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The spectral length of a map between Riemannian manifolds

Gunther Cornelissen and Jan Willem de Jong�

Abstract. To a closed Riemannian manifold, we associate a set of (special values of) a family
of Dirichlet series, indexed by functions on the manifold. We study the meaning of equality
of two such families of spectral Dirichlet series under pullback along a map. This allows us
to give a spectral characterization of when a smooth diffeomorphism between Riemannian
manifolds is an isometry, in terms of equality along pullback. We also use the invariant to
define the (spectral) length of a map between Riemannian manifolds, where a map of length
zero between manifolds is an isometry. We show that this length induces a distance between
Riemannian manifolds up to isometry.
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Introduction

It is well known that the spectrum of the Laplace–Beltrami operator�Y on a (closed,
viz., compact without boundary) Riemannian manifoldY does not necessarily capture
its isometry type (cf. Milnor [26] and later work); actually, it does not even determine
the homeomorphism type of the manifold ([21], [31]). Knowledge of the spectrum
ƒY D f�g (with multiplicities) is equivalent to knowledge of the zeta function

�Y .s/ ´ tr.��s/ D P
0¤�2ƒY

��s:

In this paper, we study what happens if one considers this zeta function as only one
member of a family of zeta functions/Dirichlet series associated with the algebra of
functions on Y . Namely, for a function a0 2 C1.Y /, we denote by

�Y;a0
.s/ ´ tr.a0�

�s
Y /

the zeta function associated to a0 and �Y , where the trace is taken in L2.Y; d�Y /.
It is a generalized Dirichlet series in ��s for � 2 ƒY , and it can be extended to a
meromorphic function on the complex plane. We will actually also need the following

�We thank Erik van den Ban, Alain Connes, Nigel Higson, Henri Moscovici, Jorge Plazas and Ori
Yudilevich for their helpful suggestions.
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higher order version of this zeta function, which arises naturally for example in
noncommutative geometry. For functions a1 2 C1.Y /, we define

Q�Y;a1
.s/ ´ tr.a1Œ�Y ; a1��

�s
Y /:

These zeta functions are diffeomorphism invariants by construction (cf. Lemma 1.5
for an exact statement). We have the following relation between the zeta functions:

Q�Y;a1
.s/ ´ �Y;gY .da1;da1/.s/

(thus, we could take the right-hand side as a definition, but in that way we would ob-
scure the possibility of generalizing our constructions to the case of noncommutative
Riemannian geometries).

In the first part of this paper, we study the meaning of equality of these families
of zeta functions (rather than just the spectrum) under pullback by a map:

Theorem 1. Let ' W X ! Y denote a smooth diffeomorphism between closed con-
nected smooth Riemannian manifolds with smooth metric. The following are equiv-
alent:

(i) We have

(a) �Y;a0
D �X;'�.a0/ for all a0 2 C1.Y /, and

(b) Q�Y;a1
D Q�X;'�.a1/ for all a1 2 C1.Y /.

(ii) The map ' is an isometry.

To shorten notation, if a map ' W .X; gX / ! .Y; gY / is fixed, we set

a� ´ '�.a/

for a 2 C1.Y /, unless confusion can arise.

Remarks. � Since we are dealing with usual Dirichlet series (the spectrum is an
increasing sequence of positive real numbers with finite multiplicities), the condition
�Y;a0

D �X;a�
0

is satisfied when �Y;a0
.k/ D �X;a�

0
.k/ for all sufficiently large integers

k, and similarly for the higher order zeta functions (cf. [29], Section 2.2).
� The dependence of the zeta functions on ai is C-linear. Thus, we may for

example restrict to functions of unit norm (supremum over the manifold).
� One can replace the condition “a 2 C1.Y /” in Theorem 1 by “a 2 A” for A

some dense subset of C1.Y /. Since we assume the manifolds compact, we can pick
such a countable set. We do not know whether it is possible to pick a finite set A,
depending only on some topological characteristics of the manifold.

� Combining the above three remarks, we see that we have actually found a
countable sequence of spectrally defined, diffeomorphism invariant real numbers
that characterize the manifold up to isometry in a fixed C1-diffeomorphism class:
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the values �X;a0
.k/ and Q�X;a1

.k/ for ai in a countable basis for C1.Y /, and k
running through all sufficiently large integers. Notice that this invariant presupposes
knowledge of the manifold: one needs to be able to “label” by the smooth functions,
and by integers k.

The proof of Theorem 1 is rather formal (essentially, a suitable residue of the
two-variable zeta function contains the metric tensor). By contrast, the next theorem,
which studies what happens if we only have equality of the one-variable zeta functions,
actually uses some analysis of PDE’s and structure of nodal sets:

Theorem 2. Let ' W X ! Y denote a smooth diffeomorphism between closed Rie-
mannian manifolds with smooth metric. Then:

� In the previous theorem, it suffices in condition (b) to have equality of one
coefficient of the Dirichlet series ( for all a1) for conditions (a) and (b) to be
equivalent to (ii).

� If the spectrum ofX or Y is simple, then condition (a) alone is equivalent to (ii)
in the previous theorem.

Remarks. We can use the method of proof to show for example that if g and g0 are
two smooth Riemannian structures on a closed connected manifold and with simple
Laplace spectrum, then an equality of heat kernels “on the diagonal” Kg.t; x; x/ D
Kg0.t; x; x/ for sufficiently small t > 0 implies that Kg.t; x; y/ D Kg0.t; x; y/ for
all t > 0 (and hence g D g0), cf. Corollary 6.3.

In Section 7 we compute these zeta functions for flat tori. In this case, condition
(a) is equivalent to isospectrality and the fact that ' has trivial Jacobian.

We can rephrase Theorem 1 in terms of the length of ', a concept that we now
introduce. The basic idea is to measure in some way the distance between the zeta
functions on the one manifold and the pull back by the map of the zeta functions on
the other manifold.

Definition. Let ' W X ! Y denote a smooth diffeomorphism of closed Riemannian
manifolds of dimension d . Define

d1.'; a0; a1/ ´ sup
d6s6dC1

max
nˇ̌ˇ log

ˇ̌ˇ �X;a�
0
.s/

�Y;a0
.s/

ˇ̌ˇ ˇ̌ˇ; ˇ̌ˇ log
ˇ̌ˇ Q�

X;a�
1
.s/

Q�Y;a1
.s/

ˇ̌ˇ ˇ̌ˇo:
The length of ' is defined by

`.'/ ´ sup
a02C 1.Y;R�0/�f0g

a12C 1.Y /�R

d1.'; a0; a1/

1C d1.'; a0; a1/
:

We discuss this notion in a more abstract framework of general length categories,
a concept we believe to be useful in non-abelian categories such as closed Riemannian
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manifolds up to isometry, cf. Section 8. For now, we just state the main properties
of `:

Proposition 3. The function ` satisfies:

(i) For all smooth diffeomorphisms of closed Riemannian manifoldsX
'�! Y , Y

 �!
Z, we have

`.' B '/ 6 `.'/C `. /I
(ii) `.'/ D 0 if and only if ' is an isometry.

