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On the spectral characterization of manifolds

Alain Connes

Abstract. We show that the first five of the axioms we had formulated on spectral triples suffice
(in a slightly stronger form) to characterize the spectral triples associated to smooth compact
manifolds. The algebra, which is assumed to be commutative, is shown to be isomorphic to
the algebra of all smooth functions on a unique smooth oriented compact manifold, while the
operator is shown to be of Dirac type and the metric to be Riemannian.

Mathematics Subject Classification (2010). 46L.87, 58B34.
Keywords. Spectral triples, Dirac operator, spin manifolds.

Contents

1 Introduction . . . . . . ... . . e 1
2 Preliminaries . . . . . . . . .. L e e 5
3 OpennessLemma . . . . ... ... ... 11
4 Jacobian and openness of local charts . . . . . . ... ... ... ... . ..., 14
5 Dissipative derivations . . . . . .. ... oL 18
6 Self-adjointness and derivations . . . . . . . ... ..o 29
7 Absolute continuity . . . ... ... oL 43
8 Spectral multiplicity . . . . . . . ... 47
9 Local formof the £P-D estimate . . . . ... ... ... ............. 50
10 Local bound on #(s;l(x) NV e 59
11 Reconstruction Theorem . . . . . . . .. .. ... . ... ... ... 61
12 Final remarks . . . . . . . . . . 67
13 Appendix 1: Regularity . . . . . . .. . . ... . 71
14 Appendix 2: The Dixmier trace and the heat expansion . . . . ... .. ... ... 75
References . . . . . . . . . . . 81

1. Introduction

The problem of spectral characterization of manifolds was initially formulated as an
open question in [12]. The issue is to show that under the simple conditions of [12]
on a spectral triple (4, #, D), with A commutative, the algebra 4 is the algebra
C°°(X) of smooth functions on a (unique) smooth compact manifold X. The five
conditions ([12]), in dimension p, are:
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(1) The n-th characteristic value of the resolvent of D is O(n~1/?).
(2) [[D,a],b] =O0foralla,b € .

(3) Forany a € 4 both a and [D, a] belong to the domain of §™, for any integer m
where § is the derivation: §(T) = [|D|, T].

(4) There exists a Hochschild cycle ¢ € Z,(+, ) such that mp(c) = 1 for p odd,
while for p even, mp(c) = y is a Z /2 grading.

(5) Viewed as an #-module the space Ho, = ()| Dom D™ is finite and projective.
Moreover the following equality defines a hermitian structure ( | ) on this
module: (€,an) = fa(&|n)|D|7? foralla € A, forall &, 1 € Hoo.

The notations are recalled at the beginning of §2 below. The strategy of proof was
outlined briefly in [12]. It consists in using the components al (j > 0) of the cycle
c=Y al®al ®---®a astentative local charts. There are three basic difficulties:

a) Show that the spectrum X of 4 is large enough so that the range of “local charts”
aq contains an open set in R?.

b) Show that the joint spectral measure of the components aé (j > 0) of a “local
chart” is the Lebesgue measure.

¢) Apply the basic inequality ([9], [10], Proposition I'V.3.14) giving an upper bound
on the Voiculescu obstruction [26] and use [26], Theorem 4.5, to show that the
“local charts” are locally injective.

In a recent paper [23], Rennie and Varilly considered the above challenging problem.
The paper [23] is a courageous attempt which contains a number of interesting ideas
and a useful smooth calculus but also, unfortunately, several gaps, each being enough
to invalidate the proof of the claimed result.

I will show in this paper how to prove a), b), c). I have tried to be very careful
and give detailed proofs. The way to prove a) uses a new ingredient: the Implicit
Function Theorem (whose presence is not a real surprise). We shall first assume that
continuous *-derivations of -+ exponentiate, i.e., are generators of one-parameter
groups (of automorphisms of ). Then most of the work, done in §§5, 6, is to show
that this hypothesis can be removed. In this very technical part of the paper we show
that enough self-adjoint derivations of 4 exponentiate. We first prove in §5 that
enough derivations are dissipative for the C*-algebra norm. We then proceed in §6
and use the self-adjointness of D and the third condition (regularity) in the strong
form, to show the surjectivity of the resolvent, and apply the Hille-Yosida Theorem
to integrate these derivations into one-parameter groups of automorphisms of the C*-
algebra. We then show that they are continuous for the Sobolev norms and define
automorphisms of 4.

To prove b) one needs a key result which is the analogue in our context of the
quasi-invariance under diffeomorphisms of the smooth measure class on a manifold,
whose replacement in our case is given by the Dixmier trace. This is shown in
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Proposition 6.16 at the end of §6. We then prove in §7 the required absolute continuity
of the spectral measure using a smearing argument. In §8 we show the required
inequality between the multiplicity of the map sy and the spectral multiplicity of
the a,.

To prove c) a new strategy is required. Roughly one needs to know that the
multiplicity function of a tentative local coordinate system is locally bounded while
the information one obtains just by applying the strategy outlined in [12] (and pursued
in [23]) is that it is a lower semi-continuous' integrable function. Typical examples
of Lebesgue negligible dense G sets®> show that, as such, the situation is hopeless. In
order to solve this problem, one needs a local form of the basic inequality ([9], [10],
Proposition IV.3.14) giving an upper bound on the Voiculescu obstruction. We prove
this resultin §9. This key result is combined with Voiculescu’s Theorem (Theorem 4.5
of [26]) and with the initial implicit function technique to conclude the proof in §11.
Our main result can be stated as follows (cf. Theorem 11.3):

Theorem 1.1. Let (A, K, D) be a spectral triple, with A commutative, fulfilling the
first five conditions of [12] (cf. §2) in a slightly stronger form, i.e., we assume that:

o The regularity holds for all A-endomorphisms of () Dom D™.
e The Hochschild cycle c is antisymmetric.

Then there exists a compact oriented smooth manifold X such that A is the algebra
C°(X) of smooth functions on X.

Moreover every compact oriented smooth manifold appears in this spectral man-
ner. Our next result is the following variant (Theorem 11.5):

Theorem 1.2. Let (A, H, D) be a spectral triple with A commutative, fulfilling the
first five conditions of [12] (cf. §2) with the cycle c antisymmetric. Assume that the
multiplicity of the action of A" in H is 2P/2. Then there exists a smooth oriented
compact (spin®) manifold X such that A = C*°(X).

This multiplicity hypothesis is a weak form of the Poincaré duality condition 6 of
[12] and thus the above theorem can be seen as the solution of the original problem
formulated in [12] and gives a characterization of spin® manifolds. It follows from
[12] (cf. [16] for the proof) that the operator D is then a Dirac operator. The reality
condition selects spin manifolds among spin€, and the spectral action ([4]) selects the
Levi-Civita connection.

Finally we make a few remarks in §12. The first describes a different perspective
on our main result. As explained many times, it is only because one drops commu-
tativity that variables with continuous range can coexist with infinitesimal variables

IThe inverse image of ]a, oo] is open.
2Countable intersection of open sets.
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(which only affect finitely many values larger than a given ¢). In the classical formu-
lation of variables, as maps from a set X to the real numbers, infinitesimal variables
cannot coexist with continuous variables. The formalism of quantum mechanics and
the uniqueness of the separable infinite dimensional Hilbert space cure this problem.
Using this formalism, variables with continuous range (i.e., self-adjoint operators
with continuous spectrum) coexist, in the same operator theoretic framework, with
variables with countable range, such as the infinitesimal ones (i.e., compact opera-
tors). The only new fact is that they do not commute. The content of Theorem 1.2 can
be expressed in a suggestive manner from this coexistence between the continuum
and the discrete. We fix the integer p and N = 217/2] where [p /2] is the integral part
of p/2. The continuum will only be used through its “measure theoretic” content.
This is captured by a commutative von Neumann algebra M and, provided there is
no atomic part in M, this algebra is then unique (up to isomorphism). It is uniquely
represented in Hilbert space # (which we fix once and for all, as a universal stage)
once the spectral multiplicity is fixed equal to N. Thus the pair (M, ) is unique
(up to isomorphism). Let us now consider (separately first) an infinitesimal dss, i.e.,
a self-adjoint compact operator in J¢. Equivalently we can talk about its inverse D
which is unbounded and self-adjoint. We assume that ds is an infinitesimal of finite
order ¢ = %. The information contained in the operator ds is entirely captured by a
list of real numbers, namely the eigenvalues of ds (with their multiplicity). This list
determines uniquely (up to isomorphism) the pair (#, D). Theorem 1.2 can now be
restated as the birth of a geometry from the coexistence of (M, #) with (4, D). This
coexistence is encoded by a unitary isomorphism F between the Hilbert space of the
canonical pair (M, #€) and the Hilbert space of the canonical pair (¢, D). Thus the
full information on the geometric space is subdivided into two pieces:

(1) the list of eigenvalues of D,
(2) the unitary F'.

We point out in §12 the analogy between these parameters for geometry and the
parameters of the Yukawa coupling of the Standard Model ([7]) which are encoded
similarly by

(1) the list of masses,
(2) the CKM matrix C.

This analogy as well as the precise definition of the corresponding unitary invariant
of Riemannian geometry will be dealt with in details in the companion paper [13].

The second remark recalls a result of M. Hilsum on finite propagation (cf. [18]).
We then discuss briefly in §12 the variations dealing with real analytic manifolds,
non-integral dimensions and the non-commutative case.

We end with two appendices. In the first, §13, we discuss equivalent formulations
of the regularity condition. In the second, §14, we recall the basic properties of the
Dixmier trace and its relation with the heat expansion.
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2. Preliminaries

Let us recall the conditions for commutative geometry as formulated in [12]. We shall
only use the first five conditions.

We let (A, K, D) be a spectral triple, thus J¢ is a Hilbert space, # an involutive
algebra represented in ¢ and D is a self-adjoint operator in J¢. We assume that +4 is
commutative. We are given an integer p which controls the dimension of our space.
The conditions are:

1) Dimension: The n-th characteristic value of the resolvent of D is O(n=/P).

2) Order one: [[D, f],g] =0forall f,g € A.
We let §(T) = [|D|, T] be the commutator® with the absolute value of D:

3) Regularity: For any a € 4 both a and [D, a] belong to the domain of §™, for
any integer m.
We let p be the linear map given by

ap@® ®a'®---®aP) =a’[D,a']...[D,aP] foralla’ € A.

4) Orientability: There exists a Hochschild cycle c € Z, (A, A) suchthat wp(c) =
1 for p odd, while for p even, mp(c) = y satisfies

y=y* y*=1 yD=-Dy.

5) Finiteness and absolute continuity: Viewed as an A-module the space Hoo =
(,, Dom D™ is finite and projective. Moreover the following equality defines
a hermitian structure (| ) on this module,

(§,an) = ][a(§|n) |[D|7? foralla € Aandall £, € Hoo. (1)

In other words the module can be written as #Hoo = eA” with e = e* € M, (A)
defining the Hermitian structure so that

Elm = Zéi*r]i €A forall€,neeA”.

It follows from condition 4) and from* [10], Theorem 8, IV.2.y, and [16] that the
operators a|D|7?, a € A, are measurable ([10], Definition 7, TV.2.8) so that the

3The domain of § is the set of bounded operators T’ with T Dom | D| C Dom | D| and § (T") bounded.
4We shall not use this result in an essential manner since one can just fix a choice of Dixmier trace Tr,
throughout the proof.
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coefficient f a|D|™? of the logarithmic divergence of their trace is unambiguously
defined.

It follows from condition 5 that the algebra «+ is uniquely determined inside its
weak closure 4" (which is also the bicommutant of +4 in J) by the equality

A={T € A" | T €, Dom™}.
This was stated without proof in [12] and we give the argument below:

Lemma 2.1. The following conditions are equivalent for T € A"
(1) T € A.

(2) [D,T] is bounded and both T and [D, T'| belong to the domain of §™, for any
integer m.

(3) T belongs to the domain of 8™, for any integer m.
@) THoo C Hoo.

Proof. Let us assume the fourth property. Then 7' defines an endomorphism of the
finite projective module #o, = eA" over +A. As any endomorphism 7 is of the form,

T = e[al—j]e, ajj € o‘\), (2)

i.e., it is the compression of a matrix a = [a;;] € My (A).

Let us show that since T belongs to the weak closure of # one can choose
ajj = x6;; for some element x of A. The norm closure A of A in £(H) is a
commutative C*-algebra, A = C(X) for some compact space X, and since ¢ is a
subalgebra of £(H) it injects in A. The equality

ACS) =][f|D|_P forall f € A 3)

defines a positive measure A on X. We let & = eA” be the induced finite projective
module over A, which is intrinsically defined as & = H#o, ®4 A. We let S be the
hermitian vector bundle on X such that & = C(X, S). By the absolute continuity
relation (1), the representation of A = C(X) in J is obtained from its action in
L?(X, A) by the tensor product

H =8y L>(X, 1) =eL?>(X,1)" = L*(X, A, S). 4)

This shows that the weak closure A” = A” of A in J is given by the diagonal
action of L>®(X, ) in eL?(X, )". Thus, since T € #", there exists f € L®(X, 1)
such that T = ef. It follows that the matrix eae belongs to the center of e M, (+4)e.
This center is e(1 ® +) and thus 7 agrees with an element of 4, which proves
the implication (4) = (1). To be more specific, and for later use, let us give a
formula for an element x € A such that 7 = ex in terms of the matrix elements
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t;j € A of T = ela;jle. First the fact that 7 belongs to the center of the algebra
B = eM,(A)e of endomorphisms of H can be seen directly since any such
endomorphism S is automatically continuous in J using (4). Thus since T € A"
one has ST = T'S. Since e is a self-adjoint idempotent and # injects in C(X) the
element t = Tr(e) = > ej; € 4 is determined by its image in A which is just
the function y € X — dim S, € {0,1,...,n}. This determines n + 1 self-adjoint
idempotents p; € A by

t=Te() =) jpj. Y pi=1 ()

To check that p; € s itis enough to show that p; = P;(7) where P; is a polynomial
with
Pij(k) =0 forallk # j, 0<k <n, Pj(j)=1L1

One then has the following formula® for x:

xz(Zzi,-)Z%pjeA. ©6)

j>0

As T belongs to the center of e M, (C(X))e one gets an equality T = ef for f €
C(X) and working at every point y € X one then shows that T = ex.

The implication (1) = (2) follows from the regularity, and (2) = (3) is im-
mediate. To show the implication (3) = (4) one uses the definition of #, as the
intersection of domains of powers of | D| and the implication

T € Dom§™, £ € Dom|D|" = T& € Dom |D|™

with the formula

DPTE =Y (’Z)sk(r) D™ & forall £ € Dom |D|", )
k=0

which is proved by induction on m. More precisely this gives an estimate of the
norms but one has to care for the domains and proceed as follows. By definition any
T € Dom § preserves the domain Dom |D| thus one gets (7) for m = 1. Let now
T € Domé§2,ie., T € Dom§ and §(T) € Dom$. Let £ € Dom |D|?. Then since
T € Dom § and |D|§ € Dom |D|, one has T|D|é € Dom |D|. One has §(T)¢ =
|D|T& — T|D|& where both terms make sense separately. Since §(7) € Dom§
one has 6(T)Dom |D| C Dom|D|. Thus §(T)¢ € Dom|D|. Hence |D|T¢ =
8(T)¢ + T|D|& € Dom |D| so that T preserves Dom | D |?. Moreover one gets (7)
for m = 2 as an equality valid on any vector £ € Dom | D|2. One can now proceed
by induction on m. We assume to have shown that

>Note that pg = 0 because of the faithfulness of the action of + in Hilbert space together with
condition 5).
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* forg <m,S € Domé? = SDom|D|? C Dom|D|?,
* (7) holds for all n < m.

For T € Dom §™*! and £ € Dom |D|™*1, one has § € Dom |D|™ and one can
use the induction hypothesis to get

DITE=Y (% ) npre.

k=0 k

Let us show that §¥(7) |D|"*& € Dom |D|. One has §¥(T) € Dom§"+'~* ¢
Dom § and | D|"%& € Dom |D|'** < Dom | D| which gives the result. Thus each
term of the sum belongs to Dom | D| and one has

pIire =Y (7 )il oI,

k=0
Moreover, as §¥(T) € Dom § and |D|”*& € Dom |D| one has
DISE(T) |D" 7% = 841(T) D" ~*& + 8(T) |ID|" ¢,
which gives (7) forn + 1. O

This shows that the whole geometric data (4, #, D) is in factuniquely determined
by the triple (A", #, D) where 4" is a commutative von Neumann algebra.

This also shows that + is a pre-C*-algebra, i.e., that it is stable under the holo-
morphic functional calculus in the C*-algebra norm closure of 4, A = . Since
we assumed that 4 was commutative, so is 4 and by Gelfand’s theorem A = C(X)
is the algebra of continuous complex valued functions on X = Spec(A4). We note
finally that characters y of # are automatically self-adjoint: y(a*) = y(a) since the
spectrum of self-adjoint elements of +4 is real. Also they are automatically continuous

since the C*-norm is uniquely determined algebraically by
lall = sup{|A| | a*a — A% ¢ AT},
thus they extend automatically to A by continuity so that
Spec A = Spec .
We shall now show that «+ is a Frechet algebra, i.e., a complete locally convex
algebra whose topology is defined by the submultiplicative norms,
pr(xy) < pe(x)pr(y) forallx,y € A,
associated to the regularity condition, for instance by

x  8(x) ... 8k)/k!

X

) = el ) = | PR ®)
0 0 X
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since pi is a representation of 4.

Proposition 2.2. (1) The unbounded derivation § is a closed operator in £(H).
(2) The algebra A endowed with the norms py is a Frechet algebra.
(3) The semi-norms pi([D,a]) = p; (a) are continuous.

Proof. (1) Let G(|D|) be the graph of | D|. The graph of § is
G(8) = {((T.S) € L(H)* | (TE, Tn + S&) € G(ID|) forall (§,7) € G(ID])}.

It is therefore closed.

(2) Let us show that «+ is complete. Let a, € 4 be a sequence which is a Cauchy
sequence in any of the norms pg. Thena, — T innorm,sothatT € A C A”. Since
d is a closed operator one has T € Dom § and 6(a,) — §(T) in norm. By induction
one gets, using the closedness of § that T € Dom 8¥ and 6%(T') = lim 6% (a,,). Thus
T € (\Dom ™ and by Lemma 2.1, we get T € »A. Furthermore we also have the
norm convergence 8 (T') = lim 6 (a,,). This shows that the a,, converge to T in the
topology of the norms pj and hence that +4 is a Frechet space.

(3) Let us show that if we adjoin the semi-norms p;_to the topology of # we still
get a complete space. The argument of the proof of (1) only uses the closedness of the
operator | D| and thus we get in the same way that the derivation T — d(T') = [D, T]
with domain Domd = {T € £(#) | TDom D C Dom D, ||[D,T]|| < oo} is
closed for the norm topology of &£ (). Thus the above proof of completeness applies.
The result then follows from the Open Mapping Theorem ([25], Corollary 2.12)
applied to the identity map from 4 endowed with the topology of the py, p,’c to A
endowed with the topology of the py. O

In fact Lemma 2.1 shows that one has Sobolev estimates, using finitely many
generators 1), of the #A-module #, to define the Sobolev norms on 4 by

1/2
lal|seble = (Z (1 + Dz)s/zanu||2) foralla € . )
"w

One has

Proposition 2.3. (1) When endowed with the norms (9), 4 is a Frechet separable
nuclear space.

(2) One has Sobolev estimates of the form

pi(a) < cillall2™,  pe([D.a]) < C;’cllallfvzb‘)lev foralla € A,

with ¢ < 00, c,’c < 00 and suitable sequences s > 0, s,’c > 0.

