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1. Introduction

In the 1990s, Connes introduced the concept of a spectral triple as a fundamental
object in noncommutative geometry [7], [8], [9], [24], giving a “space-free” descrip-
tion of many geometric phenomena. The notion is very flexible and appropriate
choices allow one to recover the volume measure and metric on a Riemannian spin
manifold [7], [8] and also, for example, the Hausdorff measure on certain fractal sets
[7], [12], [13], [14]. In the fractal case, the starting point is Connes’s construction
of a spectral triple for a Cantor subset of the real line, from which (using ideas of
Lapidus and Pomerance [16]) the Minkowski content may be recovered. For simple
self-similar sets, the Hausdorff measure may also be obtained and Guido and Isola
generalize these ideas to certain fractal subsets of Rn. (See [5], [6], [20] for other
approaches and [18] for a more general construction valid for any compact metric
space.) Furthermore, Falconer and Samuel [11] have modified this construction to
describe multifractal phenomena.

The purpose of this paper is to show that, for a class of expanding maps, certain
important measures, called Gibbs measures, which arise in the ergodic theory of
hyperbolic dynamical systems, may be obtained as noncommutative measures from
an appropriate spectral triple. Specifically, our dynamical systems will be expanding
maps conjugate to a subshift of finite type (not necessarily a full shift), so that, in
particular, the (maximal) invariant set is a Cantor set. After this paper was written,
we learned that Samuel had obtained a very similar result in his thesis [22]. We will
give a little more detail on his work following Theorem 2.1 below.
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We shall we shall now fix some notation. Letƒ be a compact subset of a smooth
Riemannian manifold M and let T W ƒ ! ƒ be a C 1 expanding map which is
topologically conjugate to a mixing one-sided subshift of finite type � W †C

A ! †C
A .

(See Section 3 below for precise definitions.) In particular, ƒ is a Cantor set. The
purpose of this condition is to ensure that so-called “locally constant” functions on
ƒ are contained in C.ƒ;C/.

Let MT denote the set of T -invariant probability measures on ƒ. This is a large
set but we may single out the so-called Gibbs measures (or equilibrium measures)
associated to Hölder continuous potentials as being of particular importance. These
are defined as follows. Let  W ƒ ! ƒ be a Hölder continuous function. Then the
Gibbs measure for  is the unique � 2 MT for which

hT .�/C
Z
 d� D sup

m2MT

�
hT .m/C

Z
 dm

�
;

where hT .m/ denotes the entropy of T with respect to m. A general feature of
hyperbolic dynamical systems is that averages of weighted local data (e.g. sums
of observables over sets of orbits) give global information (e.g. the average of an
observable with respect to an invariant measure) [2], [19], [23] and Gibbs measures
may be obtained in this way. (Very roughly, weighting by the exponentials of sums
of an observable  gives the Gibbs measure for  .) However, this local to global
property also motivates the definition of a Dirac operator, adapted from those in [11],
[12], [13], [14], and allows us to obtain a noncommutative integral from its spectrum.
In Theorem 2.1 below, we show that this noncommutative integral agrees up to an
explicit factor with the integral with respect the Gibbs measure. We begin by defining
a spectral triple [7], [24].

Definition 1.1. A spectral triple is a triple .H;A;D/, where

(i) H is a Hilbert space;

(ii) A is a C �-algebra equipped with a faithful representation � W A ! B.H/ (the
bounded linear operators on H );

(iii) D is an essentially self-adjoint unbounded linear operator on H with compact
resolvent and such that ff 2 A : kŒD; �.f /�k < C1g is dense in A, where
ŒD; �.f /� W H ! H is the commutator operator ŒD; �.f /�.�/ D D�.f /.�/�
�.f /D.�/. This D is called a Dirac operator.