We compute some examples, such as the length of the natural map between circles
of different radii, see Figure 3; and we show that the length of a linear map between
isospectral tori is bounded in terms of its spectral norm.

We then show that the notion of length leads to a meaningful concept of distance
between Riemannian manifolds X; Y as infimum of the length of all possible maps
between X and Y .

Remarks. To consider not a single zeta function, but rather a family of zeta func-
tions over the algebra of functions is natural in noncommutative geometry ([6]),
where the unit of the algebra of functions does not have to play a distinguished role
(the underlying C*-algebra could even be non-unital): our zeta functions bear some
resemblance to the construction of Hochschild homology, but with genuine traces
instead of residual traces.

We list some other manifestation of the philosophy behind our main theorem. In
[9], it is shown how to associate a spectral triple to a compact hyperbolic Riemann
surface (by considering the action of a uniformizing Schottky group on the (fractal)
boundary of the Poincaré disk), such that he following property holds: if a map be-
tween two Riemann surfaces induces equal families of zeta functions of the associated
spectral triples, then the map is conformal or anti-conformal. This construction was
adopted to the case of finite graphs in [11]. Finally, for number fields, see [10].

One may now wonder whether a similar theory persists to the case of spin mani-
folds with the Dirac operator replacing the Laplace operator, and whether it applies
to noncommutative “Riemannian geometries”, also known as spectral triples (finitely
summable).

Part A Spectral Dirichlet series

1. Notation and preliminaries

1.1. Notation. To set up notation, suppose .X; gX / is a closed (i.e., compact without
boundary) smooth manifold of dimension > 0, with smooth Riemannian metric.
Denote by �X the induced measure on X , and let �X denote the Laplace–Beltrami
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operator acting on L2.X/ D L2.X;�X /, with domain the smooth functions. Write
ƒX for its spectrum with multiplicities.

Suppose we have picked an orthonormal basis of smooth real eigenfunctions for
the Laplacian on a Riemannian manifoldX . We will use various notations depending
on the context. We denote an eigenfunction in the chosen basis, with eigenvalue �,
by ‰X;� or ‰� if the manifold is fixed. We also write

‰X ` �
if ‰X is an eigenfunction on X in our chosen basis that belongs to the eigenvalue �.

Let C1.X/ denote the set of smooth real-valued functions on X (most of the
time, one may also use complex valued functions – this should be clear from the
context). Define the zeta-function parametrized by a0 2 C1.X/ as

�X;gX Ia0
.s/ D �X;a0

´ tr.a0�
�s
X /

where the complex exponent is taken in the sense of spectral theory (see formula (1));
and the double zeta function parametrized by a1; a2 2 C1.Y / as

�X;gX Ia1;a2
.s/ D �X;a1;a2

.s/ D tr.a1Œ�X ; a2��
�s
X /:

We will mainly be concerned with the diagonal version of this two-variable zeta
function:

Q�X;gX Ia1
.s/ ´ �X;gX Ia1;a1

.s/ D tr.a1Œ�X ; a1��
�s
X /:

Finally, let
KX;g.t; x; y/ D KX .t; x; y/

denote the heat kernel of X . Sometimes we will write Kg if we are on a fixed
manifold. Otherwise, our notation will mostly suppress the metric g. We also make
the convention to write in the usual way �X D �X;1X

:

1.2. By expanding in the given orthonormal basis of real eigenfunctions, we get

�Y;a0
.s/ D

X
‰Y

h‰Y ja0��s
Y j‰Y i D

X
�2ƒY �f0g

��s X
‰`�

Z
Y

a0‰
2d�Y : (1)

In the “commutative” case considered here, one can express the two-variable zeta
function in terms of the one-variable version, as follows:

1.3 Lemma. �Y;a1;a2
.s/ ´ �Y;gY .da1;da2/.s/.

Proof. We expand in a chosen basis of eigenfunctions:

tr.a1Œ�Y ; a2��
�s
Y / D

X
‰Y

h‰Y ja1Œ�Y ; a2���s
Y j‰Y i

D
X
�¤0

��s X
‰Y `�

Z
Y

.‰Y a1�Y .a2‰Y / � a1a2�.‰Y /2/ d�Y ;
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and use the product rule for the Laplacian to find

tr.a1Œ�Y ; a2��
�s
Y /

D
X
�¤0

��s X
‰Y `�

Z
Y

.‰Y a1�Y .a2/‰Y � 2a1gY .da2; d‰Y /‰Y / d�Y : (2)

Now apply the divergence theorem to simplify the first summand in the integral:Z
Y

‰2Y a1�Y .a2/ d�Y D
Z
Y

gY .d.a1‰
2
Y /; da2/ d�Y

D
Z
Y

‰2Y gY .da1; da2/C 2

Z
a1‰Y gY .d‰Y ; da2/ d�Y :

So we finally get

tr.a1Œ�Y ; a2��
�s
Y / D

X
�¤0

��s X
‰Y `�

Z
Y

‰2Y gY .da1; da2/ d�Y

D tr.g.da1; da2/�
�s
Y /:

1.4 Lemma. The series �X;a0
and �X;a1;a2

converge for Re.s/ > dim.X/
2

and can be
extended to a meromorphic function on C with at most simple poles at 1

2
.dim.X/ �

Z>0/.

Proof. See Higson [20], Theorem 2.1 for a more general statement that for a smooth
linear partial differential operator D of order q on X , tr.D��s/ has at most simple
poles at 1

2
.dim.X/Cq� Z>0/. For �X;a0

, we have q D 0 and the statement follows;
for �X;a1;a2

, we have q D 1, but from the previous lemma it follows that there is no
pole at 1

2
.dim.X/C 1/.

1.5 Lemma. The zeta-functions �X;a0
and �X;a1;a2

are diffeomorphism invariants, in
the sense that if ' W X ! X is a smooth diffeomorphism, then

�X;gX ;a0
D �X;'�.gX /;'�.a0/

and

�X;gX ;a1;a2
D �X;'�.gX /;'�.a1/;'�.a2/:

Proof. The map ' is a Riemannian isometry .X; gX / ! .X; '�.gX // and hence

'��X;gX
D �X;gX �'�;

and ' preserves integrals, i.e.,Z
fd�gX

D
Z
f �d�g�

X
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(cf. also Lemma 2.1). Hence '� sends normalized eigenfunctions to normalized
eigenfunctions with the same eigenvalue, so that we have

�X;gX ;a0
.s/ D

X
�¤0

��sX
‰`�

h‰ja0j‰igX
D

X
�¤0

��sX
‰`�

h‰�ja�
0 j‰�ig�

X
D �X;g�

X
;a�

0
.s/:

For the 2-variable version, note that by assumption g.da1; da2/� D g.da�
1 ; da

�
2/

(see [32]) and hence the invariance follows from that of the one-variable version by
Lemma 1.3.