(3) The spectrum X = Spec(A) is metrizable.

(4) Any T € Endy Heo is continuous in Hoo and extends continuously to a
bounded operator in H.
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(5) The algebraic isomorphism Hoo = e A" is topological.
(6) The map (a, &) — a& and the A-valued inner product are jointly continuous

A X Hoo — Hoo and Hog X Heg — .

Proof. (1) By construction the family (9) is an increasing sequence of norms. Let us
show that +4 is complete. Let a, be a sequence of elements of # such that the vectors
(1 + D?)*2a,n « converge for all s (and all ;1). We then obtain vectors

é-pL = limann,u, S Jfoo for all Mu,

where the convergence holds in the topology of #. Let then T be the operator
given by
T¢é =limayé forall & € Hyo. (10)

It is well defined since one can write § = > bn, with b* € s, which gives
an§ =) _ b*a,n, which converges, in the topology of Ho, to Y b*{,, since the b*
are continuous linear maps on s, using (7) and regularity. Thus 7 is a linear map
on H and it commutes with #, i.e., it is an endomorphism of this finite projective
module. Thus T is of the form (2) and in particular it is bounded in #. Also since
endomorphisms of the finite projective module are automatically continuous in #,
they commute with 7" using (10). Thus the argument of Lemma 2.1 shows that 7" € .
Moreover, since the convergence (10) holds in the topology of #,, one hasa, — T
in the Sobolev topology and +4 is complete in that topology. Thus «4 is a Frechet
space. It is by construction a closed subspace of the sum of finitely many spaces
Hoo €ach being a separable nuclear space (of sequences of rapid decay). Thus it is a
separable nuclear space.

(2) The identity map from the Frechet algebra 4 with the norms py to the Frechet
space 4 with the Sobolev topology is continuous (using (7)) and surjective. Hence
the Open Mapping Theorem ([25], Corollary 2.12) asserts that it is an open mapping.
This shows that the inverse map is continuous, which gives the required estimates for
the norms py. The result for the semi-norms pg ([ D, a]) follows from Proposition 2.2.

(3) Since 4 is a Frechet separable nuclear space, there is a sequence x, € #4
which is dense in any of the continuous norms and in particular using (2) in the pg
norm. This shows that the C*-algebra A is norm separable and hence that its spectrum
is metrizable.

(4) By hypothesis T’ being an endomorphism is of the form (2). Using the inclusion
A C A = C(X) of 4 in its norm closure, we can view 7" as an endomorphism of the
induced C*-module & over A. By (4), any element of End4 (&) defines a bounded
operator in J¢. This shows that the graph of the operator T in H#o X Hoo is closed
and hence by the closed graph theorem that T is continuous in the Frechet topology
of Hoo.

(5) The product 4 x A — A is jointly continuous using the submultiplicative
norms pg of (8). This shows that eA” is a closed subspace of A" and hence is
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complete. Moreover the map (a;) +— Y _a;&; for given §; € H is continuous from
A" to Hoo using (7). Thus the Open Mapping Theorem gives the result.
(6) follows from (5) and the joint continuity of the product 4 X A — A. O

We end this section with the stability of 4 under the smooth functional calculus as
first shown in [2] (cf. also [23], Proposition 2.8). We repeat the proof for convenience.

Proposition 2.4. Leta; = aj’?‘ be n self-adjoint elements of A and f: R" + C be a
smooth function defined on a neighborhood of the joint spectrum of the a;. Then the
element f(ay,...,a,) € A belongsto A C A.

Proof. Let us first show that for a = a* € +4 one has for any k € N,
185 @)l = 0(s[*).  Is| — . (11)
For k = 1 one has

1
8(eisa) — is/ eitsag(a)ei(l—t)sadt’
0

which proves (11) for k = 1. In general one has, with B, (T) = e!*5¢Te1use

1 . .
;Sn(elsa)e_”a — / ﬂul 8 l(a) '/gue 8 e(a))d

k;>0, Zk =n

where Sy = {(u;) | 0 < u; < --- < uy < 1} is the standard simplex. This gives
(11). Now the joint spectrum K C R” of the a; is a compact subset and one can
extend f to a smooth function with compact support f € C°(R"). The element
f(ay,...,an) € Ais then given by

flar,....an) = (2n)—"/f(sl,...,sn)r[eiSfaf [1ds;. (12)

where f is the Fourier transform of f and is a Schwartz function f e §(R*). By
(11) the integral (12) is convergent in any of the norms py which define the topology
of 4 and one gets f(ay,...,a,) € A. O

3. Openness Lemma

In this section, we use the standard Implicit Function Theorem for smooth maps
R? — RP to obtain the openness of the tentative local charts. We formulate the
lemma in a rather abstract manner below and use it concretely in §7 for the local
charts.
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As above and in [23], we let A be a Frechet pre-C*-algebra. We recall, for
involutive algebras, the reality condition which defines a *-derivation:

So(a®) = 8o(a)* foralla € A.

We let Der +4 be the Lie algebra of continuous x-derivations of .

Definition 3.1. Let 4 be a Frechet pre-C*-algebra. A continuous *-derivation §¢ €
Der A exponentiates iff one has a unique solution, depending continuously on (¢, a) €
R x «, of the differential equation

aty(t7a)=80(y(t9a))’ y(Ova):a'

We say that + is expable when any continuous *-derivation 8o € Der +4 exponentiates.

We shall show in §§5, 6 that in our context enough derivations exponentiate but
for clarity of the argument we shall first assume that the algebra 4 is expable. We
refer to [17], §1.3, for the discussion of differentiability in the context of Frechet
spaces. We just recall that amap y: F — G of Frechet spaces is of class C! when
the directional derivative

Dy(x,h) = Sli_I)Ig)é(y(x +eh) — y(x)) (13)

exists and is a jointly continuous function of (x,/) € F x F. The map is of class
C" when the higher derivatives Dk y(x,h1,...,h;) which are defined by iteration
of (13) exist and are jointly continuous functions for k < n. The map is smooth (or
of class C*°) iff it is of class C" for all n.

Proposition 3.2. One has for any a, b € A,
y(t.ab) = y(t.a)y(t.b), y(t.a*) =yt a)*. y(t.a+b)=y(t.a)+y(.b),
(14
y(tn+ 12,a) = y(t1, y(t2,a)),  y(t,80(a)) = So(y(t,a)). 15)
Moreover y(t, a) is a smooth function of (t,a) with n-th derivative given by

D"y(t,a 51, k1, sn ha) = 85 a) [ [s5 + Y867 v, hi) [ s5. (16)
i VE)

Proof. The equalities in (14) and (15) follow from the uniqueness of the solution. To
prove (16) we consider the Frechet spaces F = R x 4 and G = # and compute the
first derivative Dy. One has

y(t +es,a+eh)—y(t,a) =yt +es,a)—y(t,a)+ey(t +es,h)

so that
Dy(t,a,s,h) = séo(y(t,a)) + y(t,h)

Since by (15) one has 8’5 (y(t,a) = y(t, 8’5 (a)) for all k, one gets (16) by induction
onn. O
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The Taylor expansion at (¢, a) is thus of the form
Y+ s.a+h) ~ Y (6§t a)s® + 85 (v h)s*)/ k!

Lemma 3.3. Let 4 be commutative, and a = (a’) be p self-adjoint elements of .
Let x be a character of A. Assume that there exists p derivations §; € Der 4 such
that

* each §; exponentiates,
* the determinant of the matrix y(8; (a®)) does not vanish.

Then the image under a of any neighborhood of y in the spectrum Spec(4) of
contains a neighborhood of a(y) in R?.

Proof. By hypothesis the derivations §; € Der + can be exponentiated to the corre-
sponding one-parameter groups F/ (1) € Aut(s) of automorphisms of #. Note that
the flows F/ do not commute pairwise in general. We then define a map 4 from R?
to Spec(+4) by

h=yxoo, 04,1, = Ftll 0.0 Fti,

which defines a character since F/(¢) € Aut(+A) by (14). The map  is continuous
since the topology of Spec(+) is the weak topology and for any a € #4 the map
(t1,....1p) € R? = 0(,...1,) (@) is continuous using Definition 3.1. The coordinates
of the map ¢p = a o h, from R? to R?, are given by

P (1. 1p) = h(tr, ... .1p)(@*) = g o F} o--0 FP(a").

The map
(t1,....1p) € R? '_)Ftll O"-oFtﬁ(ak)

is a smooth map from R? to 4. Indeed the maps (¢,a) — F, ,j (a) are smooth, and
compositions of smooth maps are smooth (cf. [17], Theorem 3.6.4), while the above
map is the composition

Flo(dx F?)o---0(Id?™2 x FP™Y) o (Id?~" x FP?(a*)),
Fp(ak) Fpr—1 F! (17)
RP — SR Ix oA — R 2xh—> o — R X A —> A,

Thus the map ¢ = a o h, obtained by composition with the character y which is
linear and continuous and hence smooth, is a smooth map from R? to R”. The image
of 0 € R? is a(y). The partial derivatives at O are

(3;¢%)(0) = x(8;(a¥)),

thus we know from the hypothesis of the lemma that the Jacobian does not vanish at
0. Tt then follows from the Implicit Function Theorem that the mapping ¢ = a o h
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maps by a diffeomorphism a suitable neighborhood of 0 to a neighborhood of a().
In particular the image under a of a neighborhood W of y contains the image under
¢ of h~1(W) which, since / is continuous, is a neighborhood of 0 € R”. This shows
that the image under a of any neighborhood of y in the spectrum Spec(+4) of 4
contains a neighborhood of a(y) in R?. O

The above proof yields the following more precise statement:

Lemma 3.4. Under the hypothesis of Lemma 3.3, there exists a smooth family o; €
Aut(A), t € RP, a neighborhood Z of y in X = Spec(A) and a neighborhood W
of 0 € RP such that, for any k € Z, the map t — a(k o 0y) is a diffeomorphism,
depending continuously on «, of W with a neighborhood of a(x) in R?.

Proof. Let as above
_ pl p
O(ty,.tp) = Ft1 Or--0 Ft,,~

The map which to k € X associates the map ¥, from R? to R? given by v, (¢) =
a(k o 0y) yields by restriction a continuous map X — C°°(K, R?) where K is a
closed ball centered at 0 € R?. Indeed for each j the map ¢ € K +— o(a’) € A
is smooth by (17) and thus its partial derivatives %0 (a”) are elements of # which
depend continuously of z. One has

VL (1) = k(8F01(a”),
and thus the partial derivatives of 1, (¢) are continuous functions of (x, ¢). Since the

determinant of the jacobian y(§; (a¥)) does not vanish, the result follows from the
Implicit Function Theorem (see e.g. [17], Theorem 5.2.3). J

4. Jacobian and openness of local charts

We first briefly recall the well-known properties of multiple commutators which we
need later.

Definition 4.1. Let 7; € 8B be elements of a noncommutative algebra 8, one lets

[T, T Ta) =Y 8(0) To) To) - - - Tomy

ag

where ¢ varies through all permutations of {1, ...,n} and (o) is its signature.
We mention the following general properties.

Proposition 4.2. Let T; € B be elements of a noncommutative algebra 3.
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(a) For any permutation « of {1,...,n}, one has
[Ta(1)7 Ty, - - Ta(n)] =¢e(@) [Ty, T2, ..., Ty].
(b) If two of the T; are equal one has
[Tl,Tz,...,Tn] =0.

(¢) Let A C B be a commutative subalgebra and A’ C B its relative commutant
in 8. Letak € A, y; € A. Then, with Ty, = Zaky], one has

[T1,Ta, ..., Tu] = Det((a})) Y1, ¥2, - - ¥ul. (18)

(d) The equality (18) extends to the case of a rectangular matrix a ch € A as follows:

7. Tou.... Tal = 3 Det((a] (F) 1 (F). ya(F).....yu(F)). - (19)
F

where the sum is over all subsets F C {1,...,m} with #F = n, the matrix
ak(F) is the restriction ofak toj € Fand the vj(F) arethe y;, i € F, ordered
with increasing index in F'.

Proof. (a) This follows from g(0 o @) = &(0)e(r).
(b) The permutation of the two indices is odd but does not affect the expression
which must vanish.

(c) One has
[T\, Ts,..., Ty Z]‘[ak Wits Vins -+ s Vinl (20)
Uk) k=1
where, a priori, the (jg) is an arbitrary map from {1,...,n} to {1,...,n}. By the

second statement of the lemma, these terms vanish when two of the indices jj are
equal. Thus one can take the sum over permutations (jz) and one can use the first
statement of the lemma to rewrite the corresponding term as

Wir: Vias -+ Vinl = () V1, V2. - Yl

It follows that _
[T1.T%....,Ty] = Det((a})) [y1. v, - - - Vnl-

(d) One decomposes the sum (20) according to the range F of the injection j
from {1,...,n}to{l,...,m}. O

Let us now go back to spectral triples (+4, #, D) fulfilling the five conditions
of §2.
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Lemma 4.3. Let B be the algebra of endomorphisms of Heo. One has a finite
decomposition

[D.a] =) 8j(@)y; foralla e A, 21)

where y; € B and the §; are derivations of the form
8j(a) = i(§|[D.al;) foralla € A, (22)
for some &; € Ho.

Proof. First [D, a]H C Hoo using regularity and (7). Thus the order one condition
shows that [D,a] € B. One has #Hoo = eA”, B = eM, (A)e for a self-adjoint
idempotent e € M, (4). Thus every element 7 € 8B can be written uniquely, as any
element of M, () in the form

T =) apsre. are € A,

in terms of the matrix units ¢;;. The coefficients ag¢ € + are uniquely determined,
using the elements 1 = ely € Hoo Where { € A" is the element all of whose
components vanish except the k-th one which is equal to 1. Using the +A-valued inner
product, one has

axe = Mk|Tne) = Lie(T) forall k, £. (23)

Moreover one has, since T = eTe and the a;y commute with e,

T = Zakgeekge. 24)

One has Lyg¢(aT) = aLye(T) for any a € 4. Applying this to T = [D, b], the
maps a — L;;([D,a]) give derivations of +. They are not self-adjoint but can be
decomposed as linear combinations of self-adjoint derivations, which, using (24),
gives the required formula (21). More precisely, the derivations §; can be written
using the +A-valued inner product on H, in the form (22) for some §; € Hoo (With i
to ensure self-adjointness). Indeed one obtains (22) applying to (23) the polarization
identity:

2(|Tn) = ((E +mITE +m) — EITE) — (Tn)
—i((E+imITE +in) — E|TE) — @nlTin).

In particular, using Proposition 2.3, the §; are continuous. O

(25)

By hypothesis the cycle ¢ is of the form

c=Yahon wu=) epleaVe-gd”, 6
o B
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where one can assume that the a’; are self-adjoint for & > 0. We define the conditional
expectation E 4 : End 4 (#s) — A, using the projections p; of (5),

1
EA(T)=Y_—p; > Tix forall T = (Tr) € eMy(Ae, (27)
j>0 J
using the identification #, = eA™. We obtain a self-adjoint p, € 4 given® by
. p(p+1D)
pa=i"2 Ea(y) e)[D.afD]...[D.abfP)). (28)
B

One lets
Co ={x € X | pa(x) = 0}

and U, = C{ be its complement, i.e., the open set where p, does not vanish.

Lemma 4.4. The U, form an open cover of X = Spec(s).
Each U, is the disjoint union of the two open subsets Uojt corresponding to the

sign of pa,
+pu(x) >0 forall x € U;:.

Proof. Itisenough to show thatany x € X belongs to some U,. One has 7p(c) =y,
so that by (26)

y Y ad Y eB)D.afP]...[D.afP] = 1.
o B

By (28) and the conditional expectation module property E4(aT) = aE4(T),
i_P(P2+1) Zag Ou = 1
o

and py(x) # 0 for some «. The second statement follows since py is a non-vanishing
real valued function on U,,. O
We let s, be the natural continuous map from X to R? given by
X € Spec(A) — (x(a})) € R, (29)
Lemma 4.5. Assume that derivations of the form (22) exponentiate. Let y € Uy.

* There exists p derivations. §; € Der(+A) such that y(Det((6; (a’o‘l)))) #£ 0.

e The map ay from Uy to R? is open.

There is no y in the odd case.
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o There exists a smooth family o, € Aut(A), t € R?, a neighborhood Z of y in
X = Spec(A) and a neighborhood W of 0 € R? such that, for any k € Z, the
map t — Sq(k o 0y) is a diffeomorphism, depending continuously on k, of W
with a neighborhood of a (k) in R?.

Proof. We let, as above, B be the algebra of endomorphisms of the #A-module # .
It contains A C B as a subalgebra of its center. By Lemma 4.3, one has derivations
d; € Der(+A) of the form (22) such that the formula (21) holds:

[D,a] = ZSj(a)yj foralla € A.
1

By hypothesis we have py(y) # 0. Thus, the following endomorphism of the -
module H#, does not vanish,

[[D,all,[D,a2],....[D,al])(x) #0 forall y € U,.

It thus follows, from (19) of Proposition 4.2, that for y € U, one can find p elements
d; € Der(-4) among the above §; such that

x(Det((8;(ak)))) # .

Now let V' C U, be open. To show that s,(V') is open one needs to show that,
for any y € V, 54(V) contains a neighborhood of s (). But V' is a neighborhood
of y in Spec(+) and the hypothesis of Lemma 3.3 is fulfilled so that this lemma
shows that s, (V') contains a neighborhood of s4()). The third statement follows
from Lemma 3.4. O

5. Dissipative derivations

We assumed in the above discussion that the algebra # is expable. It is of course
desirable to remove this hypothesis, and this will be done in this section and the next
one. We need a form of existence and uniqueness for solutions of linear differential
equations with values in a Frechet space E. Simple examples show that in that
generality one has neither existence nor uniqueness. For failure of existence just let
A = C*([0, 1]), §o = 0. For failure of uniqueness, let £ be the space of sequences
X € R for n > 1 and take the shift operator S. Then the equation

drx =8x, (SX)n = Xnt1,

has no uniqueness of solutions. Indeed we can take for x;(¢) any smooth function
which is flat at # = 0, i.e., 37x;(0) = 0, and then define by induction x, 41 (t) =
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Sa

Figure 1. The map s, from X to X .

d¢xp(t) so that d,x = Sx holds and the initial condition x(0) = 0 does not imply
uniqueness.

In our case we need to know that any derivation § € Der + can be exponentiated,
i.e., that one has existence and uniqueness for the differential equation

dy(r)
—5 = 80@). y@) e A

It is only the compactness of X that ensures this, and also the fact that one is dealing
with a real vector field. This means that we first need to make sure that the derivation
exponentiates at the level of the C*-algebra as discussed in [3].

One step towards this would be to show directly the following corollary of expa-
bility:

Lemma 5.1. Assume that the derivations of the form the form (22) exponentiate.
Then, for any h = h* € A, the commutator [D, h] vanishes where’ h reaches its
maximum. Conversely if this property holds the derivations £8; of the form (22) are
dissipative (cf. [3], Definition 1.4.6), i.e.,

Ix + A8; ()| = |lx|| forallx € A, AeR.

Proof. One has, by (21), [D,h] = Y_§;(h)y; where §; € Der ». Thus it is enough
to show that §;(h)(y) = O where h = h* € 4 reaches its maximum at y. This
follows from the existence of ¢’®/ € Aut(A) using the differentiable function f(¢) =
%(e*% (h)) which has a maximum at # = 0 and hence vanishing derivative.

