
J. Noncommut. Geom. 7 (2013), 1–82
DOI 10.4171/JNCG/108

Journal of Noncommutative Geometry
© European Mathematical Society

On the spectral characterization of manifolds

Alain Connes

Abstract. We show that the first five of the axioms we had formulated on spectral triples suffice
(in a slightly stronger form) to characterize the spectral triples associated to smooth compact
manifolds. The algebra, which is assumed to be commutative, is shown to be isomorphic to
the algebra of all smooth functions on a unique smooth oriented compact manifold, while the
operator is shown to be of Dirac type and the metric to be Riemannian.
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1. Introduction

The problem of spectral characterization of manifolds was initially formulated as an
open question in [12]. The issue is to show that under the simple conditions of [12]
on a spectral triple .A;H ;D/, with A commutative, the algebra A is the algebra
C1.X/ of smooth functions on a (unique) smooth compact manifold X . The five
conditions ([12]), in dimension p, are:
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(1) The n-th characteristic value of the resolvent of D is O.n�1=p/.

(2) ŒŒD; a�; b� D 0 for all a; b 2 A.

(3) For any a 2 A both a and ŒD; a� belong to the domain of ım, for any integerm
where ı is the derivation: ı.T / D ŒjDj; T �.

(4) There exists a Hochschild cycle c 2 Zp.A;A/ such that �D.c/ D 1 for p odd,
while for p even, �D.c/ D � is a Z=2 grading.

(5) Viewed as an A-module the space H1 D T
DomDm is finite and projective.

Moreover the following equality defines a hermitian structure . j / on this
module: h�; a �i D ª

a.�j�/ jDj�p for all a 2 A, for all �; � 2 H1.

The notations are recalled at the beginning of §2 below. The strategy of proof was
outlined briefly in [12]. It consists in using the components aj

˛ (j > 0) of the cycle
c D P

a0
˛ ˝a1

˛ ˝� � �˝a
p
˛ as tentative local charts. There are three basic difficulties:

a) Show that the spectrumX of A is large enough so that the range of “local charts”
a˛ contains an open set in Rp .

b) Show that the joint spectral measure of the components aj
˛ (j > 0) of a “local

chart” is the Lebesgue measure.

c) Apply the basic inequality ([9], [10], Proposition IV.3.14) giving an upper bound
on the Voiculescu obstruction [26] and use [26], Theorem 4.5, to show that the
“local charts” are locally injective.

In a recent paper [23], Rennie and Varilly considered the above challenging problem.
The paper [23] is a courageous attempt which contains a number of interesting ideas
and a useful smooth calculus but also, unfortunately, several gaps, each being enough
to invalidate the proof of the claimed result.

I will show in this paper how to prove a), b), c). I have tried to be very careful
and give detailed proofs. The way to prove a) uses a new ingredient: the Implicit
Function Theorem (whose presence is not a real surprise). We shall first assume that
continuous �-derivations of A exponentiate, i.e., are generators of one-parameter
groups (of automorphisms of A). Then most of the work, done in §§5, 6, is to show
that this hypothesis can be removed. In this very technical part of the paper we show
that enough self-adjoint derivations of A exponentiate. We first prove in §5 that
enough derivations are dissipative for the C*-algebra norm. We then proceed in §6
and use the self-adjointness of D and the third condition (regularity) in the strong
form, to show the surjectivity of the resolvent, and apply the Hille–Yosida Theorem
to integrate these derivations into one-parameter groups of automorphisms of the C*-
algebra. We then show that they are continuous for the Sobolev norms and define
automorphisms of A.

To prove b) one needs a key result which is the analogue in our context of the
quasi-invariance under diffeomorphisms of the smooth measure class on a manifold,
whose replacement in our case is given by the Dixmier trace. This is shown in
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Proposition 6.16 at the end of §6. We then prove in §7 the required absolute continuity
of the spectral measure using a smearing argument. In §8 we show the required
inequality between the multiplicity of the map s˛ and the spectral multiplicity of
the aj

˛ .
To prove c) a new strategy is required. Roughly one needs to know that the

multiplicity function of a tentative local coordinate system is locally bounded while
the information one obtains just by applying the strategy outlined in [12] (and pursued
in [23]) is that it is a lower semi-continuous1 integrable function. Typical examples
of Lebesgue negligible denseGı sets2 show that, as such, the situation is hopeless. In
order to solve this problem, one needs a local form of the basic inequality ([9], [10],
Proposition IV.3.14) giving an upper bound on the Voiculescu obstruction. We prove
this result in §9. This key result is combined withVoiculescu’s Theorem (Theorem 4.5
of [26]) and with the initial implicit function technique to conclude the proof in §11.
Our main result can be stated as follows (cf. Theorem 11.3):

Theorem 1.1. Let .A;H ;D/ be a spectral triple, with A commutative, fulfilling the
first five conditions of [12] (cf. §2) in a slightly stronger form, i.e., we assume that:

� The regularity holds for all A-endomorphisms of
T

DomDm.

� The Hochschild cycle c is antisymmetric.

Then there exists a compact oriented smooth manifold X such that A is the algebra
C1.X/ of smooth functions on X .

Moreover every compact oriented smooth manifold appears in this spectral man-
ner. Our next result is the following variant (Theorem 11.5):

Theorem 1.2. Let .A;H ;D/ be a spectral triple with A commutative, fulfilling the
first five conditions of [12] (cf. §2) with the cycle c antisymmetric. Assume that the
multiplicity of the action of A00 in H is 2p=2. Then there exists a smooth oriented
compact (spinc) manifold X such that A D C1.X/.

This multiplicity hypothesis is a weak form of the Poincaré duality condition 6 of
[12] and thus the above theorem can be seen as the solution of the original problem
formulated in [12] and gives a characterization of spinc manifolds. It follows from
[12] (cf. [16] for the proof) that the operator D is then a Dirac operator. The reality
condition selects spin manifolds among spinc , and the spectral action ([4]) selects the
Levi-Civita connection.

Finally we make a few remarks in §12. The first describes a different perspective
on our main result. As explained many times, it is only because one drops commu-
tativity that variables with continuous range can coexist with infinitesimal variables

1The inverse image of �a; 1� is open.
2Countable intersection of open sets.



4 A. Connes

(which only affect finitely many values larger than a given "). In the classical formu-
lation of variables, as maps from a set X to the real numbers, infinitesimal variables
cannot coexist with continuous variables. The formalism of quantum mechanics and
the uniqueness of the separable infinite dimensional Hilbert space cure this problem.
Using this formalism, variables with continuous range (i.e., self-adjoint operators
with continuous spectrum) coexist, in the same operator theoretic framework, with
variables with countable range, such as the infinitesimal ones (i.e., compact opera-
tors). The only new fact is that they do not commute. The content of Theorem 1.2 can
be expressed in a suggestive manner from this coexistence between the continuum
and the discrete. We fix the integer p andN D 2Œp=2� where Œp=2� is the integral part
of p=2. The continuum will only be used through its “measure theoretic” content.
This is captured by a commutative von Neumann algebra M and, provided there is
no atomic part in M , this algebra is then unique (up to isomorphism). It is uniquely
represented in Hilbert space H (which we fix once and for all, as a universal stage)
once the spectral multiplicity is fixed equal to N . Thus the pair .M;H / is unique
(up to isomorphism). Let us now consider (separately first) an infinitesimal ds, i.e.,
a self-adjoint compact operator in H . Equivalently we can talk about its inverse D
which is unbounded and self-adjoint. We assume that ds is an infinitesimal of finite
order ˛ D 1

p
. The information contained in the operator ds is entirely captured by a

list of real numbers, namely the eigenvalues of ds (with their multiplicity). This list
determines uniquely (up to isomorphism) the pair .H ;D/. Theorem 1.2 can now be
restated as the birth of a geometry from the coexistence of .M;H /with .H ;D/. This
coexistence is encoded by a unitary isomorphism F between the Hilbert space of the
canonical pair .M;H / and the Hilbert space of the canonical pair .H ;D/. Thus the
full information on the geometric space is subdivided into two pieces:

(1) the list of eigenvalues of D,

(2) the unitary F .

We point out in §12 the analogy between these parameters for geometry and the
parameters of the Yukawa coupling of the Standard Model ([7]) which are encoded
similarly by

(1) the list of masses,

(2) the CKM matrix C .

This analogy as well as the precise definition of the corresponding unitary invariant
of Riemannian geometry will be dealt with in details in the companion paper [13].

The second remark recalls a result of M. Hilsum on finite propagation (cf. [18]).
We then discuss briefly in §12 the variations dealing with real analytic manifolds,
non-integral dimensions and the non-commutative case.

We end with two appendices. In the first, §13, we discuss equivalent formulations
of the regularity condition. In the second, §14, we recall the basic properties of the
Dixmier trace and its relation with the heat expansion.
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2. Preliminaries

Let us recall the conditions for commutative geometry as formulated in [12]. We shall
only use the first five conditions.

We let .A;H ;D/ be a spectral triple, thus H is a Hilbert space, A an involutive
algebra represented in H andD is a self-adjoint operator in H . We assume that A is
commutative. We are given an integer p which controls the dimension of our space.
The conditions are:

1) Dimension: The n-th characteristic value of the resolvent ofD is O.n�1=p/.

2) Order one: ŒŒD; f �; g� D 0 for all f; g 2 A.
We let ı.T / D ŒjDj; T � be the commutator3 with the absolute value of D:

3) Regularity: For any a 2 A both a and ŒD; a� belong to the domain of ım, for
any integer m.
We let �D be the linear map given by

�D.a
0 ˝ a1 ˝ � � � ˝ ap/ D a0ŒD; a1� : : : ŒD; ap� for all aj 2 A:

4) Orientability: There exists a Hochschild cycle c 2 Zp.A;A/ such that�D.c/ D
1 for p odd, while for p even, �D.c/ D � satisfies

� D ��; �2 D 1; �D D �D�:
5) Finiteness and absolute continuity: Viewed as an A-module the space H1 DT

m DomDm is finite and projective. Moreover the following equality defines
a hermitian structure . j / on this module,

h�; a �i D
«
a.�j�/ jDj�p for all a 2 A and all �; � 2 H1: (1)

In other words the module can be written as H1 D eAn with e D e� 2 Mn.A/

defining the Hermitian structure so that

.�j�/ D
X

��
i �i 2 A for all �; � 2 eAn:

It follows from condition 4) and from4 [10], Theorem 8, IV.2.� , and [16] that the
operators ajDj�p , a 2 A, are measurable ([10], Definition 7, IV.2.ˇ) so that the

3The domain of ı is the set of bounded operators T with T Dom jDj � Dom jDj and ı.T / bounded.
4We shall not use this result in an essential manner since one can just fix a choice of Dixmier trace Tr!

throughout the proof.
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coefficient
ª
ajDj�p of the logarithmic divergence of their trace is unambiguously

defined.
It follows from condition 5 that the algebra A is uniquely determined inside its

weak closure A00 (which is also the bicommutant of A in H ) by the equality

A D fT 2 A00 j T 2 T
m>0 Dom ımg:

This was stated without proof in [12] and we give the argument below:

Lemma 2.1. The following conditions are equivalent for T 2 A00:
(1) T 2 A.

(2) ŒD; T � is bounded and both T and ŒD; T � belong to the domain of ım, for any
integer m.

(3) T belongs to the domain of ım, for any integer m.

(4) TH1 � H1.

Proof. Let us assume the fourth property. Then T defines an endomorphism of the
finite projective module H1 D eAn over A. As any endomorphism T is of the form,

T D eŒaij �e; aij 2 A; (2)

i.e., it is the compression of a matrix a D Œaij � 2 Mn.A/.
Let us show that since T belongs to the weak closure of A one can choose

aij D xıij for some element x of A. The norm closure A of A in L.H / is a
commutative C*-algebra, A D C.X/ for some compact space X , and since A is a
subalgebra of L.H / it injects in A. The equality

�.f / D
«
f jDj�p for all f 2 A (3)

defines a positive measure � on X . We let E D eAn be the induced finite projective
module over A, which is intrinsically defined as E D H1 ˝A A. We let S be the
hermitian vector bundle on X such that E D C.X; S/. By the absolute continuity
relation (1), the representation of A D C.X/ in H is obtained from its action in
L2.X; �/ by the tensor product

H D E ˝A L
2.X; �/ D eL2.X; �/n D L2.X; �; S/: (4)

This shows that the weak closure A00 D A00 of A in H is given by the diagonal
action ofL1.X; �/ in eL2.X; �/n. Thus, since T 2 A00, there exists f 2 L1.X; �/
such that T D ef . It follows that the matrix eae belongs to the center of eMn.A/e.
This center is e.1 ˝ A/ and thus T agrees with an element of A, which proves
the implication (4) H) (1). To be more specific, and for later use, let us give a
formula for an element x 2 A such that T D ex in terms of the matrix elements
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tij 2 A of T D eŒaij �e. First the fact that T belongs to the center of the algebra
B D eMn.A/e of endomorphisms of H1 can be seen directly since any such
endomorphism S is automatically continuous in H using (4). Thus since T 2 A00
one has ST D TS . Since e is a self-adjoint idempotent and A injects in C.X/ the
element � D Tr.e/ D P

ejj 2 A is determined by its image in A which is just
the function 	 2 X 7! dim S� 2 f0; 1; : : : ; ng. This determines n C 1 self-adjoint
idempotents pj 2 A by

� D Tr.e/ D
X

j pj ;
X

pj D 1: (5)

To check that pj 2 A it is enough to show that pj D Pj .�/wherePj is a polynomial
with

Pj .k/ D 0 for all k ¤ j; 0 � k � n; Pj .j / D 1:

One then has the following formula5 for x:

x D
� X

ti i

� X
j >0

1

j
pj 2 A: (6)

As T belongs to the center of eMn.C.X//e one gets an equality T D ef for f 2
C.X/ and working at every point 	 2 X one then shows that T D ex.

The implication (1) H) (2) follows from the regularity, and (2) H) (3) is im-
mediate. To show the implication (3) H) (4) one uses the definition of H1 as the
intersection of domains of powers of jDj and the implication

T 2 Dom ım; � 2 Dom jDjm H) T � 2 Dom jDjm

with the formula

jDjmT � D
mX

kD0

�
m

k

�
ık.T / jDjm�k� for all � 2 Dom jDjm; (7)

which is proved by induction on m. More precisely this gives an estimate of the
norms but one has to care for the domains and proceed as follows. By definition any
T 2 Dom ı preserves the domain Dom jDj thus one gets (7) for m D 1. Let now
T 2 Dom ı2, i.e., T 2 Dom ı and ı.T / 2 Dom ı. Let � 2 Dom jDj2. Then since
T 2 Dom ı and jDj� 2 Dom jDj, one has T jDj� 2 Dom jDj. One has ı.T /� D
jDjT � � T jDj� where both terms make sense separately. Since ı.T / 2 Dom ı

one has ı.T /Dom jDj � Dom jDj. Thus ı.T /� 2 Dom jDj. Hence jDjT � D
ı.T /� C T jDj� 2 Dom jDj so that T preserves Dom jDj2. Moreover one gets (7)
for m D 2 as an equality valid on any vector � 2 Dom jDj2. One can now proceed
by induction on m. We assume to have shown that

5Note that p0 D 0 because of the faithfulness of the action of A in Hilbert space together with
condition 5).
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� for q � m, S 2 Dom ıq H) S Dom jDjq � Dom jDjq ,

� (7) holds for all n � m.

For T 2 Dom ımC1 and � 2 Dom jDjmC1, one has � 2 Dom jDjm and one can
use the induction hypothesis to get

jDjmT � D
mX

kD0

�
m

k

�
ık.T / jDjm�k�:

Let us show that ık.T / jDjm�k� 2 Dom jDj. One has ık.T / 2 Dom ımC1�k �
Dom ı and jDjm�k� 2 Dom jDj1Ck � Dom jDj which gives the result. Thus each
term of the sum belongs to Dom jDj and one has

jDjmC1T � D
mX

kD0

�
m

k

�
jDjık.T / jDjm�k�:

Moreover, as ık.T / 2 Dom ı and jDjm�k� 2 Dom jDj one has

jDjık.T / jDjm�k� D ıkC1.T / jDjm�k� C ık.T / jDjm�kC1�;

which gives (7) for nC 1.

This shows that the whole geometric data .A;H ;D/ is in fact uniquely determined
by the triple .A00;H ;D/ where A00 is a commutative von Neumann algebra.

This also shows that A is a pre-C*-algebra, i.e., that it is stable under the holo-
morphic functional calculus in the C*-algebra norm closure of A, A D xA. Since
we assumed that A was commutative, so is A and by Gelfand’s theorem A D C.X/

is the algebra of continuous complex valued functions on X D Spec.A/. We note
finally that characters 	 of A are automatically self-adjoint: 	.a�/ D x	.a/ since the
spectrum of self-adjoint elements of A is real. Also they are automatically continuous
since the C*-norm is uniquely determined algebraically by

kak D supfj�j j a�a � �2 … A�1g;
thus they extend automatically to A by continuity so that

SpecA D Spec A:

We shall now show that A is a Frechet algebra, i.e., a complete locally convex
algebra whose topology is defined by the submultiplicative norms,

pk.xy/ � pk.x/pk.y/ for all x; y 2 A;

associated to the regularity condition, for instance by

pk.x/ D k
k.x/k; 
k.x/ D

0
BB@
x ı.x/ : : : ık.x/=kŠ

0 x : : : : : :

: : : : : : x ı.x/

0 : : : 0 x

1
CCA (8)
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since 
k is a representation of A.

Proposition 2.2. (1) The unbounded derivation ı is a closed operator in L.H /.

(2) The algebra A endowed with the norms pk is a Frechet algebra.

(3) The semi-norms pk.ŒD; a�/ D p0
k
.a/ are continuous.

Proof. (1) Let G.jDj/ be the graph of jDj. The graph of ı is

G.ı/ D f.T; S/ 2 L.H /2 j .T �; T �C S�/ 2 G.jDj/ for all .�; �/ 2 G.jDj/g:
It is therefore closed.

(2) Let us show that A is complete. Let an 2 A be a sequence which is a Cauchy
sequence in any of the norms pk . Then an ! T in norm, so that T 2 A � A00. Since
ı is a closed operator one has T 2 Dom ı and ı.an/ ! ı.T / in norm. By induction
one gets, using the closedness of ı that T 2 Dom ık and ık.T / D lim ık.an/. Thus
T 2 T

Dom ım and by Lemma 2.1, we get T 2 A. Furthermore we also have the
norm convergence ık.T / D lim ık.an/. This shows that the an converge to T in the
topology of the norms pk and hence that A is a Frechet space.

(3) Let us show that if we adjoin the semi-norms p0
k

to the topology of A we still
get a complete space. The argument of the proof of (1) only uses the closedness of the
operator jDj and thus we get in the same way that the derivation T ! d.T / D ŒD; T �

with domain Dom d D fT 2 L.H / j T DomD � DomD; kŒD; T �k < 1g is
closed for the norm topology of L.H /. Thus the above proof of completeness applies.
The result then follows from the Open Mapping Theorem ([25], Corollary 2.12)
applied to the identity map from A endowed with the topology of the pk , p0

k
to A

endowed with the topology of the pk .

In fact Lemma 2.1 shows that one has Sobolev estimates, using finitely many
generators �� of the A-module H1 to define the Sobolev norms on A by

kaksobolev
s D

� X
�

k.1CD2/s=2a��k2
�1=2

for all a 2 A: (9)

One has

Proposition 2.3. (1) When endowed with the norms (9), A is a Frechet separable
nuclear space.

(2) One has Sobolev estimates of the form

pk.a/ � ckkaksobolev
sk

; pk.ŒD; a�/ � c0
kkaksobolev

s0
k

for all a 2 A;

with ck < 1, c0
k
< 1 and suitable sequences sk > 0, s0

k
> 0.

(3) The spectrum X D Spec.A/ is metrizable.
(4) Any T 2 EndA H1 is continuous in H1 and extends continuously to a

bounded operator in H .
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(5) The algebraic isomorphism H1 D eAn is topological.
(6) The map .a; �/ 7! a� and the A-valued inner product are jointly continuous

A � H1 ! H1 and H1 � H1 ! A.

Proof. (1) By construction the family (9) is an increasing sequence of norms. Let us
show that A is complete. Let an be a sequence of elements of A such that the vectors
.1CD2/s=2an�� converge for all s (and all �). We then obtain vectors

�� D lim an�� 2 H1 for all �;

where the convergence holds in the topology of H1. Let then T be the operator
given by

T � D lim an� for all � 2 H1: (10)

It is well defined since one can write � D P
b��� with b� 2 A, which gives

an� D P
b�an�� which converges, in the topology of H1, to

P
b��� since the b�

are continuous linear maps on H1 using (7) and regularity. Thus T is a linear map
on H1 and it commutes with A, i.e., it is an endomorphism of this finite projective
module. Thus T is of the form (2) and in particular it is bounded in H . Also since
endomorphisms of the finite projective module are automatically continuous in H ,
they commute withT using (10). Thus the argument of Lemma 2.1 shows thatT 2 A.
Moreover, since the convergence (10) holds in the topology of H1, one has an ! T

in the Sobolev topology and A is complete in that topology. Thus A is a Frechet
space. It is by construction a closed subspace of the sum of finitely many spaces
H1 each being a separable nuclear space (of sequences of rapid decay). Thus it is a
separable nuclear space.

(2) The identity map from the Frechet algebra A with the norms pk to the Frechet
space A with the Sobolev topology is continuous (using (7)) and surjective. Hence
the Open Mapping Theorem ([25], Corollary 2.12) asserts that it is an open mapping.
This shows that the inverse map is continuous, which gives the required estimates for
the normspk . The result for the semi-normspk.ŒD; a�/ follows from Proposition 2.2.

(3) Since A is a Frechet separable nuclear space, there is a sequence xn 2 A

which is dense in any of the continuous norms and in particular using (2) in the p0

norm. This shows that the C*-algebraA is norm separable and hence that its spectrum
is metrizable.

(4) By hypothesisT being an endomorphism is of the form (2). Using the inclusion
A � A D C.X/ of A in its norm closure, we can view T as an endomorphism of the
induced C*-module E over A. By (4), any element of EndA.E/ defines a bounded
operator in H . This shows that the graph of the operator T in H1 � H1 is closed
and hence by the closed graph theorem that T is continuous in the Frechet topology
of H1.

