
J. Noncommut. Geom. 6 (2012), 773–800
DOI 10.4171/JNCG/105

Journal of Noncommutative Geometry
© European Mathematical Society

Property (T) and exotic quantum group norms
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Abstract. Utilizing the notion of property (T) we construct new examples of quantum group
norms on the polynomial algebra of a compact quantum group, and provide criteria ensuring that
these are not equal to neither the minimal nor the maximal norm. Along the way we generalize
several classical operator algebraic characterizations of property .T/ to the quantum group
setting which unify recent approaches to property (T) for quantum groups with previous ones.
The techniques developed furthermore provide tools to answer two open problems; firstly
a question by Bédos, Murphy and Tuset about automatic continuity of the comultiplication
and secondly a problem left open by Woronowicz regarding the structure of elements whose
coproduct is a finite sum of simple tensors.
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1. Introduction

This paper is devoted to the theory of compact and discrete quantum groups. Both
of these classes of quantum groups have been studied in detail by many authors and
suffer from no shortage of interesting examples ([30], [21], [20], [28], [29]). It is
known that a given compact quantum group G can be described by more than one
C*-algebra (see e.g. [31], [4]); the most useful choices being the “maximal” and the
“minimal” (also called reduced) completions of the algebra Pol.G/ of polynomial
functions on G. It often happens that the canonical quotient map from the maximal
completion C.Gmax/ to the minimal one C.Gmin/ is an isomorphism (in other words
G is co-amenable, [4]). However, many interesting situations can arise when G
is described by a C*-algebra sitting “in between” the maximal and minimal one
(cf. [23]), but unfortunately there are not many examples of such compact quantum
groups (apart from obvious direct product constructions).
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The second author was partially supported by Polish government grant no. N201 1770 33, European Union
grant PIRSES-GA-2008-230836 and Polish government matching grant no. 1261/7.PR UE/2009/7.
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Unlike compact quantum groups, the discrete quantum groups (i.e., the duals
of compact quantum groups) are all co-amenable – there is just one C*-algebra for
each discrete quantum group. However, within this class of quantum groups one can
find very interesting examples. In particular, there are discrete quantum groups with
property (T) which we will study in this paper. We will use property (T) to construct
special C*-norms on the algebras of polynomials on (compact) dual quantum groups
of property (T) discrete quantum groups. The completions of these polynomial al-
gebras will be “exotic” in the sense that they will sit in between the maximal and
minimal completions. The canonical bijection between corepresentations of a dis-
crete quantum group yG and �-representations of the C*-algebra C.Gmax/ will play a
very important part in our investigation.

Let us briefly discuss the content of the paper. In Sections 1.1 and 1.2 we intro-
duce the notation and list certain preliminary results from the theory of compact and
discrete quantum groups. Section 2 provides necessary definitions and facts from
the theory of corepresentations of quantum groups; we describe the standard opera-
tions of forming tensor products and contragredient corepresentations, emphasizing
the link with representations of the dual object. The regular corepresentation of a
discrete quantum group is introduced in Section 2.4 and in Section 2.5 we prove
a quantum group version of a classical theorem from the representation theory of
locally compact groups. This theorem will be useful in the following sections.

In Section 3 property (T) for discrete quantum groups is recalled and several
known facts about quantum groups with property (T) are listed. Then in Section 4
the classical characterization of property (T) in terms of isolated points in the space
of irreducible representations is extended to the quantum group setting. This result
provides a direct link between property (T) of Fima ([13]) and earlier definitions in
[5], [19]. As a consequence, in Section 5 we are able to show that a discrete quantum
group yG has property (T) if and only if the C*-algebra C.Gmax/ has property (T)
in the sense of Bekka ([6]). Finally in Section 6 we extend the characterization of
property (T) by existence of a minimal projection in the full group C*-algebra ([26])
to the setting of discrete quantum groups.

The notion of a quantum group norm on the algebra of polynomials on a compact
quantum group is defined in Section 7, where we also recall some basic facts about
such norms. Then in Section 8 we give the first construction of a quantum group norm
making the counit continuous. We call this procedure “adjoining the neutral element
to a compact quantum group.” This construction provides examples of quantum group
norms which differ from the reduced one as well as the maximal one in the absence
of both amenability and property (T) . More complicated examples are collected in
Section 9, where, starting from a property (T) discrete quantum group yG, we construct
a certain quantum group norm k � k… on Pol.G/. The completion of Pol.G/ in this
norm provides many examples of interesting (exotic) compact quantum groups. These
examples lead us to a (negative) answer to a question of Bédos, Murphy and Tuset
whether any C*-norm on Pol.G/ arising from a representation weakly containing the
regular one is necessarily a quantum group norm (cf. [4] and Section 9). Along the
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way we also give an example which shows that a very useful theorem of Woronowicz
about compact quantum groups with faithful Haar measure ([34], Theorem 2.6 (2))
cannot be generalized to all compact quantum groups. Several of our examples are
co-commutative and we use some well-known results from harmonic analysis (for
which we refer e.g. to [7]) and geometric group theory ([14]) to analyze them.

The paper uses the standard language of quantum group theory on the operator
algebra level ([32], [34], [16]). In particular, for a C*-algebra A the symbol M.A/
will denote the multiplier algebra of A. All Hilbert spaces we will consider will
be separable and the inner products will be linear in the second variable. Similarly
all C*-algebras, except multiplier algebras, will be assumed to be separable and the
tensor product of C*-algebras will always be the spatial one. When dealing with unital
�-algebras, the term “representation” will always mean a unital �-representation.

1.1. Notation. We shall adopt the convention of e.g. [21], [13], [18] and always look
at discrete quantum groups as duals of compact quantum groups. Thus any discrete
quantum group will be denoted by yG. The C*-algebra of “continuous functions on yG
vanishing at infinity” will be denoted by c0. yG/ and its comultiplication by y�. This
may be expressed as

yG D .c0. yG/; y�/:
The compact quantum group G dual to yG can be described via many different objects.
The polynomial algebra of G, i.e., the Hopf �-algebra spanned by matrix elements of
finite-dimensional corepresentations of G, will be denoted by Pol.G/. The universal
enveloping C*-algebra of Pol.G/, i.e., its completion with respect to the maximal
C*-norm, will be denoted by C.Gmax/. The Hilbert space obtained via the Gelfand–
Naimark–Segal (GNS) construction from the Haar measure h of G will be denoted
by L2.G/. The completion of Pol.G/ in the norm coming from representing Pol.G/
on L2.G/ will be denoted by C.Gmin/ and the von Neumann algebra obtained as
the bicommutant of C.Gmin/ in B.L2.G// will be denoted by L1.G/. The GNS
representation on L2.G/, as well as its canonical extension to C.Gmax/, will be
referred to as the regular representation and denoted by �. Each of the algebras
Pol.G/, C.Gmax/ and C.Gmin/ has its own comultiplication, but we will use the same
symbol � for all of them (except in Remark 9.6). The possible other completions of
Pol.G/ will be denoted by C.G/ or C.G�/, where in the space reserved by “�” a
symbol indicating the nature of the completion will be placed. For example, if we
choose a faithful representation � of Pol.G/ on some Hilbert space then the resulting
C*-completion of Pol.G/ will be written as C.G�/. In case the C*-norm used to
complete Pol.G/ is a quantum group norm (see Section 7) the C*-algebra C.G�/
will carry a comultiplication extending that of Pol.G/ and we will continue to denote
it by the symbol �. The only exception to this will appear in Remark 9.6, where
the distinction between comultiplications on different completions of Pol.G/ will be
necessary.
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The set of equivalence classes of irreducible corepresentations of G will be de-
noted by Irr.G/. For ˛ 2 Irr.G/ we will choose (and fix throughout the paper) a
unitary corepresentation u˛ in the class ˛. The dimension of u˛ will be denoted
by n˛ . Thus u˛ is a unitary element of Mn˛

.C/ ˝ Pol.G/. As Pol.G/ naturally
embeds into C.Gmax/ and C.Gmin/ (or any C.G�/ for that matter), we can regard u˛

as element of Mn˛
.C/˝ C.Gmax/ or Mn˛

.C/˝ C.Gmin/ etc.
Let us also recall that a discrete quantum group yG is unimodular if its left and right

Haar measures coincide (cf. [21], Section 3). This is equivalent to many different
conditions (cf. [34], Theorem 2.5). The one we will use is that of G being a compact
quantum group of Kac type which manifests itself in the fact that the antipode of G
is a �-anti-automorphism.