"This makes sense since [ D, k] commutes with .
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Conversely, the derivations §; are of the form (22), i.e., §;(h) = i(§|[D, h]§).
Thus the vanishing of [D, h](y), where h = h* € A reaches its maximum, ensures
that §; (h)(x) = i(§(x). [D.h](x)§(x)) = 0 also vanishes. Thus one has

lh + A8; ()| > |h|| forallh = h* € A, A €R,

since for a character y of 4 with y(£h) = ||| one has y(£(h + A8;(h))) = ||h].
In the complex case, i.e., for an arbitrary x € A, let ¢ be a state on A D # such
that [y (x)| = |x||. Replacing x — ux for u € C, |u| = 1, one can assume
that ¢ (x) > 0. Then writing x = h + ik with h = h* and k = k¥, one has
V¥ (x) = ¥ (h) = ||h] so that ¥ (d;(h)) = O from the above discussion. Then one
has, for A € R,
Y(x + A8 (x)) = ¥ (h) +iAy (8, (k)

and [y (x + A8; (X)) = (k) = |[x]. O

Note that the commutativity of [D, h] with & and the self-adjointness of D do not
suffice to entail the conclusion of Lemma 5.1. This can be seen from the following
spectral triple:

A=C>(0,1]), H=L*0,1)®C>* D= (_80 36) (30)

with the boundary condition
Dom D = {& = (§\) [ £1(0) = 0. &(1) = 0}. 31)
For any i € + one has [D, h] = dxhyy,

(01
Vl_ _1 0

so that [D, h] commutes with 4. For A(x) = x the maximum is at x = 1 and [D, h]
does not vanish there. This example shows that the hypothesis of expability of the
algebra A appears at first sight as essential. Howeyver, in this example, condition 5)
fails since the boundary condition (31) does not yield a finite projective submodule
of C*([0,1]) ® C? over A = C*°([0, 1]). Also [D, h] = d,hy; does not preserve
the domain of D which is the same as the domain of |D|, thus regularity fails.
Orientability also fails in this example. We shall now show that regularity allows in
fact to obtain the required dissipativity.
Let us consider the one-parameter group of automorphisms of £(#) given by

o (T) = P Te P forallt € R.

Lemma 5.2. Let T preserve Dom D and [D, T| be bounded. Then the function
t +— a;(T) is norm continuous,

lloes (T) — e (TN < |s — 2| I[D. T,
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and when s — 0 the difference quotient

M — i/sat([l),r])d,
s Jo

N

converges to i[D, T in the strong topology.

Proof. Let & € Dom D. Then %(eiSD — 1)§ — iDE& (in norm) when s — 0. Thus
using

1. . 1. . 1.
;(estTe—lsD _ T)é — ;etsDT(e—lsD _ 1)%- + ;(elSD _ 1)T$

one gets (in norm)

é(eiSD Te—isD _ T)¢ - i[D,T)¢

when s — 0. Thus ¢ — o, (T)E is of class C!. Its derivative is t — i, ([D, T])£.
Thus

(@5 (T) — o (T))E = i / (D, TDEdu (32)

holds for all § € Dom D and hence all § € J since the map u +— oy ([D,T])E
is continuous, as follows from the continuity of s + ¢!y for any n € #. Both
statements follow. O

We can now consider the C*-algebra C generated by the o5 (k) for h = h* € A
as above. It is norm separable and the oy € Aut(C) form a norm continuous one-
parameter group. To try and prove that [D, k] vanishes where & = h* > 0 reaches
its maximum, one considers a state ¢ on C such that ¢ (h) = ||&]. It is obtained by
extension using the inclusion C*(h) C C. The function

J(s) = ¢(as(h))

is a Lipschitz function and reaches its maximum: ||| at s = 0. Thus if one could
assert that the derivative at s = 0 is given by ¢ ([ D, h]), one would get the vanishing
¢([D, h]) = 0. The problem is that o, ([ D, k]) is not in general a norm continuous
function of u and thus the differentiability only holds in the strong topology but not
in the norm topology.

Things are easier with | D| since the regularity conditions ensures that the map

t = ye(a) = e'1Plge= 1P (33)

is in fact of class C*° in the norm topology (cf. Lemma 13.3 of §13). Moreover the
following lemma shows that it is enough to show the vanishing of [[D?2,a], b] at
for all b € # to get the vanishing of [D, a] at y.



22 A. Connes

Lemma 5.3. Let h = h* € s and y € Spec(A). If [[D?, h], h] vanishes at x, then
[D, h] vanishes at y.

Proof. One has
[(D?, h].h] = 2[D,h)? (34)

using the order one condition. O

Note that (34) shows that [D, 4]? and hence |[D, h]| only depends upon D? and
hence | D | and not upon the phase of the polar decomposition of D. This comes from
the order one condition. Moreover one has the following vanishing of [| D|, 4] where
h = h* € 4 reaches its maximum.

Lemma 5.4. Forany h = h* € A, h > 0, reaching its maximum at y € Spec(+4)
and any sequence b, € A, ||by|| < 1, with support tending to {x}, one has

6511 D1, h]ball — 0. 35)

Proof. Let &, € J be unit vectors with support tending to {y}. Then consider any
limit state on &£ (H):

1(T) = lim(E., T&). (36)

One has n(h) = h(y) since h is a continuous function on X = Spec(s). Thus
n(h) = ||h||. When applied to | D| instead of D, Lemma 5.2 shows that both y, (/)
and ys(8(h)) are Lipschitz functions of s, while

vs—h _ l/s ye(8(h))dt — i8(h)
N s Jo

so that y,(h) is of class C! in norm. It follows that the function s — 7(ys(h))
is of class C'. It is maximal for s = 0 and hence its derivative vanishes so that
n(§(h)) = 0. Thus

lim (&, 8(h)En) = 0 (37)

and this continues to hold for any bounded sequence £, € # with support tending
to {y}. Now let b, be as in the lemma; then if (35) does not hold, one can find a
subsequence ng with [|by, [| DI, h]bs, || = & > 0 for all k. Using polarization (25),
one gets unit vectors &, € J such that

(& b, [IDI. hlby, )] = € > 0,
which contradicts (37) for & = b, . gl’( -

We shall use the analogue in our context of the notion of symbol for pseudodif-
ferential operators. The symbol of T can be viewed as a weak limit of the conjugate
operators of the form

t5 T TeTIT ¢ s o,



On the spectral characterization of manifolds 23

where the integer k is the order of T'. For instance the symbol of D is given by
—i[D, ¢] since the order one condition gives

e De™ ™ = —i[D,¢] + ! D. (38)

One expects the symbol of D? to be of the form

1 . .
lim —ze”¢D2e_"¢E = —[D,¢]*¢ forall £ € Dom D?.

T—>00 T
This is obtained by squaring (38), but one needs to know that Dom D is invariant

under [D, ¢] to control the term D [D, ¢]. This is insured by regularity.

Remark 5.5. In the example (30) considered above, [D, ¢] does not map Dom D?
to Dom D so that D [D, ¢|& does not make sense in that case. In fact regularity fails,
and Dom D? is not invariant under ¢, unless [D, ¢] vanishes on the boundary. To see
this, note that the boundary condition for D? is

£ = @) € Dom D? <= £(0) = 0. 9:£2(0) = 0. £2(1) = 0, dxkr (1) = 0,

which contains the Neumann condition d,&,(0) = 0 while &, (0) is arbitrary. Thus
dx9E2(0) = 0,¢(0)&2(0) vanishes only when d,¢ (0) = 0.

In the case of an operator of order O there is no power of t and one deals with a
bounded family so that one can expect the limit to be a weak limit. We need to guess
the symbol of [| D], h]. We expect that if we choose ¢ = #, this symbol will just be
i|[D,h]| € End S. The symbol of [D?, h] is (using [D?,h] = D[D,h] + [D, h] D)

1 e’ [D? hle7'™ = —i([D, ¢][D. h] + [D.,h][D, $]) + t~ [D?, h].

To see why we should expect the symbol of [| D|, h] for ¢ = h to justbe i|[D, h]| we
have:

Lemma 5.6. Assume that when t — oo the following limit holds in the strong
topology:

lim e**[|D|, hle """ = T.

T—>00

Then one has, with strong convergence on Dom D,

lim t '™ Dle7 ™" = —i T,
T—>00

Proof. One defines a one-parameter group f,, of automorphisms:

,Bu(Y) — eithe—iuh_
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One has, at the formal level, j—uﬂu(Y) = —iBy([Y, h]). Taking Y = |D| one gets,
with the notations of the lemma and using regularity,

. . d
e[| DI, hle " hg = i——Bu(D)E forall § € Dom |D],
u
which gives
T
/ e |D|, hle ™" edu = i(B.(|D|) — |D|)¢ forall ¢ € Dom|D|. (39)
0

Note that this equality continues to hold for any § € J since B.(|D|) — |D| is
a bounded operator. Now e**[|D|, h]e™"*" is uniformly bounded and converges
strongly by hypothesis to 7. Thus one has, for the Cesaro mean,

T—>00

T
lim 7! / eMM|D|, hle ™ e du = TE forall & € K,
0

which gives the result since one controls ™! | D|§ — 0 for £ € Dom D. O

Moreover we expect the symbol map to be a morphism so that the symbol of | D|
is given by the absolute value of the symbol of D, i.e., by |[D, &]|. In fact we do
not need to prove the converse of Lemma 5.6 since we can use the regularization by
Cesaro mean to compose the states 1, with weak limits of C;(7),

can = | " Bu(T)du. (40)
0

Lemma 5.7. With h as above one has
(1) C; is a completely positive map from L(JH) to itself and C;(1) = 1,
(2) C:(aTbh) =aC.(T)b foralla,b € A,
(3) Ce([ID].h]) = £ (™| D]e™"™ — | D).

Proof. The first two statements follow from (40) using the commutativity of 4 to get
Bu(aTb) = aB,(T)b. The last statement follows from (39). O

We can then compose the vector states (£,, «£,) used in the construction of 7 (36)
with Cy, to replace [|D|, h] by i|[D, h]|.
Thus we need to determine the principal symbol of | D|. The intuitive idea is as
follows: one has
B:(D) =™ De™i™" = D —it[D, h] (41)
since h commutes with [D, h] sothat[D, f(h)] = f'(h)[D, h]for f smooth (cf.[18]).
Thus, by homogeneity of the absolute value,

1.(ID]) = Le'™|D|e™™ = |2 —i[D,h]| forall T > 0.

T
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We need the weak limit in J for T — oo of %,3,(|D|)“§ for £ € Dom D. These
vectors are bounded in norm as follows from

IzB(IDDEIl = llleD —i[D, kgl = (eD —i[D.hDEN, e =1/T,  (42)

which is bounded since § € Dom D so that ||eDE&|| — 0. Note also that %,Bt(|D ) is
a positive operator so that any weak limit 1 of %ﬂr(|D & fulfills (&, n) > 0.
Let us now show how to use regularity to obtain the strong convergence of

1 :

—B(IDD)§ = [eD —i[D. hlj§ (43)
when ¢ — 0 and £ € Dom D. By (42) we can assume that § € Ho. We let
X(e) = eD —i[D,h]. By (41) it is a self-adjoint operator with J#, as a core since

Hoo is invariant under e!*”. The same holds for | X (¢)|.

Lemma 5.8. One has, with X(¢) = eD —i[D, h],

| X&) =Y(e) + fo(X(e) (44)
where
A X(e)?
Y(e)§ = ;/0 ﬁé du forall ¢ € Dom D (45)
and

fo(x) = x| = x2(1 + x>)7Y? forall x € R.

Proof. For any self-adjoint operator T one has ||(1 + u? + T?)7!|| < (1 +u?)7!
and the norm convergent expression

1

(1+T2)_1/2 — E/OO du’
7Jo 1+u?2+T?

which gives, for any £ € Dom T,

T?(1 4 T?)71% = %/OOT—zédu
7)o 1+u2+T2 '

Note that the partial sums

/U :
—————du
o 1+u?2+T72

are uniformly bounded but do not converge in norm to 7(1 4+ 72)~!/2 since the
function x(1 4+ x2)~!/2 does not vanish at co. Thus we get strong convergence
on Dom 7. This applies to X (&), which is, up to a scale factor, conjugate to D
by an automorphism of Dom D so that (45) holds with Y(e) = f(X(¢)), f(x) =
x2(1 4+ x2)~1/2, Finally one has fy € Co(R) and f(x) + fo(x) = |x]|. O

1/2
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For each A > 0 we define a transformation on operators acting in #, by
0:(T) = (D> + V)T (D> + 1)~ (46)
Lemma 5.9. Let h = h* € A. There exists A < oo such that
16,((1 +u* + X0 <G +u*)™" forallu.
Proof. Let£ € Hoo and let us give a lower bound for |0, (1 4+ u? + X(0)?)&||. Using

0,(T) =T + [D>, T|(D* + 1) ! 47)
we get
62(X(0)%*) = X(0)*> — [D?,[D,h]*](D* + 2)~".

Now the regularity shows (cf. §13) that [D?2, [D, h]?](D? + 1)~ is compact so that
for A — oo its norm goes to 0 (in fact it is of the form B;(D? 4+ 1)~'/2 with the
norm of Bj bounded, so its norm decays like A~1/2). Thus we can choose A large
enough so that Z = 0 (X(0)?) — X (0)? fulfills || Z|| < 1/2. We then get

(€. 01(1 + 17 + X(0)*)€) = (£, 1 + > + X(0)%8) — (5. Z§)| = (5 +ud)IEII
(using X(0)? = —[D, h]*> > 0) so that
16, (1 +u? + X(0)*)E] = (5 +u)[§] forall § € Heo.

It remains to show that 0 (1 +u2 4 X (0)?) is invertible as an operator acting in Ho.
Since D? + A is an automorphism of H,, it is enough to show that 1 + u? + X(0)?
is invertible as an operator acting in #so. One has X(0)2 = —[D, h]*> > 0 so that
1 + u? + X(0)? is invertible as an operator in . Its invertibility in #*° follows
from the stability under smooth functional calculus (Proposition 2.4) of the algebra

{TeL(H)|THe C Heo, |8™(T)| < oo for all m}

and the fact that, by regularity, [ D, /] belongs to this algebra. O

Lemma 5.10. Let h = h* € A. Then when ¢ — 0,
Y(e)¢ - Y(0)¢ forallE € Hoo.
Proof. One has for the action on Hw,
X(e)? = (eD —i[D,h]))® = &2D? —ie(D[D, h] + [D, h)D) — [D, h)?
= ¢2D? —ig[D? h] - [D, h]*.
We first estimate, for § € Hoo,

X(e)? X(0)?
1+u2+ X(e)? 1+u2+ X(0)2

nu,e) = ( ).
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One has
(u.e) = (1 +u?)( - L
€)= I +u2+ X(0)2  1+u?1 X(e)?
1+ u? 5 5 1
- " (X(e)?=-X(02)——
1+u2—|—X(8)2( () ())1+M2+X(0)2E
1+ u? 2 . 2 1
- % 2D D)
121 X2 ielD% D ey 02t
1+ u?

= m(SZDZ —ie[D? h)(D?* + 17!

O ((1 +u® + X(0)>) ") (D? + A)E.
Now one has, using regularity,
|(>D? — ie[D> h)(D? + 1) 7| = k(&) = O(e)
while, since X (¢) is self-adjoint,

|l =
1+ u? + X(e)?

Moreover (D? + 1) € Ho, C H. By Lemma 5.9, for A large enough, one thus gets
162.((1 +u? + X(©0)*)")(D? + 1§ < (5 +u>) ' I(D? + D] forall u.

Thus after integrating in ¥ we get the estimate

I070) = YD = = [ K +u2) 7 0% + Wl = 06,

which gives the required result. O

It remains to estimate the continuity for ¢ — 0 of fo(X(g))&. The above proof
shows that for g,(x) = (a + x?)~! and any @ > 0 one has the norm continuity of
ga(X ())& when ¢ — 0 (we showed convergence only for £ € F, but it holds in
general using the boundedness of the functions g, ). The even functionsin f € Cy(R)
for which

[/ (X(e)§ — f(X(0))E] — 0 forall § € H (48)

form a norm closed subalgebra of Cy(R)***". This algebra contains the functions g,
thus the Stone—Weierstrass Theorem shows that (48) holds for all f € Co(R)*¥" and
in particular for fy. We thus get:

Proposition 5.11. Let h = h* € A. Then one has, with norm convergence,

lim ' '™ D|e”""e = |[D,h]|€ forall & € Dom D.
T—>00
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Proof. By (43) we just need to show that |X(¢)|€ — |X(0)|§ when ¢ — 0 for
any £ € Ho. By (44), |X(e)] = Y(e) + fo(X(e)). By Lemma 5.9 we have
Y(e)¢ — Y(0)¢ for £ € Hoo, and by the above discussion fo(X(g))€ is continuous
at ¢ = 0. Thus we get the required result for § € H#o.. The general case § € Dom D
follows using (42). ]

Remark 5.12. Proposition 5.11 shows that, under the regularity hypothesis,
[I[D,h]|,[D,a]] =0 forallh =h*, a € A. (49)
Indeed one has
[e"™ D]e ™™, [D,a]) = '™ D, [D, alje ™"

and the norm of [|D|, [D, a]] is finite so that t=!||[e!*"|D|e~"™" [D, a]]| — 0 for
7 — o0o. Thus one has

lim ! (¢!*"|D|e™"*[D, a)é — [D,ale’™|Dle™*"¢) =0 forall ¢ € Dom D,

T—>00

and, since [D, a] preserves Dom D,
[|[[D,h]|,[D,a]l¢ =0 forall§ € Dom D.

Note also that, by the same argument, under the strong regularity hypothesis of
Definition 6.1 below, this shows that

[D,h]*> € A forallh = h* € A.

Indeed |[D, k]| then commutes with all endomorphisms of H.. Its square [D, h]?,
being itself an endomorphism, belongs to the center of End 4 (# ) and is, by (6), an
element of A.

We can now show that regularity suffices to ensure the dissipative property of
Lemma 5.1.

Theorem 5.13. Let (A, H, D) be a regular spectral triple with A commutative
fulfilling the order one condition. Then for any h = h* € A, the commutator [D, h]
vanishes where h reaches its maximum, i.e., for any sequence b, € A, ||b,| < 1,
with support tending to { x}, where x is a character such that | y(h)| is maximum, one

has
I[D, hlba|l — 0.

Proof. By Proposition 5.11 combined with the third statement of Lemma 5.7 one
has, first for £ € Dom D and then by uniformity for all £ € J,

lim C,([ID].hDE = lim L (™| Dle™ "¢ —|DIg) = i|[D. h]l¢
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and thus the C;([| D|, h]) converge strongly to i |[ D, k]| when T — co. By the second
statement of Lemma 5.7, one has

Ce(b[|D]. hlbn) = b Ce((| D], h])bn.
Thus fixing n and taking the limit for T — oo one gets
Ce(by[ID], hlbp) — iby|[D, h]|by.

One thus gets
165 1[D. hllbnll < b5 (1D, hlball.

But Lemma 5.4 shows that ||b;;[|D|, h]b,|| — O when n — oo, which gives the
required result. Moreover, since |[D, h]| commutes with the b,,, this can be formulated
by [[[D, hbn|l — 0. O

Corollary 5.14. Let (A, H, D) be a spectral triple with A commutative fulfilling the
five conditions of §2. The derivations £8; of Lemma 4.3 are dissipative.

Proof. This follows from Theorem 5.13 and Lemma 5.1. O

Corollary 5.15. Let h = h* € A. The principal symbol of the operator
Grad(h) = [D?, h]
vanishes where h reaches its maximum.