1.6 Remarks. Observe that in conditions (a) and (b) in the main theorem, we only
pull back the functions ai , not the Riemannian structure with corresponding Laplace
operator, so the identities in (a) and (b) are in general non-void. For diffeomorphism
invariance in Lemma 1.5, however, we pull back all structure, including the Laplace
operator.

The spectrum (viz., �X .s/) is an incomplete invariant of a Riemannian manifold:
this is the problem of isospectrality. Connes ([7]) described a complete diffeomor-
phism invariant of a Riemannian manifold by adding to the spectrum the “relative
spectrum” (viz., the relative position of two von Neumann algebras in Hilbert space).
In another direction, Bérard, Besson and Gallot ([3]) gave a faithful embedding of
Riemannian manifolds into `2.Z/, but by “wave functions” which are not diffeo-
morphism invariant. The family of zeta functions introduced here is some kind
of diffeomorphism invariant when the C1-diffeomorphism type of the manifold is
fixed (viz., the algebras of functions C1.X/ is given): these algebras of functions
are used as “labels” for the zeta functions. We do not know whether the sets of func-
tions �X;a0

; Q�X;a1
(without an explicit labeling) determine the isometry type of the

manifold.
Using eigenvalues (viz, �X .s/) as dynamical variables in gravity was brought up

by Landi and Rovelli ([25], [24]). It would be interesting to adapt their theory by
using all zeta functions.

2. A residue computation – Proof of Theorem 1

The fact that (ii) implies (i) is easy, using the following lemma (see [32]):

2.1 Lemma. Suppose that ' W X ! Y is a smooth diffeomorphism of closed Rie-
mannian manifolds. Let

U D '� W L2.Y / ! L2.X/

denote the induced pullback map. Then ' is a Riemannian isometry if and only if
U is a unitary operator that intertwines the Laplace operators on smooth functions:
�XU D U�Y .
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2.2 Remark. If we do not assume that U arises as actual pullback from a map, then
the existence of such a U merely implies that X and Y are isospectral, cf. also the
discussion in [34].

2.3. Proof of (ii) H) (i) in Theorem 1. Pull-back by ' induces a unitary transfor-
mation U between L2.Y / and L2.X/ that intertwines the respective Laplace opera-
tors. From this intertwining, we find that for every �, U‰Y;� is a normalized eigen-
function of eigenvalue �. From (1), we get that �Y;a0

.s/ D �X;a�
0
.s/ for all functions

a 2 C1.Y /, and similarly for the two-variable version (cf. proof of Lemma 1.5).

For the other, more interesting direction of the proof, we first present a short
and formal argument, by computing suitable residues of the zeta functions. In later
sections, we will also compare expansion coefficients in the region of absolute con-
vergence, rather than residues. This is computationally convenient, and it will allow
us to prove some of the “harder” statements in Theorem 2.

2.4. Notation. If' W X ! Y is a smooth diffeomorphism of Riemannian manifolds,
we denote by w' the change of the volume element by the map ' (Radon–Nikodym
derivative), i.e., locally in a chart,

w' D j det.J'/j
p

det.gY /= det.gX /;

where J' is the Jacobian matrix of ' (sometimes, w' is called the Jacobian of ').
We then have the change of variables formula

Z
Y

a0d�Y D
Z
X

a�
0w'd�X ; (3)

for any function a0 2 C1.Y /.

2.5 Lemma (see e.g. [15], Lemma 1.3.7 and Theorem 3.3.1 (1)). Let X denote a
closed d -dimensional Riemannian manifold, d > 0. Then for a0 2 C1.Y / the
function �.s/�X;a0

.s/ has a simple pole at d=2 with residue

RessD d
2
�X;a0

D 1

�.d
2
/.4�/d=2

Z
X

a0 d�X :

2.6 Lemma. Let X be a closed d -dimensional Riemannian manifold, d > 0. For
any a1; a2 2 C1.X/ we have

RessDd=2 �X;a1;a2
D 1

�.d
2
/.4�/d=2

Z
X

gX .da1; da2/ d�X :

Proof. Follows from the previous Lemma and Lemma 1.3.
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First proof of Theorem 1 (i) H) (ii)

2.7 Lemma. The map ' has w' D 1.

Proof. It follows from �Y;a0
D �X;a�

0
by taking residues that

RessD d
2
�Y;a0

.s/ D RessD d
2
�X;a�

0
.s/:

At a0 D 1, we find that X and Y have the same volume, and then by Lemma 2.5, the
general equality of residues becomes

Z
Y

a0 d�Y D
Z
X

a�
0 d�X :

The change of variables formula (3) implies that
Z
X

a�
0.1 � w'/ d�X D 0 .for all a�

0 2 C1.X//;

and the fundamental lemma of the calculus of variations gives

w' D 1:

By using the polarisation identity for the quadratic form g, we see that

4�X;a�
1
;a�

2
D 4�X;gX .da

�
1
;da�

2
/

D �X;gX .d.a
�
1

Ca�
2
/;d.a�

1
Cda�

2
// � �X;gX .d.a

�
1

�a�
2
/;d.a�

1
�da�

2
//

D Q�X;.a1Ca2/� � Q�X;.a1�a2/�

D Q�Y;.a1Ca2/ � Q�Y;.a1�a2/

D 4�Y;a1;a2

for all a1; a2 2 C1.Y /.
From Lemma 2.6, we then get

Z
Y

gY .da1; da2/ d�Y D
Z
X

gX .da
�
1 ; da

�
2/ d�X :

After base change (using w' D 1), the previous equality of integrals gives
Z
X

a�
1..�Y .a2//

� ��X .a�
2///d�X D

Z
X

a�
1.�

�
Y ��X /.a�

2/d�X

for all a1; a2 2 C1.Y /. Here, ��
Y D U�YU

� with

U D '� W L2.Y / ! L2.X/
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the pullback, and U � the push-forward. Since this holds for all a�
1 , we find that

��
Y D �X :

Also, U is unitary, since w' D 1, whence

hUf;UgiX D
Z
X

f �g�w'd�X D
Z
Y

fgd�Y D hf; giY

for all f; g 2 L2.Y /. Hence from Lemma 2.1, we find that ' is an isometry.

3. Matching squared eigenfunctions

In this section, we investigate more closely the meaning of condition (a) in the main
theorem.