(5) The product A � A ! A is jointly continuous using the submultiplicative
norms pk of (8). This shows that eAn is a closed subspace of An and hence is
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complete. Moreover the map .aj / 7! P
aj �j for given �j 2 H1 is continuous from

An to H1 using (7). Thus the Open Mapping Theorem gives the result.
(6) follows from (5) and the joint continuity of the product A � A ! A.

We end this section with the stability of A under the smooth functional calculus as
first shown in [2] (cf. also [23], Proposition 2.8). We repeat the proof for convenience.

Proposition 2.4. Let aj D a�
j be n self-adjoint elements of A and f W Rn 7! C be a

smooth function defined on a neighborhood of the joint spectrum of the aj . Then the
element f .a1; : : : ; an/ 2 A belongs to A � A.

Proof. Let us first show that for a D a� 2 A one has for any k 2 N,

kık.eisa/k D O.jsjk/; jsj ! 1: (11)

For k D 1 one has

ı.eisa/ D is

Z 1

0

eitsaı.a/ei.1�t/sadt;

which proves (11) for k D 1. In general one has, with ˇu.T / D eiusaTe�iusa,

1

nŠ
ın.eisa/e�isa D

X
kj >0;

P
kj Dn

i`s`

Z
S`

ˇu1
. ık1 .a/

k1Š
/ : : : ˇu`

. ık` .a/
k`Š

/du

where S` D f.uj / j 0 � u1 � � � � � u` � 1g is the standard simplex. This gives
(11). Now the joint spectrum K � Rn of the aj is a compact subset and one can
extend f to a smooth function with compact support f 2 C1

c .Rn/. The element
f .a1; : : : ; an/ 2 A is then given by

f .a1; : : : ; an/ D .2�/�n

Z
Of .s1; : : : ; sn/Q

eisj aj
Q
dsj ; (12)

where Of is the Fourier transform of f and is a Schwartz function Of 2 �.Rn/. By
(11) the integral (12) is convergent in any of the norms pk which define the topology
of A and one gets f .a1; : : : ; an/ 2 A.

3. Openness Lemma

In this section, we use the standard Implicit Function Theorem for smooth maps
Rp ! Rp to obtain the openness of the tentative local charts. We formulate the
lemma in a rather abstract manner below and use it concretely in §7 for the local
charts.
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As above and in [23], we let A be a Frechet pre-C*-algebra. We recall, for
involutive algebras, the reality condition which defines a �-derivation:

ı0.a
�/ D ı0.a/

� for all a 2 A:

We let Der A be the Lie algebra of continuous �-derivations of A.

Definition 3.1. Let A be a Frechet pre-C*-algebra. A continuous �-derivation ı0 2
Der A exponentiates iff one has a unique solution, depending continuously on .t; a/ 2
R � A, of the differential equation

@t y.t; a/ D ı0.y.t; a//; y.0; a/ D a:

We say that A is expable when any continuous �-derivation ı0 2 Der A exponentiates.

We shall show in §§5, 6 that in our context enough derivations exponentiate but
for clarity of the argument we shall first assume that the algebra A is expable. We
refer to [17], §I.3, for the discussion of differentiability in the context of Frechet
spaces. We just recall that a map y W F ! G of Frechet spaces is of class C 1 when
the directional derivative

Dy.x; h/ D lim
"!0

1
"
.y.x C "h/ � y.x// (13)

exists and is a jointly continuous function of .x; h/ 2 F � F . The map is of class
C n when the higher derivatives Dky.x; h1; : : : ; hk/ which are defined by iteration
of (13) exist and are jointly continuous functions for k � n. The map is smooth (or
of class C1) iff it is of class C n for all n.

Proposition 3.2. One has for any a; b 2 A,

y.t; ab/ D y.t; a/y.t; b/; y.t; a�/ D y.t; a/�; y.t; aC b/ D y.t; a/C y.t; b/;

(14)
y.t1 C t2; a/ D y.t1; y.t2; a//; y.t; ı0.a// D ı0.y.t; a//: (15)

Moreover y.t; a/ is a smooth function of .t; a/ with n-th derivative given by

Dny.t; a; s1; h1; : : : ; sn; hn/ D ın
0 .y.t; a//

Y
sj C

X
i

ın�1
0 y.t; hi /

Y
j ¤i

sj : (16)

Proof. The equalities in (14) and (15) follow from the uniqueness of the solution. To
prove (16) we consider the Frechet spaces F D R � A and G D A and compute the
first derivative Dy. One has

y.t C "s; aC "h/ � y.t; a/ D y.t C "s; a/ � y.t; a/C "y.t C "s; h/

so that
Dy.t; a; s; h/ D sı0.y.t; a//C y.t; h/

Since by (15) one has ık
0 .y.t; a// D y.t; ık

0 .a// for all k, one gets (16) by induction
on n.
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The Taylor expansion at .t; a/ is thus of the form

y.t C s; aC h/ �
X

.ık
0 .y.t; a//s

k C ık
0 .y.t; h//s

k/=kŠ

Lemma 3.3. Let A be commutative, and a D .aj / be p self-adjoint elements of A.
Let 	 be a character of A. Assume that there exists p derivations ıj 2 Der A such
that

� each ıj exponentiates,

� the determinant of the matrix 	.ıj .ak// does not vanish.

Then the image under a of any neighborhood of 	 in the spectrum Spec.A/ of A

contains a neighborhood of a.	/ in Rp .

Proof. By hypothesis the derivations ıj 2 Der A can be exponentiated to the corre-
sponding one-parameter groups F j .t/ 2 Aut.A/ of automorphisms of A. Note that
the flows F j do not commute pairwise in general. We then define a map h from Rp

to Spec.A/ by
h D 	 B 
; 
.t1;:::;tp/ D F 1

t1
B � � � B F p

tp
;

which defines a character since F j .t/ 2 Aut.A/ by (14). The map h is continuous
since the topology of Spec.A/ is the weak topology and for any a 2 A the map
.t1; : : : ; tp/ 2 Rp 7! 
.t1;:::;tp/.a/ is continuous using Definition 3.1. The coordinates
of the map � D a B h, from Rp to Rp , are given by

�k.t1; : : : ; tp/ D h.t1; : : : ; tp/.a
k/ D 	 B F 1

t1
B � � � B F p

tp
.ak/:

The map
.t1; : : : ; tp/ 2 Rp 7! F 1

t1
B � � � B F p

tp
.ak/

is a smooth map from Rp to A. Indeed the maps .t; a/ 7! F
j
t .a/ are smooth, and

compositions of smooth maps are smooth (cf. [17], Theorem 3.6.4), while the above
map is the composition

F 1 B .Id � F 2/ B � � � B .Idp�2 � F p�1/ B .Idp�1 � F p.ak//;

Rp F p.ak/�����! Rp�1 � A
F p�1

����! Rp�2 � A ! � � � ! R � A
F 1

��! A:
(17)

Thus the map � D a B h, obtained by composition with the character 	 which is
linear and continuous and hence smooth, is a smooth map from Rp to Rp . The image
of 0 2 Rp is a.	/. The partial derivatives at 0 are

.@j�
k/.0/ D 	.ıj .a

k//;

thus we know from the hypothesis of the lemma that the Jacobian does not vanish at
0. It then follows from the Implicit Function Theorem that the mapping � D a B h
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maps by a diffeomorphism a suitable neighborhood of 0 to a neighborhood of a.	/.
In particular the image under a of a neighborhood W of 	 contains the image under
� of h�1.W / which, since h is continuous, is a neighborhood of 0 2 Rp . This shows
that the image under a of any neighborhood of 	 in the spectrum Spec.A/ of A

contains a neighborhood of a.	/ in Rp .

The above proof yields the following more precise statement:

Lemma 3.4. Under the hypothesis of Lemma 3.3, there exists a smooth family 
t 2
Aut.A/, t 2 Rp , a neighborhood Z of 	 in X D Spec.A/ and a neighborhood W
of 0 2 Rp such that, for any � 2 Z, the map t 7! a.� B 
t / is a diffeomorphism,
depending continuously on �, of W with a neighborhood of a.�/ in Rp .

Proof. Let as above

.t1;:::;tp/ D F 1

t1
B � � � B F p

tp
:

The map which to � 2 X associates the map  � from Rp to Rp given by  �.t/ D
a.� B 
t / yields by restriction a continuous map X ! C1.K;Rp/ where K is a
closed ball centered at 0 2 Rp . Indeed for each j the map t 2 K 7! 
t .a

j / 2 A

is smooth by (17) and thus its partial derivatives @˛
t 
t .a

j / are elements of A which
depend continuously of t . One has

@˛
t  

j
� .t/ D �.@˛

t 
t .a
j //;

and thus the partial derivatives of  �.t/ are continuous functions of .�; t/. Since the
determinant of the jacobian 	.ıj .ak// does not vanish, the result follows from the
Implicit Function Theorem (see e.g. [17], Theorem 5.2.3).

4. Jacobian and openness of local charts

We first briefly recall the well-known properties of multiple commutators which we
need later.

Definition 4.1. Let Tj 2 B be elements of a noncommutative algebra B, one lets

ŒT1; T2; : : : ; Tn� D
X

�

".
/ T�.1/T�.2/ : : : T�.n/

where 
 varies through all permutations of f1; : : : ; ng and ".
/ is its signature.

We mention the following general properties.

Proposition 4.2. Let Tj 2 B be elements of a noncommutative algebra B.



On the spectral characterization of manifolds 15

(a) For any permutation ˛ of f1; : : : ; ng, one has

ŒT˛.1/; T˛.2/; : : : ; T˛.n/� D ".˛/ ŒT1; T2; : : : ; Tn�:

(b) If two of the Tj are equal one has

ŒT1; T2; : : : ; Tn� D 0:

(c) Let A � B be a commutative subalgebra and A0 � B its relative commutant
in B. Let aj

k
2 A, �j 2 A0. Then, with Tk D P

a
j

k
�j , one has

ŒT1; T2; : : : ; Tn� D Det..aj

k
// Œ�1; �2; : : : ; �n�: (18)

(d) The equality (18) extends to the case of a rectangular matrix aj

k
2 A as follows:

ŒT1; T2; : : : ; Tn� D
X
F

Det..aj

k
.F /// Œ�1.F /; �2.F /; : : : ; �n.F /�; (19)

where the sum is over all subsets F � f1; : : : ; mg with #F D n, the matrix
a

j

k
.F / is the restriction of aj

k
to j 2 F and the �j .F / are the �i , i 2 F , ordered

with increasing index in F .

Proof. (a) This follows from ".
 B ˛/ D ".
/".˛/.
(b) The permutation of the two indices is odd but does not affect the expression

which must vanish.
(c) One has

ŒT1; T2; : : : ; Tn� D
X
.jk/

nY
kD1

a
jk

k
Œ�j1

; �j2
; : : : ; �jn

� (20)

where, a priori, the .jk/ is an arbitrary map from f1; : : : ; ng to f1; : : : ; ng. By the
second statement of the lemma, these terms vanish when two of the indices jk are
equal. Thus one can take the sum over permutations .jk/ and one can use the first
statement of the lemma to rewrite the corresponding term as

Œ�j1
; �j2

; : : : ; �jn
� D ".j / Œ�1; �2; : : : ; �n�:

It follows that
ŒT1; T2; : : : ; Tn� D Det..aj

k
// Œ�1; �2; : : : ; �n�:

(d) One decomposes the sum (20) according to the range F of the injection j
from f1; : : : ; ng to f1; : : : ; mg.

Let us now go back to spectral triples .A;H ;D/ fulfilling the five conditions
of §2.
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Lemma 4.3. Let B be the algebra of endomorphisms of H1. One has a finite
decomposition

ŒD; a� D
X

ıj .a/�j for all a 2 A; (21)

where �j 2 B and the ıj are derivations of the form

ıj .a/ D i.�j jŒD; a��j / for all a 2 A; (22)

for some �j 2 H1.

Proof. First ŒD; a�H1 � H1 using regularity and (7). Thus the order one condition
shows that ŒD; a� 2 B. One has H1 D eAn, B D eMn.A/e for a self-adjoint
idempotent e 2 Mn.A/. Thus every element T 2 B can be written uniquely, as any
element of Mn.A/ in the form

T D
X

ak`"k`; ak` 2 A;

in terms of the matrix units "ij . The coefficients ak` 2 A are uniquely determined,
using the elements �k D e�k 2 H1 where �k 2 An is the element all of whose
components vanish except the k-th one which is equal to 1. Using the A-valued inner
product, one has

ak` D .�kjT �`/ D Lk`.T / for all k; `: (23)

Moreover one has, since T D eTe and the ak` commute with e,

T D
X

ak`e"k`e: (24)

One has Lk`.aT / D aLk`.T / for any a 2 A. Applying this to T D ŒD; b�, the
maps a 7! Lij .ŒD; a�/ give derivations of A. They are not self-adjoint but can be
decomposed as linear combinations of self-adjoint derivations, which, using (24),
gives the required formula (21). More precisely, the derivations ıj can be written
using the A-valued inner product on H1 in the form (22) for some �j 2 H1 (with i
to ensure self-adjointness). Indeed one obtains (22) applying to (23) the polarization
identity:

2.�jT �/ D ..� C �/jT .� C �// � .�jT �/ � .�jT �/
� i...� C i�/jT .� C i�// � .�jT �/ � .i�jT i�//: (25)

In particular, using Proposition 2.3, the ıj are continuous.

By hypothesis the cycle c is of the form

c D
X

˛

a0
˛ !˛; !˛ D

X
ˇ

".ˇ/1˝ aˇ.1/
˛ ˝ � � � ˝ aˇ.p/

˛ ; (26)
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where one can assume that thea�
˛ are self-adjoint for� > 0. We define the conditional

expectation EA W EndA.H1/ ! A, using the projections pj of (5),

EA.T / D
X
j >0

1

j
pj

X
Tkk for all T D .Tk`/ 2 eMn.A/e; (27)

using the identification H1 D eAn. We obtain a self-adjoint 
˛ 2 A given6 by


˛ D i
p.pC1/

2 EA.�
X

ˇ

".ˇ/ŒD; aˇ.1/
˛ � : : : ŒD; aˇ.p/

˛ �/: (28)

One lets
C˛ D fx 2 X j 
˛.x/ D 0g

and U˛ D C c
˛ be its complement, i.e., the open set where 
˛ does not vanish.

Lemma 4.4. The U˛ form an open cover of X D Spec.A/.
Each U˛ is the disjoint union of the two open subsets U ˙̨ corresponding to the

sign of 
˛ ,
˙
˛.x/ > 0 for all x 2 U ˙̨:

Proof. It is enough to show that any x 2 X belongs to someU˛ . One has�D.c/ D � ,
so that by (26)

�
X

˛

a0
˛

X
ˇ

".ˇ/ŒD; aˇ.1/
˛ � : : : ŒD; aˇ.p/

˛ � D 1:

By (28) and the conditional expectation module property EA.aT / D aEA.T /,

i�
p.pC1/

2

X
˛

a0
˛ 
˛ D 1

and 
˛.x/ ¤ 0 for some ˛. The second statement follows since 
˛ is a non-vanishing
real valued function on U˛ .

We let s˛ be the natural continuous map from X to Rp given by

	 2 Spec.A/ ! .	.aj
˛// 2 Rp: (29)

Lemma 4.5. Assume that derivations of the form (22) exponentiate. Let 	 2 U˛ .

� There exists p derivations. ıj 2 Der.A/ such that 	.Det..ıj .ak
˛//// ¤ 0.

� The map a˛ from U˛ to Rp is open.

6There is no � in the odd case.
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� There exists a smooth family 
t 2 Aut.A/, t 2 Rp , a neighborhood Z of 	 in
X D Spec.A/ and a neighborhoodW of 0 2 Rp such that, for any � 2 Z, the
map t 7! s˛.� B 
t / is a diffeomorphism, depending continuously on �, of W
with a neighborhood of a.�/ in Rp .

Proof. We let, as above, B be the algebra of endomorphisms of the A-module H1.
It contains A � B as a subalgebra of its center. By Lemma 4.3, one has derivations
ıj 2 Der.A/ of the form (22) such that the formula (21) holds:

ŒD; a� D
mX
1

ıj .a/�j for all a 2 A:

By hypothesis we have 
˛.	/ ¤ 0. Thus, the following endomorphism of the A-
module H1 does not vanish,

ŒŒD; a1
˛�; ŒD; a

2
˛�; : : : ; ŒD; a

p
˛ ��.	/ ¤ 0 for all 	 2 U˛:

It thus follows, from (19) of Proposition 4.2, that for 	 2 U˛ one can find p elements
ıj 2 Der.A/ among the above ıj such that

	.Det..ıj .a
k
˛//// ¤ 0:

Now let V � U˛ be open. To show that s˛.V / is open one needs to show that,
for any 	 2 V , s˛.V / contains a neighborhood of s˛.	/. But V is a neighborhood
of 	 in Spec.A/ and the hypothesis of Lemma 3.3 is fulfilled so that this lemma
shows that s˛.V / contains a neighborhood of s˛.	/. The third statement follows
from Lemma 3.4.

5. Dissipative derivations

We assumed in the above discussion that the algebra A is expable. It is of course
desirable to remove this hypothesis, and this will be done in this section and the next
one. We need a form of existence and uniqueness for solutions of linear differential
equations with values in a Frechet space E. Simple examples show that in that
generality one has neither existence nor uniqueness. For failure of existence just let
A D C1.Œ0; 1�/, ı0 D @x . For failure of uniqueness, letE be the space of sequences
xn 2 R for n 	 1 and take the shift operator S . Then the equation

@tx D Sx; .Sx/n D xnC1;

has no uniqueness of solutions. Indeed we can take for x1.t/ any smooth function
which is flat at t D 0, i.e., @n

t x1.0/ D 0, and then define by induction xnC1.t/ D
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X

X˛

s˛

x

Figure 1. The map s˛ from X to X˛ .

@txn.t/ so that @tx D Sx holds and the initial condition x.0/ D 0 does not imply
uniqueness.

In our case we need to know that any derivation ı 2 Der A can be exponentiated,
i.e., that one has existence and uniqueness for the differential equation

dy.t/

dt
D ı.y.t//; y.t/ 2 A:

It is only the compactness of X that ensures this, and also the fact that one is dealing
with a real vector field. This means that we first need to make sure that the derivation
exponentiates at the level of the C*-algebra as discussed in [3].

One step towards this would be to show directly the following corollary of expa-
bility:

Lemma 5.1. Assume that the derivations of the form the form (22) exponentiate.
Then, for any h D h� 2 A, the commutator ŒD; h� vanishes where7 h reaches its
maximum. Conversely if this property holds the derivations ˙ıj of the form (22) are
dissipative (cf. [3], Definition 1.4.6), i.e.,

kx C �ıj .x/k 	 kxk for all x 2 A; � 2 R:

Proof. One has, by (21), ŒD; h� D P
ıj .h/�j where ıj 2 Der A. Thus it is enough

to show that ıj .h/.	/ D 0 where h D h� 2 A reaches its maximum at 	. This
follows from the existence of etıj 2 Aut.A/ using the differentiable function f .t/ D
	.etıj .h// which has a maximum at t D 0 and hence vanishing derivative.

7This makes sense since ŒD; h� commutes with h.
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Conversely, the derivations ıj are of the form (22), i.e., ıj .h/ D i.�jŒD; h��/.
Thus the vanishing of ŒD; h�.	/, where h D h� 2 A reaches its maximum, ensures
that ıj .h/.	/ D ih�.	/; ŒD; h�.	/�.	/i D 0 also vanishes. Thus one has

khC �ıj .h/k 	 khk for all h D h� 2 A; � 2 R;

since for a character 	 of A with 	.˙h/ D khk one has 	.˙.hC �ıj .h/// D khk.
In the complex case, i.e., for an arbitrary x 2 A, let  be a state on A 
 A such
that j .x/j D kxk. Replacing x 7! ux for u 2 C, juj D 1, one can assume
that  .x/ > 0. Then writing x D h C ik with h D h� and k D k�, one has
 .x/ D  .h/ D khk so that  .ıj .h// D 0 from the above discussion. Then one
has, for � 2 R,

 .x C �ıj .x// D  .h/C i� .ıj .k//

and j .x C �ıj .x//j 	  .h/ D kxk.

Note that the commutativity of ŒD; h� with h and the self-adjointness ofD do not
suffice to entail the conclusion of Lemma 5.1. This can be seen from the following
spectral triple:

A D C1.Œ0; 1�/; H D L2.Œ0; 1�/˝ C2; D D
�

0 @x

�@x 0

�
(30)

with the boundary condition

DomD D ˚
� D �

�1

�2

� j �1.0/ D 0; �2.1/ D 0
�
: (31)

For any h 2 A one has ŒD; h� D @xh�1,

�1 D
�
0 1

�1 0

�

so that ŒD; h� commutes with h. For h.x/ D x the maximum is at x D 1 and ŒD; h�
does not vanish there. This example shows that the hypothesis of expability of the
algebra A appears at first sight as essential. However, in this example, condition 5)
fails since the boundary condition (31) does not yield a finite projective submodule
of C1.Œ0; 1�/˝ C2 over A D C1.Œ0; 1�/. Also ŒD; h� D @xh�1 does not preserve
the domain of D which is the same as the domain of jDj, thus regularity fails.
Orientability also fails in this example. We shall now show that regularity allows in
fact to obtain the required dissipativity.

Let us consider the one-parameter group of automorphisms of L.H / given by

˛t .T / D eitDTe�itD for all t 2 R:

Lemma 5.2. Let T preserve DomD and ŒD; T � be bounded. Then the function
t 7! ˛t .T / is norm continuous,

k˛s.T / � ˛t .T /k � js � t j kŒD; T �k;
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and when s ! 0 the difference quotient

˛s.T / � T
s

D i

s

Z s

0

˛t .ŒD; T �/dt

converges to i ŒD; T � in the strong topology.

Proof. Let � 2 DomD. Then 1
s
.eisD � 1/� ! iD� (in norm) when s ! 0. Thus

using

1

s
.eisDTe�isD � T /� D 1

s
eisDT .e�isD � 1/� C 1

s
.eisD � 1/T �

one gets (in norm)
1

s
.eisDTe�isD � T /� ! i ŒD; T ��

when s ! 0. Thus t 7! ˛t .T /� is of class C 1. Its derivative is t 7! i˛t .ŒD; T �/� .
Thus

.˛s.T / � ˛t .T //� D i

Z s

t

˛u.ŒD; T �/�du (32)

holds for all � 2 DomD and hence all � 2 H since the map u 7! ˛u.ŒD; T �/�

is continuous, as follows from the continuity of s 7! eisD� for any � 2 H . Both
statements follow.