We shall define spectral triples associated to Hölder continuous potentials on
ƒ, adapting the constructions of Connes [7], Guido and Isola [12], [13], [14]) and
Falconer and Samuel [11]. As above, let � W †C

A ! †C
A be the subshift of finite

type topologically conjugate to the expanding map T W ƒ ! ƒ, where the symbol
set is f1; : : : ; kg and A is a zero-one transition matrix. (See Section 3 for a complete
definition.) We shall write p W †C

A ! ƒ for the conjugating homeomorphism. In the
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interests of readability, we will systematically abuse notation by writing f .x/ instead
of f .p.x//, whenever f 2 C.ƒ;C/ and x 2 †C

A .
An ordered n-tuple .w1; : : : ; wn/, with wm 2 f1; : : : ; kg, m D 1; : : : ; n, is called

an allowed word of length n if A.wm; wmC1/ D 1 for m D 1; : : : ; n � 1. Let Wn
denote the set of allowed words of length n and let

W � D
1[
nD1

Wn:

For w D .w1; : : : ; wn/ 2 Wn, we write

Œw� D fx D .xn/
1
nD1 2 †C

A : xm D wm; m D 1; : : : ; ng
and t.w/ D wn. For w 2 Wn and x 2 †C

A then wx will denote the sequence defined
by

.wx/m D
´
wm if 1 � m � n;

xm�n if m � nC 1:

Clearly, wx 2 †C
A if and only if A.t.w/; x1/ D 1. For each j 2 f1; : : : ; kg, choose

a sequence xj 2 †C
A and distinct sequences yj ; zj 2 †C

A such that jxj ; jyj ; jzj 2
†C
A .

Now we can define a spectral triple associated to a continuous potential � W ƒ !
R. Our Hilbert space will be

H D `2.W �/˚ `2.W �/ � L
w2W �

C ˚ C;

where we write a typical element as

� D
M
w2W �

�
�1.w/

�2.w/

�

and our C �-algebra will be A D C.ƒ;C/. We define a �-representation � W A !
B.H/ by setting �.f / to be the multiplication operator

�.f /

� M
w2W �

�
�1.w/

�2.w/

��
D

M
w2W �

�
f

�
wyt.w/

�
�1.w/

f
�
wzt.w/

�
�2.w/

�
;

We define D� W H ! H by

D�

� M
w2W �

�
�1.w/

�2.w/

��
D

1M
nD1

M
w2Wn

e�
n.wxt.w//

�
0 1

1 0

��
�1.w/

�2.w/

�

D
1M
nD1

M
w2Wn

e�
n.wxt.w//

�
�2.w/

�1.w/

�
;

where �n WD � C � B T C � � � C � B T n�1. We have the following theorem.
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Theorem 1.2. For any continuous function � W ƒ ! R, .H;A;D�/ is a spectral
triple.

The main result of the paper is that, when � is Hölder continuous and is suit-
ably normalized, we may recover the Gibbs measure for �� from the operators
�.f /jD� j�1 via a singular trace. (The choice of sign is for notational convenience.)
In the next section, we introduce the ideas needed to explain this statement and then
state our main theorem. In Section 3, we discuss some material on expanding maps,
subshifts of finite type and transfer operators. In Section 4, we prove Theorem 1.2. In
Section 5, we complete the paper by proving our result on noncommutative measures
and Gibbs measures, Theorem 2.1.

2. Singular traces and noncommutative measures

In order to state our main result, we need to briefly discuss the theory of singular
traces of compact operators. For more details, see [1] or [13]. Let B.H/ denote
the algebra of bounded linear operators on a Hilbert space H and let K.H/ denote
the ideal of compact operators. A singular trace on a two-sided ideal I � K.H/

is a positive linear functional � W I ! R such that � is unitary invariant (the trace
property) and vanishes on finite rank operators.