Proof. One has [D?,h] = D[D,h] + [D,h]D and since [D, h] commutes with #,
one gets the principal symbol of [D?, h] from that of D, which gives
lim 1e'*[D? hle'™ = —i([D,¢][D,h] + [D, h][D, ).

t—>o00 T

Thus the result follows from Theorem 5.13. ]

6. Self-adjointness and derivations

We now introduce a technical hypothesis which will play an important role.

Definition 6.1. A spectral triple is strongly regular when all endomorphisms of the
A-module Ho, are regular.

Our goal is to obtain self-adjoint operators from the operator D, in the form A* DA
where A is regular, i.e., belongs to the domains of ™ for all m.
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Lemma 6.2. Let A be regular, then ADom D C Dom D and the adjoint of A* D is
the closure of the densely defined operator T

Dom T =Dom D, T& = D(A§) forall € € Dom D. (50)

Proof. By regularity both A and A* preserve the domain Dom | D| = Dom D so that
(50) makes sense. The domain of A* D is the domain of D. An 5 € J belongs to the
domain of the adjoint S = (4* D)* when there exists a constant C < oo such that

{A*DE&, 1) < C||&|| forall &£ € Dom D.

One has (A*DE&,n) = (D&, An) and, since D is self-adjoint, the above condition
means that An € Dom D. Moreover one then has Sn = DAn. In other words,
S = DA with domain

Dom S ={n| An € Dom D}, S& = D(A§) forall ¢ € DomS.

To prove the lemma we need to show that S is the closure of the operator T of (50).
Let n € Dom S. We construct a sequence 7, € Dom D such that

N —1n, DAn, — DAn.

In fact we let
n(e) = (1 +¢/D|)"'n foralle > 0.

It belongs to Dom D by construction and 7(¢) — 1 when ¢ — 0. One has
DAn(e) = D(1 +¢|D|) ' An +eD(1 + ¢|D|)"'[| D], A](1 + &| D) "' n.

Since An € Dom D one has D(1 + ¢|D|)"'4An = (1 4+ ¢|D|)"' DAn — DAn. The
remainder is of the form B(g)[| D|, A]n(e), where B(¢) = eD(1+¢|D|)~! is of norm
less than 1, [|D|, A] is bounded and n(e) — n. Thus it behaves like B(¢)[| D], A]n
and hence tends to 0 when ¢ — 0 since B(g)¢{ — O for any ¢ € J€. This shows that
DAn(e) — DAnand S is the closure of T'. O

Corollary 6.3. Let ¢ = ¢* € A. Then the operator H = ¢ D ¢ with domain Dom D
is essentially self-adjoint.

Proof. One has H = ¢2D + ¢[D, ¢] on Dom D. The bounded perturbation P =
@[ D, ¢] does not alter the domain of the adjoint H* which is thus the same as the
domain of Hf, Hy = ¢?>D. By Lemma 6.2, the adjoint of H is the closure of Dg?
with domain Dom D. This is the same as the closure of 9D + [D, ¢]¢ with domain
Dom D. Since [D, ¢]¢ is bounded, we thus get that the adjoint H of Hy is the sum
of the closure of ¢ D¢ with domain Dom D with the bounded operator [D, ¢]¢. Thus
when adding P* = —[D, ¢]e to HJ, we obtain the closure of ¢ D¢ with domain
Dom D, i.e., the operator H . O
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Lemma 6.4. Let A be regular. Then A* D is closable and
* for any & in the domain of the closure A* D of A* D, one has, for ¢ > 0,

(14 ¢|D))"'4* D¢

(51)
= A*D(1 +¢|D))7'& — (1 +¢|D)'|D|, A*]eD(1 + | D)) 7',

e the domain of A*D is the set of £ € H for which the A*D(1 + ¢|D|)~'&
converge in norm for ¢ — 0,

o the limit of the A* D(1 + ¢|D|)~'€ gives A* DE.

Proof. Theoperator A* D is closable since its adjoint is densely defined by Lemma 6.2.
The right-hand side of (51) is abounded operator, thus it is enough to prove the equality
for ¢ € Dom D since A* D is the closure of its restriction to Dom D. Foré € Dom D,
(51) follows from

[(1+&[D)7" A" = —(1 + €| D)~ [e| D], A*](1 + €| D",

Let then £ be in the domain of the closure A*D. By (51), A*D(1 + ¢|D|)~ '€ is the
sumof (14+¢|D|)"'A*DE — A*DE,andof (1+¢|D|)"[|D|, A*]eD(1+¢|D|)~1&
which converges to 0 in norm since (14-&|D|)~![| D|, A*] is uniformly bounded while
eD(1 + | D])~'& converges to 0 in norm. Thus A*D(1 + | D|)~& is convergent
when & — 0. Conversely, if the A* D(1+¢|D|)~!& converge in norm for e — 0, then
since (14+¢|D|)~'& — £and (14+¢|D|)~'& € Dom D, one gets that £ is in the domain
of the closure A*D of A* D and that moreover the limit of the A*D(1 + ¢|D|)"1¢
gives A* DE. O

Proposition 6.5. Let A be regular then the operator H = A*DA with domain
Dom D is essentially self-adjoint. The domain of the closure of H is the set of
£ € K for which the A* DA(1 + &|D|)~ & converge in norm for ¢ — 0. The limit of
the A*DA(1 + ¢|D|)"'& gives HE.

Proof. Let us first check that H is symmetric. One has for £ and 5 in Dom D,
(HE.n) = (A" DAE.n) = (DAE, An) = (AE, DAn) = (§, A*DAn) = (£, Hn).

Let us now show that H* is the closure of H. Let n € Dom H*. Then there exists
C < oo with
|[(A*DAE, )| < C||&|| forall £ € Dom D.

Since (A* DA, n) = (DAE, An), this means that An is in the domain of the adjoint
of DA with domain Dom D, i.e.,

AneDomT*, H*np=T*An,

where T is defined in (50). By Lemma 6.2 the adjoint of A*D is the closure of 7':
(A*D)* = T. The adjoint T* of T is the same as the adjoint of the closure 7', and is
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the closure A*D = (A*D)** of A*D. Thus by Lemma 6.4 we have, since A7 is in
the domain of A* D, the convergence of A*D(1 + ¢|D|)"'Anto A*DAn = H*n.
Moreover, as above, we have

A*D(1 + ¢|D|)"YAn— A*DA(1 +¢|D|)"1p
= —A%eD(1 +¢/D|)"'[|D|, AJ(1 + ¢|D)~'n

and the right-hand side converges to 0 in norm when ¢ — 0. Thus we have shown
that for any n € Dom H * one gets the convergence of A* DA(1 +¢|D|)"'nto H*n.
This shows, since (1 + ¢|D|)~!n € Dom H, that H* is the closure of H and hence
that H is essentially self-adjoint. It also gives a characterization of the domain of the
closure of H as required. O

We now want to apply this result using endomorphisms of the A-module H
which are of rank one, in order to obtain an operator on # itself.

Lemma 6.6. Let £, € Hso. Then the following gives an endomorphism of the
A-module Hso:

Ten(8) = MO forall § € He, (52)
where (1|¢) is the A-valued inner product. One has

Tug, by = ab*Tg,,, foralla,b € A, Tgn =Tye. (53)

Proof. This follows from the #A-linearity of the inner product, which is linear in the
second variable and antilinear in the first. The equality Té*n = T ¢ follows from

(Tyee. B) = {(Ele)n. B) = / (E0)* (n1B) A,
(. TenB) = (o (N B)E) = / @e)(1B) d. 0

By Proposition 2.3 (4), the T¢ ; are bounded operators in J¢. Let us now assume
that all endomorphisms of the #-module #, are regular as in Definition 6.1. We
can then apply Proposition 6.5 and get that

De n=TyeDTey (54)

defines an essentially self-adjoint operator with domain Dom D. We need to relate
this operator with the derivation of #4 given by (22), i.e.,

So(a) = i(&|[D,alé) foralla € . (55)
Lemma 6.7. One has

De,n& = —ido((nlE)) 0 + (EIDE) Ty, nE forall §,1.8 € Heo. (56)
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The operator Vy(a) = an, for all a € A, extends to a bounded linear map Vy from
L?*(X,d)) to ¥, and one has

Vr,*Vn = (nln), VnVn* =Ty, 9. Vn*(é') = ([8) forall{ € Hoo.

Proof. Onehas D¢ ,¢ =T, ¢ D T¢ n¢ = Ty ¢ D((n|¢)&). Thususing (£, [D, al§) =
—ido(a) and (§laD§)n = (§|D§)an fora = (n|{) one gets

D¢y = (§|Da&)n = (E|[D,alé)n + (§[DE)an = —ido((n|))n + (§|DE)Ty, 4,
which gives (56). To show that V7 is bounded, note that

(Va@). Vy(@)) = (an.an) = ][a*a(nln)lDl_” - /a*a<n|n)dx,

which also shows that V¥V, = (n]n). Let us check that V,*({) = (7]¢). One has

(&, Val@)) = (L.an) =/a(§|n)d/\ =/<n|z)*adx= (V5(©).a).

The equality V,V,* = T,y follows from (52). 0

The strategy now is to use the self-adjointness of D¢ , and the fact that §o can be
compared to i D¢, plus a bounded perturbation to show that the resolvent problem
(1 + &89)€ = n can be solved first in L2. Then one wants to use the regularity to
show that this problem can also be solved in the Sobolev spaces. Finally one wants to
use the Sobolev estimates to show that it can be solved in the C* norm. Then together
with the results on dissipative derivations of §5 one gets the existence of the resolvent
for the action on the C*-algebra. One notes that it is enough to solve the resolvent
problem for ¢ small enough. One then applies the Hille—Yosida Theorem.

More specifically we consider the equation

(1 +ie(Dg,n — (§|DE)Ty,9))¢ = an, (57)

where a € A is given and ¢ can be taken as small as needed. Given a solution
¢ of (57), one can under suitable regularity conditions on { take the inner product
(n|¢) = b. One then has, at the formal level,

b + €8o(b)(nln) = a(nln). (58)

We can assume that the support of £ is small enough so that we can find 7 such that
(nln) = 1 in a neighborhood of the support K of £&. Then by (55) one gets that since
8o vanishes outside K, one can replace 8o(b)(n|n) in (58) by 8o(b). Moreover one
then gets

c+¢ebp(c)=a, c=b+(1—-(|n))a (59)

since (1 — (n|n))a belongs to the kernel of §y because its support is disjoint from K.
We need to know that ¢ € A, where A = C(X) is the norm closure of +4, and in fact
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also that [D, c] is bounded, just to formulate the result. Thus we need to control the
Sobolev norms of the solution of (57). To do that we use the transformation 6, of
(46). One has, as in (47),

O\(T) =T + &(T), Eu(T)=[D> TUD>+1)7", (60)
so that the binomial formula expresses Oiv (T) in terms of the & ff (T) fork < N as
N N ok
(M) =T+ L JENT). 61)
k>1
Note also that, for T regular, and on Dom D one has
[D2,T] = 28(T)|D| + §*(T), (62)
as follows from [D2,T] = [|D|?>,T] = §(T)|D| + |D|8(T) = 28(T)|D| + §*(T).

Lemma 6.8. Let T be regular.

(1) The & )’f (T) are compact operators for k > 0 and converge in norm to 0 when
A — oo.

(2) One has (with A > 1)
1€2(T)D || < 2[18(T)|l + 18*(T)I,

: : (63)
IDELT) = 28(THNI + 3N6=(TH ]| + 1187 (T) I

(3) For k > 1, the operators DSIA‘ (T) and 8/]{ (T')D are compact operators which
converge in norm to 0 when A — o0.

Proof. (1) One has, using (60) and (62), that
&(T) = (28(T)|D| + 8*(T))(D* + 1)~ L. (64)

Thus the answer follows for k = 1 since both (D? + 1)~ and |D|(D? + 1)~ ! are
compact operators which converge in norm to 0 when A — oco. Since &, (T) is also
regular, it follows also for k > 1.

(2) The first inequality of (63) follows from (64). For the second, one has

[ID]. &1(T)] = €:(8(T)).
which gives (63) using
[IDEAD)I| = 1EA(T)IDI[l + [1EA (ST,

and the second inequality follows using the first and (64).
(3) The statement is immediate for Sff(T)D since |D|(D? + A)~! is compact.

For the second one uses [| D], 8/’{ (M) = Si‘ (8(T)) as in the proof of (2). O
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Lemma 6.9. (1) For any integer N € N, there exists A < 0o and g9 > 0 such that
the operator
ON (1 +ieSe ), Se.n= Den— (E|DETy . (65)

with domain Dom D is closable and invertible in H for any ¢ < &g, and the norm of
its inverse fulfills
[ON (1 +ieSe )7l <1+ Neg, e, (66)

where cg , < 00 only depends on § and 1.

(2) For any integer N there exists ey > 0 such that (57) can be solved in #Hn =
Dom |D|V.

Proof. (1) The operator P = (§|D§)T,,, is bounded and regular since it is an
endomorphism of the #A-module Hoo. Thus it preserves the domain of (D2 + 1)V
and the & i‘(P ) are compact operators for k > 0 and converge in norm to 0 when
A — oo by Lemma 6.8. By (54), one has D¢ , = T), ¢ D T 5, thus, by regularity
of the T ,, the operator

0N (De.y) = (D* + M)V D¢ ,(D* + 1)~V
is well defined on Dom D. Moreover one has, by (61), and on Dom D,
oN =N 0N (D)oN = Ny gk N gm
i (Dg,q) = 0,7 (Ty, )0, (D)0, (Tt n) = Z k 2 (Ty.e)D m ) * (Te, )
k.m
so that one gets

0N (Dg.y) = Dg.y + NE(Ty.e) DTz, + NTy e DEH (Tt ) + Q(N, 1),

where the remainder Q (N, A) is a sum of terms proportional to & i‘ (Ty,e) DET (Tt )
for k + m > 1. By Lemma 6.8 we get that Q(N, A) is a compact operator and
Q(N,A)|| — 0 when A — oo. Thus for A — oo, we get the following estimate:
there exists Cg,, < oo only depending on § and 7 such that

liminf [|6; (D¢, ) — Dg,yll < NCg p.
A—>00

Since the & /’f (P) are compact operators for k > 0 and converge in norm to 0 when
A — 00, one gets similarly

liminf |62 (Se. ;) — S5l < NCs.p.
A—>00

Let A be large enough so that ||9iv (Se,n) — Sg,nll < 2NC¢, ;. For & small enough,

165 (1 + ieSe.y) — (1 + ieDg p)| < 2NC pe + &l (E|DE Ty yll < 1. (67)
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Since Dy , is essentially self-adjoint, the operator K = 1 + ieDg _,, is closable and
invertible for any ¢ > 0 and the norm of its inverse is < 1. 9/{\’(1 +ieSg ) is closable
since it is a bounded perturbation K — B of K = 1 + ieDg . Moreover by (67)
it is invertible, and the norm of its inverse, which is given by the Neumann series
(K—B)"! => (K 'B)"K~1, fulfills (66). This proves the first statement.

(2) Let § = an € H,y, and consider & = (D? + 1)V & € H. Then, by the first
statement, one can find a sequence ¢, € Dom D, ¢, — ¢’ € J, such that

01 (1 + ie(De.y — (E1DETy. )n — &,
where the convergence is in #. Applying the bounded operator (D? 4+ 1)~V gives
(1 +ie(Dg,y — EIDE Ty, ))D> + 1Ny — &
Onehas¢ = (D241)"N¢ € #x € Dom D and (D2 +1)"N¢, — (D?2+1)"N
in the topology of Dom D. Thus
(I +ie(De,y — (EIDETy, 7)) = &,
and ¢ € J,n gives the required solution. O

We now need to show that if € Ho and ¢ € Hy for N large enough, the inner
product (1]¢) gives an element of A = C(X) and in fact in the domain of §¥. To see
this we use Proposition 2.3. We recall that the Sobolev norms on # are defined using
generators 1, of the sA-module H, by (9), i.e.,

1/2
a2 = (310 + D2 2an,|?) " foralla € .
"w

Thus when we want to control the Sobolev norms of (1|{), we need to control the
norms

1+ D218yl

The point then is that (1, {)n,, = Ty, »¢ while the endomorphism T, , is regular
by hypothesis so that 9/{\’ (Ty,,,n) is bounded and (with A = 1) one gets:

Lemma 6.10. Assuming strong regularity, one has, for n € Hoo,
IO < Coll (1 + D?)*?¢). (68)

Proof. 1t is enough to prove the estimate when s/2 = N is an integer. For each
one has

1L+ DY @l = 168 (Ty,, ) (1 + DHNE|
< 168 (T, )L+ DV, O
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Theorem 6.11. Let (A, #, D) be a strongly regular spectral triple with A commuta-
tive, fulfilling the five conditions of §2. Then any derivation of A of the form (22), i.e.,
do(a) = i(&|[D,al€) forall a € A, is closable for the C*-norm of A, and its closure
is the generator of a one-parameter group of automorphisms U(t) of A = C(X),
X = Spec(A).

Proof. By Corollary 5.14 the derivation &y, with domain A C A, is dissipative for
the C*-norm of A. Thus it is closable ([3], Proposition 1.4.7) and we let D(8o) be the
domain of its closure. To apply the Hille-Yosida—Lumer—Phillips Theorem we need
to show that for sufficiently small € one has

(1 + SSO)D(&)) = A. (69)
By Corollary 5.14, we have
[(1 + &do)(x)| = [[x|| forall x € D(So).

Thus (1 4 £89) D(8p) is closed in norm and it is enough to show that (1 4 £6¢) A is
norm dense in A. Let then 1 € H be such that (n|) = 1 in a neighborhood of the
support of & (with §g(a) = i (€|[D,al€)). Let then N € N be such that the Sobolev
estimate holds (Proposition 2.3):

lallcx < Cllall$P®  foralla € . (70)

Leta € A, one has an € #H~. By Lemma 6.9 there exists ex+1 > 0 such that for
any & < gx41 one can find a solution in ¢ € # 1 of the equation (57). Since Hoo
is dense in 11, we thus get a sequence £, € Hoo such that &, — ¢ in H 1. The
operator Sg , = D¢ , — (§|D&)Ty, ) is continuous from Hn 41 to H. One thus
has, with convergence in Hy,

(I +ieSgn)ln — (1 +ieSe ) = an.

Combining Lemma 6.10 with (70), one gets that the b, = (n|{,) € # converge in
the C*-norm | x||. Moreover, by (56) and (65),

Sé,nin = —i 8o((M|¢n))n, (A + isSé,n)é‘n = {p + &60(bn) n — an

with convergence in # . Thus applying (5| « ) and using (68) and (70),

bn + &80(bn)(nln) — a(nln)

in the C*-norm, as in (58). Since (|n) = 1 in a neighborhood of the support of
&, one has 8o(b,)(n|n) = So(by). Moreover, one has §o((1 — (n|n))a) = 0 since
(1 — (n|n))a vanishes in a neighborhood of the support of £. Thus we have the norm
convergence

cn +&8o(cn) = a, cn=by+ (1—(ln)a,
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and this shows that (1 + &8g)+ is norm dense in A. Since (1 + £8¢) D (8¢) is norm
closed, it is equal to A. Thus, we have shown that for sufficiently small ¢ one has
(69). Thus the Hille—Yosida—Lumer—Phillips Theorem ([3], Theorem 1.5.2, [22],
Theorem X.47 (a)) shows that §o generates a contraction semi-group of A. Since the
same holds for —8, one gets a one-parameter group of isometries U(z) = e'% of the
C*-algebra A. Moreover U(t)(a) is a norm continuous function of ¢ for fixed a € A.
Using the operators of the form

U(f):/f(t)U(t)dt:A—>A 1)

for f such that the L'-norms of the derivatives || ™|, fulfill 3 ;—n, If ™1 < oo,
one gets a dense domain of analytic elements and one checks that since §y is a
derivation on D(8¢) the U(t) are automorphisms of A. O

It remains to show that the U(z) € Aut(A) respect the smoothness. Let us first
show that we need only understand what happens to U(¢)(a)n as an element of J
because U(t) is the identity in the complement of the support of &.

