on a unital C*-
algebra C , and let xL W Rep.G/ ! Hilb be the spectral functor of the action as
in [34], and shown there to be a quasi-tensor functor. Then BC is the �-algebra
spanned by the elements of C transforming under the action like unitary irreducible
G-representations. BHu ¤ 0 precisely when xLu ¤ 0 and, if u is irreducible, this
is equivalent to requiring u to lie in the spectrum of the action. We thus get a finite
projective BC -bimodule BHu. Computations similar to those in the above example,
show that the left BC -action is given by

hxi ; c � xj i DP
r

cu�
r;icc

u
r;j ;

where cur ´ .curj /j 2 xLu is an orthonormal basis of xLu.

Remark. The restriction functor and the spectral functor of a quantum quotient define
the same algebra BC . However, the associated bimodules are different in general as,
in the first case, they are free and never zero for a nonzero object, whilst in the second,
non-spectral representations give zero bimodules.

8.4. The completed Hilbert bimodules Hu. Consider BC with its maximal C*-
norm, which is finite by [34]. Completing BHu in the norm k�k ´ kh�; �ik1=2,
gives a right Hilbert module Hu over the completion C of BC . There is an isometry
Hu ! �u ˝ C extending the algebraic isometry Sz . Hence Hu is a finite projective
right Hilbert C -module. Consequently , every right module map on BHu extends to
an adjointable bounded map on Hu. Hence the left BC -action extends to a unital
�-homomorphism C ! LC .Hu/ thus making Hu into a Hilbert C -bimodule.

To show that the left action is faithful we need norm continuity of the multiplication
of bimodules.
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Proposition 8.7. The multiplication map

� ˝ � 0 2 ıHu ˝BC
BHu0 ! � � � 0 2 ıHu˝u0

is an isometry of prehilbertian BC -bimodules. Hence k� � � 0k � k�kk� 0k.

Proof. Using a product solution of the conjugate equations,

h� � � 0;  � 0i D �.�.R�
u˝u0//�

0� � �� �  � 0

D �.�.R�
u0// B �.�.1 xu0 ˝R�

u ˝ 1u0//� 0� � �� �  � 0

D .�.�.R�
u0//�

0�/ � .�.�.R�
u//�

� � / � 0

D h� 0; h�; i � 0i
D h� ˝ � 0; ˝ 0i;

as required.

Consequently, � extends to an associative multiplication � � � 0 on the completed
bimodules Hu and Hu0 .

Proposition 8.8. The extended left action of C on Hu is faithful whenever 1�u
¤ 0.

Proof. If c � � D 0 for all � 2 Hu, then

c � .�.�. xR�
u//� � / D �.�. xR�

u//c � � �  D 0
for all  2 H Nu. On the other hand, �.�. xR�

u//� �  D h��; i, and these coefficients
span BC if 1� Nu

¤ 0, i.e., if 1�u
¤ 0.

8.5. Quantum group representations on Hu. We next construct quantum group
representations on the bimodules Hu. LetG� denote, as before, the Woronowicz dual
of � W A! Hilb.

Proposition 8.9. Given an object u of A, there is a unique bimodule representation
Ind.�u/ of G� on Hu such that

Ind.�u/.M ˝  / DM ˝ Ov. /;
M 2 .�v; �u/,  2 .�; �v/. Ind.�u/ is a full bimodule representation.

Proof. The relation between the invertible antilinear maps jv W �v ! � Nv and the
coefficients of the corresponding representations of G� is given by ONvjv DP

�i ˝
Ov�
j�

v 
i ; 
, where �i an orthonormal basis of � Nv . This relation together with (7.1) allows

us to verify (3.1). (3.2) , (3.3) and (3.5) follow from straightforward computations,
whilst (3.4) is a consequence of the corresponding relation for the Hilbert space
representation Ov. We show that Ind.�u/ is a full representation. A G� -fixed vector
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� in Hu for the underlying module representation is a simple tensor of the form
� D T ˝ 1�, T 2 .�; �u/. For any c 2 C of the form c D Y ˝  , Y 2 .�v; �/,
 2 �v , we have

� � c D .T ˝ Y /˝  
D .T ˝ 1� B 1� ˝ Y /˝  
D .T B Y /˝  
D .1� ˝ T B Y ˝ 1�/˝  
D .Y ˝ T /˝  
D c � �:

Proposition 8.10. For any arrow X 2 .�u; �u0/, the norm continuous extension of
�.X/ to the completed Hilbert modules lies in the arrow space .Ind.�u/; Ind.�u0//

of Bimod˛.G� /.

Proof. Property (7.1) shows that � is a �-functor from the C*-category M� to the
category of prehilbertian BC -bimodules. Thus �.X/ is bounded and hence extends
uniquely to a bimodule map between the completed Hilbert bimodules. On the
other hand, the obvious commutation relations between �.X/ and the action of G�
imply that �.X/ is an intertwining operator between the corresponding bimodule
representations of G� .

8.6. The induction functor Ind W M� ! Bimod˛.G�/. We may thus define a
�-functor of C*-categories,

Ind W M� ! Bimod˛.G� /;

taking an object�u to Ind.�u/ and an arrowX 2 .�u; �u0/ to the extension of �.X/.
This is the induction functor.

8.7. The natural transformation S and the generalized Swan’s theorem. The
maps Su defined in Section 8.1 extend uniquely to isometries Su W Hu ! �u ˝ C

making the following diagrams commute for A 2 .u; u0/,

Hu

��.A/ ��

Su

��

Hu0

Su0

��
�u ˝ C

�.A/˝I �� �u0 ˝ C .

Proposition 8.11. Su 2 .Ind.�u/; Ou˝ ˛/ in the category Mod˛.G� /.
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Proof. For � D M ˝  i , with M 2 .�v; �u/, . j / an orthonormal basis of �v , and
orthonormal bases .�r/ and .p/ of �u and � Nu respectively,

Ou˝ ˛ B Su.M ˝  i /
DP

r

Ou˝ ˛.�r ˝ L.�r/�.M ˝  i //
DP

r

Ou˝ ˛.�r ˝ .�.R�
u/ B Q� Nu;u B 1� Nu

˝M B Q��Nu;v/˝ .ju�r ˝  i //
D P
r;s;p;j

�s ˝ .�.R�
u/ B Q� Nu;u B 1� Nu

˝M B Q��Nu;v/

˝ .p ˝  j //˝ Ousr. Ouju
��p ;
r

/� Ovj i
D P
r;s;p;j;h

�s ˝ ..�.R�
u/ B Q� Nu;u B 1� Nu

˝M B Q��Nu;v/

˝ .p ˝  j //˝ Ousr Ou�
h;r Ovj i hp; ju�hi

DP
j;h

�h ˝ .�.R�
u/ B Q� Nu;u B 1� Nu

˝M B Q��Nu;v/˝ .ju�h ˝  j //˝ Ovj i

DP
j

Su.M ˝  j /˝ Ovj i
D Su ˝ 1Q B Ind.�u/.M ˝  i /:

Remark. The map u ! Su is a natural transformation from Ind� to � ˝ 1 taking
values in Mod˛.G� /.

9. Extending Ind to a full tensor functor

As in the previous sections, we consider a pair of �-functors between tensor C*-
categories, � W A! Hilb and � W A! M, � is tensorial and � quasi-tensorial, and
A has conjugates.

Now M� is a C*-category, but not a tensor C*-category in general. This suggests
looking for an extension of Ind to M�̋ . Here we show that the full tensor subcategory
of Bimod˛.G� / with objects Ind.�u/ admits a natural realization as a strict tensor
C*-category T and that Ind extends uniquely to a strict tensor isomorphism between
M�̋ and T .