The most important singular traces are the so-called Dixmier traces [10]. These
are defined on an ideal I D L1;1.H/, the Dixmier ideal, given by

L1;1.H/ D ˚
A 2 K.H/ : lim sup

n!C1
1

logn

Pn
kD1 ak < C1�

;

where fang1
nD1 denote the eigenvalues of jAj WD p

A�A, written in decreasing order.
Then a Dixmier trace is a singular trace �! on L1;1.H/ defined, for a positive
operator A, by

�!.A/ D !- lim
1

logn

nX
kD1

ak;

where this is a generalized limit corresponding to a state ! on l1, and extended to
L1;1.H/ by linearity. If the limit

lim
n!C1

1

logn

nX
kD1

ak

exists then we say thatA is measurable and call the value of the limit the noncommu-
tative integral of A. (There are more general definitions of the Dixmier trace – see,
for example, Chapter IV, §2.ˇ of [7], [17] or Chapter 5 of [24]. Correspondingly,
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there are more general definitions of measurability. It is shown in [17] that these are
equivalent to the definition given here.)

Consider the spectral triple .H;A;D�/ defined in the previous section. We will
now suppose that � W ƒ ! R is Hölder continuous. We say that �� is normalized ifX

TyDx
e��.y/ D 1;

for all x 2 ƒ. (As we shall see in Section 3, any real-valued Hölder continuous
function may be normalized by adding a constant and a function of the form uBT �u,
with u 2 C.ƒ;R/, and this operation does not change the Gibbs measure.) Then, for
f 2 C.ƒ;C/, the operator �.f /jD� j�1 is given by the formula

�.f /jD� j�1
� M
w2W �

�
�1.w/

�2.w/

��
D

1M
nD1

M
w2Wn

e��n.wxt.w//

�
f

�
wyt.w/

�
�1.w/

f
�
wzt.w/

�
�2.w/

�
:

Theorem 2.1. Suppose that � W ƒ ! R is a Hölder continuous function and that ��
is normalized. Then, for any f 2 C.ƒ;C/,

(i) �.f /jD� j�1 2 L1;1.H/;
(ii) �.f /jD� j�1 is measurable and

�!.�.f /jD� j�1/ D c�

Z
f d�;

where � is the Gibbs measure for �� and where

c� D 2R
� d�

kX
jD1

X
TxDxj

e��.x/	j .x/;

with 	j the indicator function of the set p.Œj �/.

Remark 2.2. As we noted in the introduction, a result similar to Theorem 2.1 has
been obtained by Samuel [22]. A significant difference is that he requires the potential
� to be non-arithmetic, i.e., that the sums of � around periodic orbits do not all lie
in a single discrete subgroup of R. This restriction is needed for the renewal theory
approach he uses. Thus, for example, his results do not cover the measure of maximal
entropy. A particularly attractive feature of his work is that he is able to explicitly
calculate the Dixmier trace associated to the constant function 1, i.e. �!.jD� j�1/, is
equal to the reciprocal of the entropy of � and he identifies this as a noncommutative
volume.
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3. Expanding maps and subshifts of finite type

We begin the section by defining subshifts of finite type. Let A be a k � k matrix
whose entries are all either zero or one. We define the (one-sided) shift space

†C
A D ˚

.xn/
1
nD1 2 Q1

nD1f1; : : : ; kg : A.xn; xnC1/ D 1 for all n � 1
�

and the (one-sided) subshift of finite type � W †C
A ! †C

A by .�x/n D xnC1. We give
f1; : : : ; kg the discrete topology,

Q1
nD1f1; : : : ; kg the product topology and †C

A the
subspace topology. A compatible metric is given by

d..xn/
1
nD1; .yn/1nD1/ D

1X
nD1

1 � ıxnyn

2n
;

where ıij is the Kronecker symbol.
We say that the matrix A is irreducible if, for each .i; j /, there exists n.i; j / � 1

such that An.i;j /.i; j / > 0 and aperiodic if there exists n � 1 such that, for each
.i; j /, An.i; j / > 0. The latter statement is equivalent to � W †C

A ! †C
A being

topologically mixing (i.e. that there exists n � 1 such that for any two non-empty
open sets U; V � †C

A , ��m.U / \ V ¤ ¿, for all m � n).
Let M be a compact connected smooth Riemannian manifold and suppose that

ƒ � U � M withƒ compact and U open. Let T W U ! M be a C 1 map. Suppose
that

(i) there exists 
 > 1 such that kDTxk � 
 for all x 2 U ;

(ii) ƒ D T1
nD0 T �nU ;

(iii) T is topologically mixing.