Lemma 6.12. Let x € A have support disjoint from the support of €. Then U(t)(x) =
x forallt € R.

Proof. We can assume that x € #. Let us show that §o(x) = 0. There exists
¢ € A with x = x¢? and £ = 0. One has 8o(x) = i(§|[D, x]€) and [D, x] =
[D, x]¢? + 2x[D, ¢]¢ so that [D, x]é = 0 and §o(x) = 0. It follows that for f as
in (71), one gets §o(U( f)(x)) = 0 since U( f) commutes with §5. With f analytic
for L! one gets that U( f)(x) is an analytic element such that 8o (U(f)(x)) = 0 and
hence 83 (U(f)(x)) = O forall n > 1. It follows that

U u(fx) = Z%5Z(U(f)(X)) =U(f)(x) forallz € R.

Thus since U( f,)(x) — x in norm for a suitable sequence f,, one gets U(t)(x) = x
forall r € R. O

Lemma 6.13. Let S be the closure of S¢ , = D¢ n— (§|D§)Ty, y as an unbounded
operator in #. Then for any a € Dom &y one has an € Dom S and

S(an) = —ido(a)n. (72)
Foranya € Aande > 0, let b = (1 + 8¢) "' (a). Then by € Dom S and

(14+ieS)(bn) = an. (73)
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Proof. Fora, — a and §¢(a,) — S9(a) in norm one has a,n — an and &¢(a,)n —
do(a)n in H. Thus, since S is closed and +4 is a core for &y, it is enough to prove
(72) for a € . In that case one gets

S(an) = S n(an) = (E|D(aln§)) — (EIDE)(nlan)n.

Onehasa(n|n)é = a& since (n|n) = 1 onthe supportof&. Similarly, (6| DE)(nlan) =
(E|D&)a = (ElaDE). Thus we get

S(an) = (§|[D,al§) foralla € A,
which gives (72).
To prove (73), note that by Theorem 6.11 the resolvent (1 + 8¢) ™! exists for any

& > 0 and maps A to the domain of §y. Thus applying the first part of the lemma to
b = (14 &89)"'(a), one gets

(1 +1eS)(bn) = bn + ie(=ido(b)n) = ((1 + €do)b)n = an,
which gives (73). O

Lemma 6.14. The one-parameter group U(t) € Aut(A) fulfills for each N an esti-
mate of the form
U@ @NF™ < ereMeentlal g, (74)

Proof. We first use the Sobolev semi-norm given by
laliss = (D> + )N 2an,

with A > 0 determined by Lemma 6.9. We let &g > 0 be as in Lemma 6.9. By (73)
one has forany a € A

(1+¢&8) Ya)n=(1+ieS) lan foralle < s.

Assume that ||a ||§\‘}bglei < 00. One then has

an= (D> + 1N ¢ =D*+ )N ?ane .
By Lemma 6.9 one gets, for ¢ < g¢, using (66),
11+ £80) " @I = (D + M)M2(1 + e60) ™ (@]
= I(D* + VN?(1 +ieS) an)|

N e
= 16,21 +ieS)™HEll < (1 + Neg po)lIC |
=(+ Ncs,,,e)||a||§$,f’§’71f}[.
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This shows that ||(1 + &8¢) ! (a) ||j{’,bgle)vL < 00, and thus one can iterate and obtains

(14 80) ™ (@) N0 < (1 4 Neg, pe)" lalli oy foralle < eo. (75)
Now for # > 0 and with norm convergence in A one has

U(~na = lim (1+ oy~ (q).

This shows that U(—t)a is the norm limit of the sequence a, = (1 + tSO =0)™"(a) and

moreover one has, from (75), ||an||§\‘;b,°7lelv1 < (1 + Ncg pt/n)" ||a||§8b’0716/\{ Thus,

lim sup ”an ”;\(;b(r;le}/L < eNC;;- nltl |Ia| Sobolev (76)

N,n, A

Since a, — b = U(—t)a in norm, one has a,n — bn also in norm in J. Since
the operator (D2 + 1)V/2 is closed, and by (76) the (D2 + 1)N/2a,,n are uniformly
bounded, it follows that by € Dom(D? 4+ A)N/2 and thus ||U(—t)a||3$,b§’7k’)vL < 0.
More precisely we get

JUG-0)allyes < eNeenla]gioty
Now the semi-norm ||a ||“""’lev is not equivalent to the Sobolev norm, but the latter is
equivalent to the sum

1D+ )M2an| + 3 1D + WM 2an,],

where one can choose the 7, so that their supports are disjoint from the support of &.
This can be seen using the strong regularity. It then follows from Lemma 6.12 that
the semi-norm Y ||(D? + )L)N/zai’m” is preserved by U(t) since U(t)(a)n, = any,
for all w. Thus one obtains (74). ]

Theorem 6.15. Let (A, K, D) be a strongly regular spectral triple with A commu-
tative, fulfilling the five conditions of §2. Then any derivation of A of the form (22),
i.e., §o(a) = i(E|[D,al€) for all a € A, is the generator of a one-parameter group
of automorphisms o; € Aut(A) such that

* d:0¢(a) = do(0s(a)),

e the map (t,a) € R x A oy(a) € A is jointly continuous.
Proof. By Lemma 6.14, the one-parameter group U(t) € Aut(A) preserves the sub-

algebra A C A. We let 0; € Aut(+4) be the corresponding automorphisms. For
a € A one has a € Dom g and thus

ora) —a = /0 0 (B0(a)) du,
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where 0, (§¢(a)) is a norm continuous function of u. By (74) applied to §¢(a), this
shows that ||o;(a) — a||j§’,b°lev = O(|t]) when t — 0. One has

1 t
ﬂmwrwrwam=§[j%wwm—%w»w,

sobolev

which, since [|oy (8o(a)) — do(a) [y = O(|ul), gives

I11(0:(a) — a) = So(@) [P = O(jt]) fort — 0.

This shows that d;0:(a) = &o(0s(a) in the Frechet space 4. Let us check the
joint continuity of (¢,a) + os(a). Let (t,,a,) — (t,a) € R x A. One has
01, (an) — 01(a) = 01, (an —a) + 01, (a) — 04 (a). The norm ||ay, (@) — o7 (a) |
converges to 0 by the above discussion. Moreover, Lemma 6.14 shows that one
controls the Sobolev norms of oy, (a, — a) by those of (a, — a), which gives the
required continuity. O

‘We can now also prove directly the absolute continuity of the transformed measure
o/ (A) with respect to A.

Proposition 6.16. Let (A, #, D), 8o and o; be as in Theorem 6.15. Then for each
t € R the measure A of (3) is strongly® equivalent to its transform under o.

Proof. Let §o(a) = i(E|[D,a)é) forall a € A. By Lemma 6.12 the measure o, (1)
given by o/ (A)(f) = A(o:(f)) agrees with A(f) whenever the support of f is
disjoint from the support of £&. With n € J as above one has (n|n) = 1in a
neighborhood V' of the support of &. To obtain the required strong equivalence, it is
enough to compare A(o;(f)) and A(f) for f and o,(f) with support contained in
V. Using (1) one then has

Moi(F) = f a1 = f o (HIDI? = t.ou 1
Let, as above, S be the closure of S¢ , = D¢, — (§|D§)T), . It is by construction

a bounded perturbation of the self-adjoint operator (closure of) D¢ , and one can
define ¢'*S forr € R using the expansional formula ([1])

eATB,—A _ (Z/ oy, (B). ..o, (B) du), oy (B) = VA Beu4. (77)
n Sn

with A = itDg , and B = —it(§|D§)T;, . Let us show that

o/(a)n = eSan foralla € . (78)

1

8 is strongly equivalent to v iff there is ¢ > 0 with cv < u < ¢~ !v.
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By Theorem 6.15 and (72) the J-valued function ¢t + 7n(t) = o;(a)n solves the
differential equation

dn(t

% =iSn(t), n(0) =an, n(t) € DomS forallt € R.
This implies that %(e_”sn(t)) = 0 and thus e "**Sy(¢) = an, which proves (78). It
follows from (78) that
“San) = (75 n, an). (79)
Note that § is not self-adjoint in general because of the additional term —(§|D&) T, .
The difference S — S* is a bounded operator and an endomorphism of the #A-module
Hoso given by

(n,0c(a@)n) = (n,e

S—8*=pTyy p=©EDE™ - (EDE), (80)
since Ty, ; is self-adjoint by (53). We can now write a formula for e iS5y,
ey = (Zi”t"/s O—tu, (0) « . O—tu, (P) du)n (81)
n n
with S, = {(u;) | 0 < uy < --- < u, < 1} the standard simplex. Indeed one

has —itS* = —itS + P with P = itpT}, ,, which is bounded which allows one to
use the expansional formula (77), with A = —itS, B = P. Now by (78) one has
¢Sy = pforallr € R thus the left-hand side of (77) applied to 7 gives e 5" 5. Let
us compute the right-hand side. We first show that

¢S pTy pan = o5(pa)y foralla € #. (82)

Indeed one has T;, ,an = (n|an)n = a(n|n)n and since (n|n) = 1 on the support of
p (using (80)), one gets that pT, ,an = pa(n|n)n = pan. Thus (82) follows from
(78). We then get

&y (P) ..t (PN
_ mitu1S p-itr—uDS p =itn—un-1)S p,
— int"e_imls,oT,,,ne_it(uz_ul)SpT,,,,, o e_it(u"_u"_l)SPTn,nﬂ
= "1 0ty (POt 1) (P (POt ) (0)) - .

which yields (81) from (77). Now the series

h(t) =Y i"t" fS 0—1uy (P) - .. O—pu,, (p) du (83)

converges in the Frechet algebra # since, for each k, the py(0s(p)) are uniformly
bounded on compact sets of s, while the volume of the simplex S, is 1/n!. Thus
h(t) € #, and combining (79) and (81) one has

(.o (f)n) = (7, fn) = (h(@)n, fn) = (n.h(t) fn)
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so that we get, for all f with supportin V,

Moe(f)) = Ah(t) /). (84)

Since, by construction, one has 7 = 1 outside the support of £, (using Lemma 6.12),
equality (84) holds for all f € 4. The norm continuity ||4(¢) — 1|| = O whent — 0
(using (83)) then gives the required strong equivalence. O

7. Absolute continuity

The following equality defines a positive measure A on X:
/ad)u=][a|D|_p forall a € C(X). (85)

This measure is locally equivalent to the spectral measure of the representation of
A = C(X) in #. More precisely:

Lemma 7.1. For any open set V. C X the following two measures are strongly
equivalent:

o The restriction A|y to V of the measure A of (85).

* The restriction to V of the spectral measure associated to a vector §¢ € H®
whose A-valued inner product (€, §) is strictly positive on V.

Proof. By the condition of absolute continuity one has a relation of the form
(6.08) = § ae.O)IDI7

and since (£, £) € s is strictly positive on V, one gets the strong equivalence between
the restriction to V' of the spectral measure associated to the vector £ € J° and the
measure A|y of (85). O

We let
B, ={t e R? | |t] < &}.

Given an automorphism ¢ € Aut(+) we use the covariant notation
o(k) =Koo' forall k € Spec(A) (86)

and view o as a homeomorphism of X = Spec(+). We use the notations Uy, sq of
Lemma 4.4 and of (29).

Lemma 7.2. Let V C Uy be an open set and y € V. There exists a smooth family
or € Aut(+A), t € R?, a neighborhood Z of y in V and ¢ > 0, &’ > 0 such that:



44 A. Connes

(1) Foranyk € Z,themapt v sq(0:(k)) = F(k,t) is a diffeomorphism, depend-
ing continuously on k, of Bg with a neighborhood of s, (k) in R? and

Se(k) + Be C F(k, Bejy) forallk € Z. (87)
(2) Foranyt € Bg one has
<o) <22, (88)
(3) Z1 =(\p, 01 Z is a neighborhood of x.
(4) Z2 = Up, 01 Z is contained in V.

Proof. Let o, € Aut(A), t € R?, W and Z as in Lemma 4.5. We can replace the
Zo of Lemma 4.5 by any neighborhood of y contained in Z, and hence by a ball
centered at y and contained in V' N Z,. We use a metric d on X compatible with the
topology (Proposition 2.3). Thus

Z=4{keX|dk, y)<r}
and we can take r small enough so that
ke X |dk, x)<3/2ryCV. (89)
The continuity of the map (, 7) > o, (k) = k o oy yields ¢ > 0 with B, C W and
d(K,Ot:H(K)) <r/2 forallk € X, t € B,. (90)

Then the first statement (1) follows from Lemma 4.5, with (87) coming from the
continuity in x. The second statement follows from (90) since for d(«, ) < r/2 one
gets d(x,0; ' (k)) < rand 0, ' (k) € Z. Similarly the third statement follows from
(90) and (89). Finally (88) follows from Proposition 6.16 for ¢ small. ]

Lemma 7.3. Let V C X be an open set with V. C Uy and Ay (resp. Ay) be the
spectral measure of the restriction to V (resp. V) of the representation of C(X) in
H. Then sq(Ay) is equivalent to the Lebesgue measure on so(V') and there exists
¢ < oo such that

/_fosa dAy < c/ _ f(x)dx? forall f € CT(RP). oD
14 s (V)

Proof. By Lemma?7.1, the spectral measure Ay (resp. A7) is equivalent to the measure
A of (85) restricted to V' (resp. V). We show that

o for any y € V one can find a neighborhood Z; of y in U, such that
Sa(A]z,) < cdx? for some ¢ < oo,

e for any y € V one can find a neighborhood Z, of y in V such that
dsq(A|z,)/dx? = p(x) > 0 in a neighborhood of s¢ ().
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Let y € V. We apply Lemma 7.2 relative to V = U,. We let 0;, Z, Zj, ¢ and
¢ be as in Lemma 7.2. We can assume that for |f| < & one has (88). Let then
h € CX(Bg), h(t) € [0,1],beequal to 1 on By/>. By Lemma 7.2, forany k € Z, the
mapt — F(k,t) = sq(0s(k)) is a diffeomorphism F, of B, with a neighborhood of
S¢ (k) in R?. Tt then follows that for fixed « the image in R? of the measure /(t)dt?
is a smooth multiple g, (1) of the Lebesgue measure du?,

S(F(k,0)h(t)dt? :/ fu)ge(u)du? forall f € C.(RP). (92)
Be R?

The function g, vanishes outside F,(B;) and is given inside by

ge(u) = h(y ) |dy (u)/dul,

where V¥ is the inverse of the diffeomorphism Fy and dv (u)/du its Jacobian. The
continuity of the map « +— Fj gives a uniform upper bound

ge(u) <cy forallueR?, ke Z. (93)

Since i = 1 on By, and 54 (k) + By C Fi(Bg/2) by (87), one has h(y(u)) = 1 for
u € s4(y) + Be. The continuity of the map k — F} then yields £; > 0 such that

ge(u) >¢e; forallu € sq(k) + By and allk € Z. 94)

We consider the image dv under (k,t) € Z X By +— F(x,t) € R? of the finite
positive measure d A(k)h(t)dt? on Z x B,. Itis given by

/ f(x)dv(x)=// f(F(k,t)h(t)dt?dA(k) forall f € C.(R?),
R? z JB:

and is equal, by (92), to

/ £ dv(x) = // F)ge () du® dA(k) = [ Fa)pG) du?  (95)
where
pu) = / 2 (W)dA(K).
Z

By (93) one has
po(u) <ciAM(Z) < oo forallu € R?. (96)

Moreover (94) shows that
pu) > e1A(ik € Z | [u — s (k)] < &'}).

We then have
p(u) >0 forallu € s,(2). 97)
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This strict positivity follows from the condition of absolute continuity which shows
that the support of the measure A is X. Indeed, for u € s4(Z), the open set {k € Z |
|u — 54 (k)| < &'} is non-empty and it has strictly positive measure. This shows that
the restriction of the measure v to the open set s, (Z) is equivalent to the Lebesgue
measure.

We now use the quasi-invariance of d A given by (88) to compare sq (4|2, ) with v.
Using (88) (for 6 = 1/2), one has %d/\ < d(os(A)) < 2dA fort € B; so that, for
any subset E C X and any positive f € C;F(R?), one has, with 1 g the characteristic
function of £,

3 [ estedis [(7osatpdan <2 (7 osatedr

The middle term is

/ (f o sw)l g d(or (1)) = / (f o5a000)(1g 0 07)dA.

and we thus get

1
—/ (fosq)dA 5/ (fosqoo)dA < 2/ (fosq)dA forall f e C;“(DQ”).
2JE o7 E E
(98)
We let, as in Lemma 7.2,

Z1=ﬂO'tZ, ZZZUUIZ'
B¢ Be

One has 0, 1(Z1) C Z fort € B, so that, by the first inequality of (98) for E = Zj,

1

- Z](fosa)a’kffa

(f o500 07) dA S[(fosaoo,)dk
2 lZl 7z

¢
forallt € B, f € C;}(RP) so that, multiplying by /(¢)dt? and integrating over
t € B, we get C < oo with

[ (esparsc /Z /B (a0 di” 430 = € /R S ),

where we used Fubini’s theorem and the equality s, (0 (k)) = F(k,t) fork € Z and
t € B.. Thus, using (95) and (96),

(fosg)dA < C/ f)p(u)du? < C’/ f)du? forall f € CH(RP),
Z RP RP

hence the image sq(A|z,) is absolutely continuous with respect to the Lebesgue
measure and is majorized by a constant multiple of Lebesgue measure. Thus, every
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point of ¥V has a neighborhood Z; such that s,(X|z,) < c;dx?. Covering the
compact set V by finitely many such Z; gives (91).

Let us now assume that y € V. We can then assume by Lemma 7.2 that Z, =
\Up, 0¢Z is contained in V. One has Z C o, 1(Z,) fort € B, so that, by the second
inequality of (98) for E = Z»,

/(fosaoat)dkff (fosgoo)dA <2 (fosq)dA forallt € B,
z o7 1 (Z2) Z>

thus, after integration over ¢ € B,

c’ /R S v = € /Z /B Gal DR A7 dA) = /Z (osdr,
This shows, using (95), that

(f osq)dA > C’/ f@)p)du? forall f € CH(RP).
Z> R?

By (97) one has p(u) > 0 for all u € s5,(Z), thus p(u) > 0 in a neighborhood of
Sa(x), in other words, dsq(A|z,)/dx? = p2(x) > 0 in a neighborhood of s4 () as
required. This shows that s, (A|y) is equivalent to the Lebesgue measure on sy (V).

O

8. Spectral multiplicity

We want to get an upper bound for the number of elements in the fiber of the map
So: Uy — RP. We shall first relate the multiplicity of the map s, with the spectral
multiplicity of the operators aJ, in the Hilbert space #. This is not automatic, indeed
the first difficulty is that for an injective representation 7 of a C*-algebra B with
a subalgebra A C B, one can have the same double-commutants 7 (A4)” = = (B)”
even though A # B. Thus for instance one can take the subalgebra C[0, 1] C C(K)
where K = {0, 1,...,9}N is the Cantor set of the decimal digits and the inclusion
is given by the decimal expansion. Both act in L2[0, 1] (by multiplication) and the
spectral multiplicity of the function x € CJ0, 1] is equal to one, but the number of
elements in the fiber is equal to 2 for numbers of the form k10™". The point in this
example is that the projection map s: K — [0, 1] is not an open mapping. Thus in
particular the subset of K where the multiplicity of s is two is not an open subset of
K (it is countable).

