
J. Noncommut. Geom. 6 (2012), 749–771
DOI 10.4171/JNCG/104

Journal of Noncommutative Geometry
© European Mathematical Society

Cyclic homologies of crossed modules of algebras
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Abstract. The Hochschild and (cotriple) cyclic homologies of crossed modules of (not nec-
essarily unital) associative algebras are investigated. Wodzicki’s excision theorem is extended
for inclusion crossed modules in the category of crossed modules of algebras. The cyclic and
cotriple cyclic homologies of crossed modules are compared in terms of a long exact homology
sequence, generalising the relative cyclic homology exact sequence.
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1. Introduction

This paper deals with Hochschild and cyclic homologies of crossed modules of as-
sociative algebras (or equivalently, simplicial algebras with the associated Moore
complex of length 1).

The general concept of a crossed module originates in the work of Whitehead
in the late 1940s [19]. Namely, it was introduced as an algebraic model for a path-
connected CW-space whose homotopy groups are trivial in dimensions > 2. There
the crossed modules were crossed modules of groups and since their introduction
they have played an important role in homotopy theory. For illustration we mention
various classification problems for low-dimensional homotopy types and derivation
of van Kampen theorem generalisations (see the survey by Brown [4]).

Crossed modules of Lie and associative algebras have also been investigated by
various authors. Namely, in the works of Dedecker and Lue [6], [17] crossed modules
of associative algebras have played a central role in what must be coefficients in low-
dimensional non-abelian cohomology. In [3] Baues and Minian have shown that
crossed modules of associative algebras can be used to represent the Hochschild
cohomology. In [14] Kassel and Loday have used crossed modules of Lie algebras as
computational tools in order to give an interpretation of the third relative Chevalley–
Eilenberg cohomology of Lie algebras.

�The authors were supported by MICINN grant MTM2009-14464-C02 (European FEDER support
included) and by Xunta de Galicia grant Incite09207215PR. The first three authors were also partially
supported by Volkswagen Foundation Ref.: I/84 328.



750 G. Donadze, N. Inassaridze, E. Khmaladze, and M. Ladra

The study of (co)homological properties of crossed modules in the category of
groups has been the subject of several papers. We point out two (co)homology theories
of crossed modules of groups, one introduced and investigated in the works of Baues
[2] and Ellis [9] via classifying spaces, and other defined by Carrasco, Cegarra and
R.-Grandjeán [5] as cotriple (co)homology. The goal of the paper of R.-Grandjeán,
Ladra and Pirashvili [11] was to find a relation between these two homology theories.
The motivation of our work was to extend the result of [11] to other homology theories
of crossed modules of different algebraic objects.

Inspired by the recent results of [7] presenting the cyclic, periodic cyclic and
negative cyclic homologies of associative algebras as cotriple derived functors (see
also [10]), we construct a cotriple cyclic homology theory of crossed modules of
algebras, generalising the usual cyclic homology of algebras in zero characteristic
case. The main goal of this paper is to relate the cotriple cyclic homology of crossed
modules with the cyclic homology of their nerves in terms of a long exact homology
sequence. Another goal is to extendWodzicki’s excision theorem for inclusion crossed
modules in the category of crossed modules of algebras.

1.1. Organisation. After the introductory Section 1, the paper is organized in four
sections. In Section 2 we recall some necessary notions about crossed modules of
associative algebras and the Hochschild and cyclic homologies of simplicial asso-
ciative algebras. In Section 3 we investigate Hochschild and cyclic homologies of
crossed modules of algebras. Namely, we give the five-term exact sequences relating
the low dimensional Hochschild (resp. cyclic) homologies of crossed modules of al-
gebras and their cokernel algebras (Theorem 3.2). We study the excision problem for
Hochschild (resp. cyclic) homology of inclusion crossed modules of algebras (The-
orem 3.4). In Section 4 we construct and study the cotriple cyclic homology theory
in the category of crossed modules of associative algebras. We show that the cotriple
cyclic homology of an inclusion crossed module is isomorphic to the relative cyclic
homology (Proposition 4.8). In Section 5 we compare the cyclic and cotriple cyclic
homology theories of crossed modules of associative algebras in terms of a long exact
homology sequence (Theorem 5.1).

1.2. Notations and Conventions. We fix k as a ground field and write ˝ for ˝k.
Vector spaces are considered over k and their category is denoted by Vect, while C�0

is the category of non-negatively graded complexes of vector spaces. Algebras are
(non-unital) associative algebras over k and their category is denoted by Alg. The
term free algebra means a free (non-unital) algebra over some vector space. Ideals
are always two-sided. For any functor T W C ! Vect and for any simplicial object C�
in C , denote by T .C�/ the simplicial vector space obtained by applying the functor
T dimension-wise to C�.
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2. Preliminaries

2.1. Crossed module and its nerve. We recall the basic notions about crossed
modules of algebras (cf. [8]).

Let A and R be two algebras. By an action of A on R we mean an A-bimodule
structure on R satisfying the conditions

a.rr 0/ D .ar/r 0; .ra/r 0 D r.ar 0/; .rr 0/a D r.r 0a/

for all a 2 A, r; r 0 2 R. For example, if R is an ideal of the algebra A, then the
multiplication in A yields an action of A on R. Note that if R is unital, an action of
A on R can be just presented as an algebra homomorphism from A to R.

Given an algebra action of A on R, denote by ŒA; R� the vector subspace of R

generated by the elements Œa; r� D ar � ra for r 2 R, a 2 A. Moreover, one can
form the semidirect product algebra, R Ì A, with the underlying vector space R ˚ A

endowed with the multiplication given by

.r; a/.r 0; a0/ D .rr 0 C ar 0 C ra0; aa0/

for .r; a/; .r 0; a0/ 2 R Ì A.
A crossed module .R; A; �/ of algebras is an algebra homomorphism � W R ! A

together with an action of A on R such that

�.ar/ D a�.r/; �.ra/ D �.r/a;

�.r/r 0 D rr 0 D r�.r 0/ (Peiffer identity)

holds for all a 2 A, r; r 0 2 R. We point out that the image of � is necessarily
an ideal of A, and that Ker �, contained in the two-sided annihilator of R, is an
A=�R-bimodule.

The concept of a crossed module of algebras generalises simultaneously the con-
cepts of ideal and bimodule. In fact, a common instance of a crossed module of
algebras is that of an algebra A possessing an ideal I ; the inclusion homomorphism
I ,! A is a crossed module with A acting on I by the multiplication in A, called the
inclusion crossed module of algebras.