1.2. Some preliminary results. Recall that we have the decomposition

L2.G/ D L
˛2Irr.G/

H˛

with H˛ the subspace of L2.G/ spanned by matrix elements of u˛ , as well as the
decomposition

c0. yG/ D L
˛2Irr.G/

Mn˛
.C/:

See [21], Section 3, and [34], Section 4, for details. Furthermore, c0. yG/ acts on
L2.G/ in a decomposition preserving way described in detail below. The set

fu˛
i;j j ˛ 2 Irr.G/; i; j 2 f1; : : : ; n˛gg (1.1)

is not an orthonormal basis ofL2.G/ in general (cf. the Peter–Weyl–Woronowicz re-
lations in [34], Section 7), but if necessary the representatives .u˛/ of classes in Irr.G/
can be chosen so that it is an orthogonal system ([11], Proposition 2.1). Also let us note
that if G is of Kac type, then the system fpn˛u

˛
i;j j ˛ 2 Irr.G/; i; j D 1; : : : ; n˛g

is an orthonormal basis of L2.G/. In [21], Section 2, the universal bicharacter
describing the duality between G and yG was introduced. It is the element

w D L
˛2Irr.G/

u˛ (1.2)

of M.c0. yG/˝ C.Gmax//. It is of great importance and we will use it throughout the
paper.

The action of c0. yG/ on L2.G/ is described in detail e.g. in [34]. Interpreting
[34], formula 5.3, in accordance with our notation we obtain for a 2 Pol.G/ and
� 2 C.Gmax/

� the formula

..id ˝ �/w/a D .id ˝ �/�.a/;
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where we view Pol.G/ as a dense subspace of L2.G/. Let us fix ˛ and i; j 2
f1; : : : ; n˛g and take for � the functional satisfying

�.u
ˇ

k;l
/ D ı˛;ˇ ıi;kıj;l

(for existence of such a � cf. [20], Section 1) and put a D u˛
r;l

. Then we have

.id ˝ �/w D e˛
i;j 2 Mn˛

.C/ � L
˛2Irr.G/

Mn˛
.C/ D c0. yG/

and

.id ˝ �/�.u˛
r;l/ D .id ˝ �/

nP̨
kD1

u˛
r;k

˝ u˛
k;l

D
nP̨

kD1

�.u˛
k;l
/u˛

r;k
D

nP̨
kD1

ıi;kıj;lu
˛
r;k

D ıj;lu
˛
r;i :

Thus e˛
i;j acts on a basic element u˛

r;l
of H˛ as

e˛
i;j W u˛

r;l 7�! ıj;lu
˛
r;i : (1.3)

The lesson from this is that if H is a Hilbert space and m 2 Mn˛
.C/ ˝ B.H/ �

M.c0. yG/˝ K.H// is a matrix of operators

m D

2
64
m1;1 : : : m1;n˛

:::
: : :

:::

mn˛ ;1 : : : mn˛ ;n˛

3
75

then for r; l D 1; : : : ; n˛ and any � 2 H we have

m.u˛
r;l ˝ �/ D

nP̨
i;j D1

e˛
i;ju

˛
r;l

˝mi;j � D
nP̨

i;j D1

ıj;lu
˛
r;i ˝mi;j � D

nP̨
iD1

u˛
r;i ˝mi;l�

In particular, if m.�˝ �/ D �˝ � for all � 2 H˛ then taking � D u˛
r;l

yields

u˛
r;l ˝ � D

nP̨
iD1

u˛
r;i ˝mi;l�

so that

mi;l� D ıi;l�:

2. Corepresentations of discrete quantum groups

In this section we collect the standard facts about corepresentations of discrete quan-
tum groups. Most of what is written here applies to all locally compact quantum
groups and possibly more general quantum groups (cf. [24]), but in what follows
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we will stick with discrete quantum groups. Let therefore yG be a discrete quan-
tum group. A unitary corepresentation of yG on a Hilbert space HU is a unitary
U 2 M.c0. yG/˝ K.H// such that

.y�˝ id/U D U23U13:

(One usually expects the right hand side of the above equation to read U13U23, but
this is really not so much different because U � satisfies such an equation.) Let
w be the universal bicharacter describing the duality between yG and G (defined
by (1.2)). Then it is known ([24], Section 5.1) that any unitary corepresentation
U 2 M.c0. yG/˝ K.HU // is of the form

U D .id ˝ �U /w;

where �U is a (uniquely determined) representation of C.Gmax/ on the Hilbert space
HU . Since we will not consider non-unitary corepresentations, the adjective “uni-
tary” will often be omitted in the sequel. The one-dimensional corepresentation
corresponding to the representation of C.Gmax/ given by the counit, i.e., the element
.id ˝ "/w D 1 ˝ 1 2 M.c0. yG//˝ C is called the trivial corepresentation of yG. Let
U be a corepresentation of yG. Then U D .id ˝ �/w for some representation � of
C.Gmax/. Now for any ˛ 2 Irr.G/ we define

U ˛ D .id ˝ �/u˛:

This is sometimes called the ˛-component of U , but note that U ˛ it is nothing like a
sub-corepresentation. Let us now describe some operations on corepresentations.

2.1. Tensor product. Take two corepresentations

U D .id ˝ �U /w 2 M.c0. yG/˝ K.HU //;

V D .id ˝ �V /w 2 M.c0. yG/˝ K.HV //

of yG. The tensor product U �������	> V of U and V is defined as U12V13 2 M.c0. yG/ ˝
K.HU ˝HV //. Another way to view the tensor product is

U �������	> V D .id ˝ Œ.�U ˝ �V / B��/w:
Indeed, .id ˝�/w D w12w13.

2.2. Contragredient corepresentation. IfH is a Hilbert space and xH the complex
conjugate Hilbert space then we have the anti-isomorphism

>W B.H/ 3 m 7�! >.m/ D m> 2 B. xH/
given by

m> Nx D m�x:
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Let V D .id ˝ �V /w 2 M.c0. yG/˝ K.HV // be a corepresentation. The contragre-

dient co-representation V c of V is defined as V yR˝> D . yR ˝ >/V 2 M.c0. yG/ ˝
K.HV // (cf. [24], Section 3), where yR is the unitary antipode on yG ([33], Theo-
rem 1.5 (4)). Again there is another way to view V c:

V c D .id ˝ �c
V /w;

where
�c

V D > B �V BR
and R is the unitary antipode of G. This can be seen from

.id ˝ Œ> B�V BR�/w D . yR˝ >/.id ˝�V /. yR˝R/w D . yR˝ >/.id ˝�V /w D V c

because . yR˝R/w D w ([24], formula 5.34).

2.3. Containment, weakcontainment, equivalence, etc. Since there is a one to one
correspondence between corepresentations of yG and representations of the C*-algebra
C.Gmax/ we can define the notions of containment, weak containment, equivalence
and weak equivalence of corepresentations by the corresponding notions from rep-
resentation theory of C*-algebras (see e.g. [12] or Section 4). We will write U � V

if U is contained in (i.e., is a sub-corepresentation of) V in the sense that �U is a
subrepresentation of �V . Similarly we will write U 4 V if �U 4 �V (weak con-
tainment). Two corepresentations U and V are equivalent if �U and �V are unitarily
equivalent, while U and V are weakly equivalent if U 4 V and V 4 U . We have
the following simple lemma:

Lemma 2.1. Let U , U1, V and V1 be corepresentations of a discrete quantum group
yG. Then

(1) if U � U1 and V � V1, then U �������	> V � U1
�������	
> V1,

(2) if U 4 U1 and V 4 V1, then U �������	> V 4 U1
�������	
> V1,

(3) if U � V , then U c � V c,

(4) if U 4 V , then U c 4 V c.