Lemma 8.1. Lets: X — Y be a continuous open map of compact spaces. Then the
function n(y) = #s~1(y) is lower semi-continuous on Y .
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Proof. Assume that n(y) > m and let us show that this inequality still holds in a
neighborhood of y. Let x; € X be m distinct points in s~!(y). One can then find
disjoint open sets V; > x;j and let W = ﬂj s(V;) which is an open neighborhood of
y. For any z € W the preimage s~!(z) contains at least m points. O

Now let s: X — Y be a continuous open map of compact spaces. Let u be a
positive measure on X with support X and m the corresponding representation of
C(X) in L?(X, ). We want to compare the spectral multiplicity function X (y) of
the restriction of 77 to C(Y) withn(y) = #s~1(y). Let v = s(u) be the image of the
measure @. One can disintegrate y in the form

MZ/Ypde(Y),

where the conditional measure p,, is supported by the closed subset s71(y). Theissue
is what is the dimension of the Hilbert space L?(X, p,). It might seem at first that
if the support of the measure p is X one should be able to conclude that the support
of p, is s71() and obtain that the spectral multiplicity function X (y) is larger than
n(y) = #s~1(y). However this fails as shown by the following example:

X=Yx{l,....m}, s(y,k)=y,
and let u; be the measure on Y corresponding to the restriction of w to ¥ x {k}.

Lemma 8.2. If the measures i are mutually singular, then the spectral multiplicity
function X(y) is equal to 1 a.e.

Proof. The representations of C(Y) in L2(Y, uy) are pairwise disjoint, and each
is of multiplicity one. Thus the commutant of C(Y) in the direct sum of these
representations only contains block diagonal operators and is hence commutative so
that the multiplicity is equal to one. O

The above example gives the needed condition for the relation between X (y) and
n(y), and one has:

Lemma 8.3. Let X be a compact space and A a finite positive measure on X, 7w the
representation’ of C(X) in L>(X,d). Letaj = a;-‘ € C(X) and let s be the map
from X to R? with coordinates aj. We let U C X be an open set and v a measure on
R?, and assume that

* the restriction of s to U is an open mapping,

e for every open subset V. C U the image s(A|y) is equivalent to the restriction
of vitos(V).

By multiplication.
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Let then V' C U be an open set and consider the operators Tj = m(aj)|v obtained
by restriction of the w(a;) to the subspace L*>(V,d\) C L*(X,dX). Then the joint
spectral measure of the T; is v|sy and the spectral multiplicity ¥ (y) fulfills

S() zn(y) =#s"1 )NV} forally € s(V) 99)
almost everywhere modulo v.

Proof. Let W = s(V'), which is a bounded open set in R?. One can disintegrate A |y
in the form

Alv =/ py dV(y), (100)
w

where the p, are positive measures carried by F), = s~1(y) N V. Moreover the total
mass of p) is > 0 almost everywhere modulo v for y € s(V'). This follows from the
assumed equivalence s(A]y) ~ v[s). One then has

®
L(v.an = [ L2 ) v
w
For any £ € L?(V,dX) and any f € C.(R?) one has

(€. F((a)E) = /W /F 100 Pdpy () dv ().

which shows that the joint spectral measure of the a; is absolutely continuous with
respect to v|w. Its equivalence with v|y follows from (100) taking £(x) = 1 and
using the assumed equivalence of s(A|y ) with the restriction of v to s(V).

Letus prove (99). Lety € W withn(y) = #{s"1(y)NV} >m > 0. Letx; € V
be m distinct points in s7!(y) N V. One can then find disjoint open sets B; > x;j
and let Z = ﬂj s(Bj), which is an open neighborhood of y. For any z € Z the
preimage s~ (z) N V contains at least m points since it contains at least one in each
Bj. Moreover one has s(s~!(Z)N Bj) = Z forall j. Let A; be the restriction of A to
V, = s (Z)NB 7. From the first part of the lemma, for each j the spectral measure
of the action of the a; in L>(V;,dA;) is the restriction v|s(y,) = vz. The action of
the a; in L2(V,d2;) contains the direct sum of the actions in the L?(V;,d ;) and
hence a copy of the action of the coordinates y; in

m
DL (Z,vz).
1

which shows that the spectral multiplicity fulfills ¥ (z) > m a.e. on the neighborhood
Z of y. This shows that any element y in the open set U,, = {y € U | n(y) > m}
admits an open neighborhood Z,, where X (z) > m holds a.e. Since U, is o-compact,
it follows that X(y) > m almost everywhere modulo v on Uy, so that (99) holds.

O
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Remark 8.4. With the hypothesis of Lemma 8.3, let £ be a complex hermitian vec-
tor bundle over X with non-zero fiber dimension everywhere. Then the inequal-
ity Xg(y) > n(y) holds, where Xg is the spectral multiplicity of the 7; act-
ing on L2(X,d), E). This follows since, at the measurable level, one can find a
nowhere vanishing section of E, which shows that the representation 7g of C(X)
in L2(X,d A, E) contains the representation = of C(X) in L?(X,dA). Since 7 is
contained in the sum of N copies of , one obtains the conclusion.

Theorem 8.5. Let V C Uy be an open set and let aé|V be the restriction of aé € A
to the range 1y # C H. Then

s the joint spectral measure of the a}|y is the Lebesgue measure on sq(V),

* the spectral multiplicity m,.(y) fulfills

mac(y) = n(y) = #{s; ' (») NV} forally € so(V)

almost everywhere modulo the Lebesgue measure.

Proof. By Lemma 7.3, the hypothesis of Lemma 8.3 are fulfilled by the compact
space X with measure A, the open set Uy, the measure dv = dx? and the elements
a},. Thus the result follows from Lemma 8.3 and Remark 8.4. ]

9. Local form of the £ D estimate

We fix p € [1, oo[. Our goal is to control the size of the Lebesgue multiplicity m1,.(y)
which appears in Theorem 8.5. The idea here is to use a local form of the £
estimate of [10], Proposition IV.3.14, with the right-hand side of the inequality now
involving a closed subset K C X, by

AK)=  inf ][b|D|—P.
b€A+,b1K=1K

Itrelies on the estimate given in [9] and on the crucial results of Voiculescu ([26], [27],
[28]). The norm ||T'||(p.1) is defined'” for a compact operator 7' with characteristic
values ., (T) in decreasing order by (cf. [26], p. 5),

o
TNy =D n P (101)
1

In order to get an upper bound on ||T'||(p,1) for T an operator of finite rank, we can
use an inequality of the form

ITl(p,1y < Cp (Rank T)/7 || T || oo, (102)

OFor p = 1 it agrees with the & !-norm.
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which follows using the characteristic values u, (7T") from

N N
ITlpy =Y 07 TPy < Tloe Y 07 TP < Cy NYP | T o0

n=1 n=1
where N = Rank 7. Note also that the £®1 norm fulfills
IATB | (p,1) < [ AllocIT l(p, 1) Blloo- (103)

Let D be a self-adjoint unbounded operator such that its resolvent is an infinites-
imal of order 1/p, i.e., is such that the characteristic values fulfill u,(|D|™!) =
O(n~'/?). We let for any A > 0,

P() =1p(DD. @) =Tr P(R). (104)

By construction @(A4) is a non decreasing integer valued function. The hypothesis
wn(ID|™Y) = O(m™1/?) implies that u, (|D|™1) < Cn~'/? for some C < oo, and
it follows that «(C ~'n'/P) < n since the n-th eigenvalue of | D| in increasing order
is > C~'n'/P_ Thus, using for n the smallest integer above CPA?, we get

a(A) < CP AP forall A > 0. (105)
Let us show

Lemma 9.1. Let f € C2°(R). Then there is a finite constant Cy such that
I[f(eD),allloc < Crell[D,all| foralla € . (106)
Under the hypothesis of Theorem 8.5, one has
liminf A™P(4) > 0. (107)

Proof. One has
1
[P a] = ise [ "R [D, ale’ 15D gy, (108)
0
which gives (106) using the finiteness of [ |s f (s)|ds and
feD).al = @) [ F)le P alds. (109)

Assume that (107) does not hold. Then let A,, — oo be such that lim A, Pa(A,) = 0.
Let f € C2°(R) be an (even) cutoff function vanishing outside [—1, 1]. Fore, = A,
one has

Rank f(e, D) < a(A,), Rank[f(exD),a] <2a(An)
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so that by (102) one gets, using (106),
1L/ (en D). alll(p.1) < Cpa(A))"/?Cen|[D. al|
and since lim A, “a(1,) = 0,
Jim [[[f(en D). alll(p.1) = 0.
The Voiculescu obstruction relative to an ideal J of compact operators is given by

ky({aj}) = liminf max ||[A4,a;]||s,
AeRrf a1

where R is the partially ordered set of positive, finite rank operators of norm less
than one, in #. We take 4, = f(e, D). It is by construction an element of {RT
Moreover since f (e, D) — 1 strongly in J, this shows that for the ideal J = £®-1)
one gets ky({a;}) = 0. This contradicts the existence, shown in Theorem 8.5, of p
self-adjoint elements a; of # whose joint spectral measure is the Lebesgue measure,
using Theorem 4.5 of [26], which gives the equality, valid for p self-adjoint operators,

k1(ia;)? = 7, /R m(y)dry, (110)

where the function m(y) is the multiplicity of the Lebesgue spectrum. O

The rank of the operator T = [f(eD), a] is controlled by twice the rank of
f(eD). We take f compactly supported and thus f < g, where g is equal to one on
the support of f yields an inequality of the form

Rank f(eD) < Tr(g(eD)).
One has by Corollary 14.10 (Appendix 2) an estimate of the form

liminf ? Tr(g(¢D)) < cg ][ |D|~7.

This gives
lim inf ¢” Rank f(eD) < cg ][ |D|™? (111)

and:

Lemma 9.2. Let f € CX°(R), then there is a finite constant cy such that

Y
liminf [ £(eD). a]llp.1) < cf(][ |D|—P) "ID.dlll foralia e (112)
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Proof. Using (111) and Rank[ f(eD),a] < 2Rank f(eD), one obtains a sequence
&g — 0 with

Rank 7,; < 38;pcg][|D|_p, T, = [f(e4D),al.

Using (102) and (106) then gives

1/p
1Tl p,1y < Cp(Rank Ty)/? || Ty |loo < Cp(38;”cg ][ IDI_”) Creq|[D, alll,

which is the required estimate since (g, Y/ p gq = L. O

We now let K C X be a compact subset and we want to localize the estimate
(112) to K, i.e., to the range of K in J.

Lemma 9.3."" Let h € C2°(R) be an (even) cutoff function and f = h?. Then
ILf (eI D). al = ze(f' (e D1)é(a) + 8(a) £ (el D)l p,1) = OCe). (113)
where §(a) = [| D], a] and one assumes that a € ﬂjz»zl Dom §/.
Proof. First one has (cf. Corollary 10.16 of [16])
ITh(el D), a] — ek’ (e| Dé(a) || = C2 €?(|8* (@), (114)

with a similar estimate using e§(a)h’(¢| D|). Indeed, using (109) with | D| instead of
D, one gets

[h(e|D|).a] = 7)™ /ﬁ(s)[em'D,a] ds
so that by (108)

[h(e|D)),a] = Qn)™! /ﬁ(s)iss/: eselDl| D, ale! W8Pl gy g,
and since by (108) one has
IID, al, e’ =2%P1| < Jse] 8% @),
one gets
ITh(elD]),a] — ek’ |DDS(@)]| < C2 218> @), C2 = (27)~" /SZIE(S)I ds.

We follow the proof of Lemma 10.29 in [16]. One has

[f(eID]).al = 3&(f'(e|DS(a) + 8(a) f'(e] D])) = AcBe + CoAs,

'This is Lemma 10.29 in [16], but the proof given there is not correct, so we give the full details here.
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where A, = h(¢|D|), B, = [h(¢|D]),a] — eh’(¢|D])é(a) and C, = [h(g|D]),a] —
e8(a)h’'(¢|D|). By (114) one has ||Bs|| = O(s?), |Cs|| = O(s?), while A, i
uniformly bounded with Rank A, = O(¢™?). Thus by (102) one has [|4¢|/(p,1) =
O(e™ ). Thus we get the required estimate using (103). O

—
w

We then let K C X be a compact subset as above, and consider the operators
R, = 1k f(e|D]) 1k. (115)
We let b € A beequal to 1 on K, i.e., such that b 1x = 1g. One then has:

Lemma 9.4.
I[Rs.a]l — 2e(1k f'(e|D])bS(a)lk + 1k 8(@)bf'(e|D)1g) | (p,1) = O(e).

Proof. One has

[Re.a] = 1k [f(e|D]).a] 1k
since a commutes with 1x. Thus multiplying on both sides by 1x in (113), one gets
(using (103))

I[Re,a] — 56(1x f'(e|DDS(@) 1k + 1k 8(a) f' (eI D)1k )l (p.1) = Ofe). (116)
Lemma 9.1 and (105) show, using (102), that one has a uniform upper bound

1Ll DD. bl p.1y = CIIIDL B

since f’ has compact support. Thus in (116) one can replace 1 f'(¢|D]) =
1x bf'(¢|D|) by 1x f'(¢|D|)b, without affecting the behavior in O(g). The same
applies to the other term. O

We recall the interpolation inequality used in [10], §IV.2.§, but stated without
proof there.

Lemma 9.5. There exists for 1 < p < oo, a constant ¢, such that, for S € £t
ISlcp < e lISILZ 1S 137, (117)

Proof. The inequality holds as an equality for p = 1 with ¢; = 1, thus we can
assume that p > 1. We use the fact that £ s obtained by real interpolation
of index (6, 1) for 6 = % from the Banach spaces Yo = K and Y| = £'. The
functoriality of the interpolation gives an inequality of the form

”T(x)”(Y(),Y])(@,q) = M()1_9M19||x||(X0sX1)(9.q)
for any linear operator from X + X; to ¥y + ¥; such that
ITx|ly, < M;|x|x; forallx € X;,i=0,1.

We can take X¢o = X; = C and let T be such that T (1) = S. Then My = ||.S|co>
My = ||S]1 and the norm || x || (x,x,).;, 1S finite and non-zero. O
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Remark 9.6. In order not to depend on interpolation theory we give a direct proof
of (117). We assume that p > 1. First, for p > 1 an equivalent norm on £ @V is

1
1Tl pay = (1=6) > N*%on(T). 6= > (118)

where o (T') is the sum of the first N characteristic values. The equivalence of the
norms (118) and (101) follows from uy < on/N one way. For the other way, one
applies Fubini to the double sum

S5 = Y Y
n m>n m n=m

Now to estimate (118) assuming |7 ||cc < 1 and ||T'||; = p > 1, one splits the sum
as follows:

o0
Y N2on(T) =Y N®2on(T)+ ) NP 2on(T).
1 N<p N>p

Using || T ||eo < 1 gives on(T) < N and one bounds the first sum as

Y NN~ Cop.
N<p

Using | T||1 = p > 1 gives o (T) < p, and one bounds the second sum by

> NP~y
N=>p

which gives the required inequality (117).

Lemma 9.7. There exists a constant Cy < oo such that for b = b* € A, b > 0,
liminf &?||bf' (| D|)b|; < Cf][b2|D|_p.

Proof. Note that by construction of f as a cutoff function, its derivative f’ < 0 on
[0,00[. Let h = — f" € C(R) so that & > 0. One then has bh(g|D|)b > 0 and

Ibh(el Db = Tr(bh(e|D])b) = Tr(bh(e| D)),
and the result follows from Corollary 14.10 (Appendix 2), which gives

lim inf £? Tr(b%h(g| D])) < M][b2|D|_1’,

where = p [ uP " h(u)du. O
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Lemma 9.8. There exists a constant C } < oo suchthat, forb = b* € 4,0 < b < 1,

1/p
fimint b1 Dbl = € 221D177) (119)
Proof. By Lemma 9.7 one has, once b is fixed, a sequence &, — 0 such that
b (el Dbl =265, f 2|DI.

Also since f’ is bounded one has
16" (eq|DDblloc < B = || f'loc < o0

Thus it follows from (117) that

1/p
16" (eq| DDbl(p,1) < ¢p (ZCfE;p ][ b2|D|—P) Bl-lpr
After multiplication by ¢, one gets the required estimate. O

Theorem 9.9. There exists a finite constant k, such that for any operators a; € A
and compact subset K C X one has, with J = £@V | the inequality

ky(aj1x}) < iy max [[8(a;) oo (A (K2,

where one lets'?

AK)=  inf ][b|D|—P.
beAT ,blg=1g

Proof. By definition one has

ks({ajlg}) = liminf max|[[4,a;1k]lls,
AeRT, am1

where !R1+ is the partially ordered set of positive, finite rank operators of norm less
than one in 1x . We take R, = 1g f(¢|D]) 1k asin (115). Itis by construction an
element of R;". Moreover since f(¢|D|) — 1 strongly in J¢, one gets that R, — 1
strongly in 1x #¢. By Lemma 9.4 one has

I[Re, a] — 3e(1k f'(e| DDbS(@) 1k + 1x 8(@)bf (e D)1k ) (p,1) = OCe).

Using
1 f'(e|D)bé(a)1k = 1k bf'(e| D|)bé(a) 1k

12This is the natural extension of A given by the Riesz Representation Theorem [24].
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and (103) for A = 1gx, T = bf'(¢|D|)b, B = §(a)lx and similarly for the other
term, one gets an estimate of the form

IRs. alllp,1y < O(e) + lebf (el DDbl(p,ll8(@) |-

Thus, by Lemma 9.8 one gets that, for any » € A™ equal to 1 on K, there exists a
sequence &; — 0 such that

1/p
leqbs el DBl = 265 ][ pIpIr)

which gives, for g large enough,

1/p
IR,y = 2CH( £ 521017) 7 15(@) o

for any a € 4 and hence

1/p
lim inf max ||[R., a; 1]l < 2C} max ||5(a,~)||oo(][ b2|D|—P) .
After varying b one obtains the required estimate. O

Remark 9.10. a) One may worry that Voiculescu’s definition of k; involves the
ordered set Rf while all we got was R, — 1 strongly in 1x J¢. Thus let us briefly
mention how to get the A 1 1 from R, by a small modification. Given a finite
dimensional subspace of 1x J, onelets P be the corresponding finite rank projection,
with fixed rank N. One needs to construct A € Rf A > P, with a control on
max [|[4,a;1k]|s. One takes

As =P+ (1— P)Rs(1— P),
so that A > P by construction. Moreover one has
R.— A, = P(R;—1)P + PR,(1—P)+ (11— P)R.P. (120)
Moreover by the strong convergence R, — 1, one has
[P(Re = Dlfoo = [(Re = 1) Plloc > 0

so that all three terms in the rhs of (120) converge to 0 in norm and hence in the J
norm since their rank is less than N so that one can use (102). Thus one has

[Re — Aglls — O

and one controls max ||[A4, a; 1k]|| s from max ||[Re, a;1k]| .
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b) It might seem possible at first sight to tensor the spectral triple (4, J, D) by
(C, #', D"), with the spectrum of D’ growing fast enough so that the product triple'?

(ARXC,HQH' ,D"=D®1+y®D

would still be of dimension p, i.e., such that the characteristic values of the inverse
of D" are O(n~'/?). Let us show that this is only possible if the dimension of #’ is
finite. Indeed the eigenvalues of (D ® 1 +y ® D)2 = D2 ® 14+ 1 ® D'? are the
independent sums of the eigenvalues of D? and of D2, Thus having infinitely many
eigenvalues of D'? contradicts the two inequalities

a(d) >cA?, a"(A) <C"\*
for the counting functions a(1) = Tr(lp2(|D]), &”(A) = Tr(1jp,2(|D"|) since

they yield
dim(#') < C"/c.