Another common instance is that of an A-bimodule M with trivial multiplication;
then the zero homomorphism 0 W M ! A, m 7! 0, is a crossed module.

Any epimorphism of algebras R � A with the kernel in the two-sided annihilator
of R is a crossed module, with a 2 A acting on r 2 R by ar D Qrr and ra D r Qr
where Qr is any element in the preimage of a.

A morphism .�; �/ W .R; A; �/ ! .R0; A0; �0/ of crossed modules is a commuta-
tive square of algebras

R
� ��

�

��

R0

�0

��
A

� �� A0
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such that �.ar/ D �.a/�.r/ and �.ra/ D �.r/�.a/ for a 2 A, r 2 R. Let us denote
the category of crossed modules of algebras by XAlg. Note that there is an equivalence
between the category XAlg and the category of DG-algebras concentrated in degrees
0 and 1.

Given a crossed module .R; A; �/ of algebras, consider the semidirect product
algebra, R Ì A. There are algebra homomorphisms s W R Ì A ! A, .r; a/ 7! a, and
t W RÌA ! A, .r; a/ 7! �.r/Ca, and a binary operation .r 0; a0/B.r; a/ D .r Cr 0; a/

for all pairs .r; a/; .r 0; a0/ 2 R Ì A such that �.r/ C a D a0. This composition B with
the source map s and target map t constitutes an internal category in the category
Alg and the nerve of its category structure forms the simplicial algebra N�.R; A; �/

where Nn.R; A; �/ D R Ì .: : : .R Ì A/ : : : / with n semidirect factors of R, and face
and degeneracy homomorphisms are defined by

d0.r1; : : : ; rn; a/ D .r2; : : : ; rn; a/;

di .r1; : : : ; rn; a/ D .r1; : : : ; ri C riC1; : : : ; rn; a/; 0 < i < n;

dn.r1; : : : ; rn; a/ D .r1; : : : ; rn�1; �.rn/ C a/;

si .r1; : : : ; rn; a/ D .r1; : : : ; ri ; 0; riC1; : : : ; rn; a/; 0 � i � n:

The simplicial algebra N�.R; A; �/ is called thenerveof the crossedmodule .R; A; �/.

2.2. Homologies of simplicial algebras. Let us recall that for a given simplicial
algebra A� its Moore normalisation is a complex of algebras N A� where

NnA� D
n�1T
iD0

Ker d n
i and @n D d n

n jNnA�
:

Note that the Moore complex of the nerve of a crossed module of algebras .R; A; �/

is trivial in dimensions � 2. In fact it is just the original crossed module up to
isomorphism with R in dimension 1 and A in dimension 0.

The n-th homotopy of the simplicial algebra is defined as

�n.A�/ D Ker @n=Im@nC1:

Moreover, if an augmented simplicial algebra .A�; d 0
0 ; A/ is given, we calculate the

extended homotopy groups as �0.A�; d 0
0 ; A/ D Ker d 0

0 =Im @1 and ��1.A�; d 0
0 ; A/ D

A=Im d 0
0 . We say that the augmented simplicial algebra .A�; d 0

0 ; A/ is aspherical if
�n.A�; d 0

0 ; A/ D 0 for all n � �1.
Now we recall some required constructions of the standard complexes of algebras

(e.g., see [15]) and give their extensions to simplicial algebras.
Given an algebra A, the standard bar complex C bar.A/ and the Hochschild com-

plex C.A/ have the form C bar
n .A/ D Cn.A/ ´ A˝.nC1/ where the boundary operator

of the bar complex is given by

b0.a0 ˝ � � � ˝ an/ D
n�1P
iD0

.�1/i .a0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ an/;
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while the Hochschild boundary is given by

b.a0 ˝ � � � ˝ an/ D b0.a0 ˝ � � � ˝ an/ C .�1/n.ana0 ˝ a1 ˝ � � � ˝ an�1/:

Consider the cyclic, first quadrant bicomplex

:::

b

��

:::

�b0

��

:::

b

��
A˝2

b

��

A˝2

�b0

��

1�t�� A˝2

b

��

N�� : : :1�t��

A A
1�t�� A

N�� : : : ,1�t��

(1)

where t W A˝.nC1/ ! A˝.nC1/, n � 0, is the cyclic operator given by t .a0 ˝ � � � ˝
an/ D .�1/n.an ˝ a0 ˝ � � � ˝ an�1/ and N W A˝.nC1/ ! A˝.nC1/ is the operator
defined by N D 1 C t C t2 C � � � C tn. We denote by CC.A/ and CC f2g.A/ the
total complexes of the bicomplex (1) and the bicomplex obtained through deleting
all columns whose indices are � 2 in (1), respectively.

Suppose that A is an algebra and we are given a functorial chain complex ˆ.A/, as
in the case of C.A/, C bar.A/, CC f2g.A/ and CC.A/ complexes, and set H ˆ

n .A/ D
Hn.ˆ.A//, n � 0. This homology extends to simplicial algebras in the standard
way, by applying the functor ˆ dimension-wise to a given simplicial algebra A� and
then taking the homology of the total complex of resulting bicomplex ˆ.A�/. This
homology is denoted by H ˆ

n .A�/, n � 0.
Now let .R; A; �/ be a crossed module of algebras and ˆ.R; A; �/ denote the

total complex Tot.ˆ.N�.R; A; �///. Then the Hochschild, bar, naive Hochschild
and cyclic homologies of .R; A; �/ are defined by

HHn.R; A; �/ D Hn.CC f2g.R; A; �//; H bar
n .R; A; �/ D Hn.C bar.R; A; �//;

HHnaive
n .R; A; �/ D Hn.C.R; A; �//; HCn.R; A; �/ D Hn.CC.R; A; �//

for n � 0.
Clearly, for any simplicial algebra A� there is a short exact sequence of complexes

0 ! Tot.CC f2g.A�// ! Tot.CC.A�// ! Tot.CC.A�//�2 ! 0;

where Tot.CCn.A�//�2 D Tot
�
CCn�2.A�//. This gives rise to an analogue of

Connes’ periodicity exact sequence for simplicial algebras:

� � � ! HHn.A�/
I�! HCn.A�/

S�! HCn�2.A�/
B�! HHn�1.A�/ ! � � � : (2)

The following facts about homology of aspherical augmented simplicial algebras
will be useful in the sequel.