If T satisfies (i), (ii) and (iii) then we refer to T W ƒ ! ƒ as an expanding map and
we can find a mixing one-sided subshift of finite type � W †C

A ! †C
A and a Hölder

continuous mapp W †C
A ! ƒwhich semi-conjugates T and � . Furthermore, the map

is “nearly” a homeomorphism. Here, however, we impose the additional condition
that p is, in fact, a homeomorphism and assume that

(iv) T W ƒ ! ƒ is topologically conjugate to a mixing one-sided subshift of finite
type � W †C

A ! †C
A .

In particular, (iv) implies that ƒ is a Cantor set.
Assumption (iv) givesƒ a natural grading. In particular, for each n � 1, we may

write ƒ as a disjoint union
ƒ D

[
w2Wn

p.Œw�/:

We will say that a function f W ƒ ! C is locally constant if, for some n � 1, f is
constant on each set p.Œw�/, w 2 Wn. We shall write LC.ƒ/ for the set of all locally
constant functions on ƒ. Clearly, LC.ƒ/ a uniformly dense subalgebra of C.ƒ;C/.
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We shall also consider some larger subalgebras of C.ƒ;C/. For ˛ > 0, we shall
let C ˛.ƒ;C/ denote the space of ˛-Hölder continuous functions on ƒ, i.e., the set
of functions g W ƒ ! C satisfying

jgj˛ WD sup
x¤y

jg.x/ � g.y/j
d.x; y/˛

< C1:

This is a Banach space with respect to the norm k � k˛ D k � k1 C j � j˛ . Clearly, for
any ˛ > 0,

LC.ƒ/ � C ˛.ƒ;C/ � C.ƒ;C/:

4. Gibbs states and transfer operators

In this section we shall discuss some of the ergodic theory associate to the map
T W ƒ ! ƒ. The main references are [4] and [19], where this theory is developed for
subshifts of finite type. The symbolic dynamics described in the preceding section
allows the results to be immediately transferred to expanding maps. As above, we
shall write MT for the space of T -invariant probability measures. Given m 2 MT ,
we write hT .m/ � 0 for the entropy of T as a measure preserving transformation of
.ƒ;m/ (see [25] for the definition). For a continuous function  W ƒ ! R, we define
its pressure P. / by

P. / D sup
m2MT

�
hT .m/C

Z
 dm

�
:

If  is Hölder continuous, then there is a unique probability measure �, called the
Gibbs measure (or equilibrium measure) for  , for which this supremum is realized
[2], [4], [19].

Given  2 C.ƒ;R/, we define the transfer operator L W C.ƒ;C/ ! C.ƒ;C/
by

L g.x/ D
X
TyDx

e .y/g.y/:

A key element of our approach will be to relate the eigenvalue asymptotics of our
Dirac operators to the spectral properties of transfer operators. For this approach to
work, we shall need to find a space of which L acts quasi-compactly.

If  2 C ˛.ƒ;R/ then L W C ˛.ƒ;C/ ! C ˛.ƒ;C/. The basic spectral prop-
erties of L on this space are contained in the following result, which is Ruelle’s
generalization of the classical Perron–Frobenius Theorem for non-negative matri-
ces).