3.1. Notation. We use the following notation for the sum of the squares of the
eigenfunctions belonging to a fixed eigenvalue and basis:

	X;� D 	� ´
X
‰X `�

‰2X :

3.2 Proposition. Suppose that ' W X ! Y is a smooth diffeomorphism between
connected closedRiemannianmanifolds. Let f‰X;�g and f‰Y;�g denote two complete
sets of orthonormal real eigenfunctions for �X and �Y , respectively. Condition (a)
in Theorem 1 is equivalent to the statement that the spectra of�X and�Y agree with
multiplicities, we have w' D 1, and for any eigenvalue � we have

	X;� ´
X
‰X `�

.‰X /
2 D

X
‰Y `�

.‰�
Y /
2 μ 	�

Y;�:

Proof. The assumption is
�Y;a0

.s/ D �X;a�
0
.s/

for all a0 2 C1.Y /. Evaluated at the unit a0 D 1, it follows that the nonzero
spectra of �X and �Y , including multiplicities, agree (using the identity principle
for generalized Dirichlet series, cf. [19], Theorem 6), and this implies that both the
volumes and dimensions of X and Y agree as well.

The coefficients of the above Dirichlet series (when grouped according to fixed
�) as in (1) are uniquely determined by it, again by the identity theorem for Dirichlet
series. If we spell out the assumption for the individual coefficients in �s in the two
Dirichlet series, we find that for any a0 2 C1.Y / we haveZ

Y

X
‰Y `�

j‰Y j2a0d�Y D
Z
X

X
‰X `�

j‰X j2a�
0d�X
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for � ¤ 0. We perform a coordinate change in the first integral by using the map
' W X ! Y . Since w' D 1, we find

Z
X

X
‰Y `�

j‰�
Y j2a�

0d�X D
Z
X

X
‰X `�

j‰X j2a�
0d�X

for any a0 2 C1.Y /. Again, the fundamental lemma of the calculus of variations
gives X

‰X `�
.‰X /

2 D
X
‰Y `�

.‰�
Y /
2;

for � ¤ 0. The eigenvalue � D 0 has multiplicity one, since the manifold is con-
nected, and the normalized eigenfunction on Y is equal to 1=

p
vol.Y /, which pulls

back to 1=
p

vol.Y /. Since X and Y have the same volume (from equality of their
zeta functions at a0 D 1), we find that this is equal to 1=

p
vol.X/, the normalized

eigenfunction for � D 0 on X .
The other direction of the equivalence is obtained by reversing steps. This finishes

the proof.

We deduce a corollary about the diagonal of the heat kernel:

3.3 Corollary. If ' W X ! Y is a smooth diffeomorphism of closed connected smooth
Riemannian manifolds, then the following conditions are equivalent:

(a) For all a0 2 C1.Y /, we have �Y;a0
D �X;'�.a0/;

(b) KX .t; x; x/ D KY .t; '.x/; '.x// for all t > 0 and all x 2 X , and w' D 1.

Proof. Recall the following expression for the heat kernel (e.g., [2], V.3),

KX .t; x; y/ D
X

�2ƒ distinct

e��t X
‰`�

‰.x/‰.y/ .t > 0/ (4)

and setting x D y, we find

KX .t; x; x/ D
X
�2ƒ

distinct

e��t	X;�.x/ .t > 0/: (5)

This implies the result.

4. Expansion coefficients of the two-variable zeta function

We now take a closer look at the expansion coefficients of the two-variable zeta
functions, under the assumptions of (i) in Theorem 1. This computation provides an
alternative proof of Theorem 1, and will be used in proving part of Theorem 2.
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We find that X and Y have the same spectra with multiplicities. As usual, we
denote this spectrum by f�g (with multiplicities). We have already seen that the polar-
isation identity for the quadratic form g implies that �Y;a1;a2

D �X;a�
1
;a�

2
. Our starting

point is the expression for tr.a1Œ�; a2���s
Y / from equation (2). The coefficient in

��s is Z
Y

a1Œ	Y;��Y .a2/ � 2gY .da2; d	Y;�/�d�Y :
If we equate this to the corresponding coefficient of the other zeta function, and then
perform a base change to X (using w' D 1) and use the fundamental lemma of
calculus of variations to remove the integral over X , we find

	�.�
�
Y ��X / D 2g�

Y .d�; d	�/ � 2gX .d�; d	�/ D first order operator. (6)

Equation (6) means that the leading symbol of ��
Y � �X vanishes outside the zero

set of 	�, which (by [32]) implies that g�
Y D gX . Since for every x there is a � with

	�.x/ ¤ 0, we find g�
Y D gX everywhere. Hence ' is an isometry.

5. Improvements in the case of simple spectrum

In this section, we consider how to improve the theorem in case the spectrum of �X
is simple; we will prove Theorem 2. We first start by listing some consequences of
known results related to condition (a):

5.1 Remarks. Condition (a) in Theorem 1 does not always suffice to imply that ' is
an isometry, cf. Corollary 7.4.

There exist isospectral, non-isometric compact Riemannian manifolds with simple
spectrum (cf. Zelditch [33], Theorem C), so (for maps with unit Jacobian) condition
(a) is not equivalent to isospectrality (which would be condition (a) only for the
identity function).

A result of Uhlenbeck ([30]) says that the condition of having non-simple Laplace
spectrum is meager in the space of smooth Riemannian metrics on a given manifoldX .
Thus, Theorem 2 treats the ‘generic’ situation. But there do exist Riemannian mani-
folds for which the multiplicity of the spectrum grows polynomially in the eigenval-
ues, cf. e.g. Donnelly [12].

5.2 Lemma. Suppose that X is a closed smooth Riemannian manifold. Then the
zero set of any nonzero eigenfunction of �X is not dense. If we let zX � X denote
complement of the union of all such zero sets, then zX is dense inX , and the following
holds: for any real �X -eigenfunction ˆ, and any function h 2 C.X/ that satisfies
h2 D ˆ2, we have h D ˙ˆ on every connected component of zX .

Proof. We can write cˆ D h where c is a function (a priori not necessarily glob-
ally constant) that takes values in fC1;�1g. We can assume that X is connected.
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Now zX is the complement of the union of all zero sets of non-zero�X -eigenfunctions
onX . By continuity, c is obviously constant on connected components of zX . All we
have to show is that zX is dense.

We claim that the complement of the zero set of an eigenfunction ˆ is an open
dense subset of X . Granting this for the moment, since the spectrum is discrete, the
intersection zX of all such complements of zero sets is a countable intersection of
open dense subsets ofX . SinceX is compact and hence a complete metric space (for
the Riemannian metric), the Baire category theorem implies that this intersection is
itself dense.

The claim will follow if we show that the zero set Z of ˆ is nowhere dense. So
suppose on the contrary that Z is dense in a neighbourhood U of some point x 2 X .
Then ˆ � 0 on xU . Since the unique continuation theorem applies to the Laplacian
with smooth coefficients (cf. [1], Remark 3, p. 449) we find ˆ � 0 on all of X
(assumed connected), a contradiction.