In the next subsection we construct new bimodules Hu associated with finite
sequences u D .u1; : : : ; un/ of objects of A. This construction reduces to that of the
bimodules Hu of Sections 7 and 8 for sequences of length 1.

If u D .u1; : : : ; un/ is such a sequence and if Nui is a conjugate of ui , we write Nu
for . Nun; : : : ; Nu1/. IfRui

, xRui
is a solution of the conjugate equations forui , we denote

byRu and xRu the solutions of the conjugate equations for u1˝� � �˝un given by the
product formula. Similarly, starting with the image solutions yRui

´ Q��Nu;u B �.Ru/
for�ui

in M, we use the product formula to define the solution yRu for�u1
˝� � �˝�un

.
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Lemma 9.1. yRu D Q��Nu;u B �.Ru/.
Proof. We prove the lemma by induction on the length of u. The result holds by
definition if this length is one. Suppose that u D .v; w/. Then, by construction,

yRu D 1� xw
˝ yRv ˝ 1�w

B yRw :
Hence by the induction hypothesis,

yRu D 1� xw
˝ Q��Nv;v ˝ 1�w

B 1� xw
˝ �.Rv/˝ 1�w

B Q��xw;w B �.Rw/:
But, by naturality,

1� xw
˝ �.Rv/˝ 1�w

B Q��xw;w D Q��xw;z;w B �.1 xw ˝Rv ˝ 1w/;
where z D Nvn ˝ � � � ˝ Nv1 ˝ v1 ˝ � � � ˝ vn if v D .v1; : : : ; vn/. On the other hand,
the following relation follows easily from associativity of �,

1� xw
˝ Q��Nv;v ˝ 1�w

B Q��xw;z;w D Q��Nu;u;

thus completing the proof.

9.1. New Hilbert bimodules Hu. Let u D .u1; : : : ; un/ be a finite sequence of
objects of A and set

�u´ �u1
˝ � � � ˝ �un

:

Let ıHu be the linear space
P
v.�v; �u/˝�v , the sum being taken over the objects of

A, quotiented by the linear subspace generated by elements of the formM B�.A/˝
T �M ˝ �.A/ B T:

We proceed as in the construction of the bimodules ıHu of Section 7, defining
successively multiplication, the functor �, adjoint and sesquilinear form.

Define bilinear maps ıHu � ıHu0 ! ıHu;u0 : For � D L˝ ,  DM ˝�, where
L 2 .�w ; �u/, M 2 .�v; �u0/,  2 �w , � 2 �v , set

�´ .L˝M/ B Q��
w;v ˝ . ˝ �/:

It is easy to check that these maps are well defined and associative.
For a reason that will soon become clear, this new multiplication does not coincide

with the multiplication � � of Section 7 if u or u0 are objects of A. We have therefore
used a different notation. However, the two multiplications coincide if u or u0 are the
tensor unit �, as Q��;u D Q�u;� D 1�u

. Hence ıH.�/ is again the algebra ıC and ıHu is
a ıC -bimodule. Furthermore, as a bimodule, we do have ıHu D ıHu if u D .u/.

Given Y 2 .�u; �u0/ a bimodule map, �.Y / W ıHu ! ıHu0 is defined in the
obvious way. � is a covariant functor from M�̋ to the category of BC -bimodules. In
particular, if u D .u1; : : : ; un/,

�. Q�u/ W ıHu ! ıHu1˝���˝un
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relates the new and old bimodules. Moreover, the respective multiplications are
related by

�. Q�u;u0/.�/ D .�. Q�u/�/ � .�. Q�u0//

for � 2 ıHu,  2 ıHu0 . In particular

�. Q�u;v/� D � � ; � 2 ıHu;  2 ıHv:

The adjoint � W ıHu ! ıHxu is defined as before by

.M ˝  /� ´M
� ˝ jv ;

but where � now refers to yRu. The adjoint is well defined and independent of
the choice of solutions of the conjugate equations for v. However, if we change the
solution of the conjugate equations foru using a sequence of invertibles .X1; : : : ; Xn/
wth Xi 2 . Nui ; Qui /, .M ˝  /� becomes .�.X1/˝ � � � ˝ �.Xn/ BM �/˝ jv .

Nevertheless � is an antilinear map satisfying the properties of Proposition 7.1 if
we use tensor product and conjugate solutions.

The BC -valued form on ıHu is defined by

h�; � 0i ´ �. yR�
u/.�

�� 0/:

One can easily check that a formula similar to (7.1) holds,

h�; � 0i D . yR�
v B 1� Nv

˝ .M � BM 0/ B Q��Nv;v0/˝ jv ˝  0; (9.1)

hence the form reduces to that of ıHu if u D .u/. As before, this form is independent
of the choice of the conjugate of u in view of how �� changes and of Lemma 9.1.
The above expression shows that � is a �-functor.

Since Q�u is an isometry, (9.1) shows that �. Q�u/ preserves the corresponding
forms:

h�. Q�u/�; �. Q�u/� 0i D h�; � 0i; �; � 0 2 ıHu;

generalizing Proposition 8.7. On the other hand, ıHu1˝���˝un
is a finite projective

prehilbertian bimodule, so the same is true of ıHu.
Completing ıHu in the norm derived from the maximal C*-norm of ıC yields a

Hilbert C -bimodule Hu. � extends to a �-functor from M�̋ to the C*-category of
Hilbert C -bimodules. In this category Hu is a subobject of Hu1˝���˝un

.

We next regard the associative multiplication �; ! � as a bimodule map defined
on the bimodule tensor product ıHu ˝BC

ıHu0 ! ıHu;u0 :

Theorem 9.2. The multiplication � ˝  ! � extends uniquely to a unitary map
between Hilbert bimodules

� ˝  2 Hu ˝C Hu0 ! � 2 Hu;u0 :
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Proof. Using successively that�. Q�u/ is isometric, Proposition 8.7, and relation (9.1),
we conclude that multiplication is a densely defined isometry, extending to an isometry
of the completions. To complete the proof it suffices to show that the set of all �,
with � 2 ıHu,  2 ıHu0 span ıHu;u0 .

Since multiplication is associative, it suffices to choose u to be a sequence .u/
consisting of a single element. Consider an element of ıHu;u0 of the form M ˝  ,
where M 2 .�v; �u ˝ �u0/ and  2 �v . Using the explicit linear isomorphism

.�v; �u˝�u0/ ' .� Nu˝�v; �u0/, we may writeM D 1�u
˝ T B yxRu˝ 1�v

where
T 2 .� Nu ˝ �v; �u0/. We may also write T D T 0 B Q� Nu;v , with T 0 2 .� Nu˝v; �u0/.
Hence

M D 1�u
˝ .T 0 B Q� Nu;v/ B yxRu ˝ 1�v

D 1�u
˝ T 0 B 1�u

˝ Q� Nu;v B Q��
u; Nu ˝ 1�v

B �. xRu/˝ 1�v

D 1�u
˝ T 0 B Q��

u; Nu˝v B Q�u˝ Nu;v B �. xRu/˝ 1�v

D 1�u
˝ T 0 B Q��

u; Nu˝v B �. xRu ˝ 1v/:
Substituting this into M ˝  gives

M ˝  D .1�u
˝ T 0 B Q��

u; Nu˝v/˝ .�. xRu/˝  /:
Writing �. xRu/ DP

j �j ˝ ju�j , for an orthonormal basis .�j / of �u, gives

M ˝ DP
j

�jj ; �j D 1�u
˝ �j 2 ıHu; j D T 0˝ .ju�j ˝ / 2 ıHu0 :

On one hand, as the multiplication maps are isometric, HuHu0 realizes the tensor
product of Hilbert bimodules. It has the virtue of being strictly associative, as so are
the multiplication maps. We replace the original tensor product of Hilbert bimodules
by this strictly associative tensor product. On the other hand, since the multiplication
maps are unitary, we have tensor product decompositions,

Hu D Hu1
: : :Hun

;

for u D .u1; : : : ; un/: (Note that the right-hand side is already norm closed, by finite
projectivity.) In particular, if 1�ui

¤ 0 for all i , Hu is a full right Hilbert module
with a faithful right C -action. We thus have the following result.

