Erratum to "C*-algebras associated with integral domains and crossed products by actions on adele spaces"

J. Noncommut. Geom. 5 (2011), 1-37

Joachim Cuntz and Xin Li

1. Introduction

In [Cu-Li], we had computed the K-theory for C*-algebras associated with rings of integers in number fields. Unfortunately, there was a miscalculation in [Cu-Li], §6.4, case c), where the case of number fields with roots of unity +1, -1 and with an even strictly positive number of real places was treated (i.e., the case where $\#\{v_{\mathbb{R}}\} \ge 2$ even). In this case the final result for the K-theory of the ring C*-algebra $\mathfrak{A}[\emptyset]$ of the ring of integers \emptyset of our number field should not be $K_*(\mathfrak{A}[\emptyset]) \cong \Lambda^*(\Gamma) \oplus ((\mathbb{Z}/2\mathbb{Z}) \otimes_{\mathbb{Z}} \Lambda^*(\Gamma))$, but $K_*(\mathfrak{A}[\emptyset]) \cong \Lambda^*(\Gamma)$. This means that the torsion-free part in §6.4, case c) of [Cu-Li] was determined correctly, but the torsion part was not computed correctly. The correct computation shows that the K-theory of the ring C*-algebra is torsion-free.

On the whole, the correct final result is the following (compare [Cu-Li], §6): Let *K* be a number field with roots of unity $\mu = \{\pm 1\}$. Choose a free abelian subgroup Γ of K^{\times} such that $K^{\times} = \mu \times \Gamma$. We obtain for the K-theory of the ring C*-algebra $\mathfrak{A}[\sigma]$ attached to the ring of integers σ of *K*:

$$K_*(\mathfrak{A}[\sigma]) \cong \begin{cases} K_0(C^*(\mu)) \otimes_{\mathbb{Z}} \Lambda^*(\Gamma) & \text{if } \#\{v_{\mathbb{R}}\} = 0, \\ \Lambda^*(\Gamma) & \text{if } \#\{v_{\mathbb{R}}\} \ge 1. \end{cases}$$

The distinction between the formulas in the two different cases corresponds to a natural identification on the level of generators. As abstract groups one obtains the same K-theory independently of the number of real embeddings.

2. The correct computation

Let us first of all explain what went wrong in our original computation in [Cu-Li], §6.4, case c): Let $\theta \in \text{Aut}(C_0(\mathbb{R}))$ be the flip, i.e., $\theta(f)(x) = f(-x)$ for all $f \in C_0(\mathbb{R})$.

By equivariant Bott periodicity, we know that

$$K_i(C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z}) \cong \begin{cases} \mathbb{Z}^2 & \text{if } i = 0, \\ \{0\} & \text{if } i = 1. \end{cases}$$

In the first part of the proof of Lemma 6.4 in [Cu-Li], we have claimed that the automorphism id $\otimes \theta$ of $C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z}$ acts as $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in K-theory (in [Cu-Li], id $\otimes \theta$ is denoted by $\hat{\beta}_{(1,-1)}$). This however cannot be true. The reason is that using the Pimsner–Voiculescu sequence, we would obtain as an immediate consequence that $K_0(C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{id \otimes \theta} \mathbb{Z}) \cong \mathbb{Z} \oplus (\mathbb{Z}/2\mathbb{Z})$. But as Lemma 2.1 below shows, the correct result is $K_0(C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{id \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{id \otimes \theta} \mathbb{Z}) \cong \mathbb{Z}$.

In the first part of the proof of Lemma 6.4 in [Cu-Li], we had considered the number field $K = \mathbb{Q}[\sqrt{2}]$ with ring of integers $\mathfrak{o} = \mathbb{Z} + \mathbb{Z}\sqrt{2}$. The problem in our original computation was that we have assumed that in this particular case, the element $[u^1]_1 \times [u^{\sqrt{2}}]_1$ is part of a \mathbb{Z} -basis for $G_{inf} \subseteq K_0(C^*(\mathfrak{o} \rtimes \mu))$ (in the terminology of [Cu-Li], Lemma 6.1). But this is not the case, only up to finite index. This is why Lemma 6.4 in [Cu-Li] is false.

Here is now the correct computation:

Lemma 2.1. $K_i(C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}) \cong \mathbb{Z}$ for i = 0, 1.

Proof. The first step is the following simple observation:

$$C_{0}(\mathbb{R}^{2}) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}/2\mathbb{Z}$$

$$\cong (C_{0}(\mathbb{R}) \otimes C_{0}(\mathbb{R})) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}/2\mathbb{Z}$$

$$\cong (C_{0}(\mathbb{R}) \otimes C_{0}(\mathbb{R})) \rtimes_{\theta \otimes \mathrm{id}} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}/2\mathbb{Z}$$

$$\cong ((C_{0}(\mathbb{R}) \rtimes_{\theta} \mathbb{Z}/2\mathbb{Z}) \otimes C_{0}(\mathbb{R})) \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}/2\mathbb{Z}$$

$$\cong [C_{0}(\mathbb{R}) \rtimes_{\theta} \mathbb{Z}/2\mathbb{Z}] \otimes [C_{0}(\mathbb{R}) \rtimes_{\theta} \mathbb{Z}/2\mathbb{Z}].$$
(1)

To get from the second to the third line, we just made use of the automorphism $(\mathbb{Z}/2\mathbb{Z})^2 \cong (\mathbb{Z}/2\mathbb{Z})^2$ given by $t_1 \mapsto t_1 t_2, t_2 \mapsto t_2$. Here t_1 and t_2 are the generators of the two copies of $\mathbb{Z}/2\mathbb{Z}$.