Proof of Theorem 2. First, suppose ' is an isometry between X and Y . Pull-back
by ' induces a unitary transformation U between L2.Y / and L2.X/ that intertwines
the respective Laplace operators. From this intertwining, we find that for every �,
U‰Y;� is a normalized eigenfunction of eigenvalue �, hence equal to ˙‰X;� by the
simplicity assumption on the spectrum. From (1), we get that �Y;a0

.s/ D �X;a�
0
.s/

for all functions a0 2 C1.Y /.
For the more interesting converse direction, we know from the previous section

that the pullback map U D '� takes on the form

U W L2.Y / �! L2.X/;

‰Y;�.� ¤ 0/ 7�! '�.‰Y;�/ D c�‰X;�; c� 2 f˙1g;
‰Y;0 D 1Yp

vol.Y /
7�! '�.‰Y;0/ D 1Xp

vol.Y /
D 1Xp

vol.X/
D ‰X;0:

The map is clearly unitary and bijective. We prove that the mapU also intertwines the
Laplace–Beltrami operators. For this, let zX� denote the zero set of the eigenfunction
‰X;�. Let x 2 zX�. We can find an open neighbourhood Ux of x on which c� D ˙1
(defined by '�.‰Y;�/ D c�‰X;� as above) is constant. For any Qx 2 Ux , we find

�XU‰Y;�. Qx/ D �X .c�‰X;�/. Qx/ D c��‰X;�. Qx/ D U.�‰Y;�/. Qx/ D U�Y‰Y;�. Qx/:
This equality of continuous functions (for the continuity of the left hand side, use that
the map ' is assumed to be smooth) holds on zX�, and since zX� is dense in X (see
the previous proof), we find that it holds on X . Now since the eigenfunctions form a
basis for L2.X/, we find an equality of operators

�XU D U�Y :

This implies that X and Y are isometric by the previous lemma, and finishes the
proof of the second part of Theorem 2.



734 G. Cornelissen and J. W. de Jong

For the first part, we observe that the zero set of 	� is nowhere dense (since 	�
is a finite linear combination of the positive functions ‰2 for ‰ ` �, so 	� D 0

implies that ‰ D 0 for all ‰ ` �, and use Lemma 5.2). Hence in this case, in the
proof of Theorem 1, it suffices to have formula (6) for only one �, i.e., equality of
one coefficient of the Dirichlet series in condition (b) suffices.

6. Further improvements

At the cost of using more “hard” analysis, we can improve some of the auxiliary
results from the previous section even further.

6.1 Lemma. If in Lemma 5.2 we assume that h 2 C1.X/, then h D ˙ˆ with the
sign constant everywhere.

Figure 1. An eigenfunction around a nodal set.

6.2 Remark. We can write cˆ D h where c is a function (a priori not necessarily
globally constant) that takes values in fC1;�1g. We have to prove that c is globally
constant.

The gist of the proof is to use the regularity of eigenfunctions at zeros. Think of
the prototypical sin.x/ D c.x/h.x/ on Œ0; 2��. If h.x/ is not equal to ˙ sin.x/, then
we have h.x/ D j sin.x/j. But that function is not even C 1 at x D � . On the other
hand, functions like f .x/2 D e�2=jxj.x ¤ 0/I f .0/ D 0 have different smooth f .x/
as square root, but have a zero of infinite order. See Figure 1.

Proof. It follows e.g. from the analysis in Caffarelli and Friedman ([5], Example 3,
pp. 432–433, compare: [18], Chapter 4, proof of Lemma 4.1.1) that for every point x0
of the manifoldX , there exists a small enough neighbourhood U of x0 that intersects
the zero set Z ofˆ in the union of finitely many submanifolds of dimension 6 m�1.
First note that if x0 … Z there exists an open set W 3 x0 for which ˆ jW¤ 0. Then
the function �

h

ˆ

�
jW D cjW
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is smooth and hence cjW must be constant.

U
Z

x0

i1

i2

Figure 2. Local structure of the zero set Z in a neighborhood U of x0, with independent paths
i1, i2.

Now let x0 2 Z. Then both h and ˆ vanish at x0. Choose any C1 path
i W � � "; "Œ! X such that

im.i/ \ Z D fx0g with i.0/ D x0 and ki 0.t/k > 0:
Then we get

h.i.t/// D c.i.t// �ˆ.i.t//:
Assume that c.i.t// changes sign at 0. Differentiating the equation at t D 0 gives

lim
t#0

h.i.t//0 D lim
t#0

ˆ.i.t//0 D � lim
t"0

ˆ.i.t//0:

Because of smoothness, this implies that

.ˆ B i/0.0/ D .h B i/0.0/ D 0:

Any path in Z is mapped identically to 0 by both h andˆ and hence also has derivative
zero. It follows that both h and ˆ have all (directional) derivatives in x0 equal to 0.
Indeed, because locally around x0 the zero set Z is contained in a finite union of
codimension > 1 submanifolds, we can find m paths i as above whose tangent
vectors at x0 span Tx0

X , and since all directional derivatives along these vectors are
zero, so is the total derivative.

By induction it follows that up to any order all derivatives vanish. Hence x0 is
a zero of the eigenfunction ˆ of infinite order, which is impossible by Aronszajn’s
unique continuation theorem. We conclude that locally c does not change sign at
zeros (and anyhow not at nonzeros). We assume X to be connected, so this implies
that c is constant.

We deduce the following corollary:

6.3 Corollary. If ' W X ! Y is a C1-diffeomorphism of closed connected C1-
Riemannian manifolds and with simple Laplace spectrum such that the diagonals
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of the heat kernels match up in the sense that KX .t; x; x/ D KY .t; '.x/; '.x// for
sufficiently small t > 0, then the heat kernels match up in the sense thatKX .t; x; y/ D
KY .t; '.x/; '.y// for all t > 0.

In particular, if g and g0 are two smooth Riemannian structures on a closed con-
nected manifold and with simple Laplace spectrum, then Kg.t; x; x/ D Kg0.t; x; x/

for sufficiently small t > 0 implies that Kg.t; x; y/ D Kg0.t; x; y/ for all t > 0 and
hence g D g0.

Proof. Since
KX .t; x; x/ D KY .t; '.x/; '.x//

for sufficiently small t > 0, and we have simple Laplace spectrum, formula (5)
implies that the corresponding spectra and the squares of eigenfunctions match up:

.‰X;�/
2 D .'�‰Y;�/2:

The smoothness on both sides implies via the previous lemma that the functions agree
up to a global sign. Applying (4), we find

KX .t; x; y/ D
X
�

e��t‰X;�.x/‰X;�.y/

D
X
�

e��t .˙1/2'�‰Y;�.x/'�‰Y;�.y/

D KY .t; '.x/; '.y//:

The particular case follows by setting ' to be the identity map.