¢) The constant C ji in (119) is given, up to a function of p alone, by
00 1/p
Cr = (/0 u?™ h(w) du) IRl P, h=—f" =0,
and one needs to check that there is a lower bound to C ff independent of the choice of

the cutoff function . Since f(0) = 1, the only information is about fooo h(u)du =1
and thus one needs to show a general inequality of the form

o0 00 1/p
| han e [ wrthaa) T azn
0 0
To prove this one lets g(u) = h(u'/?) so that

oo 0o o0 1 [
p [ wrthdu= [ ewav [ Chadu= [0 igwan,
0 0 0 P Jo

and one uses the same argument as in Remark 9.6. First, with k(u) = fou g()dv,

%) 1 oo
/ /P g (v) dv = (1——)/ v /P 2k (v) dv.
0 p 0

Next, assuming ||4|looc = 1, one has g(v) < 1 for all v > 0 and thus, with p =

Jo” gw) dv,

[ole) P [e%¢)
/ P2k (v) dv < / v P2k (v) dv + / v P2 (v) dv
0 0 o

131n the even case.
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so that, since k(v) < v and k(v) < p, one gets

0 o 00
/ vl/p—Zk(U) dv < / vl/P—l dv +/ vl/P—zpdv — cppl/P
0 0 P

with ¢, = p + (1 — )~ which gives (121) with c(p) = 1.

We can now combine this with Theorem 4.5 of [26], which gives the equality,
valid for p self-adjoint operators /;,

kr(hi ) =1 /{R m(y)dry. (122)

Corollary 9.11. Leta; = a;‘ € A be p self-adjoint elements. Then for any compact
subset K C X one has

/ mE (y)dPy < i, max [8(a;) | ZA(K).
R?

where the constant K;, only depends on p, and the function mﬁ (y) is the multiplicity
of the Lebesgue spectrum of the restriction of the aj to 1g (H).

10. Local bound on #(s; 1 (x) N V)
Let V' C U, be an open set with V c U,.

Lemma 10.1. There exists C < oo such that the spectral multiplicity m;é(x) on the
absolutely continuous joint spectrum of the restriction al|y of the a}, to 1y J fulfills

m;z(x) <C, ae.onW =s4(V).

Proof. By Theorem 8.5, the joint spectral measure of the aé |y is the Lebesgue mea-
sure on so(V). Let E C W be a compact subset, and K = s;'(E) N V. Then
Corollary 9.11 gives an inequality of the form

[ m&(y)d?y < K’ M(K). (123)
R?

One has
mY(y) <m&(y) forally e E (124)

since one has a direct sum decomposition

1V]€ - lsal(E)ﬂVJg EB ls‘;l(Ec)ﬂ,VJf
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where the representation in the second term in the right-hand-side does not contribute
to the multiplicity in E. Indeed, with E¢ = | J E, and E, compact disjoint from E,
the joint spectrum of aé | s31(E,)ny 1s contained in £, and disjoint from £. Moreover
the representation in the first term is dominated by the representation in 1x # since
s;WEYNV CK =s,;Y(E)N V.

By (91) one has an inequality

/_fosadkv fc/ _ f(x)dx? fc/ f(x)dx? forall f € C;(RP),
1% sa (V) R?

which shows, taking 1g = inf f, as an infimum of continuous functions f, €
CF(RP), that

/\(K):/_IEosad)vaf_fnosadefc/ fn(x)dxp—>c/ dx?.
v R? E

vV

Thus, using (124) and (123),
/ mY (x)d?x < / mX(x)dPx < kK'A(K) < CK’/ dx?,
E E E

and there exists a constant C = ¢k’ such that, for any compact E C W,

/ maZ(x) dPx <C / dPx,
E E
which gives the inequality, valid almost everywhere,
m;z(x) <C. O
Lemma 10.2. Let V be as above. Then there exists m < oo such that
#(sojl(x) NV)y<m forallx €e W = sq(V).

Proof. By Theorem 8.5, one has, almost everywhere,

m;z(y) >n(y) = #{sojl(y) NV} forall y € sq(V),

so that the result follows from Lemma 10.1 and the semi-continuity of n(y), which
shows that an almost everywhere inequality remains valid everywhere. O

Lemma 10.3. Let V C U, be an open set with V. C U,. There exists a dense open
subset Y C sq(V') such that every point of s;;*(Y) NV has a neighborhood N in X
such that the restriction of sy to N is a homeomorphism with an open set of R?.
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Proof. Let W = 5,(V) and

mi; = sup #(s‘;l(x) nv),
xeW

which is finite (and non-zero) by Lemma 10.2. Let
Wi={xeW |#(s;1(x) NV)=m}.

This is by Lemma 8.1 an open subset of W. Moreover for x € W; one can find m,
disjoint open neighborhoods V; of the preimages x; of x such that all V; surject on
the same neighborhood U of x in W. It follows that the restriction of sy to each of
the V; is a bijection onto U and hence an isomorphism of a neighborhood of x; with
an open set in R? given by the aZ.

It can be that W is not dense in W, but then we just take the complement of its
closure, W1 = W\V[_/l, and let

my = sup #(sojl(x) nv),
xew!l

which is < m; by construction. One then defines
Wy ={x e W' |#(s;' (x) NV) = my},

which is by Lemma 8.1 an open subset of W!. The same argument as above shows
that the subset Z = W; U W, fulfills the condition of the lemma. One proceeds in
the same way and gets, by induction, a sequence W, with Y = | J W; fulfilling the
condition of the lemma. Since the sequence m; is strictly decreasing, one gets that
the process stops and Y is dense in W'. O

11. Reconstruction Theorem

We shall now use Lemma 10.3 together with the ability to move around in X by
automorphisms of #4 to prove the following key lemma:

Lemma 11.1. For every point x € X there exists p real elements x* € A and a
smooth family t; € Aut(A), t € R?, 19 = 1d, such that:

e The x* give a homeomorphism of a neighborhood of y with an open set in R?.

e Themapt +> h(t) = y o1, is a homeomorphism of a neighborhood of 0 in R?P
with a neighborhood of .

e The map x o h is a local diffeomorphism.

Proof. Let y € X. By Lemma 4.4, there exists « such that y € Uy. By Lemma 4.5,
there exists a smooth family o; € Aut(#4), t € R?, a neighborhood Z of y in
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X = Spec(s4) and a neighborhood W of 0 € R”? such that, for any x € Z, the
map ¢t — sq(k o 0y) is a diffeomorphism, depending continuously on «, of W with a
neighborhood of s, (k) in R?.

We now take for V' a ball

V=B ={yeX|d(x.y)<r}CUsy. V CU,.

We apply Lemma 10.3to V = B, and let Y be a dense open subset Y C s¢(}V') such
that every point of s, L(Y)NV has aneighborhood N in X such that the restriction of
S¢ to N is a homeomorphism with an open set of R?. Since Y is dense in s, (V') and
by Lemma 4.5 the image of W by ¢ + ¥/ (¢) = s4(x ©0;) is an open neighborhood of
Sa(x),one canchooseaug € W suchthat yooy, € V and ¥ (up) = sq(yoou,) €Y.
Onehask = yooy, € s;l (Y)N V. Thus by Lemma 10.3 there exists a neighborhood
N of « such that the restriction of s, to N is an isomorphism with an open set of R?.
Thus the afy are good local coordinates near . The automorphism oy, € Aut(+A) is
such that
K= )00uy,, X = Ouylk).

Recall that we use the covariant notation (86). We take
xt = oy, (ak)

as local coordinates near y. The corresponding map x from X = Spec() to R? is
given by

¢ € X > {(xH) = L(0ug (@) = sa(§ 0 ug) = 5a © 00 ()
Thus x = 54 © O’u_ol and, since oy, is a homeomorphism of X, x = s4 © ou_ol isa
homeomorphism of the neighborhood o, (V) of y with an open set of R”. Thus the
x* are good local coordinates at y. Then let 7, € Aut(+) be given by

Ty = Oyg+t © au_ol
so that 7; o 0y, = Oyy+.. One has
x0T (x") = x ot (ouy(ay)) = x o Oug+e(ay) = sy (X © Oug+1) = Y (uo +1).
Now the map £ is given by ¢ +— h(t) = x o t;, thus one has
xoh(t) =¥ (uo+1).

This shows that the map x o % is a diffeomorphism from W; = W — uy (which is a
neighborhood of ¢ = 0 € R? since ug € W) with an open set of R”. On Wy, the
map 4 is injective since x o /i is injective. Thus /4 is a homeomorphism with its range.
One has 7(0) = y, & is continuous, thus W5 = h~!(0y,,(N)) N W is an open set
containing 0 and W, = xoh(W,)isanopensetin R”. The map x is ahomeomorphism
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of oy, (N) with an open set in R” and x o & is a homeomorphism of W; with an open
set in R?. One has h(W2) C 0y, (N). Thus h(W2) = x~1 (W) N 0y, (N) is open
in 0y, (N) and since it contains £(0) = y, we get that 4 is a homeomorphism of
a neighborhood of 0 in R? with a neighborhood of y. Moreover, as we have seen
above, the map x o A is a diffeomorphism. O

Lemma 11.2. The algebra A is locally the algebra of restrictions of smooth functions
on R? to a bounded open set of R?.

Proof. Let y € X. By Lemma 11.1, we can assume that some x* € 4 give a
homeomorphism of a neighborhood U of y with a bounded open set x(U) C R?.
By the smooth functional calculus the algebra C°(x(U)) is contained in +4 using
the morphism f € CX(x(U)) — f(x*) € A. Moreover for any « € U one has
k(f(x*)) = f(k(x*) so that the function f o x coincides on U with the element
f(x*) € A. Taking a smaller neighborhood V of y with compact closure in U one
gets that the algebra C °°(R?)|,(y) of restrictions to x (V') of smooth functions on R?
is contained in the algebra of restrictions to V' of elements of #, using x to identify
V' with the open set x(V) C R?. We need to show that any element of 4 restricts
to a smooth function on V, using the local coordinates x to define smoothness. For
this we use (Lemma 11.1) the existence of a smooth family 7: R? — Aut(+4) such
that x o t is a local diffeomorphism around y. Thus given b € A, to show that the
restriction of b to V is smooth, it is enough to show that 7;(b) evaluated at y is a
smooth function of 7. This follows from the smoothness of the family ;. O

Theorem 11.3. Let (A, H, D) be a strongly regular spectral triple fulfilling the five
conditions of §2 (cf. [12]) with ¢ antisymmetric Then there exists an oriented smooth
compact manifold X such that A = C*°(X).

Proof. Welet X = Spec(+4) be the spectrum of «# or equivalently of the norm closure
A. By construction it is a compact space. By Lemma 11.1, for every point y € X
there exists a neighborhood U of y and p real elements x* € 4 which give a local
homeomorphism ¢ of a neighborhood V' of x with an open set in R”. Moreover by
Lemma 11.2 one has

f eAly ifandonlyif fog¢™!eC®(RP)|sy).

This shows that on the intersection of such domains of local charts, the change of chart
is of class C°°. We can thus, using compactness, take a finite cover and this endows
X with a structure of p-dimensional smooth manifold. Lemma 11.2 shows that any
a € A restricts to a smooth function in each local chart and thus A C C*°(X).
Moreover given f € C°°(X) there exists for each V; in the finite open cover of X an
a; € A with fly, = a;|y,. Then the existence of partitions of unity (Lemma 2.10
of [23]),

Y €A > =1, Supporty; C V.
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shows that f agrees with ) v;a; € . We have shown that there exists a smooth
compact manifold X such that A = C°(X). The cycle ¢ gives a nowhere vanishing
section of the real exterior power AP (T X) and hence shows that the manifold X is
oriented. (]

We thus obtain the following characterization of the algebras C *°(X):

Theorem 11.4. An involutive algebra A is the algebra of smooth functions on an
oriented smooth compact manifold if and only if it admits a faithful'* representation in
apair (¥, D) fulfilling the five conditions of §2 (cf. [12]) with the cycle antisymmetric
and the strong regularity.

Proof. The direct implication follows from Theorem 11.3. Conversely, given an
oriented smooth compact manifold X of dimension p, one can take the representation
in # = L?(X, A¢) the Hilbert space of square integrable differential forms with
complex coefficients, and use the choice of a Riemannian metric to get the signature
operator D = d + d* with the Z/2-grading y in the even case coming from the
Clifford multiplication by the volume form as in [19], Chapter 5. In the odd case
one uses the Clifford multiplication y by the volume form to reduce the Hilbert space
H to the subspace given by y& = &. More specifically we consider the faithful
representation of the Clifford algebra Cliff 7,* (X ) in A* T;*(X) given by the symbol
of D, ie.,

v-E=vAE—iy€E forallve T} (X), £ e N"TS(X), (125)

where i, is the contraction by v. This gives (cf. [19] Proposition 3.9) a canonical
isomorphism of vector spaces Cliff 7, (X) ~ A*TF(X). We let  be the sec-
tion of A” T*X given at each point by ® = e A -+ A ep, where ey, ... e, is any

positively oriented orthonormal basis. In the Clifford algebra Cliff 7.} (X') one has

w? = (=1)?5" (cf. [19], (5.26)) and one defines

yE=i""%" we forall§ € CLff T'(X) ® C,

where the product w £ is the left Clifford multiplication by w. By [19], (5.35), this
left multiplication is related to the Hodge star operation by

wE = (PG e ol e AF

With these notations one has d* = (=1)@+Vydy (cf. [19], (5.10)), which shows
that D commutes with y when p is odd and anticommutes with y when p is even.

To check the orientability condition 4), one uses (in both cases of the Dirac operator
or the signature operator) local coordinates x* and the equalities

(D, f1=) y"ouf. " v'}=—2¢"",

141 e., with trivial kernel.
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where the y* correspond to the action of dx* through the representation of the
Clifford algebra (given by (125) for the signature operator). One then has, for the
multiple commutator,

.p(pt+1) _
Loy yPl=pliT 7 (Vo) 'y

where ,/g is the square root of the determinant of the matrix g;,, and y = y*, y2=1
is the grading in the even case and is just 1 in the odd case.!”> Thus in these local
coordinates x* the cycle associated to the volume form

1
=20 VED V@@
o

fulfills, locally, condition 4), up to the power of i, i PULED . Using a partition of unity

gives the global form of ¢ which is just the Hochschild cycle representing the global
volume form.

The condition of strong regularity is checked using §13. One applies Lemma 13.2
to obtain the strong regularity since we take for D an elliptic differential operator of
order one on a smooth compact manifold and the principal symbol of D? is a scalar
multiple of the identity. This ensures that for any differential operator P of order
m the symbol of order m + 2 of [D?, P] vanishes as it is given by the commutator
of the principal symbols of order m and 2. Thus one gets that for any differential
operator T of order 0, the operators §7*(T') are of the form P(1 + D?)~™/2 where
P is a differential operator of order m. Thus the theory of elliptic operators (cf. [15]
Lemma 1.3.4 and 1.3.5) shows that they are bounded. This applies for D the Dirac
operator or the signature operator, thus one gets the strong regularity in this case.

O

Theorem 11.5. Let (A, H, D) be a spectral triple with A commutative, fulfilling the
five conditions of §2 with the cycle ¢ antisymmetric. Assume that the multiplicity'® of

the action of A" in H is 2P/2. Then there exists a smooth oriented compact (spin®)
manifold X such that A = C*°(X).

Proof. We need to show that we can dispense with the hypothesis of strong regularity
in Theorem 11.3. Indeed by the first part of Remark 5.12, we get

[([D,allD,b] + [D,b][D,a]),[D,c]] =0 foralla,b,c € A (126)

since this is implied by the commutation (49) of |[D, k]| with [D, ¢]. Thus if we
work at a point y € Spec(+) and let S, be the fiber at y € X of the finite projective
module #, and M, C End S, be the subalgebra generated by the [D, a] fora € 4,
it follows from (126) that

[D,a][D,b] + [D,b][D,a) € Z(My) foralla,b e A, (127)

13Since we reduced the Hilbert space J to the subspace given by y& = &.
16We restrict ourselves to the even case.
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where Z (M) is the center of M. Let e be a minimal projection in the center of M.
The equality 7p (c) = y shows that, at the point y,

ye =Y _ead[[D.ay].[D.a).....[D.al]l #0

so that the dimension of the space T, (y) = {e[D.a] | a € A}, is at least equal to
p. In fact, more precisely, for some o, the multiple commutator

[e[D.all.e[D.aZl.....e[D.afl] = e[[D.al).[D.aZl.....[D.aZl] #.0

which can hold only if the e[D,aé] are linearly independent. By (127) and the
minimality of e, the following equality defines a positive quadratic form Q on the
self-adjoint part of 7, (y):

Q(e[D,a))e = (e[D,a])*> foralla € #.

It is non-degenerate since when e[D,a] is self-adjoint, (e[D,a])> = 0 implies
e[D,a] = 0. Let then Cg be the Clifford algebra associated to the quadratic form
Q on the self-adjoint part of 7" (). The latter has real dimension > p and the rela-
tions (127) show that the map e[D, a] — e[D, a] gives a representation of Cgp in the
complex vector space eSy. Thus this shows that the dimension of e is then at least
equal to 27/2. The hypothesis of the theorem on the multiplicity of the action of A"
in J¢ shows, using the condition of absolute continuity, that the fiber dimension of
S is 27/2. This shows that ¢ = 1 and also, since the complexification of the algebra
Cop isan N x N matrix algebra for N > 27/2, that M,, = End S, for every y € X.

It also shows that the dimension of 7*(y) is equal to p and that on U, the [D, a({;]
form a basis of 7*(y). Consider then the monomials

WF = [[D,a({;l], [D,a({;2 ,...,[D,a({;k]],
where F = {j; < j» < --+ < Jg} is a subset with k elements of {1,2,..., p}.

For every y € Uy the pr form a basis of M, = End Sy. Thus any element 7" of
M, = End Sy can be uniquely written in the form

T =) arpur. (128)

The coefficients a r can be computed using the normalized trace on End S, the
and the element 7. Thus using the conditional expectation E 4 of (27) one gets, for
any endomorphism 7" of #s, with support in U,, that (128) holds with coefficients
ar € s. This shows that any endomorphism 7" of #, is a polynomial in the [D, a]
with coefficients in 4 and it follows that it is automatically regular. Thus the strong
regularity holds and we can apply Theorem 11.3. To see that X is a spin® manifold
one uses [12] (see [16] for the detailed proof). ]
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12. Final remarks

12.1. The role of D. By Lemma 2.1, the spectral triple (4, #, D) is entirely de-
termined by (A", #, D) where M = A" is the commutative von Neumann algebra
weak closure of «+. It follows in particular that, except for the dimension N of the
bundle S which we may assume, for simplicity, to be constant and equal to 27/, there
is no information in the pair (A", #): they are all pairwise isomorphic. Similarly
the only invariant of the pair (¢, D) is the spectrum of D, i.e., a list of real numbers
with multiplicity. By [21] this spectrum does not suffice to reconstruct the geometry,
and it is natural to wonder what additional invariant is required to do so. As we
shall briefly explain it is the relative position of M and of the self-adjoint operator D
which selects one geometric space, and it is worthwhile to look at the conditions from
this point of view. The analogue in our context of the geodesic flow is the following
one-parameter group,

ve(T) = e"WPlTe= Pl forall T € £(H). (129)

We say !’ that an operator T € £(H) is of class C* when the map from R to £ ()
given by t > y;(T) is of class C* (for the norm topology of £(#)) and we denote
by C*°(#, D) this subalgebra of £(H). This algebra only depends upon (H#, D)
and does not yet measure the compatibility of (M, #) and (#, D). This is measured
by the weak density in M of

C®(M,}.D)={T e MNC®H,D)|[D.T] € M' N C®(J¥,D)}, (130)

where M’ is the commutant of M. One checks that A = C®(M,H#,D) is a
subalgebra of M and its size measures the compatibility of (M, #) and (¥, D).