754 G. Donadze, N. Inassaridze, E. Khmaladze, and M. Ladra

Lemma 2.3. Let .A�; d 0
0 ; A/ be an aspherical augmented simplicial algebra and

ˆ W Alg ! C�0 be a covariant functor. Let ẑ
n W Vect ! Vect, n � 0, be a functor

such that ˆn D ẑ
n B W where W W Alg ! Vect is the usual forgetful functor. Then

(i) the augmented simplicial vector space .ˆn.A�/; ˆn.d 0
0 /; ˆn.A// is acyclic for

n � 0;

(ii) there is a natural isomorphism

H ˆ
n .A/ Š H ˆ

n .A�/; n � 0:

Proof. (i) Straightforward from the fact that an acyclic augmented simplicial vector
space .W.A�/; W.d 0

0 /; W.A// has a linear left (right) contraction.
(ii) Let us consider the bicomplex ˆ.A�/. Using (i), for any fixed q the (horizontal)

homology of the bicomplex ˆ.A�/ is Hp.ˆq.A�// D 0, p > 0, and H0.ˆq.A�// D
ˆq.A/. Now the bicomplex spectral sequence argument completes the proof.

Corollary2.4. Let .A�; d 0
0 ; A/beanaspherical augmented simplicial algebra. Then,

for n � 0, there are natural isomorphisms

HHn.A�/ Š HHn.A/; HHbar
n .A�/ Š HHbar

n .A/;

HHnaive
n .A�/ Š HHnaive

n .A/; HCn.A�/ Š HCn.A/:

Proof. It is clear that the values of the functors CC
f2g
n , C bar

n , Cn and CCn, n � 0, on
the algebra A depend only on the vector space underlying A. Due to Lemma 2.3 (ii)
the proof is completed.

Note that if we are given an inclusion crossed module of algebras I ,! A,
then .N�.I ,! A/; d 0

0 ; A=I / is an aspherical augmented simplicial algebra and
by Corollary 2.4, any of its homology theories mentioned above coincides with the
respective homology of A=I .

3. Hochschild and cyclic homologies of crossed modules

In this section we study some properties of the Hochschild and cyclic homologies of
crossed modules of algebras.

3.1. Five-term exact sequences. Now we establish the five-term exact sequences
relating the Hochschild and cyclic homologies of crossed modules of algebras and
their cokernel algebras.
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Theorem 3.2. Let .R; A; �/ be a crossed module of algebras. There are exact se-
quences of vector spaces

HH2.R; A; �/ ! HH2.Coker �/ ! Ker �=ŒA; Ker ��

! HH1.R; A; �/ ! HH1.Coker �/ ! 0;

HC2.R; A; �/ ! HC2.Coker �/ ! Ker �=ŒA; Ker ��

! HC1.R; A; �/ ! HC1.Coker �/ ! 0;

and the equality HH0.R; A; �/ D HC0.R; A; �/ D Coker �=ŒCoker �; Coker ��

holds.

Proof. We will only prove the exactness of the first sequence. The proof for the
second is essentially the same and left to the reader.

Consider the bicomplex CC f2g.N�.R; A; �//. Then there is a first quadrant spec-
tral sequence

E1
pq D Hq.CC f2g

p .N�.R; A; �/// H) HHpCq.R; A; �/:

It is easy to check that E1
p0 D CC

f2g
p .Coker �/, p � 0 and E1

01 D �1.N�.R; A; �// D
Ker �. Using the Eilenberg–Zilber theorem and the Künneth formula we have

E1
11 D .�1.N�.R; A; �// ˝ �0.N�.R; A; �///

˚ .�0.N�.R; A; �// ˝ �1.N�.R; A; �/// ˚ �1.N�.R; A; �//

D .Ker � ˝ Coker �/ ˚ .Coker � ˝ Ker �/ ˚ Ker �:

Continuing calculations we deduce that E1
00 D E2

00 D HH0.Coker �/ and E1
10 D

E2
10 D HH1.Coker �/. Moreover,

E2
01 D CokerfE1

11 ! E1
01g D Ker �=ŒKer �; Coker �� D Ker �=ŒA; Ker ��:

Therefore, we have a differential d 2 W HH2.Coker �/ ! Ker �=ŒA; Ker �� of the
spectral sequence, which determines the base term E1

20 and the fiber term E1
01 from

the following exact sequence:

0 ! E1
20 ! HH2.Coker �/ ! Ker �=ŒA; Ker �� ! E1

01 ! 0: (3)

Clearly, we have the short exact sequence

0 ! E1
01 ! HH1.R; A; �/ ! E1

10 ! 0 (4)

and the epimorphism

HH2.R; A; �/ � E1
20 : (5)

Now (3), (4) and (5) imply the required result.

Theorem 3.2 shows that the Hochschild (resp. cyclic) homology of a crossed
module .R; A; �/ differs, in general, from the Hochschild (resp. cyclic) homology of
the cokernel algebra Coker �.
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3.3. Excision property. In this subsection we discuss some aspects of the excision
property for Hochschild (resp. cyclic) homology of crossed modules. Namely, we
extendWodzicki’s excision theorem [20] for inclusion crossed modules in the category
of crossed modules of algebras.

The excision problem for Hochschild (resp. cyclic) homology in the category of
crossed module of algebras is formulated as follows: let

0 ! .R; A; �/
.�;�/���! .S; B; �/

.�;�/���! .T; C; �/ ! 0 (6)

be a linearly split extension of crossed modules of algebras, i.e., a sequence of crossed

modules such that 0 ! R
��! S

��! T ! 0 and 0 ! A
��! B

��! C ! 0 are exact
sequences of algebras, with an existing pair of linear maps 	 W T ! S and ı W C ! B

such that 
	 D 1T , �ı D 1C and �	 D ı� . The crossed module .R; A; �/ is excisive
(or satisfies excision) for Hochschild (resp. cyclic) homology if the induced natural
map

CC f2g.R; A; �/ ! KerfCC f2g.S; B; �/ ! CC f2g.T; C; �/g
(resp. CC.R; A; �/ ! KerfCC.S; B; �/ ! CC.T; C; �/g) is a quasi-isomorphism
for any linearly split extension (6) of the crossed module .R; A; �/.

Note that according to Connes’ periodicity exact sequence (2), the excision prop-
erties for Hochschild and cyclic homologies in the category of crossed modules of
algebras are equivalent.

The aim of this subsection is to prove the following.