Since $K_0(C_0(\mathbb{R}) \rtimes_{\theta} \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}$ and $K_1(C_0(\mathbb{R}) \rtimes_{\theta} \mathbb{Z}/2\mathbb{Z}) \cong \{0\}$ (see [Cu-Li], §3.3, Equation (12)), we deduce

$$K_i(C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}/2\mathbb{Z}) \cong \begin{cases} \mathbb{Z} & \text{if } i = 0, \\ \{0\} & \text{if } i = 1. \end{cases}$$
(2)

Now consider the automorphism (id $\otimes \theta$)[°] of $C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}/2\mathbb{Z}$ which is dual to the action of the second copy of $\mathbb{Z}/2\mathbb{Z}$. Under the isomorphism (1), (id $\otimes \theta$)[°] corresponds to the automorphism $\hat{\theta} \otimes \hat{\theta}$, where $\hat{\theta}$ is the automorphism on $C_0(\mathbb{R}) \rtimes_{\theta} \mathbb{Z}/2\mathbb{Z}$ dual to θ . Since $\hat{\theta}$ is either id or -id on $K_0(C_0(\mathbb{R}) \rtimes_{\theta} \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}$, we conclude that

$$((\mathrm{id} \otimes \theta)^{\hat{}})_* = \mathrm{id} \quad \mathrm{on} \ K_0(C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}/2\mathbb{Z}) \cong \mathbb{Z}.$$
(3)

Plugging (2) and (3) into the exact sequence from [Bla], Theorem 10.7.1, which connects the *K*-theory of the crossed products by \mathbb{Z} and by $\mathbb{Z}/2$ induced by id $\otimes \theta$ respectively, we obtain

$$K_i(C_0(\mathbb{R}^2) \rtimes_{\theta \otimes \theta} \mathbb{Z}/2\mathbb{Z} \rtimes_{\mathrm{id} \otimes \theta} \mathbb{Z}) \cong \mathbb{Z} \quad \text{for } i = 0, 1.$$

With this lemma, the computation of the K-theory of the ring C*-algebras follows the same line of arguments as in [Cu-Li]. Let us explain this briefly using the same notations as in the introduction and as in [Cu-Li], §6.4, case c). Combining Equation (4) in [Cu-Li] with Corollary 4.2 of [Cu-Li] and using a refined version of Lemma 6.3 in [Cu-Li], it is straightforward to see that the K-theory of $\mathfrak{A}[\emptyset]$ coincides with the Ktheory of $C_0(\mathbb{A}_{\infty}) \rtimes K^{\times}$. As in [Cu-Li], §6.4, case c), let $K^{\times} = \mu \times \Gamma$ and choose a \mathbb{Z} basis $\{p, p_1, p_2, \ldots\}$ of Γ , with $p \in \mathbb{Z}_{>0}$. We can arrange that $\#\{v_{\mathbb{R}} : v_{\mathbb{R}}(p_1) < 0\}$ is odd and $\#\{v_{\mathbb{R}} : v_{\mathbb{R}}(p_i) < 0\}$ is even for all i > 1. Let $\Gamma_m = \langle p, \ldots, p_m \rangle$ and $\Gamma'_m = \langle p, p_2, \ldots, p_m \rangle$. An iterative application of the Pimsner–Voiculescu sequence gives

$$K_*(C_0(\mathbb{A}_\infty) \rtimes (\mu \times \Gamma_m)) \cong \Lambda^*(\Gamma'_m)$$

and thus

$$K_*(\mathfrak{A}[\sigma]) \cong \Lambda^*(\Gamma).$$

References

- [Bla] B. Blackadar, K-theory for operator algebras. 2nd ed., Math. Sci. Res. Inst. Publ. 5, Cambridge University Press, Cambridge 1998. Zbl 0913.46054 MR 1656031
- [Cu-Li] J. Cuntz and X. Li, C*-algebras associated with integral domains and crossed products by actions on adele spaces. J. Noncommut. Geom. 5 (2011), 1–37. Zbl 1229.46044 MR 2746649

Received September 13, 2012

J. Cuntz, Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstraße 62, 48149 Münster, Germany

E-mail: cuntz@math.uni-muenster.de

X. Li, Mathematisches Institut, Westfälische Wilhelms-Universität Münster, Einsteinstraße 62, 48149 Münster, Germany

E-mail: xinli.math@uni-muenster.de

821