We can now consider the C*-algebra C generated by the ˛s.h/ for h D h� 2 A

as above. It is norm separable and the ˛s 2 Aut.C / form a norm continuous one-
parameter group. To try and prove that ŒD; h� vanishes where h D h� 	 0 reaches
its maximum, one considers a state � on C such that �.h/ D khk. It is obtained by
extension using the inclusion C �.h/ � C . The function

f .s/ D �.˛s.h//

is a Lipschitz function and reaches its maximum: khk at s D 0. Thus if one could
assert that the derivative at s D 0 is given by �.ŒD; h�/, one would get the vanishing
�.ŒD; h�/ D 0. The problem is that ˛u.ŒD; h�/ is not in general a norm continuous
function of u and thus the differentiability only holds in the strong topology but not
in the norm topology.

Things are easier with jDj since the regularity conditions ensures that the map

t ! �t .a/ D eit jDjae�it jDj (33)

is in fact of class C1 in the norm topology (cf. Lemma 13.3 of §13). Moreover the
following lemma shows that it is enough to show the vanishing of ŒŒD2; a�; b� at 	
for all b 2 A to get the vanishing of ŒD; a� at 	.
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Lemma 5.3. Let h D h� 2 A and 	 2 Spec.A/. If ŒŒD2; h�; h� vanishes at 	, then
ŒD; h� vanishes at 	.

Proof. One has
ŒŒD2; h�; h� D 2ŒD; h�2 (34)

using the order one condition.

Note that (34) shows that ŒD; h�2 and hence jŒD; h�j only depends upon D2 and
hence jDj and not upon the phase of the polar decomposition ofD. This comes from
the order one condition. Moreover one has the following vanishing of ŒjDj; h� where
h D h� 2 A reaches its maximum.

Lemma 5.4. For any h D h� 2 A, h 	 0, reaching its maximum at 	 2 Spec.A/
and any sequence bn 2 A, kbnk � 1, with support tending to f	g, one has

kb�
n ŒjDj; h�bnk ! 0: (35)

Proof. Let �n 2 H be unit vectors with support tending to f	g. Then consider any
limit state on L.H /:

�.T / D lim
!

h�n; T �ni: (36)

One has �.h/ D h.	/ since h is a continuous function on X D Spec.A/. Thus
�.h/ D khk. When applied to jDj instead of D, Lemma 5.2 shows that both �s.h/

and �s.ı.h// are Lipschitz functions of s, while

�s.h/ � h
s

D 1

s

Z s

0

�t .iı.h//dt ! iı.h/

so that �s.h/ is of class C 1 in norm. It follows that the function s 7! �.�s.h//

is of class C 1. It is maximal for s D 0 and hence its derivative vanishes so that
�.ı.h// D 0. Thus

lim
!

h�n; ı.h/�ni D 0 (37)

and this continues to hold for any bounded sequence �n 2 H with support tending
to f	g. Now let bn be as in the lemma; then if (35) does not hold, one can find a
subsequence nk with kb�

nk
ŒjDj; h�bnk

k 	 " > 0 for all k. Using polarization (25),
one gets unit vectors � 0

k
2 H such that

jh� 0
k; b

�
nk
ŒjDj; h�bnk

� 0
kij 	 "0 > 0;

which contradicts (37) for �k D bnk
� 0

k
.

We shall use the analogue in our context of the notion of symbol for pseudodif-
ferential operators. The symbol of T can be viewed as a weak limit of the conjugate
operators of the form

��k ei	
Te�i	
 ; � ! 1;
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where the integer k is the order of T . For instance the symbol of D is given by
�i ŒD; �� since the order one condition gives

��1 ei	
De�i	
 D �i ŒD; ��C ��1D: (38)

One expects the symbol of D2 to be of the form

lim
	!1

1

�2
ei	
D2e�i	
� D �ŒD; ��2� for all � 2 DomD2:

This is obtained by squaring (38), but one needs to know that DomD is invariant
under ŒD; �� to control the term D ŒD; ��. This is insured by regularity.

Remark 5.5. In the example (30) considered above, ŒD; �� does not map DomD2

to DomD so thatD ŒD; ��� does not make sense in that case. In fact regularity fails,
and DomD2 is not invariant under �, unless ŒD; �� vanishes on the boundary. To see
this, note that the boundary condition for D2 is

� D
�
�1

�2

�
2 DomD2 () �1.0/ D 0; @x�2.0/ D 0; �2.1/ D 0; @x�1.1/ D 0;

which contains the Neumann condition @x�2.0/ D 0 while �2.0/ is arbitrary. Thus
@x��2.0/ D @x�.0/�2.0/ vanishes only when @x�.0/ D 0.

In the case of an operator of order 0 there is no power of � and one deals with a
bounded family so that one can expect the limit to be a weak limit. We need to guess
the symbol of ŒjDj; h�. We expect that if we choose � D h, this symbol will just be
i jŒD; h�j 2 End S . The symbol of ŒD2; h� is (using ŒD2; h� D DŒD; h�C ŒD; h�D)

��1 ei	
 ŒD2; h�e�i	
 D �i.ŒD; ��ŒD; h�C ŒD; h�ŒD; ��/C ��1 ŒD2; h�:

To see why we should expect the symbol of ŒjDj; h� for � D h to just be i jŒD; h�j we
have:

Lemma 5.6. Assume that when � ! 1 the following limit holds in the strong
topology:

lim
	!1 ei	hŒjDj; h�e�i	h D T:

Then one has, with strong convergence on DomD,

lim
	!1 ��1 ei	hjDje�i	h D �iT:

Proof. One defines a one-parameter group ˇu of automorphisms:

ˇu.Y / D eiuhYe�iuh:



24 A. Connes

One has, at the formal level, d
du
ˇu.Y / D �iˇu.ŒY; h�/. Taking Y D jDj one gets,

with the notations of the lemma and using regularity,

eiuhŒjDj; h�e�iuh� D i
d

du
ˇu.jDj/� for all � 2 Dom jDj;

which gives
Z 	

0

eiuhŒjDj; h�e�iuh�du D i.ˇ	 .jDj/ � jDj/� for all � 2 Dom jDj: (39)

Note that this equality continues to hold for any � 2 H since ˇ	 .jDj/ � jDj is
a bounded operator. Now eiuhŒjDj; h�e�iuh is uniformly bounded and converges
strongly by hypothesis to T . Thus one has, for the Cesàro mean,

lim
	!1 ��1

Z 	

0

eiuhŒjDj; h�e�iuh� du D T � for all � 2 H ;

which gives the result since one controls ��1 jDj� ! 0 for � 2 DomD.

Moreover we expect the symbol map to be a morphism so that the symbol of jDj
is given by the absolute value of the symbol of D, i.e., by jŒD; h�j. In fact we do
not need to prove the converse of Lemma 5.6 since we can use the regularization by
Cesàro mean to compose the states �, with weak limits of C	 .T /,

C	 .T / D ��1

Z 	

0

ˇu.T /du: (40)

Lemma 5.7. With h as above one has

(1) C	 is a completely positive map from L.H / to itself and C	 .1/ D 1,

(2) C	 .aT b/ D aC	 .T /b for all a; b 2 A,

(3) C	 .ŒjDj; h�/ D i
	
.ei	hjDje�i	h � jDj/.

Proof. The first two statements follow from (40) using the commutativity of A to get
ˇu.aT b/ D aˇu.T /b. The last statement follows from (39).

We can then compose the vector states h�n; � �ni used in the construction of � (36)
with C	n

to replace ŒjDj; h� by i jŒD; h�j.
Thus we need to determine the principal symbol of jDj. The intuitive idea is as

follows: one has
ˇ	 .D/ D ei	hDe�i	h D D � i� ŒD; h� (41)

sinceh commutes with ŒD; h� so that ŒD; f .h/� D f 0.h/ŒD; h� forf smooth (cf. [18]).
Thus, by homogeneity of the absolute value,

1
	
ˇ	 .jDj/ D 1

	
ei	hjDje�i	h D jD

	
� i ŒD; h�j for all � > 0:
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We need the weak limit in H for � ! 1 of 1
	
ˇ	 .jDj/� for � 2 DomD. These

vectors are bounded in norm as follows from

k1
	
ˇ	 .jDj/�k D kj"D � i ŒD; h�j�k D k."D � i ŒD; h�/�k; " D 1=�; (42)

which is bounded since � 2 DomD so that k"D�k ! 0. Note also that 1
	
ˇ	 .jDj/ is

a positive operator so that any weak limit � of 1
	
ˇ	 .jDj/� fulfills h�; �i 	 0.

Let us now show how to use regularity to obtain the strong convergence of

1

�
ˇ	 .jDj/� D j"D � i ŒD; h�j� (43)

when " ! 0 and � 2 DomD. By (42) we can assume that � 2 H1. We let
X."/ D "D � i ŒD; h�. By (41) it is a self-adjoint operator with H1 as a core since
H1 is invariant under ei	h. The same holds for jX."/j.

Lemma 5.8. One has, with X."/ D "D � i ŒD; h�,
jX."/j D Y."/C f0.X."// (44)

where

Y."/� D 2

�

Z 1

0

X."/2

1C u2 CX."/2
� du for all � 2 DomD (45)

and

f0.x/ D jxj � x2.1C x2/�1=2 for all x 2 R:

Proof. For any self-adjoint operator T one has k.1 C u2 C T 2/�1k � .1 C u2/�1

and the norm convergent expression

.1C T 2/�1=2 D 2

�

Z 1

0

1

1C u2 C T 2
du;

which gives, for any � 2 Dom T ,

T 2.1C T 2/�1=2� D 2

�

Z 1

0

T 2

1C u2 C T 2
� du:

Note that the partial sums Z v

0

T

1C u2 C T 2
du

are uniformly bounded but do not converge in norm to T .1 C T 2/�1=2 since the
function x.1 C x2/�1=2 does not vanish at 1. Thus we get strong convergence
on Dom T . This applies to X."/, which is, up to a scale factor, conjugate to D
by an automorphism of DomD so that (45) holds with Y."/ D f .X."//, f .x/ D
x2.1C x2/�1=2. Finally one has f0 2 C0.R/ and f .x/C f0.x/ D jxj.
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For each � 	 0 we define a transformation on operators acting in H1 by

��.T / D .D2 C �/T .D2 C �/�1 (46)

Lemma 5.9. Let h D h� 2 A. There exists � < 1 such that

k��..1C u2 CX.0/2/�1/k � .1
2

C u2/�1 for all u:

Proof. Let � 2 H1 and let us give a lower bound for k��.1Cu2 CX.0/2/�k. Using

��.T / D T C ŒD2; T �.D2 C �/�1 (47)

we get

��.X.0/
2/ D X.0/2 � ŒD2; ŒD; h�2�.D2 C �/�1:

Now the regularity shows (cf. §13) that ŒD2; ŒD; h�2�.D2 C �/�1 is compact so that
for � ! 1 its norm goes to 0 (in fact it is of the form B�.D

2 C �/�1=2 with the
norm of B� bounded, so its norm decays like ��1=2). Thus we can choose � large
enough so that Z D ��.X.0/

2/ �X.0/2 fulfills kZk � 1=2. We then get

h�; ��.1C u2 CX.0/2/�i 	 h�; 1C u2 CX.0/2�i � jh�;Z�ij 	 .1
2

C u2/k�k2

(using X.0/2 D �ŒD; h�2 	 0) so that

k��.1C u2 CX.0/2/�k 	 .1
2

C u2/k�k for all � 2 H1:

It remains to show that ��.1Cu2 CX.0/2/ is invertible as an operator acting in H1.
SinceD2 C � is an automorphism of H1, it is enough to show that 1C u2 CX.0/2

is invertible as an operator acting in H1. One has X.0/2 D �ŒD; h�2 	 0 so that
1 C u2 C X.0/2 is invertible as an operator in H . Its invertibility in H 1 follows
from the stability under smooth functional calculus (Proposition 2.4) of the algebra

fT 2 L.H / j TH1 � H1; kım.T /k < 1 for all mg
and the fact that, by regularity, ŒD; h� belongs to this algebra.

Lemma 5.10. Let h D h� 2 A. Then when " ! 0,

Y."/� ! Y.0/� for all � 2 H1:

Proof. One has for the action on H1,

X."/2 D ."D � i ŒD; h�/2 D "2D2 � i".DŒD; h�C ŒD; h�D/ � ŒD; h�2
D "2D2 � i"ŒD2; h� � ŒD; h�2:

We first estimate, for � 2 H1,

�.u; "/ D .
X."/2

1C u2 CX."/2
� X.0/2

1C u2 CX.0/2
/�:
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One has

�.u; "/ D .1C u2/.
1

1C u2 CX.0/2
� 1

1C u2 CX."/2
/�

D 1C u2

1C u2 CX."/2
.X."/2 �X.0/2/ 1

1C u2 CX.0/2
�

D 1C u2

1C u2 CX."/2
."2D2 � i"ŒD2; h�/

1

1C u2 CX.0/2
�

D 1C u2

1C u2 CX."/2
."2D2 � i"ŒD2; h�/.D2 C �/�1

��..1C u2 CX.0/2/�1/.D2 C �/�:

Now one has, using regularity,

k."2D2 � i"ŒD2; h�/.D2 C �/�1k D k."/ D O."/

while, since X."/ is self-adjoint,

			 1C u2

1C u2 CX."/2

			 � 1:

Moreover .D2 C�/� 2 H1 � H . By Lemma 5.9, for � large enough, one thus gets

k��..1C u2 CX.0/2/�1/.D2 C �/�k � .1
2

C u2/�1k.D2 C �/�k for all u:

Thus after integrating in u we get the estimate

k.Y."/ � Y.0//�k � 2

�

Z 1

0

k."/.1
2

C u2/�1k.D2 C �/�kdu D O."/;

which gives the required result.

It remains to estimate the continuity for " ! 0 of f0.X."//� . The above proof
shows that for ga.x/ D .a C x2/�1 and any a > 0 one has the norm continuity of
ga.X."//� when " ! 0 (we showed convergence only for � 2 H1, but it holds in
general using the boundedness of the functions ga). The even functions in f 2 C0.R/
for which

kf .X."//� � f .X.0//�k ! 0 for all � 2 H (48)

form a norm closed subalgebra of C0.R/even. This algebra contains the functions ga,
thus the Stone–Weierstrass Theorem shows that (48) holds for all f 2 C0.R/even and
in particular for f0. We thus get:

Proposition 5.11. Let h D h� 2 A. Then one has, with norm convergence,

lim
	!1 ��1 ei	hjDje�i	h� D jŒD; h�j� for all � 2 DomD:
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Proof. By (43) we just need to show that jX."/j� ! jX.0/j� when " ! 0 for
any � 2 H1. By (44), jX."/j D Y."/ C f0.X."//. By Lemma 5.9 we have
Y."/� ! Y.0/� for � 2 H1, and by the above discussion f0.X."//� is continuous
at " D 0. Thus we get the required result for � 2 H1. The general case � 2 DomD

follows using (42).

Remark 5.12. Proposition 5.11 shows that, under the regularity hypothesis,

ŒjŒD; h�j; ŒD; a�� D 0 for all h D h�; a 2 A: (49)

Indeed one has

Œei	hjDje�i	h; ŒD; a�� D ei	hŒjDj; ŒD; a��e�i	h

and the norm of ŒjDj; ŒD; a�� is finite so that ��1kŒei	hjDje�i	h; ŒD; a��k ! 0 for
� ! 1. Thus one has

lim
	!1 ��1 .ei	hjDje�i	hŒD; a�� � ŒD; a�ei	hjDje�i	h�/ D 0 for all � 2 DomD;

and, since ŒD; a� preserves DomD,

ŒjŒD; h�j; ŒD; a��� D 0 for all � 2 DomD:

Note also that, by the same argument, under the strong regularity hypothesis of
Definition 6.1 below, this shows that

ŒD; h�2 2 A for all h D h� 2 A:

Indeed jŒD; h�j then commutes with all endomorphisms of H1. Its square ŒD; h�2,
being itself an endomorphism, belongs to the center of EndA.H1/ and is, by (6), an
element of A.

We can now show that regularity suffices to ensure the dissipative property of
Lemma 5.1.

Theorem 5.13. Let .A;H ;D/ be a regular spectral triple with A commutative
fulfilling the order one condition. Then for any h D h� 2 A, the commutator ŒD; h�
vanishes where h reaches its maximum, i.e., for any sequence bn 2 A, kbnk � 1,
with support tending to f	g, where 	 is a character such that j	.h/j is maximum, one
has

kŒD; h�bnk ! 0:

Proof. By Proposition 5.11 combined with the third statement of Lemma 5.7 one
has, first for � 2 DomD and then by uniformity for all � 2 H ,

lim
	!1C	 .ŒjDj; h�/� D lim

	!1
i
	
.ei	hjDje�i	h� � jDj�/ D i jŒD; h�j�
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and thus theC	 .ŒjDj; h�/ converge strongly to i jŒD; h�j when � ! 1. By the second
statement of Lemma 5.7, one has

C	 .b
�
n ŒjDj; h�bn/ D b�

nC	 .ŒjDj; h�/bn:

Thus fixing n and taking the limit for � ! 1 one gets

C	 .b
�
n ŒjDj; h�bn/ ! ib�

n jŒD; h�jbn:

One thus gets
kb�

n jŒD; h�jbnk � kb�
n ŒjDj; h�bnk:

But Lemma 5.4 shows that kb�
n ŒjDj; h�bnk ! 0 when n ! 1, which gives the

required result. Moreover, since jŒD; h�j commutes with the bn, this can be formulated
by kŒD; h�bnk ! 0.

Corollary 5.14. Let .A;H ;D/ be a spectral triple with A commutative fulfilling the
five conditions of §2. The derivations ˙ıj of Lemma 4.3 are dissipative.

Proof. This follows from Theorem 5.13 and Lemma 5.1.

Corollary 5.15. Let h D h� 2 A. The principal symbol of the operator

Grad.h/ D ŒD2; h�

vanishes where h reaches its maximum.

Proof. One has ŒD2; h� D DŒD; h� C ŒD; h�D and since ŒD; h� commutes with A,
one gets the principal symbol of ŒD2; h� from that of D, which gives

lim
	!1

1
	
ei	
 ŒD2; h�ei	
 D �i.ŒD; ��ŒD; h�C ŒD; h�ŒD; ��/:

Thus the result follows from Theorem 5.13.

6. Self-adjointness and derivations

We now introduce a technical hypothesis which will play an important role.

Definition 6.1. A spectral triple is strongly regular when all endomorphisms of the
A-module H1 are regular.

Our goal is to obtain self-adjoint operators from the operatorD, in the formA�DA
where A is regular, i.e., belongs to the domains of ım for all m.
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Lemma 6.2. Let A be regular, then ADomD � DomD and the adjoint of A�D is
the closure of the densely defined operator T

Dom T D DomD; T � D D.A�/ for all � 2 DomD: (50)

Proof. By regularity bothA andA� preserve the domain Dom jDj D DomD so that
(50) makes sense. The domain ofA�D is the domain ofD. An � 2 H belongs to the
domain of the adjoint S D .A�D/� when there exists a constant C < 1 such that

jhA�D�; �ij � Ck�k for all � 2 DomD:

One has hA�D�; �i D hD�;A�i and, since D is self-adjoint, the above condition
means that A� 2 DomD. Moreover one then has S� D DA�. In other words,
S D DA with domain

Dom S D f� j A� 2 DomDg; S� D D.A�/ for all � 2 Dom S:

To prove the lemma we need to show that S is the closure of the operator T of (50).
Let � 2 Dom S . We construct a sequence �n 2 DomD such that

�n ! �; DA�n ! DA�:

In fact we let
�."/ D .1C "jDj/�1� for all " > 0:

It belongs to DomD by construction and �."/ ! � when " ! 0. One has

DA�."/ D D.1C "jDj/�1A�C "D.1C "jDj/�1ŒjDj; A�.1C "jDj/�1�:

Since A� 2 DomD one hasD.1C "jDj/�1A� D .1C "jDj/�1DA� ! DA�. The
remainder is of the formB."/ŒjDj; A��."/, whereB."/ D "D.1C"jDj/�1 is of norm
less than 1, ŒjDj; A� is bounded and �."/ ! �. Thus it behaves like B."/ŒjDj; A��
and hence tends to 0 when " ! 0 since B."/� ! 0 for any � 2 H . This shows that
DA�."/ ! DA� and S is the closure of T .

Corollary 6.3. Let ' D '� 2 A. Then the operatorH D 'D' with domain DomD

is essentially self-adjoint.

Proof. One has H D '2D C 'ŒD; '� on DomD. The bounded perturbation P D
'ŒD; '� does not alter the domain of the adjoint H� which is thus the same as the
domain ofH�

0 ,H0 D '2D. By Lemma 6.2, the adjoint ofH0 is the closure ofD'2

with domain DomD. This is the same as the closure of 'D'C ŒD; '�' with domain
DomD. Since ŒD; '�' is bounded, we thus get that the adjointH�

0 ofH0 is the sum
of the closure of 'D' with domain DomD with the bounded operator ŒD; '�'. Thus
when adding P � D �ŒD; '�' to H�

0 , we obtain the closure of 'D' with domain
DomD, i.e., the operator H .
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Lemma 6.4. Let A be regular. Then A�D is closable and

� for any � in the domain of the closure A�D of A�D, one has, for " > 0,

.1C "jDj/�1A�D�
D A�D.1C "jDj/�1� � .1C "jDj/�1ŒjDj; A��"D.1C "jDj/�1�;

(51)

� the domain of A�D is the set of � 2 H for which the A�D.1 C "jDj/�1�

converge in norm for " ! 0,

� the limit of the A�D.1C "jDj/�1� gives A�D�.