Theorem 3.4. Let .I; A; inc/ be an inclusion crossed module of algebras. The fol-
lowing conditions are equivalent:

(i) .I; A; inc/ is excisive for Hochschild homology,

(ii) H bar
n .I; A; inc/ D 0 for all n � 0.

Proof. (i) H) (ii) Consider the algebra k0 with the underlying vector space k en-
dowed with the trivial multiplication and the inclusion crossed module of algebras
.I; A � k0; inc � 0/. Then there is a linearly split extension of crossed modules of
algebras

0 ! .I; A; inc/ ! .I; A � k0; inc � 0/ ! .0; k0; 0/ ! 0:

Hence the induced map

CC f2g.I; A; inc/ ! KerfCC f2g.I; A � k0; inc � 0/ ! CC f2g.0; k0; 0/g

is a quasi-isomorphism. It is easy to check that the cokernel of this map contains
C bar.I; A; inc/ as a direct summand. This implies the result.
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(ii) H) (i) Consider any linearly split extension (6) of crossed modules of algebras.
Hence we have the short exact sequence

0 ! �0.N�.I; A; inc//
�0.N�.�;�//��������! �0.N�.S; B; �//

�0.N�.�;�//��������! �0.N�.T; C; �// ! 0

(7)

and the isomorphism

�1.N�.S; B; �//
�1.N�.�;�//��������!Š �1.N�.T; C; �//: (8)

It is also easy to see that we have the following commutative diagram with exact
rows of complexes:

0 �� C.I; A; inc/

C.�;�/

��

�� CC f2g.I; A; inc/

CC f2g.�;�/

��

�� C bar.I; A; inc/�1

C bar.�;�/

��

�� 0

0 �� Ker.C.
; �// �� Ker.CC f2g.
; �// �� Ker.C bar.
; �//�1
�� 0.

Here we have C bar
n .I; A; inc/�1 D C bar

n�1.I; A; inc/ and KernfC bar.
; �/g�1 D
Kern�1fC bar.
; �/g. Clearly, the induced commutative diagram of long exact ho-
mology sequences and the five lemma imply that if C.�; �/ and C bar.�; �/ are quasi-
isomorphisms, then so is CC f2g.�; �/.

We shall only prove that C.�; �/ is a quasi-isomorphism. The fact that C bar.�; �/

is a quasi-isomorphism can be proved essentially in the same way and will be omitted.
We need the following.

Lemma 3.5. Let .S; B; �/ be any crossed module of algebras, then there is an iso-
morphism

Hq.Cp.N�.S; B; �///

Š

8̂<
:̂

L
i0C���CipDq.�i0.N�.S; B; �// ˝ � � � ˝ �ip .N�.S; B; �///;

p � 0; 0 � q � p C 1;

0; 0 � p < q � 1;

with i0; : : : ; ip D 0 or 1. Moreover, through this isomorphism the Hochschild differ-
ential behaves as follows:

x0 ˝ x1 ˝ � � � ˝ xp

7!
p�1P
j D0

.�1/j .x0 ˝ � � � ˝ xj xj C1 ˝ � � � ˝ xp/ C .�1/p .xpx0 ˝ � � � ˝ xp�1/:

Here xj 2 �ij .N�.S; B; �//, 0 � j � p, and the multiplication xj xj 0 is understood
as the multiplication in �0.N�.S; B; �// or the �0.N�.S; B; �//-bimodule structure
on �1.N�.S; B; �//.
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Proof. The proof, requiring to use again the Eilenberg–Zilber theorem and the Kün-
neth formula, is routine and will be omitted.

Returning to the main proof, consider the bicomplexes C.N�.I; A; inc// and M �
Ker .C.N�.S; B; �//

C.N�.�;�//��������! C.N�.T; C; �///. Then there are first quadrant
spectral sequences

E1
pq D Hq.Cp.N�.I; A; inc/// H) HHnaive

pCq.I; A; inc/

and
xE1

pq D Hq.Ker.Cp.N�.S; B; �//

Cp.N�.�;�//��������! Cp.N�.T; C; �//// H) HpCq.Tot.M//:

Moreover, we have the linearly split exact sequence of simplicial vector spaces

0 ! M�p ! Cp.N�.S; B; �// ! Cp.N�.T; C; �// ! 0;

implying the short exact homology sequence

0 ! xE1
pq ! Hq.Cp.N�.S; B; �/// ! Hq.Cp.N�.T; C; �/// ! 0:

Hence, from Lemma 3.5 we have an isomorphism

xE1
pq Š

8̂<
:̂

L
i0C���CipDq Kerf�i0.N�.
; �// ˝ � � � ˝ �ip .N�.
; �//g

for p � 0; 0 � q � p C 1;

0 for 0 � p < q � 1;

(9)

with i0; : : : ; ip D 0 or 1.
There is a natural morphism of bicomplexes C.N�.�; �// W C.N�.I; A; inc// !

M, inducing the morphism of spectral sequences f 1 W E1 ! xE1. To finish the proof
it suffices to show that f 2

pq W E2
pq ! xE2

pq is an isomorphism for any p; q � 0.
We prove the remaining part of the assertion in two cases.
Case 1. The morphism f 2

pq W E2
pq ! xE2

pq is an isomorphism for any p � 0 and
q D 0.

Indeed, by Lemma 3.5 we have E2
p0 D HHnaive

p .�0.N�.I; A; inc///, while by (9)

xE2
p0 Š Hp.KerfC.�0.N�.S; B; �///

C.�0.N�.�;�///����������! C.�0.N�.T; C; �///g/:
By the assumption on the crossed module .I; A; inc/ and Corollary 2.4 the algebra
�0.N�.I; A; inc// is H -unital, then the result follows from Wodzicki’s theorem [20]
applied to the short exact sequence of algebras (7).