Proposition 4.1 ([2], [4], [19], [21]). If  2 C ˛.ƒ;R/ then L W C ˛.ƒ;C/ !
C ˛.ƒ;C/ has a simple eigenvalue equal to eP. / with the rest of the spectrum
contained in a disk fz 2 C : jzj � �eP. /g, for some 0 < � < 1. Furthermore,
there exist
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(i) a strictly positive eigenfunction h 2 C ˛.ƒ;R/ such that L h D eP. /h; and

(ii) an eigenmeasure � 2 C.ƒ;R/� such that L�
 � D eP. /�.

If � is chosen to be a probability measure and the eigenfunction h is chosen so thatR
h d� D 1 then � D h� is the Gibbs measure for  .

Corollary 4.2. There exists 
 < eP. / such that, for any f 2 C ˛.ƒ;C/, we have

Ln f D
� Z

f d�

�
henP. / CO.
n /:

Proof. We recall the following basic fact from spectral theory (see, for example, [3]
or [15]). Let L W B ! B be a bounded linear operator on a Banach space B with
spectrum spec.L/ D † � C. If † can be decomposed into two disjoint non-empty
sets†1 and†2 and if 
 is a simple closed curve which is disjoint from† and which
has †1 in its interior and †2 in its exterior then … W B ! B defined by

… D 1

2�i

Z
�

.z � L/�1 dz;

is a projection (i.e. k…k D 1 and …2 D …). Moreover, B D B1 ˚ B2, where
B1 D …1.B/ and B2 D .I � …/.B/ are closed and L-invariant subspaces with
spec.LjB1/ D †1 and spec.LjB2/ D †2.

Now consider the operator L W C ˛.ƒ;C/ ! C ˛.ƒ;C/. By Theorem 4.1, we
may decompose its spectrum into†1 D feP. /g and a disjoint set†2. Thus, we may
decompose the operator L as a sum

Ln D Ln …C Ln .I �…/ D enP. /�. �/hC Ln .I �…/;

where…1 D �. �/h is the projection onto the eigenspace spanned by eP. /. Further-
more, since eP. / is strictly maximal in modulus, we have

lim
n!C1 kLn .I �…/k1=n D supfjzj : z 2 †2g < eP. /:

Choosing 
 slightly larger than limn!C1 kLn .I � …/k1=n completes the proof.

Corollary 4.3. The quantities eP. /, h and � in Theorem 4.1 all depend analytically
on  .

Proof. First we note thatL depends analytically on . The result is then a standard
consequence of the fact that eP. / is an isolated simple eigenvalue for L [3], [15].
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Recall that we defined a function �� to be normalized if, for all x 2 ƒ,X
TyDx

e��.y/ D 1:

In particular, this condition implies that �� is strictly negative. We may rewrite this
condition in terms of transfer operators as L��1 D 1. The following consequence
of Theorem 4.1 shows that, given a Hölder continuous function, we may find another
which is normalized and which had the same Gibbs measure.

Corollary 4.4. Suppose that  , h, �, � are as in Theorem 4.1. Then

�� WD  C log h � log h B T � P. / 2 C ˛.ƒ;R/
is normalized, L���� D � and � is the Gibbs state ��.

Proof. Since h > 0, �� is well defined. For any m 2 MT ,

hT .m/C
Z

�� dm D hT .m/C
Z
 dm � P. /;

so it follows that P.��/ D 0 and that � is the Gibbs measure for ��. We also have

L��1.x/ D
X
TyDx

e��.y/ D
X
TyDx

e .y/Clogh.y/�logh.Ty/�P. /

D e�P. /

h.x/

X
TyDx

e .y/h.y/ D e�P. /

h.x/
L h.x/

D e�P. /

h.x/
eP. /h.x/ D 1;

so �� is normalized. By Theorem 4.1, L���� D �.

To prove Theorem 2.1, we shall need to consider a family of transfer operators
L�t� , for t 2 R. By Theorem 4.1, these will have a maximal eigenvalue equal to
eP.�t�/. We end the section with a result on the regularity and derivative of the
function t 7! P.�t�/.