Remark 2.2. Let U be a finite-dimensional corepresentation of a discrete quantum
group yG, i.e., U 2 M.c0. yG/ ˝ K.HU // and dimHU D n < 1. Then, upon
choosing an orthonormal basis in HU , we can identify U with an .n � n/-unitary
matrix of elements of M.c0. yG// which satisfy

y�.Ui;j / D
nP

kD1

Uk;j ˝ Ui;k

for i; j D 1; : : : ; n. If we put ui;j D U �
j;i , then

y�.ui;j / D
nP

kD1

ui;k ˝ uk;j :
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Let B be the C*-subalgebra of M.c0. yG// generated by fui;j gi;j D1;:::;n. Then B is
unital (becauseU is unitary) and y� restricts to a comultiplicationB ! B˝B . Then
.B; y�jB/ is a compact quantum matrix group as defined in [31], Definition 1.1 (to see
that condition 3) of that definition is satisfied, consider the restriction of the antipode
of yG to the �-algebra generated by matrix elements ofU �, cf. [33], Theorem 1.6 (4)).
Furthermore, U is a unitary corepresentation of the opposite quantum group ([17],
Section 4). Using the results of [31], Section 3, [17], Section 4, and [22], Section 4.6,
one can show that U �������	> U c contains the trivial corepresentation. Note, however, that
the definition of contragredient corepresentation in [31] is different from the one we
have adopted and one is forced to use modular properties of the Haar measure of
.B; y�jB/.
2.4. The regular corepresentation. The regular corepresentation of a discrete quan-
tum group yG is W D .id˝�/w, where� is the quotient map C.Gmax/ ! C.Gmin/ �
B.L2.G//.

Proposition 2.3. The regular corepresentation is equivalent to its contragredient
W c.

Proof. Let us first define a unitary map Z W L2.G/ ! L2.G/. We put

Zu˛
k;l D R.u˛

k;l
�
/;

whereR is the unitary antipode of G. The unitarity ofZ follows from the calculation:

hZu˛
k;l jZuˇ

i;j i D hR.uˇ
i;j

�
/jR.u˛

k;l
�
/i

D h.R.u
ˇ
i;j

�
/�R.u˛

k;l
�
//

D h.R.u˛
k;l

�
u

ˇ
i;j //

D h.u˛
k;l

�
u

ˇ
i;j / D hu˛

k;l juˇ
i;j i:

Let us examine the operator Z�.a/Z� for a 2 Pol.G/. On a vector R.u˛
k;l

�/ 2
L2.G/ we have

Z�.a/Z�R.u˛
k;l

�
/ D Z.�.a/u˛

k;l/

D Z.a � u˛
k;l/

D R..au˛
k;l/

�/

D R.u˛
k;l

�
a�/

D R.a�/ �R.u˛
k;l

�
/

D �.R.a//�R.u˛
k;l

�
/

D �.R.a//>R.u˛
k;l

�
/:
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Thus Z establishes unitary equivalence between � and > B � BR, which is the same
as unitary equivalence between W and W c.

Remark 2.4. It is a well-known fact that the tensor product W �������	
> W is weakly

contained in W (cf. [24], Corollary 20). In view of Proposition 2.3, we see that
W �������	

> W c 4 W .

2.5. A theorem about corepresentations. We end this section with a quantum
group generalization of [7], PropositionA.1.12, which gives a necessary and sufficient
condition for a tensor product of two representations of a topological group to have an
invariant vector. Let H and K be Hilbert spaces and denote by HS.H;K/ the space
of Hilbert–Schmidt operators from H to K. There is a canonical unitary mapping

‰ W H ˝K ! HS. xK;H/
given by

x ˝ y 7! jxih Nyj;
where we use the Dirac notation: jxih Nyj is the operator

xK 3 Nz 7! h Nyj Nzix 2 H:
This yields an isomorphism Ad‰ W B.H ˝K/ ! B.HS. xK;H//

Ad‰.x/ D ‰x‰�:

Lemma 2.5. For S1 2 B.H/, S2 2 B.K/ and T 2 HS. xK;H/ we have

.Ad‰.S1 ˝ S2//.T / D S1 B T B S>
2 :

Proof. Calculate for T D ‰.x ˝ y/ D jxih Nyj and extend the result by linearity and
continuity.

Theorem 2.6. Let U and V be corepresentations of a discrete quantum group yG.
Then:

(1) If W is a finite-dimensional corepresentation of yG such that W � U and
W � V c, then U �������	> V contains the trivial corepresentation.

(2) If yG is unimodular and U �������	> V contains the trivial corepresentation, then there
exists a finite-dimensional corepresentationW contained both in U and in V c.

Proof. (1). This follows directly from Lemma 2.1 and Remark 2.2.
(2). As in the remarks preceding Lemma 2.5 we write ‰ for the canonical uni-

tary HU ˝ HV ! HS.HV ;HU / and Ad‰ for the isomorphism B.HU ˝ HV / !
B.HS.HV ;HU // Let us form the tensor product U �������	> V and let

X D .id ˝ Ad‰/.U �������	> V / 2 M.c0. yG/˝ K.HS.HV ;HU ///:
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Then X is a corepresentation of yG equivalent to U �������	> V , so that X contains the
trivial corepresentation. This means that X has a non-zero invariant vector (cf. Defi-
nition 3.1). Since

X D .id ˝ Ad‰/.id ˝ Œ.�U ˝ �V / B��/w;
the component X˛ 2 Mn˛

.C/˝ B.HS.HV ;HU // is

X˛ D .id ˝ Ad‰/.id ˝ Œ.�U ˝ �V / B��/u˛

D .id ˝ Ad‰/.id ˝ Œ.�U ˝ �V / B��/
nP̨

i;j D1

e˛
i;j ˝ u˛

i;j

D .id ˝ Ad‰/.id ˝ �U ˝ �V /
nP̨

i;j;kD1

e˛
i;j ˝ u˛

i;k
˝ u˛

k;j

D .id ˝ Ad‰/
nP̨

i;j D1

e˛
i;j ˝ � nP̨

kD1

�U .u
˛
i;k
/˝ �V .u

˛
k;j
/
�

so that

X˛
i;j D Ad‰

� nP̨
kD1

�U .u
˛
i;k
/˝ �V .u

˛
k;j
/
�
:

By Lemma 2.5, for T 2 HS.HV ;HU / and � 2 H˛ we have

X˛.�˝ T / D
nP̨

i;j D1

e˛
i;j�˝ � nP̨

kD1

�U .u
˛
i;k
/ B T B �V .u

˛
k;j
/>

�
:

Now let T be an invariant vector for X . In view of the discussion at the end of
Section 1.2,

X˛
i;j .T / D ıi;jT;

which reads
nP̨

kD1

�U .u
˛
i;k
/ B T B �V .u

˛
k;j
/> D ıi;jT:

We have assumed that yG is unimodular, i.e., that G is of Kac type. In particular, if �
is the antipode of G then � D R is a �-anti-automorphism and �2 D id. Moreover
�.u˛

k;j
/ D u˛

j;k
�. Therefore

nP̨
kD1

�U .u
˛
i;k
/ B T B �c

V .u
˛
j;k

�/ D ıi;jT:

Multiplying both sides of this equation by �c
V .u

˛
j;p/ and summing over j we obtain

nP̨
kD1

�U .u
˛
i;k
/ B T B �c

V

� nP̨
j D1

u˛
j;k

�u˛
j;p

� D
nP̨

j D1

ıi;jT B �c
V .u

˛
j;p/;



Property (T) and exotic quantum group norms 783

which gives
�U .u

˛
i;p/ B T D T B �c

V .u
˛
i;p/ (2.1)

because u˛ is unitary.
Since (2.1) is true for all ˛ 2 Irr.G/ and all i; p 2 f1; : : : ; n˛g, we have

U.1 ˝ T / D .1 ˝ T /V c

i.e., T intertwines V c and U . It follows that T T � 2 K.HU / intertwines U with
itself. Note that T T � is a non-zero compact, positive operator. Therefore it has
an eigenvalue � > 0 with finite multiplicity. Moreover the corresponding eigen-
projection also intertwines U with itself. This clearly leads to a finite-dimensional
sub-corepresentationW of U . Similarly T �T is a self-intertwiner of V c and there is
a sub-corepresentationW 0 of V c corresponding to � (the non-zero parts of spectra of
T T � and T �T coincide). Moreover, it is easy to see that the partial isometric part of
the polar decomposition of T � establishes an equivalence between W and W 0.