Case 2. The morphism f 2
pq W E2

pq ! xE2
pq is an isomorphism for any p � 0 and

q > 0.
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Using Lemma 3.5 again, we have E1
pq D 0 and consequently E2

pq D 0 for any
p � 0 and q > 0. Thus, we are left to show that xE2

pq D 0, p � 0 and q > 0. Indeed,
by (7) and (8) we have the short exact sequence of algebras

0 ! �0.N�.I; A; inc// ! �1.N�.S; B; �// Ì �0.N�.S; B; �//

! �1.N�.T; C; �// Ì �0.N�.T; C; �// ! 0:

Hence, the fact that �0.N�.I; A; inc// is H -unital, by Wodzicki’s theorem [20],
implies that we have the quasi-isomorphism

C.�0.N�.I; A; inc/// ! KerfC.�1.N�.S; B; �// Ì �0.N�.S; B; �///

! C.�1.N�.T; C; �// Ì �0.N�.T; C; �///g: (10)

Moreover, we have the isomorphisms of vector spaces

Cp.�1.N�.S; B; �// Ì �0.N�.S; B; �///

Š .�0.N�.S; B; �///˝pC1

˚
pC1L

i0C���CipD1

.�i0.N�.S; B; �// ˝ � � � ˝ �ip .N�.S; B; �///

(11)

and
Cp.�1.N�.T; C; �// Ì �0.N�.T; C; �///

Š .�0.N�.T; C; �///˝pC1

˚
pC1L

i0C���CipD1

.�i0.N�.T; C; �// ˝ � � � ˝ �ip .N�.T; C; �///;

(12)

with i0; : : : ; ip D 0 or 1.
Let us define D

q
p and xDq

p for any p � 0 and q > 0 by the formulas

Dq
p D

8̂<
:̂

L
i0C���CipDq.�i0.N�.S; B; �// ˝ � � � ˝ �ip .N�.S; B; �///

for q � p C 1;

0 for p C 1 < q;

and

xDq
p D

8̂<
:̂

L
i0C���CipDq.�i0.N�.T; C; �// ˝ � � � ˝ �ip .N�.T; C; �///

for q � p C 1;

0 for p C 1 < q;

with i0; : : : ; ip D 0 or 1.
It is not difficult to show that Dq is a subcomplex of C.�1.N�.S; B; �// Ì

�0.N�.S; B; �/// through the isomorphism (11) and along the Hochschild differen-
tial, which is left to the reader. (Hint: The induced multiplication in �1.N�.S; B; �//
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vanishes.) Similarly, xDq is a subcomplex of C.�1.N�.T; C; �//Ì�0.N�.T; C; �///.
Moreover, by (11) and (12), there are decompositions in direct summands of com-
plexes

C.�1.N�.S; B; �// Ì �0.N�.S; B; �/// Š C.�0.N�.S; B; �/// ˚ L
q�1

Dq

and

C.�1.N�.T; C; �// Ì �0.N�.T; C; �/// Š C.�0.N�.T; C; �/// ˚ L
q�1

xDq:

Hence

KerfC.�1.N�.S; B; �// Ì �0.N�.S; B; �///

! C.�1.N�.T; C; �// Ì �0.N�.T; C; �///g Š KerfC.�0.N�.S; B; �///

�0.N�.�;�//��������! C.�0.N�.T; C; �///g ˚ L
q�1

KerfDq ! xDqg:

Now the quasi-isomorphism (10) implies that the complex Ker.Dq ! xDq/ is acyclic
for any q > 0, which according to (9) means that xE2

pq D 0 for any p � 0 and q > 0.

4. Cotriple cyclic homology of crossed modules

In this section we demonstrate a construction of a (new) cotriple cyclic homology
theory of crossed modules of algebras, using the theory of non-abelian derived func-
tors.

During this section we assume that k is a field of characteristic zero.

4.1. Adjunction. We begin by constructing a pair of functors Alg
F �� XAlg
U

�� as

follows: For any crossed module .R; A; �/, let U.R; A; �/ denote the direct product
R � A, and for any algebra A, let F.A/ denote the inclusion crossed module of
algebras . xA; A�A; inc/, where A�A is the coproduct of the algebra A with itself, with
inclusions u1; u2 W A ! A � A, and xA is the kernel of the retraction p2 W A � A ! A

determined by the conditions p2u2 D 1A, p2u1 D 0.

Proposition 4.2. The functor F is left adjoint to the functor U .

Proof. We state that, given an algebra A, the homomorphism

.u1; u2/ W A ! xA � .A � A/ D UF.A/

is a universal arrow from A to the functor U . Indeed, let .S; B; �/ be a crossed module
and fS W A ! S , fB W A ! B defining homomorphisms of any homomorphism
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.fS ; fB/ W A ! S � B D U.S; B; �/. Then there is a commutative diagram with
split short exact sequences of algebras,

xA inc ��

˛

��

A � A

�

��

p2 ��
A

fB ;

��

u2

��

S
i �� S Ì B

pr ��
B

j
��

where 	 is defined by 	u1 D ifS and 	u2 D jfB , and ˛ is the restriction of
	 . Let ˇ W A � A ! B be the unique homomorphism satisfying ˇu1 D �fS and
ˇu2 D fB . Easy calculations show that .˛; ˇ/ W . xA; A � A; inc/ ! .S; B; �/ is a
morphism of crossed modules of algebras, which is clearly the unique one such that
.˛ � ˇ/.u1; u2/ D .fS ; fB/.

We denote by W W Alg ! Vect the usual forgetful functor and by T W Vec ! Alg
its left adjoint functor, carrying any vector space V to the free non-unital algebra

on it. Composing these two adjunctions, Vect
T �� Alg
W

��
F �� XAlg
U

�� , we deduce the

following.

Proposition 4.3. The functor F D F B T W Vec ! XAlg, V 7! .T .V /; T .V / �
T .V /; inc/, is left adjoint to the functor U D W B U W XAlg ! Vect, .R; A; �/ 7!
R � A.

4.4. Construction and elementary properties. It is known due to [10] (see also
[7], [13]) that the cyclic homology of algebras is described as the non-abelian derived
functors of the additive abelianisation functor Abadd W Alg ! Vect, Abadd.A/ D
A=ŒA; A�. To generalise the cyclic homology theory to the category XAlg in terms of
non-abelian derived functors we need to extend the additive abelianisation functor to
this category. For this reason we look at the functor Abadd as a factorisation through
the category of Lie algebras Lie. Explicitly, there is an equality Abadd D Ab B L
where L W Alg ! Lie is the classical Liesation functor and Ab W Lie ! Vect is the
abelianisation functor of Lie algebras.