Theorem 9.3. � is a strict tensor �-functor from M�̋ to the tensor C*-category of
Hilbert C -bimodules (with a strictly associative tensor product).

9.2. G�-representations on the bimodules Hu

Proposition 9.4. Given a finite sequence u D .u1; : : : ; un/ of objects of A, there is a
unique bimodule representation Ind.�u/ of G� on Hu such that, forM 2 .�v; �u/,
 2 �v ,

Ind.�u/.M ˝  / DM ˝ Ov :
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Ind.�u/ is a full bimodule representation. Under the tensor product decomposition
Hu D Hu1

: : :Hun
, Ind.�u/ D Ind.�u1

/˝ � � � ˝ Ind.�un
/.

Proof. The only non-trivial statement is that Ind.�u/ is full. A G� -fixed vector Hu

is of the form M ˝ 1�, with M 2 .�; �u/. As for the old modules, Proposition 8.9,
one shows this element to be central.

As before, �.X/ intertwines the representations Ind.�u/ and Ind.�u0// for X 2
.�u; �u0/. We therefore have a strict tensor functor

Ind W M�̋ ! Bimod˛.G� /;

the unique tensor extension of the functor Ind defined on M� of the previous section.
We are now ready to state a central result of this paper, a version of the Frobenius

reciprocity theorem 4.1 for quasi-tensor functors.

Theorem 9.5. Ind is a full and faithful strict tensor functor from M�̋ to the category
of bimodule representations of G� if the latter is endowed with a strictly associative
tensor product.

Proof. M is a tensor C*-category with conjugates and Ind a relaxed tensor functor,
hence automatically faithful [35]. It remains to show that Ind is full. This follows

from the linear isomorphisms � W .�u; �u0/! .�; �u0; Nu/, T ! X D T ˝ 1� Nu
B yxRu;

and ı W .Ind.�u/; Ind.�u0//! .�; Ind.�u0; Nu//, defined similarly, where� is replaced
by the quasi-tensor functor Ind�. Hence any intertwiner in .Ind.�u/; Ind.�u0// is
determined by a fixed vector in Hu0; Nu, which we already know to arise from an
intertwiner in .�; �u0; Nu/, hence lying in the image of Ind.

Remark. The last proof uses only the functor of tensoring on the right by an identity
arrow. This also makes sense for module intertwiners and hence shows the following
result.

Theorem 9.6. Any module intertwiner from Ind.�u/ to Ind.�u0/, namely an inter-
twiner in the C*-category Mod˛.G� /, is automatically a bimodule intertwiner.

9.3. The functor Ind� W A ! Bimod˛.G�/. We finally define the composed func-
tor

Ind� W A! Bimod˛.G� /:

Theorem 9.7. If .�; Q�/ is a quasi-tensor (relaxed tensor, tensor) functor, Ind� is a
quasi-tensor (relaxed tensor, tensor) functor too, with natural transformation AInd.�/
given by the � -multiplication maps,

Ind. Q�u;u0/ W �� 0 2 HuHu0 ! � � � 0 2 Hu˝u0 :

Furthermore, Ind is tensor isomorphism from .�; Q�/ to .Ind�; eInd�/.
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Proof. Since Ind is a strict tensor functor and� is quasi-tensor (relaxed tensor, tensor,
respectively), their composition Ind�, with the composed natural transformation, is
quasi-tensor (relaxed tensor, tensor, resp.); see Section 2.2. This natural transforma-
tion is precisely the map �� 0 ! � � � 0. The last statement is clear.

We next prove Theorems 6.5 and 6.6.

Proof of Theorems 6.5 and 6.6. We briefly recall from [35] how to get a pair of func-
tors � and � . Assume that M has conjugates and an irreducible tensor unit �, and fix
an object x in M with intrinsic dimension > 1 and a standard solution R, xR of the
conjugate equations for x. By Jones’s result [18] the intrinsic dimension of x can
only take the values d D 2 cos �

`
, for ` D 3, 4, … or d � 2. Consider the universal

tensor �-category Td with objects the finite words in u and Nu and whose arrows are
generated by two arrows S 2 .�; Nu˝ u/ and xS 2 .�; u˝ Nu/ subject to the relations
expressing .S; xS/ as a normalized solution of the conjugate equations for u. � is
the empty word and acts as a tensor unit. Td is a tensor C*-category for the allowed
values of d . Furthermore there is a tensor functor � from Td to the category of Hilbert
spaces if and only if d � 2, and all such functors can be easily classified. Picking
an embedding � , we get an associated compact quantum group G� D Au.F /, where
F is an invertible matrix such that Tr.FF �/ D Tr..FF �/�1/ D R�R. Furthermore
we have a canonical tensor functor � W Td ! M such that �.u/ D x, �. Nu/ D Nx,
�.S/ D R, �. xS/ D xR, and we may now apply our main result.

Similarly, given a real or pseudoreal solution of the conjugate equations in M,
namely R 2 .�; x2/ with R� ˝ 1x B 1x ˝ R D ˙1x , we consider the associated
universal Temperley–Lieb categories Trd and Tpd with generating arrow S 2 .�; u2/.
If R� B R � 2, a choice of an embedding of Tpd or Trd) into the Hilbert spaces
provides a quantum group Ao.F / with F an invertible matrix satisfying F xF D ˙I ,
Tr.FF �/ D Tr..FF �/�1/ D R� BR.

10. An adjoint pair of functors

Recall that a pair of functors F W ˆ ! ˆ0 and F 0 W ˆ0 ! ˆ between categories is
an adjoint pair if, for any pair of objects � 2 ˆ, �0 2 ˆ0, there is an isomorphism
ˇ
0;
 W .�0; F
/! .F 0


0 ; �/ natural in � and �0.
In this section we show that, essentially by construction, the pair .Ind; �/ gives

rise to an adjoint pair.
To this end, we assume as before that � W A ! Hilb is a tensor functor into the

category of Hilbert spaces, so that A is a category of representations of a compact
quantum group G� , and that � W A ! M is a quasi-tensor functor of strict tensor
C*-categories with irreducible tensor units and construct the corresponding Hilbert
C*-bimodules.
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Following Mackey’s construction of the induced representation for locally com-
pact groups, we consider the scalar-valued inner product on Hu given by composing
the C -valued inner product with the unique G� -invariant faithful state. We thus
get a Hilbert space, Hu, and the bimodule representation Ind.�u/ of G� defines a
densely defined representation of G� on Hu. This representation is isometric as
the state is invariant and extends uniquely to a unitary representation of G� again
denoted by Ind.�u/. However, although we start with a finite-dimensional rep-
resentation, the Hilbert space of the induced representation in general fails to be
finite-dimensional, hence we need to work with the category of not necessarily finite-
dimensional unitary representations of G� , denoted by eRep.G� /. We thus have a

functor, Ind W M�̋ !eRep.G/. We let eM�̋ be the tensorW �-category completion of
M�̋ under infinite direct sums, cf. [22]. Then� and Ind extend uniquely to �-functors

on eRep.G/ and eM�̋ , respectively.