Remark 2.7. Let us remark that the first part of Theorem 2.6 in the Kac case can be
established in a simple calculation without resorting to the techniques described in
Remark 2.2. Indeed, using the notation of Theorem 2.6 (and its proof), we first note
that U �������	> V contains W �������	

> W c. The corepresentation W �������	
> W c is equivalent to

.id ˝ z�/w 2 M.c0. yG/˝ K.HS.HW ;HW ///;

where the representation z� when restricted to Pol.G/ is

z� W Pol.G/ 3 a 7�! Ad‰..�W ˝ �W /.id ˝ �/�.a//:

In view of Lemma 2.5, this means that for T 2 HS.HW ;HW / and a 2 Pol.G/ we
have

.z�.a//.T / D P
�W .a.1// B T B �W .�.a.2///:

Since HW is finite-dimensional, we can take T D 1 to obtain

.z�.a//.1/ D .�W ˝ �W /
� P

.a.1//.�.a.2///
�
1

D .�W ˝ �W /.m.id ˝ �/�.a//1

D ".a/1

for all a 2 Pol.G/. It follows that the trivial corepresentation is contained inW �������	>W c.

3. Property (T) for discrete quantum groups

In a recent paper by Fima [13], Kazhdan’s property (T) is studied in the setting of
discrete quantum groups. The definition is analogous to the classical definition for
discrete groups and goes as follows.
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Definition 3.1 ([13]). Let yG be a discrete quantum group and let V 2 M.c0. yG/ ˝
K.HV // be a unitary corepresentation of yG on the Hilbert space HV . A vector
� 2 HV n f0g is said to be V -invariant if V ˛.�˝ �/ D �˝ � for all ˛ 2 Irr.G/ and
all � 2 H˛ . For E � Irr.G/ a finite subset and ı > 0 a vector � 2 HV n f0g is said
to be .E; ı/-invariant with respect to V if

kV ˛.�˝ �/ � �˝ �k < ık�kk�k
for all ˛ 2 E and all � 2 H˛ . The corepresentation V has almost invariant vectors
if such a non-zero � 2 HV exists for all finite subsets E � Irr.G/ and all ı > 0, and
the discrete quantum group yG is said to have property (T ) if every corepresentation
with almost invariant vectors has a non-zero invariant vector.

Remark 3.2. It was shown in [18] how property (T) for yG can be interpreted
using the correspondence between corepresentations of yG and representations of
C.Gmax/. More precisely, yG has property (T) if and only if the following holds: if
� W C.Gmax/ ! B.H/ is a representation and there exists a sequence .�n/n2N of unit
vectors in H such that lim

n!1 k�.a/�n � ".a/�nk D 0 for all a 2 C.Gmax/, in which

case � is said to have almost invariant vectors, then there exists an invariant unit
vector; i.e., a unit vector � 2 H with �.a/� D ".a/� for all a 2 C.Gmax/.

Remark 3.3. Actually, the study of property (T) for quantum groups began before
the paper [13]. In [19] property (T) was studied in the setting of Kac algebras and
in [5] it was introduced for the class of algebraic quantum groups. However, we
will use Fima’s approach in the following, since it fits our purposes best. Using the
results obtained in the present paper we will see later that the different approaches
are equivalent in the case of discrete quantum groups.

In the following theorem we summarize some of the results obtained in [13].

Theorem 3.4. If yG is a discrete quantum group with property (T ) then the following
hold:

(1) yG is finitely generated, i.e., the compact dual is a matrix quantum group.

(2) There exists a finite subset E0 � Irr.G/ and a ı0 > 0 such that every corepre-
sentation with .E0; ı0/-invariant vectors has a non-zero invariant vector. Such
a pair .E0; ı0/ is called a Kazhdan pair for yG.

(3) yG is unimodular.

Furthermore, Fima links property (T) of yG with property (T) of L1.G/ (in the
sense of Connes and Jones [10]) in the case when yG is i.c.c. Property (T) for yG
can also be described by means of the “positive definite functions” on yG as well as
by a vanishing of cohomology result analogues to the classical Delorme–Guichardet
theorem. We shall not elaborate further on these characterizations and refer the reader
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to [18] for details. Property (T) turns out to be essential in our search for exotic
quantum group norms and in the following section we develop the results needed to
construct these norms. The results obtained are of independent interests and parallel
nicely classical results for discrete groups.

4. Property (T) and the Jacobson topology

Let again G be a compact quantum group with C*-algebra C.G/ and Hopf �-algebra
Pol.G/. In this section we investigate the connection between property (T) for yG
and the topology on the spectrum Spec.C.Gmax// consisting of equivalence classes
of irreducible representations of C.Gmax/. Recall from [12] that Spec.C.Gmax// has
a natural topology, called the Jacobson topology, which is intimately linked with the
notion of weak containment. For the convenience of the reader we briefly recall this
notion. Recall that a functional ' W C.Gmax/ ! C is said to be a vector functional
associated with a set of representations S if there exists 	 2 S and � 2 H� such that
'.a/ D h�j	.a/�i for all a 2 C.Gmax/.

Definition 4.1 ([12]). Let S be a set of representations of C.Gmax/ and � some given
representation. Then � is said to be weakly contained in S , written � 4 S , if every
vector state associated with � is a weak� limit (i.e., pointwise limit) of states which
are linear combinations of vector functionals associated with the representations in S .

Proposition 4.2 ([12], Theorem 3.4.10). Suppose that S � Spec.C.Gmax// and
� 2 Spec.C.Gmax//. Then the following are equivalent:

(1) � is in the closure of S (with respect to the Jacobson topology) inSpec.C.Gmax//.

(2) � is weakly contained in S .

(3) Every vector state associatedwith� is theweak� limit of vector states associated
with S .

The following lemma links the notion of weak containment to the notion of having
almost invariant vectors as defined in Remark 3.2.

Lemma 4.3. Let � W C.Gmax/ ! B.H/ be a representation. Then � has almost
invariant vectors if and only if the counit " is weakly contained in � .

Proof. If � has almost invariant vectors, there exists a sequence .�n/n2N of unit
vectors in H such that

k�.a/�n � ".a/�nk ����!
n!1 0

for all a 2 C.Gmax/. Defining 'n.a/ D h�nj�.a/�ni we have

j'n.a/ � ".a/j2 D k�.a/�n � ".a/�nk2 � .'n.a
�a/ � 'n.a

�/'n.a// (4.1)



786 D. Kyed and P. M. Sołtan

and 'n.a
�a/ � 'n.a

�/'n.a/ 	 0 by the Cauchy–Schwarz inequality. Thus

lim
n!1 j'n.a/ � ".a/j D 0;

and we conclude that " 4 � .
Conversely, if " 4 � the functional " can be approximated pointwise by sums

of vector functionals associated with � . However, since " is a pure state the ap-
proximation can be obtained using vector states associated with � (cf. [12], Proposi-
tion 3.4.2). Hence there exist unit vectors .��/ in H such that the net of vector states
.'�/, '�.a/ D h��j�.a/��i, converges pointwise to " on C.Gmax/. But then for each 

we have

j'�.a/ � ".a/j2 D k�.a/�� � ".a/��k2 � .'�.a
�a/ � '�.a

�/'�.a//

as in (4.1) and hence lim� k�.a/�� � ".a/��k D 0 for each a 2 C.Gmax/. This shows
that � has almost invariant vectors.