Lemma 4.5. The function t 7! P.�t�/ is real-analytic and strictly decreasing.
Furthermore,

dP.�t�/
dt

ˇ̌̌
ˇ
tD1

D �
Z
� d�;

where � is the Gibbs measure for ��.
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5. Proof of Theorem 1.2

In this section we proof that the .H;A;D�/ we have constructed is a spectral triple.
The key point is that the locally constant functions give a dense subalgebra ofC.ƒ;C/
on which kŒD� ; �.f /�k is finite.

Proof of Theorem 1.2. Suppose that f1; f2 2 C.ƒ;C/ and that �.f1/ D �.f2/.
Then, in particular, by definition, for eachw 2 W �, f1.wyt.w// D f2.wy

t.w//. The
set fwyt.w/ : w 2 W �g is dense in †C

A and thus the set p.fwyt.w/ : w 2 W �g/ is
dense in ƒ. Hence f1 D f2 and � W C.ƒ;C/ ! B.H/ is faithful.

It is clear from its definition that D� is self-adjoint. The eigenvalues of D� are
the numbers 1[

nD1

˚
e�

n.wxt.w// : w 2 Wn
�

(counted with the appropriate multiplicity). In particular, 0 is not an eigenvalue.
Thus, the resolvent of D� is compact provided D�1

� is compact and it is clear that
D�1
� , defined by

D�1
�

� M
w2W �

�
�1.w/

�2.w/

��
D

1M
nD1

M
w2W �

e��n.wxt.w//

�
0 1

1 0

��
�1.w/

�2.w/

�

is a compact operator. For f 2 C.ƒ;C/,

ŒD� ; �.f /�

� M
w2W �

�
�1.w/

�2.w/

��

D
M
w2W �

.f .wyt.w// � f .wzt.w///e�
n.wxt.w//

�
0 �1
1 0

��
�1.w/

�2.w/

�

D
M
w2W �

.f .wyt.w// � f .wzt.w///e�
n.wxt.w//

���2.w/
�1.w/

�
:

Let A0 D LC.ƒ/, the subalgebra of locally constant functions on ƒ. Recall that A0
is dense in A. If f 2 A0 then there exists N � 1 such that

f .wyt.w// D f .wzt.w// for all w 2
1S

nDNC1
Wn:

Then����ŒD; �.f /�
� M
w2W �

�
�1.w/

�2.w/

������
2

2

D
1X
nD1

X
w2Wn

.f .wyt.w// � f .wzt.w///2e2�
n.wxt.w//..��2.w//2 C �1.w/

2/
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� 2kf k1e2Nk�k1

NX
nD1

X
w2Wn

..��2.w//2 C �1.w/
2/

� 2kf k1e2Nk�k1k�k22:
Hence kŒD; �.f /�k < C1.

6. Proof of Theorem 2.1

We will use the following version of the Hardy–Littlewood Tauberian Theorem. (See
[7], Chapter IV, §2.ˇ, Proposition 4.)

Lemma 6.1. Suppose thatA 2 K.H/ is a positive operatorwith eigenvalues fang1
nD1

(arranged in decreasing order) and that A 2 L1;1.H/. Write

�.t/ D
1X
nD1

atn:

Then
lim
t!1C.t � 1/�.t/ D L;

if and only if

lim
n!C1

1

logn

nX
kD1

ak D L:

We will suppose for the moment that f 2 C ˛.ƒ;R/ and that f � 0, so that
�.f /jD� j�1 is a positive operator. The eigenvalues of �.f /jD� j�1 are the numbers