Let us construct the natural extension of the functors L and Ab. We recall from [14]
that a crossed module of Lie algebras .M; G; �/ is a Lie homomorphism � W M ! G

together with a bilinear map G � M ! M , .g; m/ 7! gm satisfying

Œg;g0	m D g.g0

m/ � g0

.gm/; g Œm; m0� D Œgm; m0� C Œm; gm0�

such that the following conditions hold:

(i) �.gm/ D Œg; �.m/�,

(ii) �.m/m0 D Œm; m0� for all m; m0 2 M , g; g0 2 G.
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Let XLie denote the category of crossed modules of Lie algebras. Then there
is a naturally defined functor XL W XAlg ! XLie carrying a crossed module of
algebras � W R ! A to the crossed module of Lie algebras L.�/ W L.R/ ! L.A/

with ar D ar �ra. Moreover, it is known that an abelian group object in the category
XLie is just a linear map of vector spaces, and let XVect denote their category. Now
the abelianisation of crossed modules of Lie algebras XAb W XLie ! XVect is left
adjoint to the natural embedding functor XVect 	 XLie.

From the aforementioned discussion we arrive to the definition of the additive
abelianisation functor of crossed modules of algebras XAbadd W XAlg ! XVect as
the composition XAbadd D XAb B XL. Hence, for a crossed module .R; A; �/, we
have XAbadd.R; A; �/ D .R=ŒA; R�; A=ŒA; A�; N�/, where N� is the linear map induced
by �.

Now we are ready to construct the cotriple cyclic homology of crossed modules of
algebras. We assume the reader is familiar with cotriples and projective classes. See,
for example, [1] and [12], Chapter 2, for the background. The adjoint pair of functors

Vect
F �� XAlg
U

�� induces a cotriple F D .F ; ı; �/ in XAlg by the obvious way:

F D F U W XAlg ! XAlg, � W F ! 1XAlg is the counit and ı D FuU W F ! F 2

where u W 1Vect ! UF is the unit of the adjunction. Let P denote the projective class
induced by the cotriple F : .R; A; �/ 2 P iff there exists a morphism # W .R; A; �/ !
F .R; A; �/ such that �.R;A;�/# D 1.R;A;�/.

Given any crossed module .R; A; �/, there is an augmented simplicial object
F�.R; A; �/ ! .R; A; �/ in the category XAlg where

Fn.R; A; �/ D F nC1.R; A; �/ D F .F n.R; A; �//;

d n
i D F i .�F n�i /; sn

i D F i .ıF n�i /; 0 � i � n:

It is called the F -cotriple resolution of .R; A; �/. Applying the functor XAbadd

dimension-wise to F�.R; A; �/ we obtain the simplicial object XAbaddF�.R; A; �/

in the category XVect.

Definition 4.5. The n-th cotriple cyclic homology of a crossed module of algebras
.R; A; �/ is defined by

HCn.R; A; �/ D Hn.XAbadd.F�.R; A; �///; n � 0:

It is clear that HCn, n � 0, is a functor from XAlg to XVect. Moreover, for any
.R; A; �/ 2 XAlg,

HC0.R; A; �/ Š XAbadd.R; A; �/ D .R=ŒA; R�; A=ŒA; A�; N�/:

For further investigation of the cotriple cyclic homology of crossed modules of
algebras we need some non-standard simplicial resolutions in the sense of Barr–Beck
[1].
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Proposition 4.6. Let ..R�; A�; ��/; .d 0
0 ; d 0

0 /; .R; A; �// be an augmented simplicial
crossed module of algebras. Suppose the following conditions hold:

(i) the crossed module .Rn; An; �n/, n � 0, belongs to the projective class P ;

(ii) the augmented simplicial algebras .R�; d 0
0 ; R/ and .A�; d 0

0 ; A/ are aspherical.

Then the simplicial crossed modules of algebras .R�; A�; ��/ and F�.R; A; �/ are
homotopically equivalent.

Proof. Straightforward from [1], 5.3.

Now we describe several connections between the cyclic homology of algebras
and cotriple cyclic homology of crossed modules. There are two ways of regarding
an algebra A as a crossed module, via the trivial map 0 W 0 ! A and via the identity
map 1A W A ! A with action of A on itself given by multiplication. Respectively
there are full embeddings

i; � W Alg ! XAlg

defined by iA D .0; A; 0/ and �A D .A; A; 1A/. The functor i has a left adjoint
� W XAlg ! Alg, �.R; A; �/ D Coker � and also a right adjoint 
 W XAlg ! Alg,

.R; A; �/ D A. On the other hand, the functor 
 and the functor � W XAlg ! Alg,
�.R; A; �/ D R are left and right adjoint to the functor �, respectively.

If we regard XVect as a subcategory of XAlg, then the cotriple cyclic homology
HCn.R; A; �/ can be presented as a linear map �HCn.R; A; �/ ! 
HCn.R; A; �/.

Proposition 4.7. (i) For any crossed module .R; A; �/ and n � 0,


HCn.R; A; �/ Š HCn.A/:

(ii) For any algebra A and n � 0,

HCn.iA/ Š i HCn.A/ and HCn.�A/ Š � HCn.A/:

Proof. (i) By Proposition 4.6 the simplicial algebra 
F�.R; A; �/ ! A is a free
simplicial resolution of A. Therefore


HCn.R; A; �/ D 
Hn.XAbadd.F�.R; A; �/// D Hn.Abadd.
F�.R; A; �///:

The assertion follows from [7], Theorem 1.1.
(ii) Let .A�; d 0

0 ; A/ be a free simplicial resolution of an algebra A. It is routine
to check that iAn and �An belong to the projective class P for any n � 0. Then by
Proposition 4.6 we have

HCn.iA/ Š Hn.XAbadd.iA�// D Hn.iAbadd.A�// D iHn.Abadd.A�//

Š i HCn.A/

and

HCn.�A/ Š Hn.XAbadd.�A�// D Hn.�Abadd.A�// D �Hn.Abadd.A�//

Š � HCn.A/:
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Finally, in this subsection we calculate the cotriple cyclic homology of an inclusion
crossed module of algebras.

Proposition 4.8. Let .I; A; inc/ be an inclusion crossed module of algebras. Then
there is an isomorphism

�HCn.I; A; inc/ Š HCn.A; I /; n � 0;

where HCn.A; I / denotes the n-th relative cyclic homology.