Definition 4.4. Let� be a set of positive functionals on C.Gmax/ and let ' be another
positive functional. Then ' is said to be approximated on finite sets by elements in
� if the following holds: for all finite E � Irr.G/ and all ı > 0 there exists ! 2 �
such that

j'.u˛
i;j / � !.u˛

i;j /j < ı
for all ˛ 2 E and all i; j 2 f1; : : : ; n˛g.

Lemma 4.5. A positive functional ' on C.Gmax/ is approximated on finite sets by
elements from � � C.Gmax/

�C if and only if there exists a sequence .!n/n2N of
elements of � such that !n.a/ ����!

n!1 '.a/ for every a 2 Pol.G/. Moreover, in this

case !n ����!
n!1 ' in the weak� topology.

Proof. If' is approximated by functionals from� on finite sets just pick an increasing
sequence .En/n2N of finite subsets of Irr.G/ with Irr.G/ as its union and choose
!n 2 � such that

j'.u˛
i;j / � !n.u

˛
i;j /j < 1

n
for all ˛ 2 En and all i; j 2 f1; : : : ; n˛g:

Since each irreducible unitary corepresentation is contained inEn from a certain point
on, we get the desired pointwise convergence on the set of matrix coefficients, and
since these span Pol.G/ linearly, the pointwise convergence holds on all of Pol.G/.
If, conversely, we have a sequence .!n/n2N of elements of � converging pointwise
to ' on Pol.G/, then clearly ' is approximated by functionals in� on finite subsets.
That the convergence holds on all of C.Gmax/ is seen by a standard “epsilon over
three” argument.

Remark 4.6. Lemma 4.5 shows that ' is approximated on finite sets by elements of
� if and only if ' lies in the weak� closure of �.
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The following functional analytic version of [7], Proposition C.5.1, is a standard
result in operator algebras and we therefore omit the proof.

Lemma 4.7. If ' and '1 are non-zero, positive linear functionals on C.Gmax/ and
' 	 '1 then the GNS representation �1 associated with '1 is contained in the GNS
representation � associated with '. If ' is already a vector functional associated
with some representation 	 then � � 	.

With the aid of the above lemmas we are now able to prove the following quantum
group generalization of the classical characterization of property (T) in terms of Fell’s
topology.

Theorem 4.8. A discrete quantum group yG has property (T ) if and only if the trivial
representation " is an isolated point in Spec.C.Gmax//.

Proof. Assume first that yG has property (T) . Since " is finite-dimensional and irre-
ducible, f"g is automatically closed in Spec.C.Gmax//, so we need to show that f"g is

also open. Now the complement f"g{ is closed if and only if " 62 f"g{ which happens
if and only if " is not weakly contained in f"g{. If we had " 4 f"g{ then by [12],
Theorem 3.4.10, we find a net .��/ of elements of Spec.C.Gmax// n f"g and for each

 a unit vector �� in the representation space H� of �� such that the vector functionals
'� W a 7! h��j��.a/��i converge pointwise to " on C.Gmax/. The functionals '� satisfy

j'�.a/ � ".a/j2 D k��.a/�� � ".a/��k2 � .'�.a
�a/ � '�.a

�/'�.a//

(cf. (4.1)) and hence k��.a/�� � ".a/��k �!
�
0 for all a 2 C.Gmax/. Define now

� D L
�

�� W C.Gmax/ ! B
� L

�

H�

�
:

Then, by construction, � has almost invariant vectors and by property (T) it must have
a non-zero invariant unit vector � D .��/. Then at least one ��0 is non-zero and hence
invariant for��0 . Thus " � ��0 contradicting the choice of��0 in Spec.C.Gmax//nf"g.

Now assume that yG does not have property (T) and choose a representation
� W C.Gmax/ ! B.H/ with almost invariant vectors, but without non-zero invariant
ones. We may therefore choose a sequence .�n/n2N of unit vectors in H such that
k�.a/�n � ".a/�nk ����!

n!1 0 for every a 2 Pol.G/. Putting 'n.a/ D h�nj�.a/�ni
we obtain a sequence of states satisfying relation (4.1). Hence 'n.a/ ����!

n!1 ".a/ for

all a 2 Pol.G/ and Lemma 4.5 assures that 'n ! " in the weak� topology. Our aim
is to show that " is not an isolated point in the spectrum, i.e., " is weakly contained
in Spec.C.Gmax// n f"g. Hence, by Lemma 4.5 we have to show that " can be ap-
proximated on finite sets by elements from the set consisting of linear combinations
of positive functionals associated with the representations in Spec.C.Gmax// n f"g.
Denote this set by �.
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LetE be a finite subset of Irr.G/ and let ı > 0 be given. Choose an n0 2 N such
that

j'n0
.u˛

i;j / � ".u˛
i;j /j < ı

2

for all ˛ 2 E and i; j 2 f1; : : : ; n˛g. Recall also that 'n0
.a/ D h�n0

j�.a/�n0
i, with

" — � . Since the state space �.C.Gmax// is the weak�-closed convex hull of the set of
pure states of C.Gmax/, there exists a net .'�/ of elements of �.C.Gmax// converging
pointwise to 'n0

and with the property that

'� D t� � C .1 � t�/";
where t� 2 Œ0; 1� and  � is a linear combination of pure states different from ", i.e.,
 � 2 �. By compactness of Œ0; 1� and weak� compactness of �.C.Gmax// we may,
upon passing to subnets, assume that t� �!

�
t and . �/ converges pointwise to a state

 . This means that
'n0

D t C .1 � t /":
If t ¤ 1, then Lemma 4.7 implies that " is contained in the GNS representation

associated with 'n0
, which, in turn, is contained in� – a contradiction with the choice

of � . Hence t D 1 and thus 'n0
is the pointwise limit of the net . �/. Hence there

exists an index 
0 such that

j'n0
.u˛

i;j / �  �0.u
˛
i;j /j < ı

2

for all ˛ 2 E and all i; j 2 f1; : : : ; n˛g. Thus for all ˛ 2 E and i; j 2 f1; : : : ; n˛g
we have j".u˛

i;j / �  �0.u
˛
i;j /j < ı and since  �0 is in the set �, we have shown that

" is approximated by functionals in �, as desired.

Remark4.9. Equipped with Theorem 4.8 one can easily prove that a discrete quantum
group yG has property (T) in the sense of Definition 3.1 if and only if yG has property
(T) as defined by Bédos, Conti and Tuset in [5], Definition 7.15, and if and only if
the associated Kac algebra (in von Neumann algebraic formulation) has property (T)
as defined by Petrescu and Joita in [19], Definition 3.1 (cf. [19], Theorem 3.3).

5. Connection with property (T) for C*-algebras

In the paper [6] Bekka introduced property (T) for unital C*-algebras admitting tracial
states. His definition is a C*-analogue of the corresponding definition for II1-factors
due to Connes and Jones ([10]) and goes as follows:

Definition 5.1. A unital C*-algebraA admitting a tracial state is said to have property
(T ) if there exists a finiteE � A and a constant ı > 0 such that if a HilbertA-bimodule
H has a unit vector � with

ka� � �ak < ı
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for all a 2 E, then there exists a non-zero vector � 0 2 H with a� 0 D � 0a for all
a 2 A. Such a pair .E; ı/ is called a Kazhdan pair for the C*-algebra A.