1[
nD1

˚
f .wyt.w//e��n.wxt.w//; f .wzt.w//e��n.wxt.w// : w 2 Wn

�
(counted with multiplicity). We define a spectral zeta function

�f .t/ D
1X
nD1

X
w2Wn

��
f .wyt.w//e��n.wxt.w//

�t C �
f .wzt.w//e��n.wxt.w//

�t�

and we also write

�f;x.t/ D
1X
nD1

X
w2Wn

�
f .wxt.w//e��n.wxt.w//

�t
;

�f;y.t/ D
1X
nD1

X
w2Wn

�
f .wyt.w//e��n.wxt.w//

�t
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and

�f;z.t/ D
1X
nD1

X
w2Wn

�
f .wzt.w//e��n.wxt.w//

�t
:

In order to study these functions, it will be convenient to introduce another one
which is easier to express in terms of transfer operators. Hence we define

�f .s/ D
1X
nD1

X
w2Wn

f .wxt.w//e�s�n.wxt.w//:

Lemma 6.2. For f 2 C ˛.ƒ;R/ with f > 0, �f .t/ converges for t > 1 and

lim
t!1C.t � 1/�f .t/ D

�R
f d�R
� d�

� � kX
jD1

.L��	j /.x.j //
	
:

Proof. Provided �f .t/ converges, we may use the definitions of x.j / and L�t� to
write

�f .t/ D
1X
nD1

X
w2Wn

f .wxt.w//e�t�n.wxt.w//

D
1X
nD1

kX
jD1

Ln�t�.	j B T n�1f /.xj /

D
1X
nD1

kX
jD1

L�t�.	jLn�1�t�f /.xj /:

By Theorem 4.1 and Lemma 4.5, for t > 1, L�t� has spectral radius eP.�t�/ <1.
Thus, using the spectral radius formula, it is easy to see that �f .t/ converges. Fur-
thermore, by Corollary 4.2, we have

�f .t/ D
1X
nD0

kX
jD1

� Z
f d�t

�
enP.�t�/

�
L�t�.	jht /

�
.xj /C

1X
nD0

qn.t/

D
� Z

f d�t

� 1X
nD0

enP.�t�/
� kX
jD1

�
L�t�.	jht /

�
.xj /

	
C

1X
nD1

qn.t/

D
� Z

f d�t

�Pk
jD1

�
L�t�.	jht /

�
.xj /

1 � eP.�t�/ C
1X
nD1

qn.t/;

where ht and �t are the eigenfunction and eigenmeasure for L�t� given by Theo-
rem 4.1 and where qn.t/ D O.
n�t�/ (with 
�t� < eP.�t�/). Since
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(i) t 7! eP.�t�/, t 7! ht and t 7! �t are all analytic;

(ii) eP.��/ D 1, h1 D 1 and �1 D �; and

(iii)
deP.�t�/

dt

ˇ̌̌
ˇ
tD1

D �
Z
� d�I

we see that

�f .t/ D
�R

f d�R
� d�

� � kX
jD1

.L��	j /.xj /
	 1

t � 1 C a.t/;

where a.t/ is finite for t � 1.

Remark 6.3. In fact, the analyticity result in Corollary 4.3 enable one to deduce that,
considered as a function of a complex variable s, �f .s/ has a meromorphic extension
to a neighbourhood of s D 1, with a simple pole at s D 1. Using the type of methods
described in [19], [23], one can further show that �f .s/ is analytic for Re.s/ > 1

and that, provided the sums of � around periodic orbits do not all lie in a discrete
subgroup of R, apart from the pole at s D 1, �f .s/ has an analytic extension to a
neighbourhood of Re.s/ � 1.