Proof. The operatorA�D is closable since its adjoint is densely defined by Lemma 6.2.
The right-hand side of (51) is a bounded operator, thus it is enough to prove the equality
for � 2 DomD sinceA�D is the closure of its restriction to DomD. For � 2 DomD,
(51) follows from

Œ.1C "jDj/�1; A�� D �.1C "jDj/�1Œ"jDj; A��.1C "jDj/�1:

Let then � be in the domain of the closure A�D. By (51), A�D.1C "jDj/�1� is the
sum of .1C"jDj/�1A�D� ! A�D�, and of .1C"jDj/�1ŒjDj; A��"D.1C"jDj/�1�

which converges to 0 in norm since .1C"jDj/�1ŒjDj; A�� is uniformly bounded while
"D.1 C "jDj/�1� converges to 0 in norm. Thus A�D.1 C "jDj/�1� is convergent
when " ! 0. Conversely, if theA�D.1C"jDj/�1� converge in norm for " ! 0, then
since .1C"jDj/�1� ! � and .1C"jDj/�1� 2 DomD, one gets that � is in the domain
of the closure A�D of A�D and that moreover the limit of the A�D.1C "jDj/�1�

gives A�D�.

Proposition 6.5. Let A be regular then the operator H D A�DA with domain
DomD is essentially self-adjoint. The domain of the closure of H is the set of
� 2 H for which the A�DA.1C "jDj/�1� converge in norm for " ! 0. The limit of
the A�DA.1C "jDj/�1� gives xH�.
Proof. Let us first check that H is symmetric. One has for � and � in DomD,

hH�; �i D hA�DA�; �i D hDA�;A�i D hA�;DA�i D h�; A�DA�i D h�;H�i:
Let us now show that H� is the closure of H . Let � 2 DomH�. Then there exists
C < 1 with

jhA�DA�; �ij � Ck�k for all � 2 DomD:

Since hA�DA�; �i D hDA�;A�i, this means that A� is in the domain of the adjoint
of DA with domain DomD, i.e.,

A� 2 Dom T �; H�� D T �A�;

where T is defined in (50). By Lemma 6.2 the adjoint of A�D is the closure of T :
.A�D/� D NT . The adjoint T � of T is the same as the adjoint of the closure NT , and is
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the closure A�D D .A�D/�� of A�D. Thus by Lemma 6.4 we have, since A� is in
the domain of A�D, the convergence of A�D.1C "jDj/�1A� to A�DA� D H��.
Moreover, as above, we have

A�D.1C "jDj/�1A� � A�DA.1C "jDj/�1�

D �A�"D.1C "jDj/�1ŒjDj; A�.1C "jDj/�1�

and the right-hand side converges to 0 in norm when " ! 0. Thus we have shown
that for any � 2 DomH� one gets the convergence of A�DA.1C "jDj/�1� toH��.
This shows, since .1C "jDj/�1� 2 DomH , that H� is the closure of H and hence
thatH is essentially self-adjoint. It also gives a characterization of the domain of the
closure of H as required.

We now want to apply this result using endomorphisms of the A-module H1
which are of rank one, in order to obtain an operator on A itself.

Lemma 6.6. Let �; � 2 H1. Then the following gives an endomorphism of the
A-module H1:

T�;�.�/ D .�j�/� for all � 2 H1; (52)

where .�j�/ is the A-valued inner product. One has

Ta�; b� D ab�T�;� for all a; b 2 A; T �
�;� D T�;� : (53)

Proof. This follows from the A-linearity of the inner product, which is linear in the
second variable and antilinear in the first. The equality T �

�;�
D T�;� follows from

hT�;�˛; ˇi D h.�j˛/�; ˇi D
Z
.�j˛/�.�jˇ/ d�;

h˛; T�;�ˇi D h˛; .�jˇ/�i D
Z
.˛j�/.�jˇ/ d�:

By Proposition 2.3 (4), the T�;� are bounded operators in H . Let us now assume
that all endomorphisms of the A-module H1 are regular as in Definition 6.1. We
can then apply Proposition 6.5 and get that

D�; � D T�; � DT�; � (54)

defines an essentially self-adjoint operator with domain DomD. We need to relate
this operator with the derivation of A given by (22), i.e.,

ı0.a/ D i.�jŒD; a��/ for all a 2 A: (55)

Lemma 6.7. One has

D�; �� D �i ı0..�j�// �C .�jD�/T�; �� for all �; �; � 2 H1: (56)
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The operator V�.a/ D a�, for all a 2 A, extends to a bounded linear map V� from
L2.X; d�/ to H , and one has

V �
� V� D .�j�/; V�V

�
� D T�; �; V �

� .�/ D .�j�/ for all � 2 H1:

Proof. One hasD�; �� D T�; � DT�; �� D T�; � D..�j�/�/. Thus using .�; ŒD; a��/ D
�iı0.a/ and .�jaD�/� D .�jD�/a� for a D .�j�/ one gets

D�; �� D .�jDa�/� D .�jŒD; a��/�C .�jD�/a� D �iı0..�j�//�C .�jD�/T�; ��;

which gives (56). To show that V� is bounded, note that

hV�.a/; V�.a/i D ha�; a�i D
«
a�a.�j�/jDj�p D

Z
a�a.�j�/ d�;

which also shows that V �
� V� D .�j�/. Let us check that V �

� .�/ D .�j�/. One has

h�; V�.a/i D h�; a�i D
Z
a.�j�/ d� D

Z
.�j�/�a d� D hV �

� .�/; ai:

The equality V�V
�

� D T�; � follows from (52).

The strategy now is to use the self-adjointness ofD�; � and the fact that ı0 can be
compared to iD�; � plus a bounded perturbation to show that the resolvent problem
.1 C "ı0/� D � can be solved first in L2. Then one wants to use the regularity to
show that this problem can also be solved in the Sobolev spaces. Finally one wants to
use the Sobolev estimates to show that it can be solved in the C* norm. Then together
with the results on dissipative derivations of §5 one gets the existence of the resolvent
for the action on the C*-algebra. One notes that it is enough to solve the resolvent
problem for " small enough. One then applies the Hille–Yosida Theorem.

More specifically we consider the equation

.1C i".D�; � � .�jD�/T�; �//� D a�; (57)

where a 2 A is given and " can be taken as small as needed. Given a solution
� of (57), one can under suitable regularity conditions on � take the inner product
.�j�/ D b. One then has, at the formal level,

b C "ı0.b/.�j�/ D a.�j�/: (58)

We can assume that the support of � is small enough so that we can find � such that
.�j�/ D 1 in a neighborhood of the support K of � . Then by (55) one gets that since
ı0 vanishes outside K, one can replace ı0.b/.�j�/ in (58) by ı0.b/. Moreover one
then gets

c C "ı0.c/ D a; c D b C .1 � .�j�//a (59)

since .1� .�j�//a belongs to the kernel of ı0 because its support is disjoint from K.
We need to know that c 2 A, where A D C.X/ is the norm closure of A, and in fact
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also that ŒD; c� is bounded, just to formulate the result. Thus we need to control the
Sobolev norms of the solution of (57). To do that we use the transformation �� of
(46). One has, as in (47),

��.T / D T C E�.T /; E�.T / D ŒD2; T �.D2 C �/�1; (60)

so that the binomial formula expresses �N
�
.T / in terms of the Ek

�
.T / for k � N as

�N
� .T / D T C

X
k�1

�
N

k

�
Ek

� .T /: (61)

Note also that, for T regular, and on DomD one has

ŒD2; T � D 2ı.T /jDj C ı2.T /; (62)

as follows from ŒD2; T � D ŒjDj2; T � D ı.T /jDj C jDjı.T / D 2ı.T /jDj C ı2.T /.

Lemma 6.8. Let T be regular.

(1) The Ek
�
.T / are compact operators for k > 0 and converge in norm to 0 when

� ! 1.

(2) One has (with � 	 1)

kE�.T /Dk � 2kı.T /k C kı2.T /k;
kDE�.T /k � 2kı.T /k C 3kı2.T /k C kı3.T /k: (63)

(3) For k > 1, the operators DEk
�
.T / and Ek

�
.T /D are compact operators which

converge in norm to 0 when � ! 1.

Proof. (1) One has, using (60) and (62), that

E�.T / D .2ı.T /jDj C ı2.T //.D2 C �/�1: (64)

Thus the answer follows for k D 1 since both .D2 C �/�1 and jDj.D2 C �/�1 are
compact operators which converge in norm to 0 when � ! 1. Since E�.T / is also
regular, it follows also for k > 1.

(2) The first inequality of (63) follows from (64). For the second, one has

ŒjDj;E�.T /� D E�.ı.T //;

which gives (63) using

kDE�.T /k � kE�.T /jDjk C kE�.ı.T //k;
and the second inequality follows using the first and (64).

(3) The statement is immediate for Ek
�
.T /D since jDj.D2 C �/�1 is compact.

For the second one uses ŒjDj;Ek
�
.T /� D Ek

�
.ı.T // as in the proof of (2).
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Lemma 6.9. (1) For any integer N 2 N, there exists � < 1 and "0 > 0 such that
the operator

�N
� .1C i"S�; �/; S�; � D D�; � � .�jD�/T�; �; (65)

with domain DomD is closable and invertible in H for any " � "0, and the norm of
its inverse fulfills

k.�N
� .1C i"S�; �//

�1k � 1CNc�; �"; (66)

where c�; � < 1 only depends on � and �.

(2) For any integer N there exists "N > 0 such that (57) can be solved in HN D
Dom jDjN .

Proof. (1) The operator P D .�jD�/T�; � is bounded and regular since it is an
endomorphism of the A-module H1. Thus it preserves the domain of .D2 C �/N

and the Ek
�
.P / are compact operators for k > 0 and converge in norm to 0 when

� ! 1 by Lemma 6.8. By (54), one has D�; � D T�; � DT�; � , thus, by regularity
of the T�; � , the operator

�N
� .D�; �/ D .D2 C �/ND�; �.D

2 C �/�N

is well defined on DomD. Moreover one has, by (61), and on DomD,

�N
� .D�; �/ D �N

� .T�; �/�
N
� .D/�

N
� .T�; �/ D

X
k;m

�
N

k

�
Ek

� .T�; �/D

�
N

m

�
Em

� .T�; �/

so that one gets

�N
� .D�; �/ D D�; � CNE�.T�; �/DT�; � CNT�; �DE�.T�; �/CQ.N; �/;

where the remainderQ.N; �/ is a sum of terms proportional to Ek
�
.T�; �/DEm

�
.T�; �/

for k C m > 1. By Lemma 6.8 we get that Q.N; �/ is a compact operator and
kQ.N; �/k ! 0 when � ! 1. Thus for � ! 1, we get the following estimate:
there exists C�; � < 1 only depending on � and � such that

lim inf
�!1

k�N
� .D�; �/ �D�; �k � NC�; �:

Since the Ek
�
.P / are compact operators for k > 0 and converge in norm to 0 when

� ! 1, one gets similarly

lim inf
�!1

k�N
� .S�; �/ � S�; �k � NC�; �:

Let � be large enough so that k�N
�
.S�; �/ � S�; �k � 2NC�; � . For " small enough,

k�N
� .1C i"S�; �/ � .1C i"D�; �/k � 2NC�; �"C "k.�jD�/T�; �k < 1: (67)
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Since D�; � is essentially self-adjoint, the operator K D 1C i"D�; � is closable and
invertible for any " > 0 and the norm of its inverse is � 1. �N

�
.1C i"S�; �/ is closable

since it is a bounded perturbation K � B of K D 1 C i"D�; � . Moreover by (67)
it is invertible, and the norm of its inverse, which is given by the Neumann series
.K � B/�1 D P

.K�1B/mK�1, fulfills (66). This proves the first statement.
(2) Let � D a� 2 H2N , and consider � 0 D .D2 C �/N � 2 H . Then, by the first

statement, one can find a sequence �n 2 DomD, �n ! �0 2 H , such that

�N
� .1C i".D�; � � .�jD�/T�; �//�n ! � 0;

where the convergence is in H . Applying the bounded operator .D2 C �/�N gives

.1C i".D�; � � .�jD�/T�; �//.D
2 C �/�N �n ! �:

One has � D .D2C�/�N �0 2 H2N � DomD and .D2C�/�N �n ! .D2C�/�N �0
in the topology of DomD. Thus

.1C i".D�; � � .�jD�/T�; �//� D �;

and � 2 H2N gives the required solution.

We now need to show that if � 2 H1 and � 2 HN for N large enough, the inner
product .�j�/ gives an element of A D C.X/ and in fact in the domain of ık . To see
this we use Proposition 2.3. We recall that the Sobolev norms on A are defined using
generators �� of the A-module H1 by (9), i.e.,

kaksobolev
s D

� X
�

k.1CD2/s=2a��k2
�1=2

for all a 2 A:

Thus when we want to control the Sobolev norms of .�j�/, we need to control the
norms

k.1CD2/s=2.�j�/��k:
The point then is that .�; �/�� D T��; �� while the endomorphism T��; � is regular
by hypothesis so that �N

�
.T��; �/ is bounded and (with � D 1) one gets:

Lemma 6.10. Assuming strong regularity, one has, for � 2 H1,

k.�j�/ksobolev
s � Csk.1CD2/s=2�k: (68)

Proof. It is enough to prove the estimate when s=2 D N is an integer. For each �
one has

k.1CD2/N .�j�/��k D k�N
1 .T��; �/.1CD2/N �k

� k�N
1 .T��; �/kk.1CD2/N �k:
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Theorem 6.11. Let .A;H ;D/ be a strongly regular spectral triple with A commuta-
tive, fulfilling the five conditions of §2. Then any derivation of A of the form (22), i.e.,
ı0.a/ D i.�jŒD; a��/ for all a 2 A, is closable for the C*-norm of A, and its closure
is the generator of a one-parameter group of automorphisms U.t/ of A D C.X/,
X D Spec.A/.

Proof. By Corollary 5.14 the derivation ı0, with domain A � A, is dissipative for
the C*-norm ofA. Thus it is closable ([3], Proposition 1.4.7) and we letD.ı0/ be the
domain of its closure. To apply the Hille–Yosida–Lumer–Phillips Theorem we need
to show that for sufficiently small " one has

.1C "ı0/D.ı0/ D A: (69)

By Corollary 5.14, we have

k.1C "ı0/.x/k 	 kxk for all x 2 D.ı0/:

Thus .1C "ı0/D.ı0/ is closed in norm and it is enough to show that .1C "ı0/A is
norm dense in A. Let then � 2 H1 be such that .�j�/ D 1 in a neighborhood of the
support of � (with ı0.a/ D i.�jŒD; a��/). Let then N 2 N be such that the Sobolev
estimate holds (Proposition 2.3):

kakC � � Ckaksobolev
N for all a 2 A: (70)

Let a 2 A, one has a� 2 H1. By Lemma 6.9 there exists "N C1 > 0 such that for
any " � "N C1 one can find a solution in � 2 HN C1 of the equation (57). Since H1
is dense in HN C1, we thus get a sequence �n 2 H1 such that �n ! � in HN C1. The
operator S�; � D D�; � � .�jD�/T�; �/ is continuous from HN C1 to HN . One thus
has, with convergence in HN ,

.1C i"S�; �/�n ! .1C i"S�; �/� D a�:

Combining Lemma 6.10 with (70), one gets that the bn D .�j�n/ 2 A converge in
the C*-norm kxk. Moreover, by (56) and (65),

S�; ��n D �i ı0..�j�n// �; .1C i"S�; �/�n D �n C "ı0.bn/ � ! a�

with convergence in HN . Thus applying .�j � / and using (68) and (70),

bn C "ı0.bn/.�j�/ ! a.�j�/
in the C*-norm, as in (58). Since .�j�/ D 1 in a neighborhood of the support of
�, one has ı0.bn/.�j�/ D ı0.bn/. Moreover, one has ı0..1 � .�j�//a/ D 0 since
.1� .�j�//a vanishes in a neighborhood of the support of � . Thus we have the norm
convergence

cn C "ı0.cn/ ! a; cn D bn C .1 � .�j�//a;
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and this shows that .1C "ı0/A is norm dense in A. Since .1C "ı0/D.ı0/ is norm
closed, it is equal to A. Thus, we have shown that for sufficiently small " one has
(69). Thus the Hille–Yosida–Lumer–Phillips Theorem ([3], Theorem 1.5.2, [22],
Theorem X.47 (a)) shows that ı0 generates a contraction semi-group of A. Since the
same holds for �ı0, one gets a one-parameter group of isometries U.t/ D etı0 of the
C*-algebra A. Moreover U.t/.a/ is a norm continuous function of t for fixed a 2 A.
Using the operators of the form

U.f / D
Z
f .t/U.t/ dt W A ! A (71)

for f such that the L1-norms of the derivatives kf .n/k1 fulfill
P

tn

nŠ
kf .n/k1 < 1,

one gets a dense domain of analytic elements and one checks that since ı0 is a
derivation on D.ı0/ the U.t/ are automorphisms of A.

It remains to show that the U.t/ 2 Aut.A/ respect the smoothness. Let us first
show that we need only understand what happens to U.t/.a/� as an element of H

because U.t/ is the identity in the complement of the support of � .

Lemma 6.12. Letx 2 A have support disjoint from the support of � . ThenU.t/.x/ D
x for all t 2 R.

Proof. We can assume that x 2 A. Let us show that ı0.x/ D 0. There exists
� 2 A with x D x�2 and �� D 0. One has ı0.x/ D i.�jŒD; x��/ and ŒD; x� D
ŒD; x��2 C 2xŒD; ��� so that ŒD; x�� D 0 and ı0.x/ D 0. It follows that for f as
in (71), one gets ı0.U.f /.x// D 0 since U.f / commutes with ı0. With f analytic
for L1 one gets that U.f /.x/ is an analytic element such that ı0.U.f /.x// D 0 and
hence ın

0 .U.f /.x// D 0 for all n 	 1. It follows that

U.t/.U.f /.x// D
X tn

nŠ
ın

0 .U.f /.x// D U.f /.x/ for all t 2 R:

Thus since U.fn/.x/ ! x in norm for a suitable sequence fn, one gets U.t/.x/ D x

for all t 2 R.

Lemma 6.13. Let S be the closure of S�; � D D�; � � .�jD�/T�; � as an unbounded
operator in H . Then for any a 2 Dom ı0 one has a� 2 Dom S and

S.a�/ D �iı0.a/�: (72)

For any a 2 A and " > 0, let b D .1C "ı0/
�1.a/. Then b� 2 Dom S and

.1C i"S/.b�/ D a�: (73)
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Proof. For an ! a and ı0.an/ ! ı0.a/ in norm one has an� ! a� and ı0.an/� !
ı0.a/� in H . Thus, since S is closed and A is a core for ı0, it is enough to prove
(72) for a 2 A. In that case one gets

S.a�/ D S�; �.a�/ D ..�jD.a.�j�/�// � .�jD�/.�ja�//�:
One hasa.�j�/� D a� since .�j�/ D 1on the support of � . Similarly, .�jD�/.�ja�/ D
.�jD�/a D .�jaD�/. Thus we get

S.a�/ D .�jŒD; a��/ for all a 2 A;

which gives (72).
To prove (73), note that by Theorem 6.11 the resolvent .1C "ı0/

�1 exists for any
" > 0 and maps A to the domain of ı0. Thus applying the first part of the lemma to
b D .1C "ı0/

�1.a/, one gets

.1C i"S/.b�/ D b�C i".�iı0.b/�/ D ..1C "ı0/b/� D a�;

which gives (73).

Lemma 6.14. The one-parameter group U.t/ 2 Aut.A/ fulfills for each N an esti-
mate of the form

kU.t/.a/ksobolev
N � c1e

Nc�; �jt jkaksobolev
N : (74)

Proof. We first use the Sobolev semi-norm given by

kaksobolev
N; �; � D .D2 C �/N=2a�;

with � > 0 determined by Lemma 6.9. We let "0 > 0 be as in Lemma 6.9. By (73)
one has for any a 2 A

.1C "ı0/
�1.a/� D .1C i"S/�1a� for all " � "0:

Assume that kaksobolev
N; �; �

< 1. One then has

a� D .D2 C �/�N=2�; � D .D2 C �/N=2a� 2 H :

By Lemma 6.9 one gets, for " � "0, using (66),

k.1C "ı0/
�1.a/ksobolev

N; �; � D k.D2 C �/N=2.1C "ı0/
�1.a/�k

D k.D2 C �/N=2.1C i"S/�1a�k
D k�N=2

�
..1C i"S/�1/�k � .1CNc�; �"/k�k

D .1CNc�; �"/kaksobolev
N; �; �:
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This shows that k.1C "ı0/
�1.a/ksobolev

N; �; �
< 1, and thus one can iterate and obtains

k.1C "ı0/
�m.a/ksobolev

N; �; � � .1CNc�; �"/
mkaksobolev

N; �; � for all " � "0: (75)

Now for t > 0 and with norm convergence in A one has

U.�t /a D lim
n!1.1C tı0

n
/�n.a/:

This shows that U.�t /a is the norm limit of the sequence an D .1C tı0

n
/�n.a/ and

moreover one has, from (75), kanksobolev
N; �; �

� .1CNc�; �t=n/
nkaksobolev

N; �; �
. Thus,

lim sup kanksobolev
N; �; � � eNc�; �jt jkaksobolev

N; �; �: (76)

Since an ! b D U.�t /a in norm, one has an� ! b� also in norm in H . Since
the operator .D2 C �/N=2 is closed, and by (76) the .D2 C �/N=2an� are uniformly
bounded, it follows that b� 2 Dom.D2 C �/N=2 and thus kU.�t /aksobolev

N; �; �
< 1.

More precisely we get

kU.�t /aksobolev
N; �; � � eNc�; �jt jkaksobolev

N; �; �:

Now the semi-norm kaksobolev
N; �; �

is not equivalent to the Sobolev norm, but the latter is
equivalent to the sum

k.D2 C �/N=2a�k C
X

k.D2 C �/N=2a��k;

where one can choose the �� so that their supports are disjoint from the support of � .
This can be seen using the strong regularity. It then follows from Lemma 6.12 that
the semi-norm

P k.D2 C �/N=2a��k is preserved by U.t/ since U.t/.a/�� D a��

for all �. Thus one obtains (74).

Theorem 6.15. Let .A;H ;D/ be a strongly regular spectral triple with A commu-
tative, fulfilling the five conditions of §2. Then any derivation of A of the form (22),
i.e., ı0.a/ D i.�jŒD; a��/ for all a 2 A, is the generator of a one-parameter group
of automorphisms 
t 2 Aut.A/ such that

� @t
t .a/ D ı0.
t .a//,

� the map .t; a/ 2 R � A 7! 
t .a/ 2 A is jointly continuous.