Remark 5.2. Although no trace appears in the definition of property (T), requiring
their existence is important since the definition is otherwise vacuous. More precisely,
Bekka showed ([6], Remark 17) that any unital C*-algebra not admitting a tracial
state satisfies Definition 5.1.

Theorem 5.3. The discrete quantum group yG has property (T ) if and only if C.Gmax/

has property (T ) in the sense of Bekka.

Note that the counit " W C.Gmax/ ! C is a tracial state so that Bekka’s definition
can be applied. The proof is greatly inspired by the proof of [13], Theorem 3.1.

Proof of Theorem 5.3. Assume that yG has property (T) and let .E; ı/ be a Kazhdan
pair. We now prove that

E 0 D fu˛
i;j j ˛ 2 E; i; j 2 f1; : : : ; n˛gg and ı0 D ı

maxfn˛
p
n˛ j ˛ 2 Eg

constitute a Kazhdan pair for the C*-algebra C.Gmax/. Assume therefore thatH is a
Hilbert space which is also a C.Gmax/-bimodule and assume furthermore that � is an
.E 0; ı0/-central unit vector; i.e.,

ku˛
i;j � � �u˛

i;j k < ı0

for all ˛ 2 E and i; j 2 f1; : : : ; n˛g. Denoting the left action C.Gmax/ ! B.H/
by � and the right action C.Gmax/

op ! B.H/ by 	 we obtain a new representation
� W C.Gmax/ ! B.H/ by setting � D m B .Œ	 B R�˝ �/ B� which corresponds to
the corepresentation V of yG given by V ˛ D .id ˝ 	/.u˛�/.id ˝�/.u˛/. For ˛ 2 E
we now obtain, using (1.3) and the fact that G is Kac so that

fpn˛u
˛
i;j j i; j D 1; : : : ; n˛g (5.1)

is an orthonormal basis of H˛ , that

kV ˛.u˛
r;l ˝ �/ � u˛

r;l ˝ �k
D k..id ˝ �/.u˛//.u˛

r;l ˝ �/ � ..id ˝ 	/.u˛//.u˛
r;l ˝ �/k

D �� nP̨
i;j D1

.e˛
i;j ˝ �.u˛

i;j //.u
˛
r;l

˝ �/ �
nP̨

i;j D1

.e˛
i;j ˝ 	.u˛

i;j //.u
˛
r;l

˝ �/
��

D �� nP̨
iD1

u˛
r;i ˝ �.u˛

i;l
/� � Pn˛

iD1 u
˛
r;i ˝ 	.u˛

i;l
/�

��
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D �� nP̨
iD1

u˛
r;i ˝ .u˛

i;l
� � �u˛

i;l
/
��

D
s

nP̨
iD1

ku˛
r;ik2ku˛

i;l
� � �u˛

i;l
k2

D
s

nP̨
iD1

1
n˛

ku˛
i;l
� � �u˛

i;l
k2 < ı0:

Now we take � 2 H˛ and expand it in the orthonormal basis (5.1):

� D
nP̨

r;iD1

n˛hu˛
r;i j�iu˛

r;i :

Then

kV ˛.�˝ �/ � �˝ �k D �� nP̨
r;iD1

n˛hu˛
r;i j�i.V ˛.u˛

r;l
˝ �/ � u˛

r;l
˝ �/

��
�

nP̨
r;iD1

n˛jhu˛
r;i j�ijkV ˛.u˛

r;l
˝ �/ � u˛

r;l
˝ �k

<
nP̨

r;iD1

n˛jhu˛
r;i j�ijı0 D ı0pn˛

Pn˛

r;iD1 jhpn˛u
˛
r;i j�ij:

Thus, by the Cauchy–Schwarz inequality,

nP̨
r;iD1

jhpn˛u
˛
r;i j�ij �

s
nP̨

r;iD1

jhpn˛u
˛
r;i j�ij2

s
nP̨

r;iD1

1 D k�kn˛;

and hence

��V ˛.�˝�/��˝�k < ı0pn˛

nP̨
r;iD1

jhpn˛u
˛
r;i j�ij � ı0pn˛k�kn˛ D ı0k�kn 3

2
˛ � ık�k

for all � 2 H˛ . Therefore, since .E; ı/ is a Kazhdan pair for yG, there exists a
V -invariant unit vector � 0 2 H . It is easily seen that � 0 is a central vector and we
conclude that C.Gmax/ has property (T) .

If, conversely, C.Gmax/ has property (T) then from [8], Proposition 3.2, it fol-
lows that every finite-dimensional, irreducible representation is an isolated point in
Spec.C.Gmax//. In particular " is an isolated point and therefore yG has property (T)
by Theorem 4.8.

Remark 5.4. Let us emphasize that Theorem 5.3 together with [8], Proposition 3.2,
shows that, as in the classical case, yG has property (T) if and only if all finite-
dimensional representations of C.Gmax/ are isolated in Spec.C.Gmax//.
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We will also need the following related result.

Proposition 5.5. Suppose that yG is an infinite discrete quantum group, i.e., one with
dim c0. yG/ D 1, and that yG is non-amenable. Then the regular corepresentation W
of yG does not weakly contain any finite-dimensional corepresentation.

Proof. If U is a finite-dimensional corepresentation of yG and U 4 W , then by
Lemma 2.1 and Remark 2.4 we have

U �������	> U c 4 W �������	
> W c 4 W :

But U �������	> U c contains the trivial corepresentation (Remark 2.2), so W must weakly
contain the trivial corepresentation, which is impossible for an infinite discrete non-
amenable quantum group (see e.g. [25]).

6. Minimal projections and property (T)

We recall that a projectionp in a unital C*-algebraA is called minimal ifpAp D Cp.
We prove here the following quantum group version of the classical characterization
of property (T) in terms of minimal projections in the maximal group C*-algebra (see
[1], [26]). The proof follows the lines of the corresponding proof in [26]. As usual
yG denotes a discrete quantum group.

Proposition 6.1. The following are equivalent:

(1) yG has property (T ).

(2) There exists a uniqueminimal projection in the center of C.Gmax/with ".p/ D 1.

(3) There exists a minimal projection p 2 C.Gmax/ with ".p/ D 1.

Proof. We first prove (1) H) (2). If yG has property (T) then " is isolated in
Spec.C.Gmax//. Hence the spectrum splits into a disjoint union of open subsets as
Spec.C.Gmax// D f"g [ f"g{ and thus C.Gmax/ splits accordingly (as a C*-algebra!)
into the direct sum of two closed, two-sided ideals I and J defined, implicitly, as

f"g D f� 2 Spec.C.Gmax// j �.I / ¤ f0gg;
f"g{ D f� 2 Spec.C.Gmax// j �.J / ¤ f0gg:

Clearly we have J D ker " and thus I is one-dimensional. The unit now splits as
1 D .e; f / 2 I ˚ J and p D .e; 0/ clearly does the job. If another minimal, central
projectionp0 with ".p0/ D 1 existed then we would havepp0 D pp0p D �p for some
� 2 C and since ".p/ D ".p0/ D 1 we have � D 1. Thus p � p0 and by minimality
p D p0. The implication (2) H) (3) is obvious. Lastly we prove (3) H) (1). Let
therefore p 2 C.Gmax/ be minimal with ".p/ D 1. Then by [26], Lemma 1, there
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exists a unique � 2 Spec.C.Gmax// such that �.p/ ¤ 0. Since " clearly is such a
representation, we have

f"g D f	 2 Spec.C.Gmax// j 	.p/ ¤ 0g
D f	 2 Spec.C.Gmax// j 	.C.Gmax/p C.Gmax// ¤ f0gg;

which by definition is open in Spec.C.Gmax//. Since f"g is always closed, this proves
that " is an isolated point in Spec.C.Gmax// and hence that yG has property (T) .