7. Example: flat tori

7.1. Let T D Rn=ƒ denote a flat torus, corresponding to a lattice ƒ in Rn. Let ƒ_
denote the dual lattice to ƒ. The Laplacian is

�T D �
X
k

@2k;

the spectrum is
f4�2k�_k2g�_2ƒ_ ;

a basis of orthogonal eigenfunctions of eigenvalue ` is given by

‰�_ ´ e2�ih�_;xip
vol.T /

if k�_k2 D `. (This is not a real basis as usual in this paper, but we will make
appropriate adaptations.) The crucial property for us is that these functions satisfy

j‰�_ j2 D ‰�_ �‰�_ D 1

vol.T /
:



The spectral length of a map between Riemannian manifolds 737

7.2. We consider the meaning of condition (a) in Theorem 1 for the torus T . Let
a0 2 C1.T /. Then

�T ;a0
.s/ D

X
�_2ƒ_

1

k4�2�_k2s � 1

vol.T /

Z
T
a0j‰�_ j2 d�Rn

D
�

1

vol.T /

Z
T
a0 d�Rn

�
� �T .s/:

(7)

We conclude from this by noting that the volume is determined by the spectrum:

7.3 Proposition. Let ' W T1 ! T2 denote a smooth diffeomorphism between two flat
tori. Then the following are equivalent:

(i) For all a0 2 C1.T2/, we have �T2;a0
D �T1;'�.a0/;

(ii) T1 and T2 are isospectral, and ' has Jacobian w' D 1.

7.4 Corollary. There exist non-isometric manifolds for which condition (a) of Theo-
rem 1 holds.

Proof. Take the following isospectral, non-isometric tori T˙ ([27], [8]) in dimen-
sion 4, spanned by the column vectors in the respective matrices GC and G�,

G˙ D 1

2
p
3

0
BB@

˙3 �p
7 �p

13 �p
19

1 ˙3p7 p
13 �p

19

1 �p
7 ˙3p13 p

19

1
p
7

p
13 ˙3p19

1
CCA :

Consider the linear map A W R4 ! R4 given by

A D GCG�1� D 1

5

0
BB@

�3 �2 �1 �3
2 �2 4 �3
3 �3 �4 3

1 4 2 �4

1
CCA

with determinant det.A/ D 1. This map factors through to a map T� ! TC with
determinant (D Jacobian) 1.

7.5. We now consider condition (b) in Theorem 1 for the torus T . We compute for
a1; a2 2 C1.T /, using Lemma 1.3, that

�T ;a1;a2
.s/ D

�
1

vol.T /

Z
T

r.a1/>r.a2/ d�Rn

�
�T .s/: (8)
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Part B Lengths and distances

8. Length categories

8.1 Definition. We call a pair .C ; `/ a length category if C is a category endowed with
a subcategory D , full on objects, such that every morphism in D is an isomorphism
in C and D . These are called D-isomorphisms from now on. Furthermore, for every
X; Y 2 Ob.C/ and every ' 2 Hom.X; Y /, there is defined a positive real number
`.'/ 2 R>0, called the length of ' such that

(L1) `.'/ D 0 if and only if ' is an D-isomorphism;

(L2) If X; Y;Z 2 Ob.C/ and ' 2 Hom.X; Y /;  2 Hom.Y;Z/, then

`. B '/ 6 `.'/C `. /:

8.2 Remark. In particular, in (L1) we do not assume that the D-isomorphism classes
are necessarily the categorical isomorphism classes (i.e, the maps for which there
exists an inverse in the category C ), but we do assume that the D-isomorphisms are
(some of the) categorical isomorphisms of C . For instance, think of the category C of
metric spaces and continuous maps, but with D-isomorphisms the isometries (instead
of the homeomorphisms). Note also that the morphisms of D can be recovered from
the pair .C ; `/ as those morphisms in C with length zero.

To illustrate the concept, let us look at some examples. If there is no subcategory
D specified then implicitly it is understood that the D-isomorphisms are the C -
isomorphisms.

8.3 Examples. Any category is a length category in a trivial way, defining the “dis-
crete” length by

`.X Š Y / D 0 and `.'/ D 1 otherwise.

However, categories can carry other, more meaningful lengths.
Let Grp denote the category of finite commutative groups, and for' 2 Hom.G;H/

a homomorphism of groups G and H , define its length as

`.'/ D maxflog.j ker.'/j/; log.j coker.'/j/g:
This obviously satisfies (L1) and also (L2) since j ker. B '/j � j ker.'/j � j ker. /j
and similarly for the cokernel. Hence .Grp; `/ is a length category.

More generally, an abelian category with in some sense “measurable” kernels
and cokernels is a length category by a similar construction. However, non-abelian
categories can also be length categories for an interesting length function. In some
sense, this is a metric substitute for the non-existence of kernels/cokernels.
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The category of compact metric spaces with bi-Lipschitz homeomorphisms is a
length category for the length

`.'/ ´ maxfj log dil.'/j; j log dil.'�1/jg;
where dil.'/ is the dilatation of the map '. This length induces Lipschitz distance
between compact metric spaces.

Lengths in categories sometimes give rise to a metric on the moduli space of
objects of the category C up to D-isomorphism, as the following lemma shows (note
that the condition is sufficient, but not necessary):

8.4 Lemma. If .C ; `/ is a length category and we put

d.X; Y / D 1
2

�
inf

'2HomC .X;Y /
f`.'/;C1g C inf

 2HomC .Y;X/
f`. /;C1g�;

then d is an extended (i.e., .R [ fC1g/-valued) metric on the “moduli space”
Ob.C/=D-iso if for d.X; Y / D 0, the infimum in the definition of d is attained in
Hom.X; Y /. If Hom.X; Y / ¤ ; for any X; Y 2 Ob.C/, d is a ( finite) metric.

Proof. First of all, length is well defined on objects up to isomorphism: if ' is
arbitrary and  is an isomorphism, then

`.'B / (L2)
6 `.'/C`. / (L1)D `.'/ D `.'B B �1/

(L2)
6 `.'B /C`. �1/ (L1)D `.'B /:

The positivity of d is clear. For the triangle inequality, since d is defined as the
symmetrization of the hemimetric

d 0.X; Y / D inf
'2Hom.X;Y /

f`.'/;C1g;

it suffices to prove the triangle inequality for d 0. Let " > 0. Let ' 2 Hom.X; Y / and
 2 Hom.Y;Z/ be such that

`.'/ 6 d 0.X; Y /C "=2 and `. / 6 d 0.Y;Z/C "=2

(which is possible by the definition of length as an infimum). We have

d 0.X;Z/ D inf
�2Hom.X;Z/

`.
/ 6 `. B '/:

By axiom (L2) we find

`. B '/ 6 `. /C `.'/ 6 d 0.Y;Z/C d 0.X; Y /C ":

The triangle inequality follows by letting " tend to zero. Finally, assumed.X; Y / D 0.
Since the infimum in the definition is attained, we find a map ' 2 Hom.X; Y / of
length zero. Then axiom (L1) implies that X Š Y .
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9. The length of a map between Riemannian manifolds

We will now consider the category R of closed smooth Riemannian manifolds, with
homomorphisms smooth diffeomorphisms and D-isomorphisms the isometries. We
define a length function in this category using our diffeomorphism invariant. The idea
is to measure how far the one- and two-variable zeta functions �Y;a0

and Q�Y;a1
are apart

under pullback by the map ' in some suitable distance on the set of meromorphic
functions, and to test this over certain well-behaved sets of test-functions a0; a1.