Theorem 10.1. The pair of functors Ind W eM�̋ !eRep.G� / and� W eRep.G� /! eM�̋

is an adjoint pair.

Proof. Note that the linear span of the images of elements of the form T ˝ , where
T 2 .�v; �u/ and  2 �v , where v runs over the irreducible representations of G� ,
is dense in Hu. If we fix an irreducible v, the space of intertwiners .v; Ind.�u// is
given precisely by the set of maps yT W  2 �v ! T ˝  2 Hu, with T 2 .�v; �u/.
Hence there is a linear isomorphism .�v; �u/ ! .v; Ind.�u//, natural in �u. This
isomorphism extends uniquely to a linear isomorphism natural in v.

11. Full bimodule representations from group actions

Which ergodic actions .C ; ˛;G/ can arise from a pair of functors Hilb
� � A

��! M

with � relaxed tensor? In this section we attack this problem when G� is a compact
group.

By Theorems 6.2 and 6.3, a necessary condition is that u˝ ˛ can be made into
a full bimodule representation of G for every u 2 Rep.G/. Using the results of
[43], [15], given an ergodic action .C ; ˛/ of G we shall construct, a canonical full
bimodule representation on everyG-submoduleXu � Hu˝C , where u is an object
of Rep.G/. The submodule is the full module Hu ˝ C for all u precisely when the
multiplicity of u is maximal.

It turns out thatu! Xu is a quasi-tensor functor in general , related to the spectral
functor of the ergodic action, and is relaxed tensor when the ergodic action is of full
multiplicity.

We shall classify the full bimodule structures on the intermediate projective G-
submodules Xu � Y � u ˝ ˛ assuming that the weak completion of C in the
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GNS representation of the invariant trace is a finite type I von Neumann algebra, and
hence induced by an ergodic action ˇ of a closed subgroupK on a matrix algebra F ,
cf. Section 2.3 (Theorem 11.9).

This provides an obstruction to the existence of full bimodule representation struc-
tures when multiplicities of the primitive action ofK are low but nonzero. More pre-
cisely, we shall show that certain low multiplicity actions as well as certain ergodic
actions of SU.2/ are excluded (Corollary 11.11, Example 11.10).

11.1. The minimal full bimodule representations. Let .F ; ˇ;K/ be an ergodic
action of a compact groupK on a unital C*-algebra F . Given an object v of Rep.K/,
recall from Section 2 that the spectral space xLv is the complex conjugate of the set
Lv of all linear maps T W Hv ! F intertwining v with ˇ and that, by the multiplicity
bound theorem, Section 2.3, dim.xLv/ � dim.v/. If v is irreducible, dim.xLv/ is the
multiplicity of v in ˇ, denoted by mult.v/. Recall also that xLv is a Hilbert space
with inner product h xS; xT i ´P

i S. i /T . i /
�, where . i / is an orthonormal basis

of Hv .
If xLv ¤ 0, we construct a natural nonzeroK-module subrepresentation of v˝ ˇ

with a full bimodule structure.
Consider the linear map Zv W xT 2 xLv ! P

 i ˝ T . i /� 2 Hv ˝ F , clearly
independent of the choice of the orthonormal basis. The range of Zv is the space
of K-fixed vectors in Hv ˝ F for the action v ˝ ˇ. We may identify Zv with
a rectangular matrix .Tk. i /�/, where xTk is an orthonormal basis of xLv . Since
�˝ ˇk.Zv/ D v.k/� ˝ IZv , Z�

v is referred to as the eigenmatrix of ˇ in [47].
Now, Zv takes the inner product of xLv to the inner product of the range inherited

from Hv ˝ F as a right Hilbert F -module, which on that subspace indeed takes
values in C since ˇ is ergodic.

Extend Zv uniquely to an adjointable bounded map between Hilbert modules
xLv ˝F ! Hv ˝F , still denoted by Zv . It is easy to verify that Zv is an isometry,
Z�
vZv D I , intertwining the module representations �xLv

˝ ˇ and v ˝ ˇ, where �xLv

is the trivial representation of K on the Hilbert space xLv . We may clearly identify
LF .xLv ˝ F ;Hv ˝ F / ' L.xLv;Hv/ ˝ F . Note that Xv ´ Zv.xLv ˝ F / is a
projective F -submodule of Hv ˝ F :

Remark. An easy computation shows that, if � is the unique invariant normalized tra-
cial state of F and Tr is the non-normalized trace of L.Hv/, Tr˝�.Ev/ D dim.xLv/,
where Ev ´ ZvZ

�
v . Hence Zv is a unitary if and only if dim.Lv/ D dim.Hv/, i.e.,

xLv must have maximal dimension.

By the intertwining property of Zv , Xv is K-invariant. There is a faithful unital
�-homomorphism

� W F ! EvL.Hv/˝ F Ev; �.f / D ZvI ˝ f Z�
v ;

making Xv into a F -bimodule.
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Proposition 11.1. For any representation v of K with xLv ¤ 0, � makes Xv into a
nonzero full bimodule K-representation, isomorphic to xLv ˝ F via Zv with trivial
left and right F -actions, where K acts as �xLv

˝ ˇ.

Proof. By construction,K-fixed vectors are F -central inXv , as they correspond via
Zv to the fixed vectors for �xLv

˝ ˇ, namely to xLv ˝C, clearly central for the trivial
bimodule action. Property (3.5) follows just as easily.

11.2. The intermediate full bimdule representations. Given .F ; K; ˇ/ as before,
we look for extensions of Xv to full bimodule structures on intermediate projective
K-module subrepresentations

Xv � Y � Hv ˝ F :

Clearly, such submodules are the ranges of projections E 2 L.Hv/˝ F satisfying

E � Ev; (11.1)

and the K-invariance condition

Ad v.k/˝ ˇk.E/ D E; k 2 K: (11.2)

In what follows, we set Zv D 0 and Xv D f0g if xLv D f0g.

Proposition 11.2. Given v 2 Rep.K/ and a projection E 2 L.Hv/˝ F satisfying
(11.1) and (11.2), a unital �-homomorphism  W F ! EL.Hv/˝F E defines a full
K-bimodule representation on Y D E.Hv ˝ F / if and only if

.ˇk.f // D Ad v.k/˝ ˇk..f //; k 2 K; (11.3)

.f /Zv D ZvI ˝ f; f 2 F : (11.4)

Proof. The proof is straightforward. We just note that (11.3) corresponds to left K-
equivariance in the sense of (3.5), whilst the property of being a full representation
is expressed by (11.4), as for Xv .

Corollary 11.3. If xLv has maximal dimension, v ˝ ˇ becomes a full bimodule
K-representation in a unique way.

Proof. By the previous remark, Zv is a unitary in L.Hv/˝F , and Xv D Hv ˝F .
 is uniquely determined by (11.4). This formula defines a �-homomorphism clearly
satisfying (11.1)–(11.3) for E D I .
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11.3. Intermediate full bimodules for induced C*-actions. Now assume that K
is a closed subgroup of a compact group G acting on F , which may be either a C*-
algebra or a von Neumann algebra. This action, ˇ, is supposed to be continuous in the
appropriate topology. Consider the induced algebra Ind.F / defined as in Section 2.3,
the action 	 of G being given by right translation.

Let v be a finite-dimensional unitary representation of G. In the next, known,
proposition we determine the spectral spaces for the action 	 in terms of those of the
original action ˇ.