Lemma 6.4. For f 2 C ˛.ƒ;R/ with f > 0, �f;y.t/ and �f;z.t/ converge for t > 1.
Furthermore, we have

lim
t!1C.t � 1/�f;y.t/ D lim

t!1C.t � 1/�f;z.t/ D lim
t!1C.t � 1/�f .t/:

Proof. First we shall show that it suffices to consider �f;x.t/. Note that, for t > 1,

j�f;x.t/ � �f;y.t/j �
1X
nD1

X
w2Wn

ˇ̌
f .wxt.w//t � f .wyt.w//t

ˇ̌
e�t�n.wxt.w//

� tkf kt�11
1X
nD1

X
w2Wn

jf .wxt.w// � f .wyt.w//je�t�n.wxt.w//:

Let fwmg1
mD1 be any enumeration of W �. Then

lim
m!C1 d..wmx

t.w/; wmy
t.w// D 0;

so that, since f is continuous,

lim
m!C1f .wmx

t.w// � f .wmyt.w// D 0:
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Thus, since each setWn is finite, given � > 0, there existsN � 1 such that ifw 2 Wn
and n � N then jf .wxt.w// � f .wyt.w//j < �. Thus,

ˇ̌
�f;x.t/ � �f;y.t/

ˇ̌ � 2tkf kt1.N � 1/C �tkf kt�11
� 1X
nDN

X
w2Wn

e�t�n.wxt.w//
	

� 2tkf kt1.N � 1/C �tkf kt�11 �1.t/:

Hence, �f;y.t/ converges provided �f;x.t/ converges and we have the estimate

lim
t!1C.t � 1/.�f;x.t/ � �f;y.t// � � lim

t!1C.t � 1/�1.t/

D �

�
1R
� d�

� � kX
jD1

.L��	j /.xj /
	
:

Since � > 0 is arbitrary, this shows that

lim
t!1C.t � 1/�f;x.t/ D lim

t!1C.t � 1/�f;y.t/:

A similar argument for �f;z.t/ completes the proof of the claim.
To complete the proof, we notice that, as t ! 1C, we have

f .wxt.w//t � f .wxt.w// D f .wxt.w//.f .wxt.w//t�1 � 1/
D f .wxt.w//.t � 1CO..t � 1/2//:

Thus
�f;x.t/ � �f .t/ D .t � 1CO..t � 1/2//�f .t/;

so that �f;x.t/ converges for t > 1 and

lim
t!1C.t � 1/�f;x.t/ D lim

t!1C.t � 1/�f .t/;

as required.

Proof of Theorem 2.1. We need to show that, whenever f 2 C.ƒ;R/ with f � 0,
we have

lim
n!C1

1

logn

nX
kD1

ak.f / D c�

Z
f d�;

where fak.f /g1
kD1 are the eigenvalues of �.f /jD� j�1, counted with multiplicity

and written in decreasing order, and where

c� D 2R
� d�

kX
jD1

X
TxDxj

e��.x/	j .x/ D 2R
� d�

kX
jD1

.L��	j /.xj /:



Spectral triples and Gibbs measures for expanding maps on Cantor sets 815

First, suppose that f 2 C ˛.ƒ;R/ and that f � 0. Lemma 6.2 and Lemma 6.4
show that �f .t/ converges for t > 1 and diverges for t D 1. Thus �.f /jDj�1 2
L1;1.H/. It follows immediately from Lemma 6.1 and Lemma 6.4 that

lim
n!C1

1

logn

nX
kD1

ak.f / D lim
t!1C.t � 1/�f .t/ D c�

Z
f d�:

Now suppose f 2 C.ƒ;R/ and f � 0. Given � > 0, we may choose g1; g2 2
C ˛.ƒ;C/ such that 0 � g1 � f � g2 andZ

f d� � � �
Z
g1 d� �

Z
g2 d� �

Z
f d�C �:

Then we have

c�

� Z
f d� � �

�
� c�

Z
g1 d� D lim

t!1C.t � 1/�g1
.t/

� lim inf
t!1C .t � 1/�f .t/ � lim sup

t!1C
.t � 1/�f .t/

� lim
t!1C.t � 1/�g2

.t/ D c�

Z
g2 d�

� c�

� Z
f d� � �

�
:

Since � > 0 is arbitrary, the required convergence result holds for f .
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