Proof. Let F� D F�.I; A; inc/ ! .I; A; inc/ be the cotriple resolution of .I; A; inc/.
Note that both 
Fn and 
Fn=�Fn are free algebras for each n � 0. Moreover, �F� !
I and 
F� ! A are aspherical augmented simplicial algebras and since .I; A; inc/

is an inclusion crossed module, the augmented simplicial algebra 
F�=�F� ! A=I

is aspherical as well. We have the commutative diagram of complexes

CC.A/ �� CC.A=I /

Tot.CC.
F�//

��

��

��

Tot.CC.
F�=�F�//

��

��

Abadd.
F�/ �� Abadd.
F�=�F�/:

(13)

Clearly, by Lemma 2.3, the both vertical morphisms in the upper quadrant are quasi-
isomorphisms. Furthermore, by [7], the both vertical morphisms in the lower quadrant
are also quasi-isomorphisms. Consequently, we have an isomorphism

HCn.A; I / Š Hn.KerfAbadd.
F�/ ! Abadd.
F�=�F�/g/; n � 0:

Now from the five-term exact cyclic homology sequence of [18] and the fact that
HC1.
Fn=�Fn/ D 0, n � 0 [16], we deduce

KerfAbadd.
F�/ ! Abadd.
F�=�F�/g Š �F�=Œ
F�; �F��:

But, by definition

�HCn.I; A; inc/ D �Hn.XAbaddF�/ D Hn.�F�=Œ
F�; �F��/:

This completes the proof.

Corollary 4.9. Let .I; A; inc/ be an inclusion crossed module of algebras. Then
there is a long exact homology sequence

� � � ! �HCn.I; A; inc/ ! HCn.A/ ! HCn.A=I / ! � � � ! HC1.A/

! HC1.A=I / ! I=ŒA; I � ! A=ŒA; A� ! A=.I C ŒA; A�/ ! 0:
(14)

Proof. Straightforward from Proposition 4.8.
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5. Cyclic homology versus cotriple cyclic homology

In this section we compare two cyclic homology theories of crossed modules of
algebras discussed above. Namely, the aim of this section is to prove the following.

Theorem 5.1. Let k be a field of characteristic zero and .R; A; �/ a crossed module
of algebras. Then there are natural exact sequences

� � � ! HCnC1.R; A; �/ ! �HCn.R; A; �/ ! HCn.A/ ! HCn.R; A; �/

! �HCn�1.R; A; �/ ! � � � ! �HC1.R; A; �/ ! HC1.A/

! HC1.R; A; �/ ! R=ŒA; R�
��! A=ŒA; A� ! A=.Im � C ŒA; A�/ ! 0

(15)

and

� � � ! �HCn�1.R; A; �/ ! HnC1.ˇ.R; A; �// ! �HCn.R; A; �/

! �HCn�2.R; A; �/ ! Hn.ˇ.R; A; �// ! � � � ! �HC1.R; A; �/

! H3.ˇ.R; A; �// ! �HC2.R; A; �/ ! �HC0.R; A; �/

! H2.ˇ.R; A; �// ! �HC1.R; A; �/ ! 0:

(16)

Moreover, there are isomorphisms

H1.ˇ.R; A; �// Š �HC0.R; A; �/ Š R=ŒA; R�;

where the complex ˇ is defined immediately below in the next subsection.

Note that the sequence (15) coincides with relative cyclic homology exact se-
quence (14) when .R; A; �/ D .I; A; inc/, while the sequence (16) seems to be a
generalisation of Connes’ periodicity exact sequence.

5.2. The complexes beta and gamma. We need to define auxiliary complexes ˇ

and 	 . Given a crossed module .R; A; �/ of algebras, we have a natural morphism
of crossed modules .0; 1A/ W .0; A; 0/ ! .R; A; �/. It is easy to see that there are
injective maps of bicomplexes

CC f2g.N�.0; 1A// W CC f2g.N�.0; A; 0// ! CC f2g.N�.R; A; �//

and

CC.N�.0; 1A// W CC.N�.0; A; 0// ! CC.N�.R; A; �//;

which yield the respective injective maps of complexes

i.R;A;�/ W CC f2g.0; A; 0/ ! CC f2g.R; A; �/

and

j.R;A;�/ W CC.0; A; 0/ ! CC.R; A; �/:
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Define the complexes ˇ.R; A; �/ and 	.R; A; �/ from the following commutative
diagram of complexes of vector spaces with exact rows:

0 �� CC f2g.0; A; 0/

��

i.R;A;�/�� CC f2g.R; A; �/

��

�� ˇ.R; A; �/

��

�� 0

0 �� CC.0; A; 0/
j.R;A;�/ �� CC.R; A; �/ �� 	.R; A; �/ �� 0:

(17)

The next two propositions calculate the low dimensional homology of ˇ and 	

complexes.

Proposition 5.3. Let .R; A; �/ be a crossed module of algebras. Then we have

H0ˇ.R; A; �/ D H0	.R; A; �/ D 0

and

H1ˇ.R; A; �/ D H1	.R; A; �/ Š R=ŒA; R�:

Proof. Given any simplicial algebra A�, the last two rows of the bicomplexes
CC f2g.A�/ and CC.A�/ coincide. Namely, for the simplicial algebras N�.0; A; 0/

and N�.R; A; �/ they have the forms

A˝2 ˚ A

��

A˝2 ˚ A��

��

A˝2 ˚ A��

��

: : :��

A A�� A�� : : : ,��

and

A˝2 ˚ A

��

.R Ì A/˝2 ˚ .R Ì A/��

��

.R Ì R Ì A/˝2 ˚ .R Ì R Ì A/��

��

: : :��

A R Ì A�� R Ì R Ì A�� : : :��

respectively. Hence, it is clear that H0ˇ.R; A; �/ D H0	.R; A; �/ D 0. Moreover,
comparing the given rows of the bicomplexes, we simply deduce that

H1ˇ.R; A; �/ D H1	.R; A; �/ D Coker..R Ì A/˝2=A˝2 ! .R Ì A/=A/;

where the arrow is defined by

.r; a/ ˝ .r 0; a0/ 7! .r; a/.r 0; a0/ � .r 0; a0/.r; a/ D .Œr; r 0� C Œr; a0� C Œa; r 0�; Œa; a0�/:

This implies the isomorphism H1ˇ.R; A; �/ D H1	.R; A; �/ Š R=ŒA; R�.
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Given an algebra A, by Corollary 2.4 the following pairs of complexes

CC f2g.0; A; 0/; CC f2g.A/ and CC.0; A; 0/; CC.A/

are quasi-isomorphic. Then taking into account Proposition 5.3, for any crossed
module of algebras .R; A; �/ , the diagram (17) induces the morphism of long exact
homology sequences