Proposition 11.4. The map T 2 Lˇ
v�K
! T 0 2 L�v , with T 0 W Hv ! Ind.F / defined

by T 0. /.g/´ T .v.g/ /, is unitary. As a consequence,

Z�v .g/ D v.g/� ˝ IZˇv�K
;

hence

E�v .g/ D v.g/� ˝ IEˇv�K
v.g/˝ I:

Proof. Let us extend ˇ and 	 to unitary representations ofK and G, respectively, on
the L2-completions of F and Ind.F / for the unique invariant traces. The extension
of 	 is clearly the representation induced from the extension of ˇ in the sense of
Mackey. Extending in this way does not increment the spectra. Hence L�v may be
determined by the classical Frobenius reciprocity theorem, showing that T ! T 0 is
a linear isomorphism. It is easily checked to be an isometry. Therefore

Z�v .T
0/.g/ DP

i

 i ˝ T .v.g/ i /�;

showing that if . i / is an orthonormal basis of Hv and . xTj / an orthonormal basis of
xLv , then .� 0

j /, where � 0
j .g/´

P
 k ˝ Tj .v.g/ k/�, is an orthonormal basis of the

Hilbert space of G-fixed vectors in Hv ˝ Ind.F /, hence the jr-entry of Z�v is the
function

Tr.v.g/ j /
� D .v.g/� ˝ IZˇ

v�K
/jr :

If z and v are representations ofK, we identify the space of bounded adjointable
F -module maps LF .Hz ˝ F ;Hv ˝ F / with L.Hz;Hv/˝ F . Hence

.z ˝ ˇ; v ˝ ˇ/ D fT 2 L.Hz;Hv/˝ F j �˝ ˇk.T / D v.k/� ˝ IT z.k/˝ I g:
As a K-space, this space is linearly isomorphic to

.Hv˝Nz ˝ F /v˝Nz˝ˇ D xLˇv˝Nz

and therefore finite-dimensional. This remark, combined with the previous propo-
sition, shows the following result, needed later. A module map T 2 LInd.F /.H ˝
Ind.F /;H 0 ˝ Ind.F // will be regarded as a function T W G ! L.H;H 0/˝ F .
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Corollary 11.5. There is a full and faithful �-functor from the full subcategory of
Mod�.G/ with objects v ˝ 	, v 2 Rep.G/, to the category Modˇ .K/, given by

v ˝ 	! v�K ˝ ˇ; T 2 .v ˝ 	; v0 ˝ 	/! T .1/ 2 .v�K ˝ ˇ; v0�K ˝ ˇ/:
The inverse map on arrows is given byA! A0 withA0.g/´ v0.g/�˝IAv.g/˝I .

The functor T ! T .1/ defined in the above corollary will be referred to as the
evaluation functor.

Given a projection E 2 L.Hv/ ˝ F and a unital �-homomorphism  W F !
EL.Hv/˝F E defining a full bimodule structure on the intermediateK-moduleY D
EHv ˝ F , i.e., satisfying conditions (11.1)–(11.4), we may consider the projection
zE 2 C.G;L.Hv/˝ F / ' L.Hv/˝ C.G;F /,

zE.g/´ v.g/� ˝ IEv.g/˝ I;
which clearly satisfies

�˝ˇk. zE.g// D v.g/�˝I �˝ˇk.E/v.g/˝I D v.kg/�˝IEv.kg/˝I D zE.kg/;
hence zE 2 L.Hv/ ˝ Ind.F /. We may also consider the map taking a continuous
function f on G with values in F to the function

Q.f /.g/´ v.g/� ˝ I.f .g//v.g/˝ I:
Similar computations and .11:3/ show that if f 2 Ind.F / then Q.f / 2 L.Hv/ ˝
Ind.F / and zE Q.f / D Q.f / D Q.f / zE, hence Q is in fact a unital �-homomorphism
between

Q W Ind.F /! zEL.Hv/˝ Ind.F / zE;
and . zE; Q/ defines a bimodule over the induced algebra Ind.F /. We shall refer to it
as the induced bimodule.

Theorem 11.6. The induced bimodule . zE; Q/ satisfies (11.1)–(11.4) if .E; / does.
Furthermore, if F is the completion of the dense �-subalgebra of K-finite elements
in the maximal C*-norm, any intermediate projective G-module X�v � Y � Hv ˝
Ind.F / with a full bimodule structure is defined by such a pair .E; /.

Proof. The validity of (11.1)–(11.4) for a bimodule induced from one with analo-
gous properties follows easily from the previous proposition. Conversely, let .E 0; 0/
satisfy (11.1)–(11.4) with respect to the automorphism group 	 of the induced alge-
bra. By (11.2), v.g/� ˝ 	g.E 0/v.g/� ˝ I D E 0. Evaluating in g0 gives v.g/ ˝
IE 0.g0g/v.g/� ˝ I D E 0.g0/, hence E 0.g/ D v.g/� ˝ IEv.g/ ˝ I , where
E ´ E 0.1/. It is now clear that E satisfies (11.1). Moreover, for k 2 K,

v.k/� ˝ IEv.k/˝ I D E 0.k/ D �˝ ˇk.E 0.1//;

hence E satisfies (11.2).
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On the other hand,E 0L.Hv/˝ Ind.F /E 0, withG-action Ad v˝	, is isomorphic
to the C*-system induced by EL.Hv/ ˝ F E with K-action Ad v�K ˝ ˇ. An
explicitG-equivariant isomorphism takes f 2 E 0L.Hv/˝ Ind.F /E 0 to the element
of C.G;EL.Hv/ ˝ F E/ defined by g 2 G ! Ad v.g/ ˝ If .g/. Therefore
condition (11.3) can be regarded as an intertwining relation between induced group
representations. Hence, by Frobenius reciprocity, there is a map, a priori just linear,
and densely defined on the �-subalgebra of K-finite elements,  W F ! EL.Hv/˝
F E satisfying the intertwining relation

.ˇk.f // D Ad vk ˝ ˇk.�.f //;
and hence (11.3), for f 2 F , k 2 K, inducing 0 via

0.f /.g/ D Ad v.g/� ˝ I.f .g//:
We show that  is a unital �-homomorphism. It is well known that for any K-finite
element f1 2 F , there is an element f 2 Ind.F / with f1 D f .1/. Thus, (11.4)
follows. On the other hand, since 0 is a unital �-homomorphism, the above formula,
evaluated in 1, shows that  is a unital �-homomorphism on the dense �-subalgebra
of K-finite elements. Since F is the completion in the maximal C*-norm, we may
conclude that the unique extension of  to F has the required properties.

11.4. Classification of intermediate full bimodule representations for type I er-
godic actions. Since a type I ergodic action of a compact group G is induced by an
ergodic action ˇ of a closed subgroupK on a matrix algebra and since all intermedi-
ate full submodule representations for the ergodic action ofG are induced by similar
submodules for the action ofK (Theorem 11.6), it suffices to classify the intermediate
full submodule representations for the action of the subgroup.

Let the compact group K act on F . We first give a simple method of construct-
ing extensions of Xˇv to full bimodule representations on projective submodules of
Hv ˝ F .

Proposition 11.7. Pick a representation v of K.
(a) If there is a unitary representation z of K with

dim.z/ � dim.v/ � dim.xLv/ (11.5)

and an isometry

W 2 .z ˝ ˇ; v ˝ ˇ/ such that W �Zv D 0; (11.6)

then the intermediate K-module subrepresentation Xv � Y � Hv ˝ F defined
by the projection E ´ ZvZ

�
v C WW � 2 L.Hv/ ˝ F becomes a full bimodule

K-representation with left action .f /´ ZvI ˝ f Z�
v CWI ˝ f W �.