Proof. By Lemma 6.14, the one-parameter group U.t/ 2 Aut.A/ preserves the sub-
algebra A � A. We let 
t 2 Aut.A/ be the corresponding automorphisms. For
a 2 A one has a 2 Dom ı0 and thus


t .a/ � a D
Z t

0


u.ı0.a// du;
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where 
u.ı0.a// is a norm continuous function of u. By (74) applied to ı0.a/, this
shows that k
t .a/ � aksobolev

N D O.jt j/ when t ! 0. One has

1

t
.
t .a/ � a/ � ı0.a/ D 1

t

Z t

0

.
u.ı0.a// � ı0.a// du;

which, since k
u.ı0.a// � ı0.a/ksobolev
N D O.juj/, gives

k1
t
.
t .a/ � a/ � ı0.a/ksobolev

N D O.jt j/ for t ! 0:

This shows that @t
t .a/ D ı0.
t .a/ in the Frechet space A. Let us check the
joint continuity of .t; a/ 7! 
t .a/. Let .tn; an/ ! .t; a/ 2 R � A. One has

tn.an/� 
t .a/ D 
tn.an � a/C 
tn.a/� 
t .a/. The norm k
tn.a/� 
t .a/ksobolev

N

converges to 0 by the above discussion. Moreover, Lemma 6.14 shows that one
controls the Sobolev norms of 
tn.an � a/ by those of .an � a/, which gives the
required continuity.

We can now also prove directly the absolute continuity of the transformed measure

�

t .�/ with respect to �.

Proposition 6.16. Let .A;H ;D/, ı0 and 
t be as in Theorem 6.15. Then for each
t 2 R the measure � of (3) is strongly 8 equivalent to its transform under 
t .

Proof. Let ı0.a/ D i.�jŒD; a��/ for all a 2 A. By Lemma 6.12 the measure 
�
t .�/

given by 
�
t .�/.f / D �.
t .f // agrees with �.f / whenever the support of f is

disjoint from the support of �. With � 2 H1 as above one has .�j�/ D 1 in a
neighborhood V of the support of �. To obtain the required strong equivalence, it is
enough to compare �.
t .f // and �.f / for f and 
t .f / with support contained in
V . Using (1) one then has

�.
t .f // D
«

t .f /jDj�p D

«

t .f /.�j�/jDj�p D h�; 
t .f /�i:

Let, as above, S be the closure of S�; � D D�; � � .�jD�/T�; � . It is by construction
a bounded perturbation of the self-adjoint operator (closure of) D�; � and one can
define eitS for t 2 R using the expansional formula ([1])

eACBe�A D
� X

n

Z
Sn

˛u1
.B/ : : : ˛un

.B/ du

�
; ˛u.B/ D euABe�uA; (77)

with A D i tD�; � and B D �i t.�jD�/T�; � . Let us show that


t .a/� D eitSa� for all a 2 A: (78)

8� is strongly equivalent to 
 iff there is c > 0 with c
 � � � c�1
.
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By Theorem 6.15 and (72) the H -valued function t 7! �.t/ D 
t .a/� solves the
differential equation

d�.t/

dt
D iS�.t/; �.0/ D a�; �.t/ 2 Dom S for all t 2 R:

This implies that d
dt
.e�itS�.t// D 0 and thus e�itS�.t/ D a�, which proves (78). It

follows from (78) that

h�; 
t .a/�i D h�; eitSa�i D he�itS�

�; a�i: (79)

Note that S is not self-adjoint in general because of the additional term �.�jD�/T�; � .
The difference S �S� is a bounded operator and an endomorphism of the A-module
H1 given by

S � S� D 
 T�; �; 
 D .�jD�/� � .�jD�/; (80)

since T�; � is self-adjoint by (53). We can now write a formula for e�itS�

�,

e�itS�

� D
� X

n

intn
Z

Sn


�tu1
.
/ : : : 
�tun

.
/ du

�
� (81)

with Sn D f.uj / j 0 � u1 � � � � � un � 1g the standard simplex. Indeed one
has �i tS� D �i tS C P with P D i t
T�; � , which is bounded which allows one to
use the expansional formula (77), with A D �i tS , B D P . Now by (78) one has
eitS� D � for all t 2 R thus the left-hand side of (77) applied to � gives e�itS�

�. Let
us compute the right-hand side. We first show that

eisS
T�; �a� D 
s.
a/� for all a 2 A: (82)

Indeed one has T�; �a� D .�ja�/� D a.�j�/� and since .�j�/ D 1 on the support of

 (using (80)), one gets that 
T�; �a� D 
a.�j�/� D 
a�. Thus (82) follows from
(78). We then get

˛u1
.P / : : : ˛un

.P /�

D e�itu1SPe�it.u2�u1/SP : : : e�it.un�un�1/SP�

D intne�itu1S
T�; �e
�it.u2�u1/S
T�; � : : : e

�it.un�un�1/S
T�; ��

D intn
�tu1
.

�t.u2�u1/.
.: : : .

�t.un�un�1/.
// : : : /�;

which yields (81) from (77). Now the series

h.t/ D
X

n

intn
Z

Sn


�tu1
.
/ : : : 
�tun

.
/ du (83)

converges in the Frechet algebra A since, for each k, the pk.
s.
// are uniformly
bounded on compact sets of s, while the volume of the simplex Sn is 1=nŠ. Thus
h.t/ 2 A, and combining (79) and (81) one has

h�; 
t .f /�i D he�itS�

�; f �i D hh.t/�; f �i D h�; Nh.t/f �i
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so that we get, for all f with support in V ,

�.
t .f // D �. Nh.t/f /: (84)

Since, by construction, one has h D 1 outside the support of � , (using Lemma 6.12),
equality (84) holds for all f 2 A. The norm continuity kh.t/� 1k ! 0 when t ! 0

(using (83)) then gives the required strong equivalence.

7. Absolute continuity

The following equality defines a positive measure � on X :Z
a d� D

«
ajDj�p for all a 2 C.X/: (85)

This measure is locally equivalent to the spectral measure of the representation of
A D C.X/ in H . More precisely:

Lemma 7.1. For any open set V � X the following two measures are strongly
equivalent:

� The restriction �jV to V of the measure � of (85).

� The restriction to V of the spectral measure associated to a vector � 2 H 1
whose A-valued inner product .�; �/ is strictly positive on xV .

Proof. By the condition of absolute continuity one has a relation of the form

h�; a�i D
«
a.�; �/jDj�p

and since .�; �/ 2 A is strictly positive on xV , one gets the strong equivalence between
the restriction to V of the spectral measure associated to the vector � 2 H 1 and the
measure �jV of (85).

We let
B" D ft 2 Rp j jt j < "g:

Given an automorphism 
 2 Aut.A/ we use the covariant notation


.�/ D � B 
�1 for all � 2 Spec.A/ (86)

and view 
 as a homeomorphism of X D Spec.A/. We use the notations U˛ , s˛ of
Lemma 4.4 and of (29).

Lemma 7.2. Let V � U˛ be an open set and 	 2 V . There exists a smooth family

t 2 Aut.A/, t 2 Rp , a neighborhood Z of 	 in V and " > 0, "0 > 0 such that:
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(1) For any � 2 Z, the map t 7! s˛.
t .�// D F.�; t/ is a diffeomorphism, depend-
ing continuously on �, of B" with a neighborhood of s˛.�/ in Rp and

s˛.�/C B"0 � F.�; B"=2/ for all � 2 xZ: (87)

(2) For any t 2 B" one has
1
2
� � 
t .�/ � 2�: (88)

(3) Z1 D T
B"

tZ is a neighborhood of 	.

(4) Z2 D S
B"

tZ is contained in V .

Proof. Let 
t 2 Aut.A/, t 2 Rp , W and Z as in Lemma 4.5. We can replace the
Z0 of Lemma 4.5 by any neighborhood of 	 contained in Z0 and hence by a ball
centered at 	 and contained in V \Z0. We use a metric d on X compatible with the
topology (Proposition 2.3). Thus

Z D f� 2 X j d.�; 	/ < rg
and we can take r small enough so that

f� 2 X j d.�; 	/ � 3=2 rg � V: (89)

The continuity of the map .�; t/ 7! 
�1
t .�/ D � B 
t yields " > 0 with B" � W and

d.�; 
˙1
t .�// � r=2 for all � 2 X; t 2 B": (90)

Then the first statement (1) follows from Lemma 4.5, with (87) coming from the
continuity in �. The second statement follows from (90) since for d.�; 	/ < r=2 one
gets d.	; 
�1

t .�// < r and 
�1
t .�/ 2 Z. Similarly the third statement follows from

(90) and (89). Finally (88) follows from Proposition 6.16 for " small.

Lemma 7.3. Let V � X be an open set with xV � U˛ and �V (resp. � xV ) be the
spectral measure of the restriction to V (resp. xV ) of the representation of C.X/ in
H . Then s˛.�V / is equivalent to the Lebesgue measure on s˛.V / and there exists
c < 1 such thatZ

xV
f B s˛ d� xV � c

Z
s˛. xV /

f .x/ dxp for all f 2 CC
c .R

p/: (91)

Proof. By Lemma 7.1, the spectral measure�V (resp.� xV ) is equivalent to the measure
� of (85) restricted to V (resp. xV ). We show that

� for any 	 2 xV one can find a neighborhood Z1 of 	 in U˛ such that
s˛.�jZ1

/ � cdxp for some c < 1,

� for any 	 2 V one can find a neighborhood Z2 of 	 in V such that
ds˛.�jZ2

/=dxp D 
.x/ > 0 in a neighborhood of s˛.	/.
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Let 	 2 xV . We apply Lemma 7.2 relative to V D U˛ . We let 
t , Z, Zj , " and
"0 be as in Lemma 7.2. We can assume that for jt j < " one has (88). Let then
h 2 C1

c .B"/, h.t/ 2 Œ0; 1�, be equal to 1 onB"=2. By Lemma 7.2, for any � 2 Z, the
map t 7! F.�; t/ D s˛.
t .�// is a diffeomorphism F� of B" with a neighborhood of
s˛.�/ in Rp . It then follows that for fixed � the image in Rp of the measure h.t/dtp

is a smooth multiple g�.u/ of the Lebesgue measure dup ,
Z

B"

f .F.�; t//h.t/ dtp D
Z

Rp

f .u/g�.u/ du
p for all f 2 Cc.R

p/: (92)

The function g� vanishes outside F�.B"/ and is given inside by

g�.u/ D h. .u//jd .u/=duj;
where  is the inverse of the diffeomorphism F� and d .u/=du its Jacobian. The
continuity of the map � 7! F� gives a uniform upper bound

g�.u/ � c1 for all u 2 Rp; � 2 Z: (93)

Since h D 1 on B"=2 and s˛.�/CB"0 � F�.B"=2/ by (87), one has h. .u// D 1 for
u 2 s˛.y/C B"0 . The continuity of the map � 7! F� then yields "1 > 0 such that

g�.u/ 	 "1 for all u 2 s˛.�/C B"0 and all � 2 Z: (94)

We consider the image d� under .�; t/ 2 Z � B" 7! F.�; t/ 2 Rp of the finite
positive measure d�.�/h.t/dtp on Z � B". It is given by

Z
Rp

f .x/d�.x/ D
Z

Z

Z
B"

f .F.�; t//h.t/dtpd�.�/ for all f 2 Cc.R
p/;

and is equal, by (92), to
Z
f .x/ d�.x/ D

“
f .u/g�.u/ du

p d�.�/ D
Z
f .u/
.u/ dup (95)

where


.u/ D
Z

Z

g�.u/d�.�/:

By (93) one has

.u/ � c1�.Z/ < 1 for all u 2 Rp: (96)

Moreover (94) shows that


.u/ 	 "1�.f� 2 Z j ju � s˛.�/j < "0g/:
We then have


.u/ > 0 for all u 2 s˛.Z/: (97)



46 A. Connes

This strict positivity follows from the condition of absolute continuity which shows
that the support of the measure � is X . Indeed, for u 2 s˛.Z/, the open set f� 2 Z j
ju � s˛.�/j < "0g is non-empty and it has strictly positive measure. This shows that
the restriction of the measure � to the open set s˛.Z/ is equivalent to the Lebesgue
measure.

We now use the quasi-invariance of d� given by (88) to compare s˛.�jZj
/with �.

Using (88) (for ı D 1=2), one has 1
2
d� � d.
t .�// � 2d� for t 2 B" so that, for

any subsetE � X and any positive f 2 CC
c .R

p/, one has, with 1E the characteristic
function of E,

1

2

Z
.f B s˛/1E d� �

Z
.f B s˛/1E d.
t .�// � 2

Z
.f B s˛/1E d�:

The middle term isZ
.f B s˛/1E d.
t .�// D

Z
.f B s˛ B 
t /.1E B 
t / d�;

and we thus get

1

2

Z
E

.f Bs˛/ d� �
Z

��1
t E

.f Bs˛ B
t / d� � 2

Z
E

.f Bs˛/ d� for all f 2 CC
c .R

p/:

(98)
We let, as in Lemma 7.2,

Z1 D T
B"


tZ; Z2 D S
B"


tZ:

One has 
�1
t .Z1/ � Z for t 2 B" so that, by the first inequality of (98) for E D Z1,

1

2

Z
Z1

.f B s˛/ d� �
Z

��1
t Z1

.f B s˛ B 
t / d� �
Z

Z

.f B s˛ B 
t / d�

for all t 2 B", f 2 CC
c .R

p/ so that, multiplying by h.t/dtp and integrating over
t 2 B", we get C < 1 with

Z
Z1

.f B s˛/ d� � C

Z
Z

Z
B"

f .s˛.
t .�//h.t/ dt
p d�.�/ D C

Z
Rp

f .x/ d�.x/;

where we used Fubini’s theorem and the equality s˛.
t .�// D F.�; t/ for � 2 Z and
t 2 B". Thus, using (95) and (96),
Z

Z1

.f Bs˛/d� � C

Z
Rp

f .u/
.u/ dup � C 0
Z

Rp

f .u/ dup for all f 2 CC
c .R

p/;

hence the image s˛.�jZ1
/ is absolutely continuous with respect to the Lebesgue

measure and is majorized by a constant multiple of Lebesgue measure. Thus, every
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point of xV has a neighborhood Z1 such that s˛.�jZ1
/ � c1dx

p . Covering the
compact set xV by finitely many such Z1 gives (91).

Let us now assume that 	 2 V . We can then assume by Lemma 7.2 that Z2 DS
B"

tZ is contained in V . One hasZ � 
�1

t .Z2/ for t 2 B" so that, by the second
inequality of (98) for E D Z2,
Z

Z

.f B s˛ B
t / d� �
Z

��1
t .Z2/

.f B s˛ B
t / d� � 2

Z
Z2

.f B s˛/ d� for all t 2 B";

thus, after integration over t 2 B",

C 0
Z

Rp

f .x/ d�.x/ D C 0
Z

Z

Z
B"

f .s˛.
t .y//h.t/ dt
p d�.y/ �

Z
Z2

.f B s˛/ d�:

This shows, using (95), that
Z

Z2

.f B s˛/ d� 	 C 0
Z

Rp

f .u/
.u/ dup for all f 2 CC
c .R

p/:

By (97) one has 
.u/ > 0 for all u 2 s˛.Z/, thus 
.u/ > 0 in a neighborhood of
s˛.	/, in other words, ds˛.�jZ2

/=dxp D 
2.x/ > 0 in a neighborhood of s˛.	/ as
required. This shows that s˛.�jV / is equivalent to the Lebesgue measure on s˛.V /.

8. Spectral multiplicity

We want to get an upper bound for the number of elements in the fiber of the map
s˛ W U˛ ! Rp . We shall first relate the multiplicity of the map s˛ with the spectral
multiplicity of the operators aj

˛ in the Hilbert space H . This is not automatic, indeed
the first difficulty is that for an injective representation � of a C*-algebra B with
a subalgebra A � B , one can have the same double-commutants �.A/00 D �.B/00
even though A ¤ B . Thus for instance one can take the subalgebra C Œ0; 1� � C.K/

where K D f0; 1; : : : ; 9gN is the Cantor set of the decimal digits and the inclusion
is given by the decimal expansion. Both act in L2Œ0; 1� (by multiplication) and the
spectral multiplicity of the function x 2 C Œ0; 1� is equal to one, but the number of
elements in the fiber is equal to 2 for numbers of the form k10�n. The point in this
example is that the projection map s W K ! Œ0; 1� is not an open mapping. Thus in
particular the subset of K where the multiplicity of s is two is not an open subset of
K (it is countable).

Lemma 8.1. Let s W X ! Y be a continuous open map of compact spaces. Then the
function n.y/ D #s�1.y/ is lower semi-continuous on Y .
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Proof. Assume that n.y/ 	 m and let us show that this inequality still holds in a
neighborhood of y. Let xj 2 X be m distinct points in s�1.y/. One can then find
disjoint open sets Vj 3 xj and let W D T

j s.Vj / which is an open neighborhood of
y. For any z 2 W the preimage s�1.z/ contains at least m points.

Now let s W X ! Y be a continuous open map of compact spaces. Let � be a
positive measure on X with support X and � the corresponding representation of
C.X/ in L2.X;�/. We want to compare the spectral multiplicity function †.y/ of
the restriction of � to C.Y / with n.y/ D #s�1.y/. Let � D s.�/ be the image of the
measure �. One can disintegrate � in the form

� D
Z

Y


y d�.y/;

where the conditional measure 
y is supported by the closed subset s�1.y/. The issue
is what is the dimension of the Hilbert space L2.X; 
y/. It might seem at first that
if the support of the measure � is X one should be able to conclude that the support
of 
y is s�1.y/ and obtain that the spectral multiplicity function †.y/ is larger than
n.y/ D #s�1.y/. However this fails as shown by the following example:

X D Y � f1; : : : ; mg; s.y; k/ D y;

and let �k be the measure on Y corresponding to the restriction of � to Y � fkg.

Lemma 8.2. If the measures �k are mutually singular, then the spectral multiplicity
function †.y/ is equal to 1 a.e.

Proof. The representations of C.Y / in L2.Y; �k/ are pairwise disjoint, and each
is of multiplicity one. Thus the commutant of C.Y / in the direct sum of these
representations only contains block diagonal operators and is hence commutative so
that the multiplicity is equal to one.

The above example gives the needed condition for the relation between†.y/ and
n.y/, and one has:

Lemma 8.3. Let X be a compact space and � a finite positive measure on X , � the
representation9 of C.X/ in L2.X; d�/. Let aj D a�

j 2 C.X/ and let s be the map
fromX to Rp with coordinates aj . We let U � X be an open set and � a measure on
Rp , and assume that

� the restriction of s to U is an open mapping,

� for every open subset V � U the image s.�jV / is equivalent to the restriction
of � to s.V /.

9By multiplication.



On the spectral characterization of manifolds 49

Let then V � U be an open set and consider the operators Tj D �.aj /jV obtained
by restriction of the �.aj / to the subspace L2.V; d�/ � L2.X; d�/. Then the joint
spectral measure of the Tj is �js.V / and the spectral multiplicity †.y/ fulfills

†.y/ 	 n.y/ D #fs�1.y/ \ V g for all y 2 s.V / (99)

almost everywhere modulo �.

Proof. LetW D s.V /, which is a bounded open set in Rp . One can disintegrate �jV
in the form

�jV D
Z

W


y d�.y/; (100)

where the 
y are positive measures carried by Fy D s�1.y/\ V . Moreover the total
mass of 
y is > 0 almost everywhere modulo � for y 2 s.V /. This follows from the
assumed equivalence s.�jV / � �js.V /. One then has

L2.V; d�/ D
Z ˚

W

L2.Fy ; 
y/ d�.y/:

For any � 2 L2.V; d�/ and any f 2 Cc.Rp/ one has

h�; f ..aj //�i D
Z

W

Z
Fy

j�.x/j2d
yf .y/ d�.y/;

which shows that the joint spectral measure of the aj is absolutely continuous with
respect to �jW . Its equivalence with �jW follows from (100) taking �.x/ D 1 and
using the assumed equivalence of s.�jV / with the restriction of � to s.V /.

Let us prove (99). Let y 2 W with n.y/ D #fs�1.y/\V g 	 m > 0. Let xj 2 V
be m distinct points in s�1.y/ \ V . One can then find disjoint open sets Bj 3 xj

and let Z D T
j s.Bj /, which is an open neighborhood of y. For any z 2 Z the

preimage s�1.z/\ V contains at least m points since it contains at least one in each
Bj . Moreover one has s.s�1.Z/\Bj / D Z for all j . Let �j be the restriction of � to
Vj D s�1.Z/\Bj . From the first part of the lemma, for each j the spectral measure
of the action of the aj in L2.Vj ; d�j / is the restriction �js.Vj / D �Z . The action of
the aj in L2.V; d�j / contains the direct sum of the actions in the L2.Vj ; d�j / and
hence a copy of the action of the coordinates yj in

mL
1

L2.Z; �Z/;

which shows that the spectral multiplicity fulfills†.z/ 	 m a.e. on the neighborhood
Z of y. This shows that any element y in the open set Um D fy 2 U j n.y/ 	 mg
admits an open neighborhoodZy where†.z/ 	 m holds a.e. SinceUm is 
 -compact,
it follows that †.y/ 	 m almost everywhere modulo � on Um so that (99) holds.
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Remark 8.4. With the hypothesis of Lemma 8.3, let E be a complex hermitian vec-
tor bundle over X with non-zero fiber dimension everywhere. Then the inequal-
ity †E .y/ 	 n.y/ holds, where †E is the spectral multiplicity of the Tj act-
ing on L2.X; d�;E/. This follows since, at the measurable level, one can find a
nowhere vanishing section of E, which shows that the representation �E of C.X/
in L2.X; d�;E/ contains the representation � of C.X/ in L2.X; d�/. Since �E is
contained in the sum of N copies of � , one obtains the conclusion.

Theorem 8.5. Let V � U˛ be an open set and let aj
˛jV be the restriction of aj

˛ 2 A

to the range 1V H � H . Then

� the joint spectral measure of the aj
˛jV is the Lebesgue measure on s˛.V /,

� the spectral multiplicity mac.y/ fulfills

mac.y/ 	 n.y/ D #fs�1
˛ .y/ \ V g for all y 2 s˛.V /

almost everywhere modulo the Lebesgue measure.

Proof. By Lemma 7.3, the hypothesis of Lemma 8.3 are fulfilled by the compact
space X with measure �, the open set U˛ , the measure d� D dxp and the elements
a

j
˛ . Thus the result follows from Lemma 8.3 and Remark 8.4.