7. Quantum group norms

In [4], Section 3, the question of completing the polynomial algebra Pol.G/ under
different C*-norms was addressed. In particular, the authors considered C*-norms
on Pol.G/ for which the comultiplication Pol.G/ ! Pol.G/˝alg Pol.G/ extends to
a �-homomorphism of the completions. Such norms were called regular. We feel
that the term “regular” is already overused in the literature on quantum groups (let
us mention e.g. the regularity condition for multiplicative unitaries of [2], [3] or the
regular corepresentation of Section 2.4). Therefore we would like to propose the
following terminology.

Definition 7.1. Let G be a compact quantum group and let k � k� be a C*-norm
on Pol.G/. Let C.G�/ be the completion of Pol.G/ in the norm k � k�. The C*-
norm k � k� is called a quantum group norm if the comultiplication � W Pol.G/ !
Pol.G/˝alg Pol.G/ extends to a �-homomorphism C.G�/ ! C.G�/˝ C.G�/.

Bédos, Murphy and Tuset proved, among other things, that the norm coming
from the representation of Pol.G/ on L2.G/ is the smallest quantum group norm on
Pol.G/ (cf. Remark 2.4 for an argument that it is a quantum group norm). Also the
universal or maximal C*-norm on Pol.G/, i.e., the supremum of all C*-norms on
Pol.G/, was proved in [4] to be a quantum group norm.

In the next sections we will construct examples of quantum group norms with
various interesting properties. In particular we will obtain examples of compact
quantum groups G sitting strictly “between” their minimal and maximal versions.
We will provide such examples both admitting a continuous counit and without this
property.

8. Adjoining the neutral element to a compact quantum group

Let G be a compact quantum group. We may view C.G/ as embedded into B.H/
for some Hilbert space H , so that the inclusion Pol.G/ ,! C.G/ becomes a rep-
resentation of the �-algebra Pol.G/, say � W Pol.G/ ! B.H/. Consider now the
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representation

z� W Pol.G/ 3 a 7�!
�
�.a/ 0

0 ".a/

�
2 B.H ˚ C/ (8.1)

and let k � kz� be the norm defined by z� ,

kakz� D kz�.a/k D maxfk�.a/k; j.a/jg (8.2)

for all a 2 Pol.G/.

Proposition 8.1. The C*-norm k � kz� on Pol.G/ is a quantum group norm.

Proof. Take a 2 Pol.G/. We have

.z� ˝ z�/�.a/
D

X
z�.a.1//˝ z�.a.2//

D
X

2
664
�.a.1//˝ �.a.2// 0 0 0

0 �.a.1//".a.2// 0 0

0 0 ".a.1//�.a.2// 0

0 0 0 ".a.1//".a.2//

3
775

D

2
664
.� ˝ �/�.a/ 0 0 0

0 �.a/ 0 0

0 0 �.a/ 0

0 0 0 ".a/

3
775 :

Therefore

k.z� ˝ z�/�.a/k D maxfk.� ˝ �/�.a/k; k�.a/k; j".a/jg:
Since the norm defined by � is a quantum group norm, we have k.� ˝ �/�.a/k �
k�.a/k for all a 2 Pol.G/. It follows that

k.z� ˝ z�/�.a/k D maxfk�.a/k; j".a/jg D kz�.a/k: (8.3)

Let C.Gz�/ be the completion of Pol.G/ with respect to the norm k � kz� . Then (8.3)
shows that � W Pol.G/ ! Pol.G/ ˝alg Pol.G/ extends to an isometry C.Gz�/ !
C.Gz�/˝ C.Gz�/ (minimal tensor product).

Definition 8.2. Let G be a compact quantum group. The compact quantum group
obtained by the construction described in the above proposition will be denoted by zG
and called the quantum group G with neutral element adjoined. Thus, by definition
C. zG/ D C.Gz�/, where z� is defined by (8.1).
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Proposition 8.3. Assume that G does not admit a continuous co-unit. Then there
exists a central projection p in C. zG/ such that

C. zG/ Š Cp ˚ C.G/:

Proof. As before we write � for the representation Pol.G/ ,! C.G/ � B.H/ for
some Hilbert space H and z� for the direct sum of � and ". Denote by k � k� and
k � kz� the associated C*-norms on Pol.G/. Since " is unbounded on .Pol.G/; k � k�/,
for each n 2 N there exists an 2 Pol.G/ such that kank� D 1 and j".an/j > n. Let
bn D 1

".an/
an. Clearly k�.bn/k D kbnk� ����!

n!1 0, while ".bn/ D 1 for all n. The

completion C. zG/ of Pol.G/ in k �kz� is isomorphic to the closure of z�.Pol.G// inside
B.H ˚ C/. Note that the sequence .z�.bn//n2N converges in B.H ˚ C/ since

z�.bn/ D
�
�.bn/ 0

0 ".bn/

�
and clearly

p D lim
n!1 z�.bn/ D

�
0 0

0 1

�
:

It is now clear that p commutes with all elements of the form�
�.a/ 0

0 ".a/

�

(a 2 Pol.G/) and that we have the isomorphism C. zG/ Š Cp ˚ C.G/.

Remark 8.4. (1) If G is a compact quantum group with continuous counit (e.g. G
might be co-amenable, cf. [4]), then we have G D zG because k � kz� is equal to the
original norm on C.G/.

(2) The quantum group zG has, by construction, continuous counit. Moreover the
comultiplication on C. zG/ obtained by extending that on Pol.G/ is injective (cf. the
discussion in [23]).

(3) Suppose that G ¤ zG D Gmax. Note that it is obvious from the proof of
Proposition 8.3 that the value of the counit (extended from Pol.G/ to C. zG/) on the
projection p is 1. Therefore by Propositions 8.3 and 6.1 we have that yG has property
(T) . We may therefore take for G the reduced (minimal) version of a non-co-amenable
compact quantum group whose dual does not have property (T) . Then

G ¤ zG ¤ Gmax

in the sense that the canonical morphisms C.Gmax/ ! C. zG/ ! C.G/ are not iso-
morphisms. There are many examples of non-amenable, non-property (T) quantum
groups; for instance the duals of the free orthogonal and unitary quantum groups
Ao.n/ and Au.n/ for n 	 3 (see [13], Corollary 3.1).

(4) The situation when G ¤ zG D Gmax is also very interesting. We give an
example of this phenomenon in Section 9.
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9. Exotic quantum group norms

As before we consider a discrete quantum group yG. Throughout this section we
will assume that yG is infinite (dim c0. yG/ D 1) and denote by … be the representa-
tion of C.Gmax/ defined as the direct sum of all its infinite-dimensional irreducible
representations. The corresponding corepresentation of yG will be denoted by V :

V D .id ˝…/w:

Proposition 9.1. If yG is non-amenable, then � 4 ….

Proof. By Proposition 5.5, � does not weakly contain any finite-dimensional rep-
resentations. This means that the support of � in Spec.C.Gmax// does not contain
any finite-dimensional representations and since the support of … contains all the
infinite-dimensional irreducible representations, we conclude that the support of � is
contained in the support of …, that is, � 4 ….

The above result yields the following corollary.

Corollary 9.2. The seminorm k � k… defined on Pol.G/ by… is a norm and C.Gmin/

is a quotient of the completion C.G…/ of Pol.G/ in the norm k � k….

Furthermore we have the following.

Theorem 9.3. If yG has property (T ), then k�k… is a quantum group norm on Pol.G/.

Proof. We will show that .… ˝ …/ B � 4 …. We will do this using the language
of corepresentations of yG instead of that of representations of C.Gmax/. Clearly it is
enough to show that V �������	> V does not weakly contain a finite-dimensional corepre-
sentation. Assume the contrary and let U be a finite-dimensional corepresentation of
yG such that U 4 V �������	> V . By Remark 5.4 (and the fact that finite-dimensional corep-
resentations decompose into direct sums of irreducible ones) we have U � V �������	> V .
Therefore, by Lemma 2.1

U �������	> U c � .V �������	> V / �������	> .V �������	> V /c:

But U �������	> U c contains the trivial corepresentation of yG (Remark 2.2), so

.V �������	> V / �������	> .V �������	> V /c 
 V �������	> .V �������	> V c �������	
> V c/

(cf. [24], formula (3.7)) contains the trivial corepresentation. Since yG is unimodular
(Theorem 3.4 (3)), we can use Theorem 2.6 (2) to see that V must then contain a
finite-dimensional corepresentation. This contradicts the construction of V .