(b) If we can choose z with dim.z/ D dim.v/ � dim.xLv/, then we get a full
K-bimodule representation for v ˝ ˇ.
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Proof. E and  defined as in (a) certainly satisfy the assumptions of Proposition 11.2,
hence we get a full bimodule representation Y , and (b) clearly follows.

We next provide a complete list if F is a matrix algebra.

Theorem 11.8. Let ˇ be an ergodic action of a compact groupK on a factor F and
v a representation of K.

(a) Two pairs .z;W /, .z0; W 0/ satisfying (11.5) and (11.6) define the same in-
termediate K-bimodule representation Y if and only if there is a unitary intertwiner
U 2 .z; z0/ such that W D W 0U ˝ I .

(b) If F is a matrix algebra, then any full intermediate bimodule representation
Xv � Y � Hv ˝ F arises from a pair .z;W /. In particular, full K-bimodule
representations onHv ˝F correspond to pairs .z;W / satisfying (11.5) and (11.6),
where the inequality of (11.5) is strengthened to an equality.

Proof. (a) Obviously two equivalent pairs .z;W /, .z0; W 0/, as in a), give rise to the
same intermediate K-module Y with the same left action . Conversely, suppose
.z;W / and .z0; W 0/ define the same K-bimodule representation Y . Then clearly
WW � D W 0W 0�. Since the two left actions coincide,WI˝f W � D W 0I˝f W 0�.
Hence the unitaryW 0�W 2 .z˝ˇ; z0˝ˇ/ is of the formU˝I , withU W Hz ! Hz0 ,
as F is a factor. Thus W D W 0U ˝ I . Making the intertwining property of W and
W 0 explicit shows that U 2 .z; z0/.

(b) Assume that F D Matr.C/. If Y is defined by E and , then E needs
to be of rank qr with q integer, as  is unital, and q � dim.xLv/ as E � Ev . Set
1.f /´ .f /.E�Ev/. We can write 1 in the form 1.f / D WI˝f W � withW
a partial isometry such thatWW � D E �Ev DW E1 andW �W 2 L.Hv/˝C. The
relation W �Zv D 0 implies dim.W �WHv/C dim.xLv/ � dim.v/. The covariance
condition (3.5) for Y becomes

Ad v.k/˝ ˇk.f / D .ˇk.f //; f 2 Matr.C/;

and is equivalent to requiring an analogous relation for 1:

v.k/˝ I �˝ ˇk.W /I ˝ ˇk.f /�˝ ˇk.W �/v.k/� ˝ I D WI ˝ ˇk.f /W �;
or

W �v.k/˝ I �˝ ˇk.W / 2 L.Hv/˝C:

On the other hand, the map k ! z.k/ with z.k/ defined by

z.k/˝ I ´ W �v.k/˝ I �˝ ˇk.W /
is a unitary representation of K on the subspace W �WHv , completing the proof
of (b).



710 C. Pinzari and J. E. Roberts

The following result summarizes the classification of full bimodule representa-
tions for type I ergodic actions achieved here.

Theorem 11.9. Let F be a matrix algebra, and let ˇ be an ergodic action of a
closed subgroup K of a compact group G on F . Pick a unitary finite-dimensional
representation v of G. Then:

(a) The full bimodule G-representations over intermediate projective G-module
subrepresentations Xv � Y � Hv ˝ Ind.F / are classified by equivalence
classes of pairs .z;W /, where z is a unitary finite-dimensional representation
of K and W 2 .z ˝ ˇ; v�K ˝ ˇ/ an isometry satisfying

W �Zˇ
v�K
D 0:

.W; z/ and .W 0; z0/ are equivalent if there is a unitary intertwiner U 2 .z; z0/
with W D W 0U ˝ I .

(b) In particular, the fullG-bimodule representations onHv ˝ Ind.F / correspond
to pairs .W; z/ where W satisfies

WW � CZˇ
v�K

Z
ˇ

v�K

� D I:
The corresponding left module structure Q W Ind.F / ! L.Hv/ ˝ Ind.F / is
given by

Q.f /.g/ D v.g/� ˝ I.Zˇ
v�K

I ˝ f .g/Zˇ
v�K

� CWI ˝ f .g/W �/v.g/˝ I:

Remark. If the moduleG-representation v˝ 	 over Ind.F / can be made into a full
bimodule G-representation, and if it is induced by the pair .z;W /, we may form the
K-representation z0 ´ �xLv

˚ z of the same dimension as v. Then Zˇ
v�K
˚W is a

unitary equivalence from the original full bimodule structure for v�K ˝ ˇ inducing
the given full bimodule structure for v ˝ 	, in the sense of Theorem 11.6, to z0 ˝ ˇ
with the trivial left module structure. This remark will play a role in the proof of
Theorem 6.7.

As a consequence of (b) of Theorem 11.8, the module representation v˝ ˇ, with
v in the spectrum, in some cases, does not admit any full bimoduleK-representation
unless v has full multiplicity. We discuss a class of examples.

Example 11.10. Consider the adjoint action ˇr of the unique r C 1-dimensional
irreducible representation vr of the group K D SU.2/ acting on the matrix algebra
MatrC1.C/. We show that if r � 1, v ˝ ˇr becomes a full bimodule representation
only for certain v. Hence none of the actions ˇr arise from a relaxed tensor functor
Rep.SU.2// ! M to a tensor C*-category, as this functor would make all v ˝ ˇr
into full bimodule representations by Theorem 6.2.
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The spectrum of ˇr may be determined by the Clebsch–Gordan rule

vr ˝ vs ' vr�s ˚ vr�sC2 ˚ � � � ˚ vrCs; r � s;
after regarding ˇr as a Hilbert space representation with respect to the inner product
defined by the (K-invariant) trace of MatrC1.C/. vr being selfconjugate, we have
ˇr ' vr ˝ vr ' v0 ˚ v2 ˚ � � � ˚ v2r . Hence any spectral representation has
multiplicity 1.

In particular, v1 is never in the spectrum of ˇr , and the full bimodule structures on
Hv1
˝MatrC1.C/ are described by pairs .z;W /with dim.z/ D dim.v1/ D 2. Since

z can never contain the trivial representation, we necessarily have z D v1. Hence we
need to specify a unitary

W 2 .v1 ˝ ˇr ; v1 ˝ ˇr/ '
.v1 ˝ vr ; v1 ˝ vr/ ' .vr�1 ˚ vrC1; vr�1 ˚ vrC1/ ' C˚C:

Hence v1 ˝ ˇr admits full bimodule structures, and they are classified by T .
On the other hand, low multiplicity of a representation in the spectrum in general

rules out full bimodule structures on v˝ˇr as the following simple argument shows.
If there were a structure of a full K-bimodule representation on v2 ˝ ˇr defined by
.z;W /, then we must have dim.z/ D dim.v2/ � mult.v2/ D 2. Since z cannot
contain the trivial representation, z D v1. On the other hand the space of module
intertwiners .v1˝ ˇr ; v2˝ ˇr/ is isomorphic to .v1˝ vr ; v2˝ vr/ which is trivial,
again by the Clebsch–Gordan rule. Hence v2˝ˇr admits no full bimodule structure,
and actually Xv2

admits no proper extension to a full bimodule representation.

Corollary 11.11. Let K act ergodically on a matrix algebra.

(a) Let v be a representation with xLv ¤ f0g and assume that any irreducible
of smaller dimension has full multiplicity. If dim.xLv/ < dim.v/, then Xv does not
admit any proper extension to a full bimodule K-representation.

(b) If ˇ has full spectrum (hence K is finite) and each v ˝ ˇ can be made into a
full bimodule representation, then each irreducible is of full multiplicity in ˇ.