9. Local form of the L.p;1/ estimate

We fix p 2 Œ1;1Œ. Our goal is to control the size of the Lebesgue multiplicitymac.y/

which appears in Theorem 8.5. The idea here is to use a local form of the L.p;1/

estimate of [10], Proposition IV.3.14, with the right-hand side of the inequality now
involving a closed subset K � X , by

�.K/ D inf
b2AC; b1KD1K

«
bjDj�p:

It relies on the estimate given in [9] and on the crucial results ofVoiculescu ([26], [27],
[28]). The norm kT k.p;1/ is defined10 for a compact operator T with characteristic
values �n.T / in decreasing order by (cf. [26], p. 5),

kT k.p;1/ D
1X
1

n�1C1=p�n: (101)

In order to get an upper bound on kT k.p;1/ for T an operator of finite rank, we can
use an inequality of the form

kT k.p;1/ � Cp .Rank T /1=p kT k1; (102)

10For p D 1 it agrees with the L1-norm.
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which follows using the characteristic values �n.T / from

kT k.p;1/ D
NX

nD1

n�1C1=p�n � kT k1
NX

nD1

n�1C1=p � Cp N
1=p kT k1

where N D Rank T . Note also that the L.p;1/ norm fulfills

kATBk.p;1/ � kAk1kT k.p;1/kBk1: (103)

LetD be a self-adjoint unbounded operator such that its resolvent is an infinites-
imal of order 1=p, i.e., is such that the characteristic values fulfill �n.jDj�1/ D
O.n�1=p/. We let for any � > 0,

P.�/ D 1Œ0;��.jDj/; ˛.�/ D TrP.�/: (104)

By construction ˛.�/ is a non decreasing integer valued function. The hypothesis
�n.jDj�1/ D O.n�1=p/ implies that �n.jDj�1/ < Cn�1=p for some C < 1, and
it follows that ˛.C�1n1=p/ < n since the n-th eigenvalue of jDj in increasing order
is > C�1n1=p . Thus, using for n the smallest integer above Cp�p , we get

˛.�/ � Cp �p for all � > 0: (105)

Let us show

Lemma 9.1. Let f 2 C1
c .R/. Then there is a finite constant Cf such that

kŒf ."D/; a�k1 � Cf "kŒD; a�k for all a 2 A: (106)

Under the hypothesis of Theorem 8.5, one has

lim inf ��p˛.�/ > 0: (107)

Proof. One has

Œeis"D; a� D is"

Z 1

0

eius"DŒD; a�ei.1�u/s"D du; (108)

which gives (106) using the finiteness of
R js Of .s/j ds and

Œf ."D/; a� D .2�/�1

Z
Of .s/Œeis"D; a� ds: (109)

Assume that (107) does not hold. Then let �n ! 1 be such that lim �
�p
n ˛.�n/ D 0.

Let f 2 C1
c .R/ be an (even) cutoff function vanishing outside Œ�1; 1�. For "n D ��1

n

one has
Rank f ."nD/ � ˛.�n/; RankŒf ."nD/; a� � 2˛.�n/
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so that by (102) one gets, using (106),

kŒf ."nD/; a�k.p;1/ � Cp.2˛.�n//
1=pC"nkŒD; a�k

and since lim �
�p
n ˛.�n/ D 0,

lim
n!1 kŒf ."nD/; a�k.p;1/ D 0:

The Voiculescu obstruction relative to an ideal J of compact operators is given by

kJ .faj g/ D lim inf
A2R

C

1
;A"1

max kŒA; aj �kJ ;

where RC
1 is the partially ordered set of positive, finite rank operators of norm less

than one, in H . We take An D f ."nD/. It is by construction an element of RC
1 .

Moreover since f ."nD/ ! 1 strongly in H , this shows that for the ideal J D L.p;1/

one gets kJ .faj g/ D 0. This contradicts the existence, shown in Theorem 8.5, of p
self-adjoint elements aj of A whose joint spectral measure is the Lebesgue measure,
using Theorem 4.5 of [26], which gives the equality, valid forp self-adjoint operators,

kJ .faj g/p D �p

Z
Rp

m.y/ dpy; (110)

where the function m.y/ is the multiplicity of the Lebesgue spectrum.

The rank of the operator T D Œf ."D/; a� is controlled by twice the rank of
f ."D/. We take f compactly supported and thus f � g, where g is equal to one on
the support of f yields an inequality of the form

Rank f ."D/ � Tr.g."D//:

One has by Corollary 14.10 (Appendix 2) an estimate of the form

lim inf "p Tr.g."D// � cg

«
jDj�p:

This gives

lim inf "p Rank f ."D/ � cg

«
jDj�p (111)

and:

Lemma 9.2. Let f 2 C1
c .R/, then there is a finite constant cf such that

lim inf kŒf ."D/; a�k.p;1/ � cf

� «
jDj�p

�1=p

kŒD; a�k for all a 2 A: (112)
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Proof. Using (111) and RankŒf ."D/; a� � 2Rank f ."D/, one obtains a sequence
"q ! 0 with

Rank Tq � 3"�p
q cg

«
jDj�p; Tq D Œf ."qD/; a�:

Using (102) and (106) then gives

kTqk.p;1/ � Cp.Rank Tq/
1=p kTqk1 � Cp

�
3"�p

q cg

«
jDj�p

�1=p

Cf "qkŒD; a�k;

which is the required estimate since ."�p
q /1=p"q D 1.

We now let K � X be a compact subset and we want to localize the estimate
(112) to K, i.e., to the range of K in H .

Lemma 9.3.11 Let h 2 C1
c .R/ be an (even) cutoff function and f D h2. Then

kŒf ."jDj/; a� � 1
2
".f 0."jDj/ı.a/C ı.a/f 0."jDj//k.p;1/ D O."/; (113)

where ı.a/ D ŒjDj; a� and one assumes that a 2 T2
j D1 Dom ıj .

Proof. First one has (cf. Corollary 10.16 of [16])

kŒh."jDj/; a� � "h0."jDj/ı.a/k � C2 "
2kı2.a/k; (114)

with a similar estimate using "ı.a/h0."jDj/. Indeed, using (109) with jDj instead of
D, one gets

Œh."jDj/; a� D .2�/�1

Z
Oh.s/Œeis"jDj; a� ds

so that by (108)

Œh."jDj/; a� D .2�/�1

Z
Oh.s/is"

Z 1

0

eius"jDjŒjDj; a�ei.1�u/s"jDj duds;

and since by (108) one has

kŒŒjDj; a�; ei.1�u/s"jDj�k � js"jkı2.a/k;
one gets

kŒh."jDj/; a� � "h0."jDj/ı.a/k � C2 "
2kı2.a/k; C2 D .2�/�1

Z
s2j Oh.s/j ds:

We follow the proof of Lemma 10.29 in [16]. One has

Œf ."jDj/; a� � 1
2
".f 0."jDj/ı.a/C ı.a/f 0."jDj// D A"B" C C"A";

11This is Lemma 10.29 in [16], but the proof given there is not correct, so we give the full details here.
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where A" D h."jDj/, B" D Œh."jDj/; a� � "h0."jDj/ı.a/ and C" D Œh."jDj/; a� �
"ı.a/h0."jDj/. By (114) one has kB"k D O."2/, kC"k D O."2/, while A" is
uniformly bounded with RankA" D O."�p/. Thus by (102) one has kA"k.p;1/ D
O."�1/. Thus we get the required estimate using (103).

We then let K � X be a compact subset as above, and consider the operators

R" D 1K f ."jDj/ 1K : (115)

We let b 2 A be equal to 1 on K, i.e., such that b 1K D 1K . One then has:

Lemma 9.4.

kŒR"; a� � 1
2
".1K f

0."jDj/bı.a/1K C 1K ı.a/bf
0."jDj/1K/k.p;1/ D O."/:

Proof. One has
ŒR"; a� D 1K Œf ."jDj/; a� 1K

since a commutes with 1K . Thus multiplying on both sides by 1K in (113), one gets
(using (103))

kŒR"; a� � 1
2
".1K f

0."jDj/ı.a/1K C 1K ı.a/f
0."jDj/1K /k.p;1/ D O."/: (116)

Lemma 9.1 and (105) show, using (102), that one has a uniform upper bound

kŒf 0."jDj/; b�k.p;1/ � CkŒjDj; b�k
since f 0 has compact support. Thus in (116) one can replace 1K f

0."jDj/ D
1K bf

0."jDj/ by 1K f
0."jDj/b, without affecting the behavior in O."/. The same

applies to the other term.

We recall the interpolation inequality used in [10], §IV.2.ı, but stated without
proof there.

Lemma 9.5. There exists for 1 � p < 1, a constant cp such that, for S 2 L1,

kSk.p;1/ � cpkSk1=p
1 kSk1�1=p1 : (117)

Proof. The inequality holds as an equality for p D 1 with c1 D 1, thus we can
assume that p > 1. We use the fact that L.p;1/ is obtained by real interpolation
of index .�; 1/ for � D 1

p
from the Banach spaces Y0 D K and Y1 D L1. The

functoriality of the interpolation gives an inequality of the form

kT .x/k.Y0;Y1/.�;q/
� M 1��

0 M �
1 kxk.X0;X1/.�;q/

for any linear operator from X0 CX1 to Y0 C Y1 such that

kT xkYi
� MikxkXi

for all x 2 Xi ; i D 0; 1:

We can take X0 D X1 D C and let T be such that T .1/ D S . Then M0 D kSk1,
M1 D kSk1 and the norm kxk.X0;X1/.�;1/

is finite and non-zero.



On the spectral characterization of manifolds 55

Remark 9.6. In order not to depend on interpolation theory we give a direct proof
of (117). We assume that p > 1. First, for p > 1 an equivalent norm on L.p;1/ is

kT k.p;1/0 D .1 � �/
X

N ��2
N .T /; � D 1

p
; (118)

where 
N .T / is the sum of the first N characteristic values. The equivalence of the
norms (118) and (101) follows from �N � 
N =N one way. For the other way, one
applies Fubini to the double sum

X
n

X
m�n

�nm
��2 D

X
m

X
n�m

�nm
��2:

Now to estimate (118) assuming kT k1 � 1 and kT k1 D 
 	 1, one splits the sum
as follows:

1X
1

N ��2
N .T / D
X
N <�

N ��2
N .T /C
X
N ��

N ��2
N .T /:

Using kT k1 � 1 gives 
N .T / � N and one bounds the first sum as
X
N <�

N ��2N � C� 

� :

Using kT k1 D 
 	 1 gives 
N .T / � 
, and one bounds the second sum by
X
N ��

N ��2
 � C 0
� 


� ;

which gives the required inequality (117).

Lemma 9.7. There exists a constant Cf � 1 such that for b D b� 2 A, b 	 0,

lim inf "pkbf 0."jDj/bk1 � Cf

«
b2jDj�p:

Proof. Note that by construction of f as a cutoff function, its derivative f 0 � 0 on
Œ0;1Œ. Let h D �f 0 2 C1

c .R/ so that h 	 0. One then has bh."jDj/b 	 0 and

kbh."jDj/bk1 D Tr.bh."jDj/b/ D Tr.b2h."jDj//;
and the result follows from Corollary 14.10 (Appendix 2), which gives

lim inf "p Tr.b2h."jDj// � �

«
b2jDj�p;

where � D p
R 1

0
up�1h.u/du.
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Lemma 9.8. There exists a constantC 0
f

� 1 such that, for b D b� 2 A, 0 � b � 1,

lim inf k"bf 0."jDj/bk.p;1/ � C 0
f

� «
b2jDj�p

�1=p

: (119)

Proof. By Lemma 9.7 one has, once b is fixed, a sequence "q ! 0 such that

kbf 0."qjDj/bk1 � 2Cf "
�p
q

«
b2jDj�p:

Also since f 0 is bounded one has

kbf 0."qjDj/bk1 � B D kf 0k1 < 1:

Thus it follows from (117) that

kbf 0."qjDj/bk.p;1/ � cp

�
2Cf "

�p
q

«
b2jDj�p

�1=p

B1�1=p:

After multiplication by "q one gets the required estimate.

Theorem 9.9. There exists a finite constant �p such that for any operators aj 2 A

and compact subset K � X one has, with J D L.p;1/, the inequality

kJ .faj 1Kg/ � �p max kı.aj /k1.�.K//1=p;

where one lets12

�.K/ D inf
b2AC; b1KD1K

«
bjDj�p:

Proof. By definition one has

kJ .faj 1Kg/ D lim inf
A2R

C

1
; A"1

max kŒA; aj 1K �kJ ;

where RC
1 is the partially ordered set of positive, finite rank operators of norm less

than one in 1K H . We takeR" D 1K f ."jDj/ 1K as in (115). It is by construction an
element of RC

1 . Moreover since f ."jDj/ ! 1 strongly in H , one gets that R" ! 1

strongly in 1K H . By Lemma 9.4 one has

kŒR"; a� � 1
2
".1K f

0."jDj/bı.a/1K C 1K ı.a/bf
0."jDj/1K /k.p;1/ D O."/:

Using
1K f

0."jDj/bı.a/1K D 1K bf
0."jDj/bı.a/1K

12This is the natural extension of � given by the Riesz Representation Theorem [24].
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and (103) for A D 1K , T D bf 0."jDj/b, B D ı.a/1K and similarly for the other
term, one gets an estimate of the form

kŒR"; a�k.p;1/ � O."/C k"bf 0."jDj/bk.p;1/kı.a/k1:

Thus, by Lemma 9.8 one gets that, for any b 2 AC equal to 1 on K, there exists a
sequence "q ! 0 such that

k"qbf
0."qjDj/bk.p;1/ � 2C 0

f

� «
b2jDj�p

�1=p

;

which gives, for q large enough,

kŒR"q
; a�k.p;1/ � 2C 0

f

� «
b2jDj�p

�1=p

kı.a/k1

for any a 2 A and hence

lim inf max kŒR"; aj 1K �kJ � 2C 0
f max kı.aj /k1

� «
b2jDj�p

�1=p

:

After varying b one obtains the required estimate.

Remark 9.10. a) One may worry that Voiculescu’s definition of kJ involves the
ordered set RC

1 while all we got was R" ! 1 strongly in 1K H . Thus let us briefly
mention how to get the A " 1 from R" by a small modification. Given a finite
dimensional subspace of 1K H , one letsP be the corresponding finite rank projection,
with fixed rank N . One needs to construct A 2 RC

1 , A 	 P , with a control on
max kŒA; aj 1K �kJ . One takes

A" D P C .1 � P /R".1 � P /;
so that A 	 P by construction. Moreover one has

R" � A" D P.R" � 1/P C PR".1 � P /C .1 � P /R"P: (120)

Moreover by the strong convergence R" ! 1, one has

kP.R" � 1/k1 D k.R" � 1/P k1 ! 0

so that all three terms in the rhs of (120) converge to 0 in norm and hence in the J
norm since their rank is less than N so that one can use (102). Thus one has

kR" � A"kJ ! 0

and one controls max kŒA; aj 1K �kJ from max kŒR"; aj 1K �kJ .
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b) It might seem possible at first sight to tensor the spectral triple .A;H ;D/ by
.C;H 0;D0/, with the spectrum ofD0 growing fast enough so that the product triple13

.A ˝ C;H ˝ H 0;D00 D D ˝ 1C � ˝D0/

would still be of dimension p, i.e., such that the characteristic values of the inverse
ofD00 are O.n�1=p/. Let us show that this is only possible if the dimension of H 0 is
finite. Indeed the eigenvalues of .D ˝ 1C � ˝D0/2 D D2 ˝ 1C 1˝D

02 are the
independent sums of the eigenvalues ofD2 and ofD

02. Thus having infinitely many
eigenvalues of D

02 contradicts the two inequalities

˛.�/ 	 c�p; ˛00.�/ � C 00�p

for the counting functions ˛.�/ D Tr.1Œ0;��.jDj/, ˛00.�/ D Tr.1Œ0;��.jD00j/ since
they yield

dim.H 0/ � C 00=c:

c) The constant C 0
f

in (119) is given, up to a function of p alone, by

C 0
f D

� Z 1

0

up�1h.u/ du

�1=p

khk1�1=p1 ; h D �f 0 	 0;

and one needs to check that there is a lower bound to C 0
f

independent of the choice of

the cutoff functionf . Sincef .0/ D 1, the only information is about
R 1

0
h.u/ du D 1

and thus one needs to show a general inequality of the form

Z 1

0

h.u/ du � c.p/

�
p

Z 1

0

up�1h.u/ du

�1=p

khk1�1=p1 : (121)

To prove this one lets g.u/ D h.u1=p/ so that

p

Z 1

0

up�1h.u/ du D
Z 1

0

g.v/ dv;

Z 1

0

h.u/ du D 1

p

Z 1

0

v1=p�1g.v/ dv;

and one uses the same argument as in Remark 9.6. First, with k.u/ D R u

0
g.v/ dv,

Z 1

0

v1=p�1g.v/ dv D
�
1 � 1

p

� Z 1

0

v1=p�2k.v/ dv:

Next, assuming khk1 D 1, one has g.v/ � 1 for all v > 0 and thus, with 
 DR 1
0
g.v/ dv,

Z 1

0

v1=p�2k.v/ dv �
Z �

0

v1=p�2k.v/ dv C
Z 1

�

v1=p�2k.v/ dv

13In the even case.
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so that, since k.v/ � v and k.v/ � 
, one gets
Z 1

0

v1=p�2k.v/ dv �
Z �

0

v1=p�1 dv C
Z 1

�

v1=p�2
 dv D cp

1=p

with cp D p C .1 � 1
p
/�1 which gives (121) with c.p/ D 1.

We can now combine this with Theorem 4.5 of [26], which gives the equality,
valid for p self-adjoint operators hj ,

kJ .fhj g/p D �p

Z
Rp

m.y/ dpy: (122)

Corollary 9.11. Let aj D a�
j 2 A be p self-adjoint elements. Then for any compact

subset K � X one hasZ
Rp

mK
ac.y/ d

py � �0
p max kı.aj /kp1�.K/;

where the constant �0
p only depends on p, and the functionmK

ac.y/ is the multiplicity
of the Lebesgue spectrum of the restriction of the aj to 1K.H /.

10. Local bound on #.s�1
˛ .x/ \ V /

Let V � U˛ be an open set with xV � U˛ .

Lemma 10.1. There exists C < 1 such that the spectral multiplicity mV
ac.x/ on the

absolutely continuous joint spectrum of the restriction aj
˛jV of the aj

˛ , to 1V H fulfills

mV
ac.x/ � C; a:e: on W D s˛.V /:

Proof. By Theorem 8.5, the joint spectral measure of the aj
˛jV is the Lebesgue mea-

sure on s˛.V /. Let E � W be a compact subset, and K D s�1
˛ .E/ \ xV . Then

Corollary 9.11 gives an inequality of the form
Z

Rp

mK
ac.y/d

py � �0�.K/: (123)

One has
mV

ac.y/ � mK
ac.y/ for all y 2 E (124)

since one has a direct sum decomposition

1V H D 1s�1
˛ .E/\V H ˚ 1s�1

˛ .Ec/\;V H
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where the representation in the second term in the right-hand-side does not contribute
to the multiplicity in E. Indeed, with Ec D S

En and En compact disjoint from E,
the joint spectrum of aj

˛js�1
˛ .En/\V is contained inEn and disjoint fromE. Moreover

the representation in the first term is dominated by the representation in 1KH since
s�1

˛ .E/ \ V � K D s�1
˛ .E/ \ xV .

By (91) one has an inequality
Z

xV
f B s˛ d� xV � c

Z
s˛. xV /

f .x/ dxp � c

Z
Rp

f .x/ dxp for all f 2 CC
c .R

p/;

which shows, taking 1E D inf fn as an infimum of continuous functions fn 2
CC

c .R
p/, that

�.K/ D
Z

xV
1E B s˛ d� xV �

Z
xV
fn B s˛ d� xV � c

Z
Rp

fn.x/ dx
p ! c

Z
E

dxp:

Thus, using (124) and (123),
Z

E

mV
ac.x/ d

px �
Z

E

mK
ac.x/ d

px � �0�.K/ � c�0
Z

E

dxp;

and there exists a constant C D c�0 such that, for any compact E � W ,
Z

E

mV
ac.x/ d

px � C

Z
E

dpx;

which gives the inequality, valid almost everywhere,

mV
ac.x/ � C:

Lemma 10.2. Let V be as above. Then there exists m < 1 such that

#.s�1
˛ .x/ \ V / � m for all x 2 W D s˛.V /:

Proof. By Theorem 8.5, one has, almost everywhere,

mV
ac.y/ 	 n.y/ D #fs�1

˛ .y/ \ V g for all y 2 s˛.V /;

so that the result follows from Lemma 10.1 and the semi-continuity of n.y/, which
shows that an almost everywhere inequality remains valid everywhere.

Lemma 10.3. Let V � U˛ be an open set with xV � U˛ . There exists a dense open
subset Y � s˛.V / such that every point of s�1

˛ .Y /\ V has a neighborhood N in X
such that the restriction of s˛ to N is a homeomorphism with an open set of Rp .
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Proof. Let W D s˛.V / and

m1 D sup
x2W

#.s�1
˛ .x/ \ V /;

which is finite (and non-zero) by Lemma 10.2. Let

W1 D fx 2 W j #.s�1
˛ .x/ \ V / D m1g:

This is by Lemma 8.1 an open subset of W . Moreover for x 2 W1 one can find m1

disjoint open neighborhoods Vj of the preimages xj of x such that all Vj surject on
the same neighborhood U of x in W . It follows that the restriction of s˛ to each of
the Vj is a bijection onto U and hence an isomorphism of a neighborhood of xj with
an open set in Rp given by the aj

˛ .
It can be that W1 is not dense in W , but then we just take the complement of its

closure, W 1 D W n SW1, and let

m2 D sup
x2W 1

#.s�1
˛ .x/ \ V /;

which is < m1 by construction. One then defines

W2 D fx 2 W 1 j #.s�1
˛ .x/ \ V / D m2g;

which is by Lemma 8.1 an open subset of W 1. The same argument as above shows
that the subset Z D W1 [W2 fulfills the condition of the lemma. One proceeds in
the same way and gets, by induction, a sequence Wk , with Y D S

Wj fulfilling the
condition of the lemma. Since the sequence mj is strictly decreasing, one gets that
the process stops and Y is dense in W .