: : : �� HHn.A/

��

�� HHn.R; A; �/

��

�� Hnˇ.R; A; �/

��

�� : : : �� H2ˇ.R; A; �/

��

����
���	

���
��

��
��

�: : : �� HCn.A/ �� HCn.R; A; �/ �� Hn	.R; A; �/ �� : : : �� H2	.R; A; �/ ����
��
�

		�
��

��
��

�� HH1.A/

��

�� HH1.R; A; �/

��

�� R=ŒA; R� �� HH0.A/ �� HH0.R; A; �/ �� 0

HC1.A/ �� HC1.R; A; �/ �� R=ŒA; R� �� HC0.A/ �� HC0.R; A; �/ �� 0:
(18)

Proposition 5.4. Let .R; A; �/ 2 XAlg belong to the projective class P (see Sub-
section 4.4). Then

(i) Hnˇ.R; A; �/ D 0 for any n > 2;

(ii) if in addition k is a field of characteristic zero, we have

Hn	.R; A; �/ D 0 for n > 1

and an isomorphism

H2ˇ.R; A; �/ Š R=ŒA; R�:

Proof. Without loss of generality we can assume that .R; A; �/ D F .V / for some

V 2 Vect. Hence R
�

,�! A is an inclusion crossed module with A and A=R be-
ing free algebras. Then, by Corollary 2.4, the pairs of complexes CC f2g.R; A; �/,
CC f2g.A=R/ and CC.R; A; �/, CC.A=R/ are quasi-isomorphic.

Now (i) follows directly from the top exact sequence of the diagram (18) and the
fact that, for a free algebra F , the Hochschild homology HHn.F / vanishes for any
n � 2.

If in addition k is a field of characteristic zero, then the cyclic homology HCn.F /

of a free algebra F vanishes as well for any n � 1 (see [16], Proposition 5.4).
Therefore the diagram (18) implies that Hn	.R; A; �/ D 0 for n > 1. Moreover, by
Connes’ periodicity exact sequence there is a natural isomorphism

HC0.F /
B��!Š HH1.F /:
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Then the five term exact sequence in cyclic homology from [18] implies the commu-
tative diagram with exact rows

0 �� R=ŒA; R�

��

�� HC0.A/

Š
��

�� HC0.R; A; �/ Š HC0.A=R/

Š
��

�� 0

0 �� H2ˇ.R; A; �/ �� HH1.A/ �� HH1.R; A; �/ Š HH1.A=R/ �� 0;

which completes the proof of (ii).

5.5. Proof of Theorem 5.1. Given a simplicial crossed module .R�; A�; ��/ and a
functor � W XAlg ! C�0, denote by �.R�; A�; ��/ the bicomplex of vector spaces
obtained by applying the functor � dimension-wise to the simplicial crossed module
.R�; A�; ��/.

The following lemma will be needed.

Lemma 5.6. Let ..R�; A�; ��/; .d 0
0 ; d 0

0 /; .R; A; �// be an augmented simplicial
crossedmodule of algebras. Suppose that .R�; d 0

0 ; R/ and .A�; d 0
0 ; A/ are aspherical

augmented simplicial algebras. Then the augmented simplicial vector spaces

.ˇn.R�; A�; ��/; ˇn.d 0
0 ; d 0

0 /; ˇn.R; A; �//

and

.	n.R�; A�; ��/; 	n.d 0
0 ; d 0

0 /; 	n.R; A; �//

are acyclic for any n � 0.

Proof. We shall prove only the acyclicity of the second augmented simplicial vector
space. The proof of the first is similar and will be omitted.

Using the fact that the semidirect product of aspherical simplicial algebras is
aspherical as well, the augmented simplicial algebra

.Nq.R�; A�; ��/; Nq.d 0
0 ; d 0

0 /; Nq.R; A; �//; q � 0;

is aspherical. Hence, by Lemma 2.3 (i), we obtain that the augmented simplicial
vector space

.CCp.Nq.R�; A�; ��//; CCp.Nq.d 0
0 ; d 0

0 //; CCp.Nq.R; A; �///; p � 0; q � 0;

is acyclic. This clearly implies that .CCn.R�; A�; ��/; CCn.d 0
0 ; d 0

0 /; CCn.R; A; �//

and consequently .CCn.0; A�; 0/; CCn.0; d 0
0 /; CCn.0; A; 0// are acyclic augmented

simplicial vector spaces for any n � 0. Now the short exact sequence of augmented
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simplicial vector spaces

.CCn.0; A�; 0/; CCn.0; d 0
0 /; CCn.0; A; 0//

��

��
.CCn.R�; A�; ��/; CCn.d 0

0 ; d 0
0 /; CCn.R; A; �//

����
.	n.R�; A�; ��/; 	n.d 0

0 ; d 0
0 /; 	n.R; A; �//

implies the result.

We return to the proof of Theorem 5.1.
Let ..R�; A�; ��/; .d 0

0 ; d 0
0 /; .R; A; �// be a simplicial resolution of .R; A; �/ in

XAlg in the sense of Barr–Beck (see Proposition 4.6) and let us consider the bicomplex
	.R�; A�; ��/. For any fixed q the homology of the complex 	q.R�; A�; ��/, by
Lemma 5.6, is

Hp.	q.R�; A�; ��// Š
´

0 if p > 0;

	q.R; A; �/ if p D 0:

Therefore Hn.Tot.	.R�; A�; ��/// Š Hn.	.R; A; �//. Hence there is a convergent
spectral sequence

E1
pq D Hq.	.Rp; Ap; �p// ) HpCq.	.R; A; �//:

But by Propositions 5.3 and 5.4 we have

E1
pq D

´
0 for p � 0; q ¤ 1;

Rp=ŒAp; Rp� for p � 0; q D 1:

Therefore E2
pq Š �HCp.R; A; �/ for q D 1, p � 0. Then the degenerate spectral

sequence E2
pq yields the natural isomorphism

HnC1.	.R; A; �// Š �HCn.R; A; �/; n � 0: (19)

Thus (18) and (19) imply the exact sequence (15). Furthermore, from (17) one easily
deduces that for any crossed module .R; A; �/ there is a short exact sequence of
complexes

0 ! ˇ.R; A; �/ ! 	.R; A; �/ ! 	.R; A; �/Œ2� ! 0;

where 	.R; A; �/Œ2� is the dimension shifted complex by 2, i.e., 	n.R; A; �/Œ2� D
	n�2.R; A; �/, n � 0. Now the induced long exact homology sequence and the
isomorphism (19) give the exact sequence (16).
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