Proof. Let z andW be as required in (a) of Proposition 11.7. Since dim.z/ < dim.v/,
any irreducible subrepresentation of z has full multiplicity in ˇ. Hence there is a
unitary U 2 L.Hz/ ˝ Matr.C/ with � ˝ ˇk.U / D z.k/� ˝ IU . Hence every
column of WU gives an element of xLv orthogonal to xLv itself, as W �Zv D 0. So
WU D 0 and W D 0. This completes the proof of (a), and (b) follows easily.

12. Tensorial properties of the evaluation functor

In this section we use the classification of full Hilbert bimodule structures on type I
von Neumann algebras obtained in the previous section to prove Theorem 6.7, and
Corollaries 6.8 and 6.9.
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We need a few simple lemmas that clarify the tensorial properties of the evaluation
functor defined in the previous section. We thus assume that we are given an action
ˇ of a closed subgroup K of a compact group G on a C*-algebra F and that for
each v 2 Rep.G/ we have a full bimodule structure for v�K ˝ ˇ defined by the
�-homomorphism v W F ! L.Hv/˝ F . We consider the full bimodule structure
Qv for v ˝ 	 induced by v as in Section 11.3.

Lemma 12.1. If T 2 .v ˝ 	; v0 ˝ 	/ is a bimodule map, then T .1/ 2 .v�K ˝
ˇ; v0�K ˝ ˇ/ is a bimodule map as well.

Proof. The proof is straightforward. By Corollary 11.5, we may write T in the
form T .g/ D v0.g/� ˝ IT .1/v.g/ ˝ I , with T .1/ 2 .v�K ˝ ˇ; v0�K ˝ ˇ/. The
intertwining relation for T evaluated at 1 gives the intertwining relation for T .1/.

Let us now consider a unital C*-algebra C and two finite-dimensional Hilbert
spacesH andL. Consider the right C*-modulesH˝C andL˝C . IfL˝C also has
a left C -module structure defined by a unital �-homomorphism  W C ! LC .L/˝C

then we may form the tensor product right Hilbert C*-module .H˝C/˝C .L˝C/, to
be identified with .H˝L/˝C . We may thus form tensor products T ˝S of a module
intertwinerT 2 L.H;H 0/˝C with a bimodule intertwinerS 2 CLC .L˝C ; L0˝C/

giving an element of L.H ˝ L;H 0 ˝ L0/˝ C .

Lemma 12.2. Let us consider Hv ˝ Ind.F / and Hv0 ˝ Ind.F / as right Ind.F /-
modules. Let Qu, Qu0 makeHu˝ Ind.F / andHu0˝ Ind.F / into Ind.F /-bimodules.
For a module intertwiner T 2 .v ˝ 	; v0 ˝ 	/ and a bimodule intertwiner S 2
.u˝ 	; u0 ˝ 	/, we have

.T ˝ S/.1/ D T .1/˝ S.1/:
Proof. Notice that S.1/ is a bimodule intertwiner by the previous lemma, hence the
right-hand side makes sense. Let H , H 0, L, L0 be finite-dimensional Hilbert spaces
and , 0 left C -module structures onL˝C andL0˝C respectively. Given a module
intertwinerT 2 L.H;H 0/˝C , and a bimodule intertwinerS 2 CLC .L˝C ; L0˝C/,
a simple computation shows that if T is represented by the C -valued matrix .trs/, in
the sense that T DP

rs ers ˝ trs , where ers are matrix units, and if S is represented
by .spq/ then the module intertwinerT˝S regarded as an element of L.H˝L;H 0˝
L0/˝ C is represented by the matrix whose .rp/.sq/-entry is

P
h 

0.trs/phshq . We
apply this to Hv , Hv0 , Hu, Hu0 and Ind.F / respectively. By Corollary 11.5, we
may write .trs/.g/ D v0.g/�T .1/v.g/, .spq/.g/ D u0.g/�S.1/u.g/, where T .1/
and S.1/ are now represented by F -valued matrices. Recalling how Qu0 was defined
before Theorem 11.6, the .rp/.sq/-entry of T ˝ S is the function
P
h

Qu0.trs/ph.g/shq.g/

D P
h;l;m

u0.g/lpu0.trs.g//lmu
0.g/mhshq.g/
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D P
h;l;m;i;j;k;t

u0.g/lpv0.g/iru0.T .1/ij /lmv.g/jsu
0.g/mhu0.g/khS.1/ktu.g/tq

D P
l;i;j;k;t

u0.g/lpv0.g/iru0.T .1/ij /lkv.g/jsS.1/ktu.g/tq

D P
l;i;j;k;t

v0 ˝ u0.g/�
.rp/.il/

u0.T .1/ij /lkS.1/ktv ˝ u.g/.jt/.sq/
D P
l;i;j;k;t

v0 ˝ u0.g/�
.rp/.il/

.T .1/˝ S.1//.il/.jt/v ˝ u.g/.jt/.sq/:

Hence .T ˝ S/.1/ D T .1/˝ S.1/.
Note that ifH ˝C and L˝C have left bimodule structures defined by  W C !

L.H/˝C and � W C ! L.L/˝C then under the unitary module map .H ˝C/˝C

.L˝C/ ' .H˝L/˝C the left module structure C ! L.H˝L/˝C corresponding
to the tensor product bimodule is given by �L.H/ ˝ � B , �L.H/ being the identity
map on L.H/. This tensor product left action will be denoted by ˝ �.

Lemma 12.3. If the induced set of left actions f Qu; u 2 Rep.G/g on the C*-modules
Hu˝ Ind.F / is tensorial, i.e., Qu˝v D Qu˝ Qv for u; v 2 Rep.G/, then the original
set fu; u 2 Rep.G/g is tensorial too.

Proof. It suffices to evaluate the tensorial relation for the Qu’s at 1.

We summarize the above lemmas as follows.

Theorem 12.4. Let ˇ be an action of a closed subgroupK of a compact groupG on
a C*-algebra F . Assume that for each v 2 Rep.G/we have a full bimodule structure
for v�K ˝ ˇ defined by the �-homomorphism v W F ! L.Hv/˝ F . If the set of
induced bimodule structures Qv for v ˝ 	 is tensorial, then the evaluation functor
T ! T .1/ restricts to a faithful tensor functor from the full tensor C*-subcategory
of Bimod�.G/ with objects v ˝ 	 to Bimodˇ .K/.

Proof of Theorem 6.7 and Corollary 6.8. Theorem 6.2, applied to the given tensor
functor � W �G ! M and to the embedding functor � W �G ! Hilb, allows us to
identify M�̋ with the full subcategory of Bimod˛.G/ with objects ur ˝ ˛, r D
0; 1; 2; : : : , where u is the distinguished representation of G and, as before, ˛ is
the ergodic action of G on the associated C*-algebra C . That theorem provides us
with a full G-bimodule representation for each ur ˝ ˛ and the collection of these
left module structures is tensorial. Since the von Neumann completion of C in the
GNS representation of the G-invariant trace state is of type I, we may identify the
completed ergodic system with a von Neumann ergodic system .Ind.F /; 	/ induced
from a closed subgroup K, unique up to conjugation, where F is a matrix algebra
with an ergodic action ˇ of K. The left C -action on Hur ˝ C is defined by a
unital �-homomorphism  W C ! L.Hu/ ˝ C intertwining ˛ with Ad.u/ ˝ ˛ by
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Proposition 11.2. Hence, if tr and � are the normalized G-invariant traces on L.Hu/