11. Reconstruction Theorem

We shall now use Lemma 10.3 together with the ability to move around in X by
automorphisms of A to prove the following key lemma:

Lemma 11.1. For every point 	 2 X there exists p real elements x� 2 A and a
smooth family �t 2 Aut.A/, t 2 Rp , �0 D Id, such that:

� The x� give a homeomorphism of a neighborhood of 	 with an open set in Rp .

� The map t 7! h.t/ D 	 B �t is a homeomorphism of a neighborhood of 0 in Rp

with a neighborhood of 	.

� The map x B h is a local diffeomorphism.

Proof. Let 	 2 X . By Lemma 4.4, there exists ˛ such that 	 2 U˛ . By Lemma 4.5,
there exists a smooth family 
t 2 Aut.A/, t 2 Rp , a neighborhood Z of 	 in
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X D Spec.A/ and a neighborhood W of 0 2 Rp such that, for any � 2 Z, the
map t 7! s˛.� B 
t / is a diffeomorphism, depending continuously on �, ofW with a
neighborhood of s˛.�/ in Rp .

We now take for V a ball

V D Br D fy 2 X j d.	; y/ < rg � U˛; xV � U˛:

We apply Lemma 10.3 to V D Br and let Y be a dense open subset Y � s˛.V / such
that every point of s�1

˛ .Y /\V has a neighborhoodN inX such that the restriction of
s˛ to N is a homeomorphism with an open set of Rp . Since Y is dense in s˛.V / and
by Lemma 4.5 the image ofW by t 7!  .t/ D s˛.	B
t / is an open neighborhood of
s˛.	/, one can choose a u0 2 W such that	B
u0

2 V and .u0/ D s˛.	B
u0
/ 2 Y .

One has � D 	B
u0
2 s�1

˛ .Y /\V . Thus by Lemma 10.3 there exists a neighborhood
N of � such that the restriction of s˛ toN is an isomorphism with an open set of Rp .
Thus the a�

˛ are good local coordinates near �. The automorphism 
u0
2 Aut.A/ is

such that
� D 	 B 
u0

; 	 D 
u0
.�/:

Recall that we use the covariant notation (86). We take

x� D 
u0
.a�

˛ /

as local coordinates near 	. The corresponding map x from X D Spec.A/ to Rp is
given by

� 2 X 7! �.x�/ D �.
u0
.a�

˛ // D s˛.� B 
u0
/ D s˛ B 
�1

u0
.�/:

Thus x D s˛ B 
�1
u0

and, since 
u0
is a homeomorphism of X , x D s˛ B 
�1

u0
is a

homeomorphism of the neighborhood 
u0
.N / of 	 with an open set of Rp . Thus the

x� are good local coordinates at 	. Then let �t 2 Aut.A/ be given by

�t D 
u0Ct B 
�1
u0

so that �t B 
u0
D 
u0Ct . One has

	 B �t .x
�/ D 	 B �t .
u0

.a�
˛ // D 	 B 
u0Ct .a

�
˛ / D s�

˛ .	 B 
u0Ct / D  �.u0 C t /:

Now the map h is given by t 7! h.t/ D 	 B �t , thus one has

x B h.t/ D  .u0 C t /:

This shows that the map x B h is a diffeomorphism from W1 D W � u0 (which is a
neighborhood of t D 0 2 Rp since u0 2 W ) with an open set of Rp . On W1, the
map h is injective since x Bh is injective. Thus h is a homeomorphism with its range.
One has h.0/ D 	, h is continuous, thus W2 D h�1.
u0

.N // \ W1 is an open set
containing0 andW 0

2 D xBh.W2/ is an open set in Rp . The mapx is a homeomorphism
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of 
u0
.N / with an open set in Rp and x Bh is a homeomorphism ofW1 with an open

set in Rp . One has h.W2/ � 
u0
.N /. Thus h.W2/ D x�1.W 0

2/ \ 
u0
.N / is open

in 
u0
.N / and since it contains h.0/ D 	, we get that h is a homeomorphism of

a neighborhood of 0 in Rp with a neighborhood of 	. Moreover, as we have seen
above, the map x B h is a diffeomorphism.

Lemma 11.2. The algebra A is locally the algebra of restrictions of smooth functions
on Rp to a bounded open set of Rp .

Proof. Let 	 2 X . By Lemma 11.1, we can assume that some x� 2 A give a
homeomorphism of a neighborhood U of 	 with a bounded open set x.U / � Rp .
By the smooth functional calculus the algebra C1

c .x.U // is contained in A using
the morphism f 2 C1

c .x.U // 7! f .x�/ 2 A: Moreover for any � 2 U one has
�.f .x�// D f .�.x�/ so that the function f B x coincides on U with the element
f .x�/ 2 A. Taking a smaller neighborhood V of 	 with compact closure in U one
gets that the algebra C1.Rp/jx.V / of restrictions to x.V / of smooth functions on Rp

is contained in the algebra of restrictions to V of elements of A, using x to identify
V with the open set x.V / � Rp . We need to show that any element of A restricts
to a smooth function on V , using the local coordinates x to define smoothness. For
this we use (Lemma 11.1) the existence of a smooth family � W Rp ! Aut.A/ such
that x B � is a local diffeomorphism around 	. Thus given b 2 A, to show that the
restriction of b to V is smooth, it is enough to show that �t .b/ evaluated at 	 is a
smooth function of t . This follows from the smoothness of the family �t .

Theorem 11.3. Let .A;H ;D/ be a strongly regular spectral triple fulfilling the five
conditions of §2 (cf. [12]) with c antisymmetric Then there exists an oriented smooth
compact manifold X such that A D C1.X/.

Proof. We letX D Spec.A/ be the spectrum of A or equivalently of the norm closure
A. By construction it is a compact space. By Lemma 11.1, for every point 	 2 X

there exists a neighborhood U of 	 and p real elements x� 2 A which give a local
homeomorphism � of a neighborhood V of x with an open set in Rp . Moreover by
Lemma 11.2 one has

f 2 AjV if and only if f B ��1 2 C1.Rp/j
.V /:

This shows that on the intersection of such domains of local charts, the change of chart
is of class C1. We can thus, using compactness, take a finite cover and this endows
X with a structure of p-dimensional smooth manifold. Lemma 11.2 shows that any
a 2 A restricts to a smooth function in each local chart and thus A � C1.X/.
Moreover given f 2 C1.X/ there exists for each Vj in the finite open cover ofX an
aj 2 A with f jVj

D aj jVj
. Then the existence of partitions of unity (Lemma 2.10

of [23]),
 j 2 A;

X
 j D 1; Support j � Vj ;
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shows that f agrees with
P
 jaj 2 A. We have shown that there exists a smooth

compact manifoldX such that A D C1.X/. The cycle c gives a nowhere vanishing
section of the real exterior power ^p.TX/ and hence shows that the manifold X is
oriented.

We thus obtain the following characterization of the algebras C1.X/:

Theorem 11.4. An involutive algebra A is the algebra of smooth functions on an
oriented smooth compact manifold if and only if it admits a faithful14 representation in
a pair .H ;D/ fulfilling the five conditions of §2 (cf. [12]) with the cycle antisymmetric
and the strong regularity.

Proof. The direct implication follows from Theorem 11.3. Conversely, given an
oriented smooth compact manifoldX of dimensionp, one can take the representation
in H D L2.X;^�

C/ the Hilbert space of square integrable differential forms with
complex coefficients, and use the choice of a Riemannian metric to get the signature
operator D D d C d� with the Z=2-grading � in the even case coming from the
Clifford multiplication by the volume form as in [19], Chapter 5. In the odd case
one uses the Clifford multiplication � by the volume form to reduce the Hilbert space
H to the subspace given by �� D �. More specifically we consider the faithful
representation of the Clifford algebra Cliff T �

x .X/ in
^�

T �
x .X/ given by the symbol

of D, i.e.,

v � � D v ^ � � iv � for all v 2 T �
x .X/; � 2 ^�

T �
x .X/; (125)

where iv is the contraction by v. This gives (cf. [19] Proposition 3.9) a canonical
isomorphism of vector spaces Cliff T �

x .X/ � ^�
T �

x .X/. We let ! be the sec-
tion of

^p
T �X given at each point by ! D e1 ^ � � � ^ ep , where e1; : : : ep is any

positively oriented orthonormal basis. In the Clifford algebra Cliff T �
x .X/ one has

!2 D .�1/p.pC1/
2 (cf. [19], (5.26)) and one defines

� � D i�
p.pC1/

2 ! � for all � 2 Cliff T �
x .X/˝ C;

where the product ! � is the left Clifford multiplication by !. By [19], (5.35), this
left multiplication is related to the Hodge star operation by

! � D .�1/k.p�k/C k.kC1/
2 ? � for all � 2 ^k

:

With these notations one has d� D .�1/.pC1/�d� (cf. [19], (5.10)), which shows
that D commutes with � when p is odd and anticommutes with � when p is even.

To check the orientability condition 4), one uses (in both cases of the Dirac operator
or the signature operator) local coordinates x� and the equalities

ŒD; f � D
X

��@�f; f��; �
g D �2g�
 ;

14I.e., with trivial kernel.
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where the �� correspond to the action of dx� through the representation of the
Clifford algebra (given by (125) for the signature operator). One then has, for the
multiple commutator,

Œ�1; �2; : : : ; �p� D pŠ i
p.pC1/

2 .
p
g/�1�;

where
p
g is the square root of the determinant of the matrix g�
 and � D ��, �2 D 1

is the grading in the even case and is just 1 in the odd case.15 Thus in these local
coordinates x� the cycle associated to the volume form

c D 1

pŠ

X
�

".
/
p
g ˝ x�.1/ ˝ � � � ˝ x�.p/

fulfills, locally, condition 4), up to the power of i , i
p.pC1/

2 . Using a partition of unity
gives the global form of c which is just the Hochschild cycle representing the global
volume form.

The condition of strong regularity is checked using §13. One applies Lemma 13.2
to obtain the strong regularity since we take for D an elliptic differential operator of
order one on a smooth compact manifold and the principal symbol of D2 is a scalar
multiple of the identity. This ensures that for any differential operator P of order
m the symbol of order m C 2 of ŒD2; P � vanishes as it is given by the commutator
of the principal symbols of order m and 2. Thus one gets that for any differential
operator T of order 0, the operators ım

1 .T / are of the form P.1 C D2/�m=2 where
P is a differential operator of order m. Thus the theory of elliptic operators (cf. [15]
Lemma 1.3.4 and 1.3.5) shows that they are bounded. This applies for D the Dirac
operator or the signature operator, thus one gets the strong regularity in this case.

Theorem 11.5. Let .A;H ;D/ be a spectral triple with A commutative, fulfilling the
five conditions of §2 with the cycle c antisymmetric. Assume that the multiplicity16 of
the action of A00 in H is 2p=2. Then there exists a smooth oriented compact (spinc)
manifold X such that A D C1.X/.

Proof. We need to show that we can dispense with the hypothesis of strong regularity
in Theorem 11.3. Indeed by the first part of Remark 5.12, we get

Œ.ŒD; a�ŒD; b�C ŒD; b�ŒD; a�/; ŒD; c�� D 0 for all a; b; c 2 A (126)

since this is implied by the commutation (49) of jŒD; h�j with ŒD; c�. Thus if we
work at a point 	 2 Spec.A/ and let S� be the fiber at 	 2 X of the finite projective
module H1 andM� � End S� be the subalgebra generated by the ŒD; a� for a 2 A,
it follows from (126) that

ŒD; a�ŒD; b�C ŒD; b�ŒD; a� 2 Z.M�/ for all a; b 2 A; (127)
15Since we reduced the Hilbert space H to the subspace given by �� D � .
16We restrict ourselves to the even case.
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whereZ.M�/ is the center ofM�. Let e be a minimal projection in the center ofM�.
The equality �D.c/ D � shows that, at the point 	,

�e D
X

˛

ea0
˛ŒŒD; a

1
˛�; ŒD; a

2
˛�; : : : ; ŒD; a

p
˛ �� ¤ 0

so that the dimension of the space T �
e .	/ D feŒD; a� j a 2 Ag� is at least equal to

p. In fact, more precisely, for some ˛, the multiple commutator

ŒeŒD; a1
˛�; eŒD; a

2
˛�; : : : ; eŒD; a

p
˛ �� D eŒŒD; a1

˛�; ŒD; a
2
˛�; : : : ; ŒD; a

p
˛ �� ¤; 0

which can hold only if the eŒD; aj
˛� are linearly independent. By (127) and the

minimality of e, the following equality defines a positive quadratic form Q on the
self-adjoint part of T �

e .	/:

Q.eŒD; a�/e D .eŒD; a�/2 for all a 2 A:

It is non-degenerate since when eŒD; a� is self-adjoint, .eŒD; a�/2 D 0 implies
eŒD; a� D 0. Let then CQ be the Clifford algebra associated to the quadratic form
Q on the self-adjoint part of T �

e .	/. The latter has real dimension 	 p and the rela-
tions (127) show that the map eŒD; a� 7! eŒD; a� gives a representation of CQ in the
complex vector space eS�. Thus this shows that the dimension of eS� is then at least
equal to 2p=2. The hypothesis of the theorem on the multiplicity of the action of A00
in H shows, using the condition of absolute continuity, that the fiber dimension of
S is 2p=2. This shows that e D 1 and also, since the complexification of the algebra
CQ is an N �N matrix algebra for N 	 2p=2, that M� D End S� for every 	 2 X .
It also shows that the dimension of T �.	/ is equal to p and that on U˛ the ŒD; aj

˛�

form a basis of T �.	/. Consider then the monomials

�F D ŒŒD; aj1
˛ �; ŒD; a

j2
˛ �; : : : ; ŒD; a

jk
˛ ��;

where F D fj1 < j2 < � � � < jkg is a subset with k elements of f1; 2; : : : ; pg.
For every 	 2 U˛ the �F form a basis of M� D End S�. Thus any element T of
M� D End S� can be uniquely written in the form

T D
X

aF �F : (128)

The coefficients aF can be computed using the normalized trace on End S�, the �F

and the element T . Thus using the conditional expectation EA of (27) one gets, for
any endomorphism T of H1 with support in U˛ , that (128) holds with coefficients
aF 2 A. This shows that any endomorphism T of H1 is a polynomial in the ŒD; a�
with coefficients in A and it follows that it is automatically regular. Thus the strong
regularity holds and we can apply Theorem 11.3. To see that X is a spinc manifold
one uses [12] (see [16] for the detailed proof).
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12. Final remarks

12.1. The role of D. By Lemma 2.1, the spectral triple .A;H ;D/ is entirely de-
termined by .A00;H ;D/ where M D A00 is the commutative von Neumann algebra
weak closure of A. It follows in particular that, except for the dimension N of the
bundle S which we may assume, for simplicity, to be constant and equal to 2p=2, there
is no information in the pair .A00;H /: they are all pairwise isomorphic. Similarly
the only invariant of the pair .H ;D/ is the spectrum ofD, i.e., a list of real numbers
with multiplicity. By [21] this spectrum does not suffice to reconstruct the geometry,
and it is natural to wonder what additional invariant is required to do so. As we
shall briefly explain it is the relative position ofM and of the self-adjoint operatorD
which selects one geometric space, and it is worthwhile to look at the conditions from
this point of view. The analogue in our context of the geodesic flow is the following
one-parameter group,

�t .T / D eit jDjTe�it jDj for all T 2 L.H /: (129)

We say17 that an operator T 2 L.H / is of class C1 when the map from R to L.H /

given by t 7! �t .T / is of class C1 (for the norm topology of L.H /) and we denote
by C1.H ;D/ this subalgebra of L.H /. This algebra only depends upon .H ;D/

and does not yet measure the compatibility of .M;H / and .H ;D/. This is measured
by the weak density in M of

C1.M;H ;D/ D fT 2 M \ C1.H ;D/ j ŒD; T � 2 M 0 \ C1.H ;D/g; (130)

where M 0 is the commutant of M . One checks that A D C1.M;H ;D/ is a
subalgebra of M and its size measures the compatibility of .M;H / and .H ;D/.

We now come to two equations which assert that A D C1.M;H ;D/ is large
enough, so that we have maximal compatibility. One checks that H1 D \ DomDm

is automatically a module over A (for the obvious action). The first equation requires
that this module is finite and projective and that it admits a hermitian structure . j /
(necessarily unique) such that

h�; a �i D
«
.�j�/ a jdsjp for all a 2 A and all �; � 2 H1; (131)

where
ª

is the noncommutative integral given by the Dixmier trace.
The second equation means that we can find an element c of the tensor power

A˝n, n D p C 1, totally antisymmetric in its last p-entries, and such that

c.D/ D 1; where .a0˝� � �˝ap/.D/ D a0ŒD; a1� : : : ŒD; ap� for all aj 2 A: (132)

(This assumesp odd, in the even case one requires that for some c as above c.D/ D �

fulfills � D ��, �2 D 1, �D D �D� .) We can now restate Theorem 11.5 as:

17Cf. Lemma 13.3 of §13.
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Theorem 12.1. Let .M;H ;D/ fulfill (130), (131) and (132), and N D 2p=2. Then
there exists a unique smooth compact oriented spinc Riemannian manifold .X; g/
such that the triple .M;H ;D/ is given by

� M D L1.X; dv/ where dv is the Riemannian volume form,

� H D L2.X; S/ where S is the spinor bundle,

� D is a Dirac operator associated to the Riemannian metric g.

Proof. We let A D C1.M;H ;D/. By the weak density in M of (130), we know
that the multiplicity of the action of A00 D M in H is N D 2p=2. By construction,
the triple .A;H ;D/ fulfills the first three conditions. The fourth and fifth follow
from (131) and (132). Thus by Theorem 11.5 we get A D C1.X/ for a smooth
oriented compact spinc manifoldX . The conclusion then follows from [12] (see [16]
for the detailed proof). Note that there is no uniqueness ofD since we only know its
principal symbol. This is discussed in [12] and [16].

A striking feature of the above formulation is that the full information on the
geometric space is subdivided into two pieces:

(1) the list of eigenvalues of D,

(2) the unitary relation F between the Hilbert space of the canonical pair .M;H /

and the Hilbert space of the canonical pair .H ;D/.

Of course the conceptual meaning of the unitary F is the Fourier transform, but this
second piece of data is now playing a role entirely similar to that of the CKM matrix
in the Standard Model [7]. Moreover, in the latter, the information about the Yukawa
coupling of the Higgs fields with the fermions (quarks and leptons) is organised in a
completely similar manner, namely 1) the masses of the particles, 2) the CKM (and
PMNS) matrix. At the conceptual level, such matrices describe the relative position
of two different bases in the same Hilbert space. They are encoded by a double
coset space closely related to Shimura varieties ([7]). These points deserve further
investigations and will be pursued in a forthcoming paper.

12.2. Finite propagation. One can use in the above context a result of Hilsum [18]
to obtain:

Lemma 12.2. The support of the kernel kt .x; y/ of the operator eitD is contained in

f.x; y/ 2 X2 j d.x; y/ � jt jg;

where the distance d is defined by

d.x; y/ D sup jh.x/ � h.y/j; kŒD; h�k � 1:
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Proof. Let .x; y/ 2 X2 with d.x; y/ > jt j. There exists h D h� in A such that
kŒD; h�k � 1 and h.y/ � h.x/ > jt j. Also h and ŒD; h� commute by the order one
condition. Thus by Lemma 1.10 of [18], one has b < h.y/, a > h.x/ such that

.h � b/Ce�itD.h � a/� D 0

so that kt .x; y/ D 0.

12.3. Immersion versus embedding. The proof of Theorem 11.3 shows that, with
the cycle c given by (26), the map  from X to RN given by the components aj

˛ for
j 	 1 is an immersion. It is not however an embedding in general even if one includes
the components a0

˛ . To see this consider open balls B � Rp and B1 � B such that
for some translation v the ball B2 D B1 C v is disjoint from B1 and contained in B .
Then let x� be the coordinates in Rp and aj

1 2 C1
c .B/ be such that

a
j
1 .x/ D xj for all x 2 B1; a

j
1 .x/ D xj � vj for all x 2 B2:

Let N be a neighborhood of the complement of B1 [ B2 in B . Let then aj
2 .x/ D

b.x/xj , where b.x/ D 1 for all x 2 N and vanishes in an open set of the form
B 0

1 [ B 0
2 where the B 0

j � Bj are smaller concentric balls. Let a0
˛ be a partition of

unity in B for the covering by B1 [B2 and N . Then let c be the antisymmetrization
of

2X
1

a0
˛ ˝ a1

˛ ˝ � � � ˝ ap
˛ :

For x 2 B 0
1 all the aj

2 vanish, including a0
2, and a0

1 D 1 so that the following equality
shows that the map  is not injective:

a
j
1 .x C v/ D a

j
1 .x/ for all x 2 B 0

1:

12.4. The antisymmetry condition. We have used throughout the stronger form
of condition 4) where the Hochschild cycle c 2 Hp.A;A/ is assumed to be totally
antisymmetric in its last p-entries. It is unclear whether one can relax the antisym-
metry condition on c. It is not true in general for commutative algebras that any
Hochschild class can be represented in this way, but this is the case for A D C1.X/.
In general, one has a natural projection on the antisymmetric chains, given by the
antisymmetrisation map P . It is defined by the equality

P.a0 ˝ a1 ˝ � � � ˝ ap/ D 1

pŠ

X
ˇ

".ˇ/a0 ˝ aˇ.1/ ˝ � � � ˝ aˇ.p/

Its range is contained in Zp.A;A/ since A is commutative and any antisymmetric
chain is a cycle ([20], Proposition 1.3.5). It is not obvious that P maps Hochschild
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boundaries to Hochschild boundaries. This follows from the equality

P D 1

pŠ
"p B �p;

where one lets �p
K D ^p

A
�1

K be the A-module of Kähler p-forms (cf. [20], 1.3.11)
and

"p W �p
K ! Hp.A;A/; �p W Hp.A;A/ ! �

p
K

are defined in [20], Propositions 1.3.12 and 1.3.15. They are given by

�k.a0 ˝ a1 ˝ � � � ˝ ak/ D a0da1 ^ � � � ^ dak

and

"k.a0da1 ^ � � � ^ dak/ D
X

".
/a0 ˝ a�.1/ ˝ � � � ˝ a�.k/:

12.5. Strong regularity. The hypothesis of strong regularity is, in general, stronger
than regularity. Indeed the operation of direct sum .A;H1 ˚ H2;D1 ˚D2/ of two
spectral triples for the same algebra A preserves regularity but not, in general, strong
regularity.