9.1 Definition. Let f and g denote two functions that are holomorphic non-zero in
a right half line

H� ´ fs 2 R j s > 	g;
where 	 is fixed once and for all. Define

ı1.f; g/ ´ sup
�6s6�C1

nˇ̌̌
log

ˇ̌̌
f .s/
g.s/

ˇ̌̌ ˇ̌̌o
;

and set

d� .f; g/ ´ ı1.f; g/

1C ı1.f; g/
:

Convergence in d� is not uniform convergence of general analytic functions with-
out zeros on H� (because the absolute value signs cause an indeterminacy up to an
analytic function with values in the unit circle), but when specialized to our Dirichlet
series, this problem disappears, cf. infra.

9.2 Definition. The length of a smooth diffeomorphism ' W X ! Y of Riemannian
manifolds of dimension N is defined by

`.'/ ´ sup
a02C 1.Y;R>0/�f0g

a12C 1.Y /�R

maxfdN .�X;a�
0
; �Y;a0

/; dN . Q�X;a�
1
; Q�Y;a1

/g:

9.3 Remarks. Since d� is obviously bounded by 1, the length of a map also takes
values in Œ0; 1�.

There is some arbitrariness in the definition of `.'/: our zeta functions are holo-
morphic in Re.s/ > N

2
, so one might also take the product metric of the suprema

over other suitable subsets.

The main theorem can be rephrased as follows, which shows that .R; `/ satisfies
axiom (L1) of a length category:

9.4 Proposition. If X and Y are closed Riemannian manifolds, then a smooth dif-
feomorphism ' W X ! Y has length zero if and only if it is an isometry.
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Proof. If ' has length zero, then we have an equality of absolute values of zeta
functions under pullback, at positive functions a0 2 C1.Y;R>0/ and functions
a1 2 C1.Y /.

Since all eigenvalues are positive, and all Dirichlet series coefficients of the zeta
functions are positive when evaluated at a positive function a0 (cf. Section 3), the
values for s 2 HdC1 of such zeta functions are positive, and hence equal. Now
a standard theorem (e.g., [29], Section 2.2) implies that the two Dirichlet series
are everywhere equal. We conclude that �X;a�

0
D �Y;a0

for a0 2 C1.Y;R>0/ and
Q�X;a�

1
.s/ D Q�Y;a1

for alla1 2 C1.Y /. Since anya0 2 C1.Y / is a linear combination
of such positive functions, we can apply Theorem 1 to conclude that ' is an isometry.
The converse statement follows directly from the same theorem.

We now prove that .R; `/ also satisfies axiom (L2) of a length category:

9.5 Proposition. If X , Y , Z are closed Riemannian manifolds, and ' W X ! Y and
 W Y ! Z are two smooth diffeomorphisms, then

`. B '/ 6 `.'/C `. /:

Proof. We observe that we have injections of algebras of functions

 � W C1.Z;R�0/ ,! C1.Y;R�0/ and  � W C1.Z/ ,! C1.Y /:

It then suffices to use the identity

�Z;a0

�X;'� �.a0/

D �Z;a0

�Y; �.a0/

� �Y; �a0

�X;'� �.a0/

;

and similarly for the two-variable version.

We cannot directly apply Lemma 8.4 to conclude that ` induces a distance, but
see Section 12.

10. Example: length of rescaling a circle

10.1. Let Sr denote the circle of radius r , which we parameterize by an angle 
 2
Œ0; 2�Œ. The metric is ds2 D r2d
 , g11 D r2, g11 D r�2, the Laplacian is �r�2@2

�
,

with spectrum fn2r�2gn2Z>0
with multiplicity two, and eigenspace for n spanned

by fsin.n
/; cos.n
/g. Let �.s/ denote the Riemann zeta function. One sees directly
that

�Sr ;a0
D 2r2sC1

� Z 2�

0

a0.
/d


�
�.2s/
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and

�Sr ;a1;a2
D 2r2s�1

� Z 2�

0

a1.
/@
2
� .a2/.
/d


�
�.2s/:

Hence
�Sr ;a1;a2

D r2�Sr ;a1@
2
�
.a2/

:

10.2. Let us compute the length of the natural rescaling homeomorphism

'r1;r2 W Sr1 ! Sr2 W 
 7! 
 .
 2 Œ0; 2�Œ/:
We find

ˇ̌̌
ˇ
�Sr1

;a�
0

�Sr2
;a0

ˇ̌̌
ˇ D .r1=r2/

2sC1 and
ˇ̌̌
ˇ
�Sr1

;a�
1
;a�

2

�Sr2
;a1;a2

ˇ̌̌
ˇ D .r1=r2/

2s�1;

so we find for the length of 'r1;r2 :

`.'r1;r2/ D 1

1C 1
5jlog.r1=r2/j

:

Figure 3 depicts the function `.'r;1/ for 0 6 r 6 2. Observe the nice “conformal”
symmetry `.'r1;r2/ D `.'r2;r1/. Also, the two-variable zeta function does not affect
this computation (as is to be expected from the fact that the spectrum characterizes
a circle); in the next section, we will consider isospectral tori, for which exactly the
one-variable zeta function plays no role.

1

0.5 1 1.5 2

`.'r;1/

r

Figure 3. Length of the rescaling homeomorphism 'r;1 between a circle of radius r and a
circle of unit radius.
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11. Example: length of a linear map between isospectral tori

11.1. Let T1 and T2 denote two isospectral tori. Let ' W T1 ! T2 denote a smooth
bijection, and assume that ' arises from a linear map A in the universal cover (any
map of tori is homotopic to such a linear map with the same action on the homology
of the torus, cf. [17], Lemma 1):

Rn
A ��

�1

��

Rn

�2

��
T1 D Rn=ƒ1

' �� T2 D Rn=ƒ2.

This makes sense if Aƒ1 � ƒ2. If we denote by G1 and G2 the generator matrices
of the two tori (matrices whose columns are basis vectors of the lattice), the condition
is that

G�1
2 AG1 2 GL.n;Z/:

Taking determinants, we find

w' D jdet.A/j D jdet.G�1
1 G2/j D vol.T2/= vol.T1/:

An example of such a map is the “change of basis” A D G2G
�1
1 . Write A> for the

transpose of the matrix A.