and C respectively, .tr˝ �/ B  is a G-invariant trace on C . Such a trace is unique so
.tr˝�/B D � . Thus  induces a normal �-homomorphism from Ind.F / to L.Hu/˝
Ind.F /. Correspondingly, we get a set of tensorial full bimodule structures forur˝	.
Thus by Theorem 12.4 there is a faithful tensor functor from the full subcategory
of Bimod�.G/ with objects ur ˝ 	 to the full subcategory T of Bimodˇ .K/ with
objectsur�K˝ˇ. We next apply Theorem 11.9 to the full bimoduleK-representation
u�K ˝ ˇ fixing a pair .z;W /. We set z0 ´ �xLˇ

u�K

˚ z and U ´ Zu�K
˚ W , a

K-bimodule unitary in .z0˝ˇ; u�K˝ˇ/ if z0 has the trivial left C -action. We define
a �-functor T ! Rep.K/ taking ur�K ˝ ˇ to z0r and a bimodule intertwiner T 2
.ur�K ˝ˇ; us�K ˝ˇ/ to U �˝sT U˝r , which is tensorial to the category of Hilbert
bimodule representations. We need to show that any arrow is in fact an arrow in the
category Rep.K/ regarded as embedded into the category of bimodule representations
as a tensor C*-category. In other words, we need to show that U �˝sT U˝r lies in
the subspace L.Hz0r ;Hz0s / ˝ C of L.Hz0r ;Hz0s / ˝ F . To this end, recall that
Theorem 6.2 ensures that any moduleG-intertwiner is in fact a bimodule intertwiner,
see Theorem 9.6. The same property holds for the bimodule structures of the ur�K˝
ˇ’s and hence for the bimodule structures of the z0r ˝ ˇ, unitarily related to them,
since the evaluation functor is full and faithful, see Corollary 11.5. But now each
z0r ˝ ˇ has the trivial left module structure over F , hence a bimodule intertwiner
lies in L.Hz0r ;Hz0s / ˝ Z.F / D L.Hz0r ;Hz0s / ˝ C since F is a factor, see the
discussion following Proposition 5.1. This argument completes the proof of Theorem
6.7. If in particular C is commutative then F D C, and z0 D u�K , completing the
proof of Corollary 6.8.

Proof of Corollary 6.9. The condition onR allows us to define a tensor functor from
�SU.2/ to M taking the defining representation u to x and the determinant element to
R, see [10]. We may now apply Theorem 6.7.

13. Appendix

In this appendix we collect some computations with quasi-tensor functors that we
have used throughout the paper.

Proposition 13.1. If we take 1� Nv
˝ yRu ˝ 1�v

B yRv as a solution of the conjugate
equations for �u˝�v and yRu˝v as the solution for �u˝v , where yRu˝v is the image
solution of the tensor product solution for u˝ v, then

Q��

u;v D Q� Nv; Nu; Q���

u;v D Q��Nv; Nu:
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Proof. We have

Q��

u;v D . yR�
v B 1� Nv

˝ yR�
u ˝ 1�v

/˝ 1� Nv˝ Nu
B 1� Nv

˝ 1� Nu
˝ Q��

u;v ˝ 1� Nv˝ Nu
B 1� Nv

˝ 1� Nu
˝ yxRu˝v

D . yR�
v B 1� Nv

˝ yR�
u ˝ 1�v

/˝ 1� Nv˝ Nu
B 1� Nv

˝ 1� Nu
˝ . Q��

u;v ˝ 1� Nv˝ Nu
B Q��

u˝v; Nv˝ Nu B �. xRu˝v/
D . yR�

v B 1� Nv
˝ yR�

u ˝ 1�v
/˝ 1� Nv˝ Nu

B 1� Nv

˝ 1� Nu
˝ .1�u

˝ Q��
v; Nv˝ Nu B Q��

u;v˝ Nv˝ Nu B �. xRu˝v//
D . yR�

v B 1� Nv
˝ yR�

u ˝ 1�v
/˝ 1� Nv˝ Nu

B 1� Nv
˝ 1� Nu

˝ .1�u
˝ Q��

v; Nv˝ Nu B 1�u
˝ �. xRv ˝ 1 Nu/ B Q��

u; Nu B �. xRu//
D . yR�

v B 1� Nv
˝ �.R�

u/˝ 1�v
/˝ 1� Nv˝ Nu

B 1� Nv
˝ 1� Nu˝u

˝ . Q��
v; Nv˝ Nu B �. xRv ˝ 1 Nu// B 1� Nv

˝ Q� Nu;u ˝ 1� Nu
B 1� Nv

˝ 1� Nu
˝ yRu

D yR�
v ˝ 1� Nv˝ Nu

B 1� Nv
˝ Q��

v; Nv˝ Nu B 1� Nv
˝ �. xRv ˝ 1 Nu/ B 1� Nv

˝ �.R�
u/˝ 1� Nu

B 1� Nv
˝ Q��Nu;u ˝ 1� Nu

B 1� Nv
˝ 1� Nu

˝ yxRu:
Now

�.R�
u/˝ 1� Nu

B Q� Nu;u ˝ 1� Nu
B 1� Nu

˝ yxRu
D �.R�

u/˝ 1� Nu
B Q� Nu;u ˝ 1� Nu

B 1� Nu
˝ Q��

u; Nu B 1� Nu
˝ �. xRu/

D �.R�
u/˝ 1� Nu

B Q��Nu˝u; Nu B Q� Nu;u˝u˝ Nu B 1� Nu
˝ �. xRu/

D �.R�
u ˝ 1 Nu/ B �.1 Nu ˝ xRu/

D 1�u
:

Substituting this into our calculation gives

Q��

u;v D yR�
v ˝ 1� Nv˝ Nu

B 1� Nv
˝ Q��

v; Nv˝ Nu B 1� Nv
˝ �. xRv ˝ 1 Nu/

D �.R�
v /˝ 1� Nv˝ Nu

B Q� Nv;v ˝ 1� Nv˝ Nu
B 1� Nv

˝ Q��
v; Nv˝ Nu B 1� Nv

˝ �. xRv ˝ 1 Nu/
D �.R�

v /˝ 1� Nv˝ Nu
B Q��Nv˝v; Nv˝u B Q� Nv;v˝ Nv˝ Nu B 1� Nv

˝ �. xRv ˝ 1 Nu/
D �.R�

v ˝ 1 Nv˝u/ B �.1 Nv ˝ xRv ˝ 1u/ B Q� Nv; Nu
D Q� Nv; Nu:

Dualizing with respect to ˝ yields Q����
u;v D Q� Nv; Nu and taking adjoints completes the

proof.

Corollary 13.2. ForM 2 .�u; �u0/, N 2 .�v; �v0/,

. Q�u0;v0 BM ˝N B Q��
u;v/

� D Q� xv0; xu0 BN � ˝M � B Q��Nv; Nu;

with respect to the image of a tensor product solution of the conjugate equations.
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Proof. By the previous proposition,

. Q�u0;v0 BM ˝N B Q��
u;v/

� D Q��

u0;v0 B .M ˝N/� B Q���

u;v D Q� xv0; xu0 BN �˝M � B Q� Nv; Nu:

Proposition 13.3. If we take the conjugate solution R Nu D xRu as a solution of the
conjugate equations for Nu and the tensor product solutionR Nu˝u D 1 Nu˝R Nu˝1uBRu
for Nu˝ u, then R�

u D Ru and R��

u D R�
u.

Proof. We have

R
�

u D R�
u ˝ 1 Nu˝u B xR Nu˝u D R�

u ˝ 1 Nu˝u B 1 Nu ˝ xRu ˝ 1u BRu D Ru:
Dualizing again with respect to˝ gives R��

u D R�
u.
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