Proposition 12.3. Assuming regularity the subalgebraZD.A/ of EndA.H1/ gener-
ated by A and the ŒD; b�ŒD; c�C ŒD; c�ŒD; b� for b; c 2 A is a commutative algebra
containing A and commuting with ŒD; a� for all a 2 A.

Proof. This follows from Remark 5.12 since (49) shows that ŒD; b�2 commutes with
ŒD; a� for all a 2 A.

The understanding of the general situation when one does not assume strong reg-
ularity should be an interesting problem since the inclusion A � ZD.A/ should
correspond to a finite “ramified cover” of the corresponding spectra, with Y D
SpecZD.A/ covering X D Spec A. It is easy to construct examples where Y
has singularities. It is not clear that, assuming the first five conditions, the spaceX is
always smooth. Similarly it is unclear what happens if one relaxes the regularity con-
dition to the Lipschitz regularity, since we made heavy use of at leastC 1C"-regularity
in the above proofs. Finally it would be interesting also to investigate the meaning
of real analyticity of the space X in terms of the real analyticity of the geodesic
flow (129).

12.6. Thenoncommutative case. Among the five conditions of §2 the conditions 1),
3) and 5) make no use of the commutativity of the algebra A and they extend as such
to the noncommutative case. We refer to [12] for the extension of conditions 2) and
4) to the noncommutative case. The extension of the order one condition involves
a new key ingredient which is an antilinear unitary operator J in H which encodes
the nuance between spin and spinc . It turns out to be an incarnation not only of the
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charge conjugation in physics terms and of the needed “real structure” to refine the K-
theoretic meaning of the spectral triple from ordinaryK-homology toKO-homology
but, at a deeper level, of the Tomita operator which plays in the noncommutative case
the role of a substitute for commutativity. All this plays an important role in the
noncommutative geometry understanding of the standard model [7], [6], [5]. The
extension of the “orientability” condition 4) exists and it certainly holds e.g. for
noncommutative tori ([12]) but it is not fully satisfactory yet and its clarification
should be considered as an open question.

13. Appendix 1: Regularity

The condition of regularity is not easy to check for smooth manifolds since it involves
the module of the operator D. We give below the equivalent formulation in terms of
D2 (cf. [14]).

We deal with operators T which act on H1 D \ DomDn. We say that T is
bounded when

kT k D supfkT �k j � 2 H1; k�k � 1g (133)

is finite. We still denote by T the unique continuous extension to a bounded operator
in H . By self-adjointness of D the domain H1 is a core for powers of D or of jDj.
The derivation ı.T / D ŒjDj; T � is defined algebraically as an operator in H1. The
relation with the commutator in H is given as follows.

Lemma 13.1. Assume that both T and ŒjDj; T � are bounded (as in (133)). Then T
preserves Dom jDj D DomD and the bounded extension of ŒjDj; T � coincides with
the commutator jDjT � T jDj on Dom jDj.

Proof. Let � 2 Dom jDj. There exists a sequence �n 2 H1 with �n ! � and
jDj�n ! jDj�. Since T is bounded the sequences T �n and T jDj�n are convergent
and converge to T � and T jDj�. Since ŒjDj; T � is bounded, the sequence .jDjT �
T jDj/�n converges. Thus jDjT �n converges, and as jDj is closed one gets that T �
is in the domain of jDj. Thus Dom jDj is invariant under T . Moreover one has
jDjT � D .jDjT � T jDj/� C T jDj�.

In other words, saying that both T and ŒjDj; T � are bounded is equivalent, for
operators acting in H1 to T 2 Dom ı and moreover ı.T / is then the bounded
extension of jDjT � T jDj.

We introduce the following variant of ı, defined on operators T acting in H1,

ı1.T / D ŒD2; T �.1CD2/�1=2:

Lemma 13.2. Let T acting in H1 be bounded.

(1) If ı1.T / and ı2
1.T / are bounded so is ı.T /.
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(2) The ın
1 .T / are bounded for all n iff so are the ın.T /.

Proof. (1) The module jDj is given by the following integral, which makes sense
when applied to any � 2 DomD, which we omit for simplicity

jDj D 2

�

Z 1

0

D2

D2 C u2
du: (134)

To avoid dealing with the kernel of D we use the decomposition ı D ı0 C ı0, where
the derivations ı0 and ı0 commute, and ı0 is bounded,

ı0.T / D ŒQ; T �; Q D D2.1CD2/�1=2;

ı0.T / D Œf0.D/; T �; f0.x/ D jxj � x2.1C x2/�1=2 for all x 2 R:

One has f 2 C0.R/ and the derivation ı0 is bounded, in fact kı0k � 1 since kf0k1 <

1=2. One has

Q D 2

�

Z 1

0

D2

D2 C 1C u2
du:

Thus

ı0.T / D ŒQ; T � D 2

�

Z 1

0



D2

D2 C 1C u2
; T

�
du; (135)



D2

D2 C 1C u2
; T

�

D �



1C u2

D2 C 1C u2
; T

�

D .1C u2/
1

D2 C 1C u2
ŒD2; T �

1

D2 C 1C u2

D ŒD2; T �
1C u2

.D2 C 1C u2/2
C .1C u2/



1

D2 C 1C u2
; ŒD2; T �

�
1

D2 C 1C u2
:

Thus using



1

D2 C 1C u2
; ŒD2; T �

�
D � 1

D2 C 1C u2
ŒD2; ŒD2; T ��

1

D2 C 1C u2

we get



D2

D2 C 1C u2
; T

�

D ŒD2; T �
1C u2

.D2 C 1C u2/2
� 1

D2 C 1C u2
ŒD2; ŒD2; T ��

1C u2

.D2 C 1C u2/2
:
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Thus combining with (135) one gets

ı0.T / D 1

2
ŒD2; T �.1CD2/�1=2 C 1

2
ŒD2; T �.1CD2/�3=2

� 2

�

Z 1

0

1

D2 C 1C u2
ŒD2; ŒD2; T ��

1C u2

.D2 C 1C u2/2
du;

where we used

2

�

Z 1

0

u2

.D2 C 1C u2/2
du D 1

2
.1CD2/�1=2

and
2

�

Z 1

0

1

.D2 C 1C u2/2
du D 1

2
.1CD2/�3=2:

Now one has ŒD2; ŒD2; T �� D ı2
1.T /.1CD2/ and

				 .1C u2/.1CD2/

.D2 C 1C u2/2

				 � 1

so that				 1

D2 C 1C u2
ŒD2; ŒD2; T ��

1C u2

.D2 C 1C u2/2

				 �
				 1

D2 C 1C u2

				kı2
1.T /k

and one gets

kı0.T /k � kı1.T /k C kı2
1.T /k:

Now if both ı1.T / and ı2
1.T / are bounded, we get that ı0.T / is bounded, and since

ı D ı0 C ı0 with ı0 bounded, we get that ı.T / is bounded, with

kı.T /k �
2X
0

kıj
1 .T /k: (136)

(2) The operations ı and ı1 commute since jDj commutes with D2. Let us
assume that the ın

1 .T / are bounded. We have seen that ı.T / is bounded. To show
that ı2.T / is bounded it is enough to show that ım

1 .ı.T // are bounded for m D 1; 2.
But ım

1 .ı.T // D ı.ım
1 .T //, which is bounded since the ın

1 .ı
m
1 .T // are bounded for

n � 2, m � 2. More generally let us show by induction on n an inequality of the
form

kın.T /k �
2nX
0

cn;kkık
1 .T /k:

To get it for nC 1, assuming it for n, one uses (136), which gives

kı.ın.T //k �
2X
0

kıj
1 .ı

n.T //k D
2X
0

kın.ı
j
1 .T //k �

2X
0

2nX
0

cn;kkık
1 .ı

j
1 .T //k:
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Thus we obtain by induction that ın.T / is bounded.
Conversely, the boundedness of the ın.T / implies that of the ın

1 .T /. Indeed the
boundedness of the ın.T / is equivalent to the boundedness of the ı00n.T /, where
ı00.T / D Œ.1CD2/1=2; T �, since jDj � .1CD2/1=2 is bounded and commutes with
jDj. Moreover the square of the operation

T 7! .1CD2/1=2T .1CD2/�1=2 D T C ı00.T /.1CD2/�1=2

is
T 7! .1CD2/T .1CD2/�1 D T C ŒD2; T �.1CD2/�1;

which gives

ŒD2; T �.1CD2/�1 D 2ı00.T /.1CD2/�1=2 C ı002.T /.1CD2/�1

so that
ı1.T / D 2ı00.T /C ı002.T /.1CD2/�1=2;

and one can proceed as above to get the boundedness of the ın
1 .T /.

Finally we relate the regularity condition with the smoothness of the geodesic
flow t ! �t .T / D eit jDjTe�it jDj of (33).

Lemma 13.3. Let T 2 L.H /. Then the following conditions are equivalent:

(1) T 2 \m Dom ım.

(2) t ! �t .T / is of class C1 in the norm topology.

Proof. Let us show that (1) implies (2). By (7), T preserves H1. We write the Taylor
formula with remainder

f .t/ D f .0/C tf 0.0/C � � � C tn

nŠ
f .n/.0/C tnC1

nŠ

Z 1

0

.1 � u/nf .nC1/.tu/ du

for the function f .t/ D eit jDjTe�it jDj� with � 2 H1. Since T preserves H1, this
function is of class C1. One gets

�t .T /�

D T � C i tı.T /� C � � � C intn

nŠ
ın.T /� C inC1tnC1

nŠ

Z 1

0

.1 � u/n�tu.ı
.nC1/.T //� du

since f .k/.s/ D �s.ı
.k/.T //� by induction on k. This shows that t ! �t .T / is of

class C1 in the norm topology, since the norm of the remainder is O.tnC1/.
Let us show that (2) implies (1). It is enough to show that if T 2 L.H // and the

following limit exists in norm limt!0
1
t
.�t .T / � T /, then T 2 Dom ı and the limit

is iı.T /. One has, for � 2 H ,

� 2 Dom jDj if and only if there exists lim
t!0

1
t
.eit jDj� � �/;
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where the limit is supposed to exist in norm. Assuming that for some bounded
operator Y 2 L.H / one has limt!0 k1

t
.�t .T / � T / � Y k D 0, one gets, for any

� 2 Dom jDj, 1
t
.eit jDjT � � T �/ ! iT jDj� C Y � . This shows that T � 2 Dom jDj

and that i jDjT � D iT jDj� C Y �, which gives the required equality.

14. Appendix 2: The Dixmier trace and the heat expansion

We first recall the basic properties of the Dixmier trace. Recall that the characteristic
value �n.T / of a compact operator T is the n-th eigenvalue of jT j arranged in
decreasing order and is equal to

inffkT jE?k j dimE D n � 1g:
Definition 14.1. We define the Weyl norms by


N .T / D
NX
1

�n.T /:

The fact that they are norms and in particular fulfill


N .T1 C T2/ � 
N .T1/C 
N .T1/

follows from the next statement in which we use the same notation for a subspace
E � H and the orthogonal projection on that subspace.

Proposition 14.2. One has


N .T / D supfkTEk1 j dimE D N g:
Let T be a positive operator, then


N .T / D supfTr.TE/ j dimE D N g: (137)

We use the following notation for refined limiting processes.

Definition 14.3. With the Cesàro mean M defined by

M.f /.�/ D 1

log�

Z �

1

f .u/
du

u
(138)

and h.�/ a bounded function of � > 0, ! a linear form on Cb.R
�C/ which is positive,

!.1/ D 1, and vanishes on C0.R�C/, and � a homeomorphism of R�C, we define

Limk

.�/!! h.�/ D !.M k.g//; g.�/ D h.��1.�//;

where the upper index k indicates that we iterate the Cesàro mean k-times.
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We write Lim! as an abbreviation for Lim1
! , and when we apply it to a sequence

.˛N /N 2N we mean that the sequence has been extended to a function using

f˛.�/ D ˛N for � 2 �N � 1;N �:

Also we consider the two-sided ideal containing compact operators of order one,

L.1;1/.H / D fT 2 K j 
N .T / D O.logN/g:

Definition 14.4. For T 	 0, T 2 L.1;1/.H /, we set

Tr!.T / D Lim!

1

logN

NX
nD1

�n.T /:

The basic properties of the Dixmier trace Tr! are summarized in the following
([10], Proposition 3, IV.2.ˇ):

Proposition 14.5. Tr! extends uniquely by linearity to the entire ideal L.1;1/.H /

and has the following properties:

(a) If T 	 0, then Tr!.T / 	 0.

(b) If S is any bounded operator and T 2 L.1;1/.H /, then Tr!.ST / D Tr!.TS/.

(c) Tr!.T / is independent of the choice of the inner product on H , i.e., it depends
only on the Hilbert space H as a topological vector space.

(d) Tr! vanishes on the ideal L
.1;1/
0 .H /, which is the closure, for the k k1;1-norm,

of the ideal of finite-rank operators.

We fix p 2 Œ1;1�. Let D be a self-adjoint unbounded operator such that its
resolvent is an infinitesimal of order 1=p, i.e., such18 that�n.D

�1/ D O.n�1=p/. We
shall compare Tr!.T jDj�p/ and lim "p Tr.f ."D/T / for suitable even test functions
f . We let EN be the spectral projection19 on the first N -eigenvectors of jDj so that
dimEN D N , EN < EN C1 and

Tr.EN jDj�p/ D 
N .jDj�p/:

Lemma 14.6. For any bounded operator T 2 L.H / one has

Lim!

1

logN
Tr.EN jDj�pT / D Tr!.T jDj�p/: (139)

18We replace D by a non-zero constant on its kernel so that D�1 makes sense.
19This is ambiguous when there is spectral multiplicity.
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Proof. The hypothesis on D shows that Tr.EN jDj�p/ D O.logN/. Moreover, by
construction of the Dixmier trace, one has

Lim!

1

logN
Tr.EN jDj�p/ D Lim!

1

logN

N .jDj�p/ D Tr!.jDj�p/: (140)

Let �.T / be the left-hand side of (139). It makes sense since

jTr.EN jDj�pT /j � Tr.EN jDj�p/kT k D O.logN/

so that the sequence 1
log N

Tr.EN jDj�pT / is bounded. The functional � on L.H / is
linear and positive (the trace of the product of the two positive operators EN jDj�p

and T is positive). Let  .T / be the right-hand side of (139). Proposition 14.5 shows
that, since jDj�p 2 L.1;1/.H /, the functional  is a positive linear functional on
L.H /. One uses Proposition 14.5 (b) to check the positivity, using for T 	 0,

Tr!.T jDj�p/ D Tr!.T
1=2jDj�pT 1=2/ 	 0:

Let us show that for any T 	 0 one has �.T / �  .T /. One has


N .T
1=2jDj�pT 1=2/ D 
N .jDj�p=2T jDj�p=2/

using A D jDj�p=2T 1=2 in

�n.A
�A/ D �n.AA

�/ for all A 2 K; n 2 N:

Thus one gets

 .T / D Tr!.T jDj�p/ D Lim!

1

logN

N .jDj�p=2T jDj�p=2/:

By (137), one has


N .jDj�p=2T jDj�p=2/ D supfTr.jDj�p=2T jDj�p=2E/ j dimE D N g
	 Tr.jDj�p=2T jDj�p=2EN / D Tr.EN jDj�pT /

since EN and jDj�p=2 commute. Thus 
N .jDj�p=2T jDj�p=2/ 	 Tr.EN jDj�pT /

and after dividing by logN and applying Lim! to both sides one gets the inequality
�.T / �  .T /. But, by (140), �.1/ D Tr!.jDj�p/ D  .1/, and thus the positive
functional � D  �� is equal to 0 by the Schwarz inequality j�.T /j2 � �.T �T /�.1/.

With jDj as above, we let as in (104), for any � > 0,

P.�/ D 1Œ0;��.jDj/; ˛.�/ D TrP.�/:
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Lemma 14.7. Assume that

lim inf ��p˛.�/ > 0: (141)

Then, for any bounded operator T 2 L.H /, one has

p Lim!

1

logN
Tr.EN jDj�pT / D Lim�p!!

1

log�
Tr.P.�/jDj�pT /: (142)

Proof. We can assume by linearity that T 	 0. We have (using (105)) constants
c1 > 0 and c2 < 1 such that

c1�
p � ˛.�/ � c2�

p: (143)

We let
f .N / D Tr.EN jDj�pT /; g.�/ D Tr.P.�/jDj�pT /:

Since dimP.�/ � N implies P.�/ � EN , we get, using P.�/jDj�p � EN jDj�p ,

f .N / 	 g.�/ for all �; c2�
p � N: (144)

Similarly, since dimP.�/ 	 N implies P.�/ 	 EN , we get

f .N / � g.�/ for all �; c1�
p 	 N: (145)

We extend f .N / to positive real values of N as a non-decreasing step function.
The arbitrariness of the extension is irrelevant since f .N C 1/ � f .N / ! 0 when
N ! 1 and we are interested in Lim!

1
log N

f .N /, which is insensitive to bounded
perturbations of f . By construction, the Cesàro mean satisfies the following scale
invariance, for bounded functions f ,

jM.��.f //.�/ �M.f /.�/j ! 0 as � ! 1; (146)

where � > 0 and ��.f /.�/ D f .��1�/ for all � 2 R�C. It follows from (144) and
(145) that f .c1N/ � g.N 1=p/ � f .c2N/ up to o.N / and for any positive real N .
Thus the scale invariance of the Cesàro mean (146) together with logN= log cN ! 1

gives

M.
1

logN
f .N// �M. 1

logN
g.N 1=p// ! 0

so that

Lim!

1

logN
f .N/ D 1

p
Lim!

1

logN 1=p
g.N 1=p/;

and the required equality (142) follows from Definition 14.3.

Corollary 14.8. Assuming (141), one has

p Tr!.T jDj�p/ D Lim�p!!

1

log�
Tr.P.�/jDj�pT / for all T 2 L.H /: (147)
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Proof. This follows from Lemmas 14.6 and 14.7.

Theorem 14.9. Assume that (141) holds. Suppose that f 2 Cc.Œ0;1Œ/ and let

 D p

R 1
0
up�1f .u/ du. Then for any bounded operator T 2 L.H / one has

Lim2
"�p!! "

p Tr.f ."jDj/T / D 
 Tr!.T jDj�p/: (148)

Proof. Let g.u/ D upf .u/ viewed as an integrable function on the multiplicative
group R�C, endowed with its normalized Haar measure d�u D du

u
. We can assume

that T 	 0. We consider the positive measure on R�C given by dˇ.�/ where

ˇ.�/ D Tr.P.�/jDj�pT /; (149)

which is a non-decreasing step function of �. The measure dˇ is a positive linear
combination of Dirac masses, dˇ D P

˛nı�n
. One has

dˇ.�/ D Tr.dP.�/jDj�pT / D ��p Tr.dP.�/T /;

"p Tr.f ."jDj/T / D "p

Z
f ."�/Tr.dP.�/T / D

Z
"p�pf ."�/dˇ.�/

so that

"p Tr.f ."jDj/T / D
Z
g."�/dˇ.�/: (150)

The convolution of the measure dˇ with the function Qg.u/ D g.u�1/ makes sense,
since both have support in an interval Œu0;1Œ with u0 > 0, and gives the function

. Qg ? dˇ/.u/ D
Z
g.u�1�/ dˇ.�/:

Thus, with h."/ D "p Tr.f ."jDj/T /, one gets using (150),

h.u�1/ D . Qg ? dˇ/.u/: (151)

The convolution of the measures Qg.u/d�u and dˇ is absolutely continuous with
respect to d�u and is given, with �u.v/ D uv for all u; v > 0, by

. Qg ? dˇ/d�u D
Z

Qg.u/�u.dˇ/ d
�u: (152)

We extend the definition of the Cesàro mean (138) to measures � by

M.�/.�/ D 1

log�

Z �

1

d�;

so that
M.�/.�/ D M.h/.�/ for � D hd�u: (153)
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One has ˇ.�/ D O.log�/ since

ˇ.�/ � Tr.P.�/jDj�p/kT k �
Z �

0

u�pd˛.u/kT k;

while ˛.u/ D 0 near 0, andu�p˛.u/ is bounded by (143). This gives after integrating
by parts

Z �

0

u�pd˛.u/ D ��p˛.�/C
Z �

0

p u�p�1˛.u/ du � c2.1C p log�/C c0:

Moreover for v > 1 one gets, by the above integration by parts,

ˇ.v�/ � ˇ.�/ � kT k
Z v�

�

u�pd˛.u/ � kT kc2.1C log v/:

One has

M.dˇ/.�/ D 1

log�

Z �

1

dˇ D 1

log�
.ˇ.�/ � ˇ.1//: (154)

Thus one has constants a and b such that

jM.�u.dˇ//.�/ �M.dˇ/.�/j � .aC bj loguj/.log�/�1

for any u. Thus since Qg.u/ and j loguj Qg.u/ are integrable,

M

� Z
Qg.u/�u.dˇ/ d

�u
�

�M.dˇ/
Z

Qg.u/ d�u ! 0:

Equivalently, using (151), (152), (153) and
R Qg.u/ d�u D R

g.u/ d�u,

M. Qh/ �M.dˇ/
Z
g.u/ d�u ! 0; Qh.u/ D h.u�1/:

Now by (154) and (147) one has

Lim�p!! M.dˇ/.�/ D p Tr!.T jDj�p/:

Thus we finally get

.p

Z
g.u/d�u/Tr!.T jDj�p/ D Lim�p!! M. Qh/.�/:

The right-hand side is given, by definition, by

Lim�p!! M. Qh/.�/ D !.M.k/.u//; k.u/ D M. Qh/.u1=p/:

Thus we still need to compare k.u/ D M. Qh/.u1=p/ with k1.u/ D M. Qh.�1=p//.u/,
but a simple computation shows that k.u/ D k1.u/.
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Corollary 14.10. Assume that (141) holds. Let f 2 Cc.Œ0;1Œ/C be a positive
function. Let 
 D p

R 1
0
up�1f .u/ du. One has, when " ! 0,

lim inf "p Tr.f ."jDj/T / � 
 Tr!.T jDj�p/: (155)

Proof. Let ı D lim inf "p Tr.f ."jDj/T /. Then for any c < 1 one has h."/ D
"p Tr.f ."jDj/T / 	 cı for " � "c > 0. It follows that Lim2

"�p!! h."/ 	 cı. Thus
by (148) one has cı � 
 Tr!.T jDj�p/ and obtains (155).
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