11.2. Since we assume T1 and T2 isospectral tori, they have the same (common)
spectral zeta function. Hence from formula (7) we find that

ˇ̌̌
ˇ
�T1;a

�
0

�T2;a0

ˇ̌̌
ˇ D

ˇ̌̌
ˇ
R

T2
a0w'�1 d�RnR
T2
a0 d�Rn

ˇ̌̌
ˇ D jdet.A�1/j D vol.T1/

vol.T2/
D 1:

Via formula (8), the two variable zeta functions satisfy

sup
ra1¤0

ˇ̌̌
ˇ
Q�T1;a

�
1

Q�T2;a1

ˇ̌̌
ˇ D sup

ra1¤0

R
T1

jr.a�
1/j2 d�RnR

T2
jr.a1/j2 d�Rn

D sup
ra1¤0

R
T1

jAr.a1/j2 d�RnR
T2

jr.a1/j2 d�Rn

:

For every v 2 TxT2, we have jAvj2 6 kAk2jvj2, where kAk2 is the spectral norm
of the matrix A (D the square root of the largest eigenvalue of AA>). Hence

d.T1;T2/ 6 `.A/ 6 log kAk2
1C log kAk2 :

One may wonder whether this bound is attained.

11.3Example. The smallest dimension in which there exist non-isometric isospectral
tori is four, as was shown by Schiemann ([27]), and an example is given by the two
tori in the proof of Corollary 7.4. For the specific map A D G�G�1C between these
tori, we have kAk2 � 3:21537 and

d.TC;T�/ 6 `.A/ 6 0:538733:
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12. Convergence in the spectral metric

12.1Theorem. Supposewe are given twoRiemannianmanifolds .X; gX / and .Y; gY /
and a collection of smooth diffeomorphisms 'i W X ! Y whose length converges to
zero. Then X and Y are isometric.

Proof. The proof is basically the “convergent” version of the first proof of Theorem 1.
In the definition of `.'/, we observe that both zeta functions �Y;a0

.s/ and
�X;'�

i
.a0/

.s/ have their right most pole at s D d=2. Both poles are simple, hence
they cancel in the quotient. Therefore, the quotient function �X;'�

i
.a0/

.s/=�Y;a0
.s/ is

holomorphic in s > d=2 � 1=2. Also, since a0 is positive, the quotient is a positive
real valued function. We conclude from `.'/ ! 0 that

�X;'�
i
.a0/

.s/=�Y;a0
.s/ ! 1 for s 2 R:

In particular, we have convergence at s D d=2, and hence a convergence of residues
(uniformly in a0)

RessD d
2
�X;'�

i
.a0/

.s/ D lim
s! d

2 C
�X;'�

i
.a0/

.s/.s � d
2
/

! lim
s! d

2 C
�Y;a0

.s/.s � d
2
/ D RessD d

2
�Y;a0

.s/

(not just in absolute value), where the limits are taken along the positive real axis.
By the computation of these residues in Lemma 2.5, we conclude that the Jacobians

converge to 1:
w'i

! 1:

For the two-variable zeta functions, one may reason in a similar way, using that
g.da; da/ is a totally positive function. From Lemma 2.6, we get in a similar way a
convergence of metrics

'�
i .gY / ! gX ;

uniformly on X .
Recall that the distortion of a map ' W X ! Y is defined to be

dist.'/ ´ sup
x1;x22X

jdY .'.x1/; '.x2// � dX .x1; x2/j :

The distance in terms of the metric tensor is

d.x1; x2/ ´ inf
�2C 1.Œ0;1�;X/

�.0/Dx1;�.1/Dx2

Z 1

0

qX
gij .�.t//�.t/0i�.t/0j dt:

By uniform convergence of metric tensors on the manifold X , we can interchange
the infimum in the definition of the distance with the limit in metrics to conclude that

dist.'i / ! 0: (9)
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We can now finish the proof as in [4] (proof of Theorem 7.3.30). SinceX is compact,
we can find a dense countable set S � X , and we can find a subsequence f'0

ig of f'ig
that converges pointwise in Y at every x 2 S . This allows us to define a limit map

' W S ! Y by '.x/ ´ lim '0
i .x/

for x 2 S . This limit map is distance-preserving by (9), and so can be extended to
a distance-preserving bijection from X ! Y . Now the Myers–Steenrod theorem
([23], 3.10) implies that ' is a smooth isometry between X and Y .

12.2 Corollary. The function “zeta-distance”

d� .X; Y / ´ min
˚

inff`.'/ W ' 2 C1.X; Y /g;C1�
defines an extended metric between isometry classes of Riemannian manifolds.

Proof. It suffices to prove that if d� .X; Y / D 0, thenX and Y are isometric, and this
follows from the previous theorem.

12.3 Remark. There are other distance functions between Riemannian manifolds up
to isometry, such as Lipschitz, uniform or Gromov–Hausdorff distance (e.g., [16],
[4]), the distances dt and ıt of Bérard–Besson–Gallot ([3]) and the spectral distances
of Fukaya ([14]) and Kasue–Kumura ([22]). These distances pose various compu-
tational challenges – in the previous sections, we hope to at least have hinted at the
computational aspects of the “zeta-distance” we propose. We finally observe that such
distances play an increasingly important role in physics and cosmology (compare,
e.g., [28], [13]).

12.4. We conclude by comparing our “zeta-distance” d� to the other distances. For
this, we recall in the following diagram the relation between various forms of con-
vergence:

Lipschitz-conv.
simple spectrum

[3]�� ��������������

��������������

[3]
��

[4]

��������������

������������

dt -conv. ıt -conv. unif. conv.

[4]

��

�� �� dı-conv.

Kasue–Kumura-conv.
[22]

�� GH-conv.

Figure 4. Some relations between convergence in various distances (in a fixed C1-type).

12.5 Proposition. Let M denote the set of closed Riemannian manifolds up to isom-
etry. Then d� induces the topology of uniform convergence in C1-diffeomorphic
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types on M, i.e., if two such manifolds are notC1-diffeomorphic, then the manifolds
are at infinite distance, and otherwise, a sequence of manifolds converges if and only
if there is a sequence of C1-diffeomorphisms between them whose distortion tends
to zero.

Proof. Suppose .Xi ; gi / ! .X; g/ converges in d� . This means that there is a
sequence of C1-diffeomorphisms 'i W .Xi ; gi / ! .X; g/whose length converges to
zero. We precompose this with '�1

i :

.Xi ; gi /
'i ��

		

'�1
i

.X; g/

.X; .'�1
i /�.gi //.

Id



�����������

Hence we have a sequence of metrics hi ´ .'�1
i /�.gi / for which the length of the

identity map converges to 0. Taking residues in the two-variable zeta functions, we
find hi ! g uniformly.
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