For the rest of this section we furthermore assume the discrete quantum group yG
to have property (T) . We now obtain the following two results.



796 D. Kyed and P. M. Sołtan

Corollary 9.4. The compact quantum group G… obtained via completion of Pol.G/
in the norm k � k… does not admit a continuous counit.

This is evident because our assumptions on yG imply that " 64 ….
The same technique as the one used in the proof of Theorem 9.3 gives an answer to

a question asked in [4], end of Section 3, namely if every C*-norm on Pol.G/ defined
by a representation which weakly contains the regular one is a quantum group norm.

Corollary 9.5. Assume that yG admits a non-trivial finite-dimensional corepresenta-
tion. Then the representation defined as the direct sum of all irreducible represen-
tations of C.Gmax/ except the trivial one weakly contains the regular representation
and the associated norm is not a quantum group norm.

Let us now discuss one special case when the compact quantum group G… has
quite unexpected properties. Let us consider a discrete Kazhdan quantum group
yG which is minimally almost periodic, i.e., yG has no non-trivial finite-dimensional
irreducible corepresentations.1 Then it is easily seen that…˚ " is weakly equivalent
to the universal representation of Pol.G/. In other words,

eG… D Gmax: (9.1)

Remark 9.6. (1) Let us note that if yG is an infinite discrete property (T) quan-
tum group with only one irreducible finite-dimensional corepresentation, namely the
trivial one, then the minimal projection p 2 C.Gmax/ has a very peculiar property.
Let �… be the comultiplication on C.G…/ and let 	 W C.Gmax/ ! C.G…/ be the
quotient map. Of course we have 	.p/ D 0. Note further that 	 is faithful on
Pol.G/ � C.Gmax/ (e.g. because the regular representation � factors through 	). If
we denote by �max the comultiplication on C.Gmax/ then we have

.	˝ 	/ B�max D �… B 	
so that .	˝ 	/�max.p/ D 0. However, due to the decomposition

C.Gmax/ Š C.G…/˚ Cp

we clearly have

ker 	˝ 	 D .Cp˝p/˚ .p˝ C.G…//˚ .C.G…/˝p/ � C.Gmax/˝alg C.Gmax/:

1Examples of discrete property (T) groups that are minimally almost periodic have been constructed
by Gromov in [15] (cf. [27], Theorem 3.4; more explicit examples have been constructed in [9]). The
result of Gromov provides (uncountably many) pairwise non-isomorphic infinite discrete property (T)
torsion groups. In particular, they cannot contain a non-abelian free subgroup, so by Tits’ alternative ([14],
Section 42) they cannot be linear, i.e., subgroups of GL.N; K/ for a field K of characteristic 0. Moreover,
by [27], Lemma 3.5, these groups are simple. Since they are not linear, they must be minimally almost
periodic.
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This means that �max.p/ 2 C.Gmax/ ˝alg C.Gmax/, but p 62 Pol.G/, as 	.p/ D 0.
This example provides an answer to the longstanding open question whether any ele-
ment of a C*-algebra C.G/whose image under the coproduct is a finite sum of simple
tensors must belong to Pol.G/. The affirmative answer for compact quantum groups
with faithful Haar measure was given by Woronowicz in [34], Theorem 2.6 (2). Our
example shows that this is not the case if the dual of G is minimally almost periodic
with property (T). A crucial fact here is that there actually exists a comultiplication
on C.G…/ or, in other words, k � k… is a quantum group norm. Note also that a
similar argument applies if yG has only finitely many irreducible finite-dimensional
corepresentations.

(2) The reader will have noticed that in fact the situation that eG… D Gmax is
equivalent to C.Gmax/having no irreducible finite-dimensional representations except
". In other words (9.1) holds if and only if yG is minimally almost periodic.

The above example leads to an important question, namely whether we can have
Gmin D G…. It seems that this could actually be the case in some examples, but we
have not been able to produce one (nor find it in literature). However, as the next
proposition says, at least for the cocommutative examples, the case that Gmin ¤ G…

is rather common.

Proposition 9.7. Let� be an infinite discrete group with Kazhdan’s property (T ) such
that the regular representation of � is weakly equivalent to the sum of all infinite-
dimensional irreducible representations of � . Then any non-amenable subgroup of
� must have finite index. In particular, � cannot be linear.

Before proving this proposition let us state one lemma.

Lemma 9.8. Let L be a subgroup of a discrete countable group G such that the
permutation representation �G=L ofG on `2.G=L/ is weakly contained in the regular
representation �G of G. Then L is amenable.

Proof. The characteristic function ofL is a positive definite function associated with
the permutation representation �G=L (consider the coefficient of �G=L arising from
the vector in `2.G=L/which is the delta-function in the pointL ofG=L). Therefore,
since �G=L is weakly contained in �G , the characteristic function of L is a pointwise
limit of positive definite functions with finite support. Restricting these functions to
L yields a net of finitely supported positive definite functions on L approximating
pointwise the constant function 1. This proves that L is amenable.

Proof of Proposition 9.7. Let ƒ be a non-amenable subgroup of � . Then, by Lem-
ma 9.8, the permutation representation ��=ƒ cannot be weakly contained in �� . By
assumptions on � there must be a finite-dimensional representation � of � weakly
contained in ��=ƒ (there must be an irreducible representation � weakly contained
in ��=ƒ and not in �� , but all infinite-dimensional ones are weakly contained in
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�� ). Consider now the tensor product of � and its contragredient representation.
This is weakly contained in the tensor product of ��=ƒ with its contragredient which
is equivalent to the tensor square of ��=ƒ. Of course � ˝ � c contains the trivial
representation, so the square of ��=ƒ contains (strongly – by property (T)) the trivial
representation. Now the tensor square of ��=ƒ is equivalent to the permutation
representation of� on `2..�=ƒ/�.�=ƒ//with diagonal action. If this representation
has a fixed vector, then � must have a finite orbit for the diagonal action on .�=ƒ/�
.�=ƒ/. (If a group � acts on a set S and the associated permutation representation
in `2.S/ has a non-zero fixed vector �, then expanding this vector in the canonical
orthonormal basis and acting on it shows that the coefficients of � are constant along
orbits - therefore there must be a finite orbit.) This means that ƒ has finite index in
� because if .�ƒ; � 0ƒ/ is an element of .�=ƒ/� .�=ƒ/ which has finite orbit, then
there are �1; : : : ; �n; �

0
1; : : : ; �

0
n 2 � such that

.x�ƒ; x� 0ƒ/ 2 f.�1ƒ; �
0
1ƒ/; : : : ; .�nƒ; �

0
nƒ/g

for all x 2 � . But fx�ƒ j x 2 �g is all of �=ƒ, so �=ƒ is contained in the union

�1ƒ [ � � � [ �nƒ:

This establishes that any non-amenable subgroup of � has finite index.
Since � has property (T) it is finitely generated, so if � furthermore were linear

the Tits alternative ([14], Section 42) implies that it is either virtually solvable (which
is impossible because it is non-amenable) or contains a non-abelian free subgroup. It
is easy to see that then � must also contain non-amenable subgroups of infinite index
thus contradicting the first part of the proposition.

It follows from Proposition 9.7 that if we take yG D � to be a linear infinite Kazh-
dan group, say � D SL.3;Z/, admitting non-trivial finite-dimensional irreducible
representations, then we have

Gmin ¤ G… ¤ eG… ¤ Gmax:
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