We now come to two equations which assert that A = C®°(M, #, D) is large
enough, so that we have maximal compatibility. One checks that #., = N Dom D™
is automatically a module over # (for the obvious action). The first equation requires
that this module is finite and projective and that it admits a hermitian structure ( | )
(necessarily unique) such that

(E,an) = ][(§|77)a |ds|? foralla € Aandall £, € Hoo, (131)

where { is the noncommutative integral given by the Dixmier trace.
The second equation means that we can find an element ¢ of the tensor power
A®" n = p + 1, totally antisymmetric in its last p-entries, and such that

c(D) =1, where (ap®---®ap)(D) = ao[D,a1]...[D,ap] forallaje A. (132)

(This assumes p odd, in the even case one requires that for some ¢ as above c(D) = y
fulfills y = y*, y2 = 1, yD = —Dy.) We can now restate Theorem 11.5 as:

17Cf. Lemma 13.3 of §13.
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Theorem 12.1. Let (M, ¥, D) fulfill (130), (131) and (132), and N = 2P/2. Then
there exists a unique smooth compact oriented spin® Riemannian manifold (X, g)
such that the triple (M, ¥, D) is given by

e M = L*®(X,dv) where dv is the Riemannian volume form,
o JH = L%*(X,S) where S is the spinor bundle,

* D is a Dirac operator associated to the Riemannian metric g.

Proof. We let A = C®°(M, J, D). By the weak density in M of (130), we know
that the multiplicity of the action of A” = M in # is N = 27/2. By construction,
the triple (A, #, D) fulfills the first three conditions. The fourth and fifth follow
from (131) and (132). Thus by Theorem 11.5 we get A = C°(X) for a smooth
oriented compact spin® manifold X . The conclusion then follows from [12] (see [16]
for the detailed proof). Note that there is no uniqueness of D since we only know its
principal symbol. This is discussed in [12] and [16]. O

A striking feature of the above formulation is that the full information on the
geometric space is subdivided into two pieces:

(1) the list of eigenvalues of D,

(2) the unitary relation F' between the Hilbert space of the canonical pair (M, #)
and the Hilbert space of the canonical pair (#, D).

Of course the conceptual meaning of the unitary F' is the Fourier transform, but this
second piece of data is now playing a role entirely similar to that of the CKM matrix
in the Standard Model [7]. Moreover, in the latter, the information about the Yukawa
coupling of the Higgs fields with the fermions (quarks and leptons) is organised in a
completely similar manner, namely 1) the masses of the particles, 2) the CKM (and
PMNS) matrix. At the conceptual level, such matrices describe the relative position
of two different bases in the same Hilbert space. They are encoded by a double
coset space closely related to Shimura varieties ([7]). These points deserve further
investigations and will be pursued in a forthcoming paper.

12.2. Finite propagation. One can use in the above context a result of Hilsum [18]
to obtain:

Lemma 12.2. The support of the kernel k;(x, y) of the operator ¢'*P is contained in

{(x.y) € X2 | d(x,y) < |t]},
where the distance d is defined by

d(x,y) = sup|h(x) —h(y)|. [[D.A]] = 1.
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Proof. Let (x,y) € X? with d(x,y) > |t|. There exists & = h* in + such that
I[D,h]|ll < 1and h(y) — h(x) > |t|. Also h and [D, h] commute by the order one
condition. Thus by Lemma 1.10 of [18], one has b < h(y), a > h(x) such that

(h=b)re P(h—a)_ =0
so that k;(x, y) = 0. O

12.3. Immersion versus embedding. The proof of Theorem 11.3 shows that, with
the cycle ¢ given by (26), the map ¥ from X to RV given by the components aZ, for
Jj = lisanimmersion. Itis nothowever an embedding in general even if one includes
the components a2. To see this consider open balls B C R? and B; C B such that
for some translation v the ball B, = By + v is disjoint from B; and contained in B.
Then let x* be the coordinates in R? and aj € C°(B) be such that

a{(x) = x/ forall x € By, a{(x) = x/ — v/ forall x € B,.

Let N be a neighborhood of the complement of B; U B in B. Let then aj(x) =
b(x)x’, where b(x) = 1 for all x € N and vanishes in an open set of the form
B{ U B where the B} C B; are smaller concentric balls. Let ay be a partition of
unity in B for the covering by B; U B, and N. Then let ¢ be the antisymmetrization
of

2
Yo al®ay®--®al.
1

For x € B/ all the a} vanish, including a9, and a9 = 1 so that the following equality
shows that the map v is not injective:

a{(x +v) = a{(x) forall x € Bj.

12.4. The antisymmetry condition. We have used throughout the stronger form
of condition 4) where the Hochschild cycle ¢ € Hj,(+A, ) is assumed to be totally
antisymmetric in its last p-entries. It is unclear whether one can relax the antisym-
metry condition on ¢. It is not true in general for commutative algebras that any
Hochschild class can be represented in this way, but this is the case for A = C°(X).
In general, one has a natural projection on the antisymmetric chains, given by the
antisymmetrisation map P. It is defined by the equality

1
Plap®a1 ®---Qap) = ;Zs(ﬂ)ao®aﬂ(1)®---®aﬂ(p)
B

Its range is contained in Z, (-, /) since + is commutative and any antisymmetric
chain is a cycle ([20], Proposition 1.3.5). It is not obvious that P maps Hochschild
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boundaries to Hochschild boundaries. This follows from the equality

1

P =—
p!

£p O Tp,
where one lets QIP( = /\i Q}( be the A-module of Kihler p-forms (cf. [20], 1.3.11)

and
ep: Q¥ — Hp(h,A), 7p: Hy(A, A) > QF

are defined in [20], Propositions 1.3.12 and 1.3.15. They are given by

”k(a0®a1 ®"'®ak) = apda; /\-~-/\dak
and
ex(aoday N -+~ Ndag) = 28(0)00 Rds1) ® * Q dg(k)-

12.5. Strong regularity. The hypothesis of strong regularity is, in general, stronger
than regularity. Indeed the operation of direct sum (A, #; @ H», D1 & D>) of two
spectral triples for the same algebra + preserves regularity but not, in general, strong
regularity.

Proposition 12.3. Assuming regularity the subalgebra Z p (A) of End 4 (H~) gener-
ated by 4 and the [D, b]|[D, c] + [D, c][D, b] for b, c € A is a commutative algebra
containing 4 and commuting with [D, a] for all a € A.

Proof. This follows from Remark 5.12 since (49) shows that [D, b]?> commutes with
[D,a] foralla € . O

The understanding of the general situation when one does not assume strong reg-
ularity should be an interesting problem since the inclusion 4 C Zp(+4) should
correspond to a finite “ramified cover” of the corresponding spectra, with ¥ =
Spec Zp(A) covering X = SpecsA. It is easy to construct examples where Y
has singularities. It is not clear that, assuming the first five conditions, the space X is
always smooth. Similarly it is unclear what happens if one relaxes the regularity con-
dition to the Lipschitz regularity, since we made heavy use of at least C ! "¢-regularity
in the above proofs. Finally it would be interesting also to investigate the meaning
of real analyticity of the space X in terms of the real analyticity of the geodesic
flow (129).

12.6. The noncommutative case. Among the five conditions of §2 the conditions 1),
3) and 5) make no use of the commutativity of the algebra - and they extend as such
to the noncommutative case. We refer to [12] for the extension of conditions 2) and
4) to the noncommutative case. The extension of the order one condition involves
a new key ingredient which is an antilinear unitary operator J in J which encodes
the nuance between spin and spin€. It turns out to be an incarnation not only of the
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charge conjugation in physics terms and of the needed “real structure” to refine the K-
theoretic meaning of the spectral triple from ordinary K-homology to KO-homology
but, at a deeper level, of the Tomita operator which plays in the noncommutative case
the role of a substitute for commutativity. All this plays an important role in the
noncommutative geometry understanding of the standard model [7], [6], [S]. The
extension of the “orientability” condition 4) exists and it certainly holds e.g. for
noncommutative tori ([12]) but it is not fully satisfactory yet and its clarification
should be considered as an open question.

13. Appendix 1: Regularity

The condition of regularity is not easy to check for smooth manifolds since it involves
the module of the operator D. We give below the equivalent formulation in terms of
D2 (cf. [14]).
We deal with operators 7" which act on #Ho, = N Dom D”. We say that T is
bounded when
IT] = suptl Tl | § € Hoon 15l = 13 (133)

is finite. We still denote by T the unique continuous extension to a bounded operator
in J. By self-adjointness of D the domain #, is a core for powers of D or of |D|.
The derivation §(T) = [|D|, T] is defined algebraically as an operator in #,. The
relation with the commutator in # is given as follows.

Lemma 13.1. Assume that both T and [|D|, T are bounded (as in (133)). Then T
preserves Dom | D| = Dom D and the bounded extension of [| D |, T'| coincides with
the commutator |D|T — T'|D| on Dom |D|.

Proof. Let ¢ € Dom |D|. There exists a sequence &, € Hoo with §, — & and
|D|&, — | DIE. Since T is bounded the sequences T'&, and T |D|&, are convergent
and converge to T€ and T|D|&. Since [|D|, T] is bounded, the sequence (|D|T —
T|D|)&, converges. Thus | D|T&, converges, and as | D| is closed one gets that 7§
is in the domain of |D|. Thus Dom |D| is invariant under 7. Moreover one has
|D|T§ = (ID|T —T|D))§ + T|DI§. O

In other words, saying that both T and [|D|, T] are bounded is equivalent, for
operators acting in H, to T € Domé and moreover §(7) is then the bounded
extension of |D|T — T|D|.

We introduce the following variant of §, defined on operators 7" acting in Hyo,

5u(T) = [D?,T1(1 + D*)7'/2.

Lemma 13.2. Let T acting in Hoo be bounded.
(1) If 81(T) and §3(T) are bounded so is §(T).
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(2) The 8§1(T) are bounded for all n iff so are the 5" (T).

Proof. (1) The module |D]| is given by the following integral, which makes sense
when applied to any £ € Dom D, which we omit for simplicity

2 [ D2
D|=— ———du. 134
1Dl 71/0 D2+ 2" (134)

To avoid dealing with the kernel of D we use the decomposition § = §’ + 8o, where
the derivations 8’ and 8o commute, and §¢ is bounded,

§(T)=10.T], Q= D>(1+D*7"/2
5o(T) = [fo(D),T), folx) = |x| —x*(1 + xz)_l/2 for all x € R.

One has f € Cy(R) and the derivation §¢ is bounded, in fact ||§o|| < 1 since || foloo <

1/2. One has
2 [ D?
= — ——du.
Q n/o D% 4+ 1+ u? "
Thus
2 (> D?
§(T)=[0.T] =~ ——————— T |du, 135
M =10.71== [ [ e T]an (139)
D2
—,T
[D2+1+u2 ]
_ 14+ u? T
a [Dz—i—l—l—uz’ ]
= (14 u? [D2,T]
D2+ 1+ u? D2 + 1+ u?
1 +u? 1
=[D:T]—————— + (1 2[—,D2,T]—.
D N ez T o2 P T e
Thus using
1 1 1
— _[D:T||=—-———— D% DT ———
[D2+1+u2[ ]] D2+1+u2[ [ ]]D2+1—|—u2
we get
D2
—’T
[Dz—i—l—ku2 :|
1+ u? 1 1+ u?
— [p?. 7] Lt (D2, [D%, ]| —5 "

(D2 +1+u2)? D2+1+u? (D2 + 1 +u?)?’
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Thus combining with (135) one gets

1 1
§'(T) = 5[1)2, T|(1+ D*»~'/2 + E[DZ, T|(1 + D?)73/?
14 u?

2 [ 1
- = ———— D% [D2 T —————
71/0 D2+1+u2[ [ ]](D2+1+u2)2

where we used

2 /‘X’ u? J 1(1 + D)1/
— _  du = -
7)o (DZA1+ur)y 2

2 /oo : d 1(1+1)2)—3/2
— _——du = — .
mJo (D24 1+u2)? 2

and

Now one has [D?, [D?,T]] = §2(T)(1 + D?) and

H (1 +u>)(1+ D?)
(

D2 +1+4+u?)? |~
so that
1 1+ u?
————[D?*[D*T <H
D2+1+u2[ [ ]](D2—|—1+u2)2 “IDZ+1+4u?

and one gets
18"CT)| < 18:(T) | + [183(T))-

’

183(T)

73

Now if both §;(T') and §3(T') are bounded, we get that §'(T) is bounded, and since

8 = &' + 8o with §¢ bounded, we get that §(T") is bounded, with

2
18Ty < Y1181 (D).
0

(136)

(2) The operations § and §; commute since |D| commutes with D?. Let us
assume that the §7(7T") are bounded. We have seen that §(7°) is bounded. To show
that §2(T) is bounded it is enough to show that §7"(§(T')) are bounded for m = 1, 2.
But 87" (6(T')) = 8(87*(T')), which is bounded since the §7 (87" (7)) are bounded for
n <2, m < 2. More generally let us show by induction on n an inequality of the

form .
18" (D) <" cnsc 85 (D).
0

To get it for n 4 1, assuming it for n, one uses (136), which gives

2 2n

2 2
I8 (TNI < Y 18] G (TN =D 18" L TN < YD cnkll8F ] (T)I-
0 0 0 0
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Thus we obtain by induction that §” (7") is bounded.

Conversely, the boundedness of the " (7') implies that of the §7(7T"). Indeed the
boundedness of the §"(T) is equivalent to the boundedness of the §”"(T'), where
§"(T) = [(1 + D?)Y/2, T, since |D| — (1 + D?)"/2 is bounded and commutes with
| D|. Moreover the square of the operation

T (14 DHY2T(1 + D?)~V2 = T 4+ §"(T)(1 + D?)1/?
is
T (1+D)T(1+D*» ' =T+ [D%T|(1+ D>,
which gives
[D2,T)(1 + D?)~1 = 28"(T)(1 + D}~V +§"*(T)(1 + D)7}

so that
81(T) = 26"(T) + §8"*(T)(1 + D?)~V/2,
and one can proceed as above to get the boundedness of the 87 (T'). O

Finally we relate the regularity condition with the smoothness of the geodesic
flow t — y,(T) = '!1PITe=iIPl of (33).

Lemma 13.3. Let T € L(J). Then the following conditions are equivalent:
(1) T € N, Dom §™.
(2) t = y¢+(T) is of class C*® in the norm topology.

Proof. Letus show that (1) implies (2). By (7), T preserves #oo. We write the Taylor
formula with remainder

ln-l—l 1
' /(1—u)”f(”+1)(tu)du
. 0

n

F@O) = O +1f/0) 4+ ) +

for the function f(¢) = e!!|P1TeIPlg with £ € Hoo. Since T preserves Hoo, this
function is of class C*°. One gets

vi(T)§

insn in+l.n+1 pl
— TE+itS(T)E + -+ ——8" (1) + %/(1 )Y (8D (T))E du
n: n! 0

since £ ®)(s) = y,(8%)(T))& by induction on k. This shows that t — y,(T) is of
class C® in the norm topology, since the norm of the remainder is O (t"*1).

Let us show that (2) implies (1). It is enough to show that if 7 € £(#)) and the
following limit exists in norm lim;_¢ ;l(y,(T) — T),then T € Dom § and the limit
is i6(T). One has, for & € J,

§ € Dom |D| if and only if there exists ~ lim Le"Plg —g),
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where the limit is supposed to exist in norm. Assuming that for some bounded
operator Y € £(H) one has lim;_,¢ ||%()/t(T) —T)—Y]| = 0, one gets, for any
£ e Dom|D|, L(e"IPITE — TE) — iT|D|E + Y&. This shows that T¢ € Dom |D)|
and thati|D|T& = iT|D|é + Y&, which gives the required equality. O

14. Appendix 2: The Dixmier trace and the heat expansion

We first recall the basic properties of the Dixmier trace. Recall that the characteristic
value w,(T) of a compact operator T is the n-th eigenvalue of |T| arranged in
decreasing order and is equal to

inf{||7|gL|| | dm E =n —1}.

Definition 14.1. We define the Weyl norms by
N
on(T) =Y un(T).
1

The fact that they are norms and in particular fulfill
on(Ty + T2) < on(Th) + on(Th)

follows from the next statement in which we use the same notation for a subspace
E C J¢ and the orthogonal projection on that subspace.

Proposition 14.2. One has
on(T) = sup{|TE|1 | dim E = N}.
Let T be a positive operator, then
on(T) = sup{Tr(TE) | dim E = N}. (137)
We use the following notation for refined limiting processes.

Definition 14.3. With the Cesaro mean M defined by

rood
e (139)

and /(1) a bounded function of A > 0, w a linear form on C,(R?.) which is positive,
w(1) = 1, and vanishes on Co(R? ), and ¢ a homeomorphism of R , we define

Limj ), BV = o(M*(g)).  g(1) = h(¢™' (1),

where the upper index k indicates that we iterate the Cesaro mean k-times.
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We write Lim,, as an abbreviation for Lim}o, and when we apply it to a sequence
(xn)nen We mean that the sequence has been extended to a function using

fa(A) =ay ford €N —1,N].
Also we consider the two-sided ideal containing compact operators of order one,
LN (H) ={T € X | on(T) = O(log N)}.

Definition 14.4. For 7 > 0, T € £1:°)(¥), we set
LN
Tro(T) = Limg ;s ; 1n(T).

The basic properties of the Dixmier trace Tr,, are summarized in the following
([10], Proposition 3, IV.2.8):

Proposition 14.5. Tr,, extends uniquely by linearity to the entire ideal £ (H)
and has the following properties:

@ If T =0, then Tr,(T) = 0.
(b) If S is any bounded operatorand T € £ (H), then Tro,(ST) = Try,(TS).

(¢) Try,(T) is independent of the choice of the inner product on #, i.e., it depends
only on the Hilbert space H as a topological vector space.

(d) Try, vanishes on the ideal éﬁgl’oo)(e% ), which is the closure, for the | ||1,00-n0FmM,
of the ideal of finite-rank operators.

We fix p € [1,00]. Let D be a self-adjoint unbounded operator such that its
resolvent is an infinitesimal of order 1/ p, i.e., such!® that i, (D~1) = O(n=/?). We
shall compare Try, (T |D|™?) and lim €? Tr( f (e D) T) for suitable even test functions
f. We let Ey be the spectral projection'® on the first N -eigenvectors of | D| so that
dimEN =N, EN < EN+1 and

Tr(EN|D|7?) = on(ID|7?).
Lemma 14.6. For any bounded operator T € £(JH) one has

Lim,, Tr(En|D|PT) = Tro(T|D|7P). (139)

log N

18We replace D by a non-zero constant on its kernel so that D ~! makes sense.
19This is ambiguous when there is spectral multiplicity.
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Proof. The hypothesis on D shows that Tr(Ex|D|~?) = O(log N). Moreover, by
construction of the Dixmier trace, one has

1 1
Tr(Ex|D|™?) = Limy —— on(|D[7?) = Tro(ID|77).  (140)
log N log N

Lim,,
Let ¢(T) be the left-hand side of (139). It makes sense since
ITe(En|D|7PT)| < Te(En|DI™P)|IT|| = O(log N)

so that the sequence ; ! ~ Tr(En|D|7PT) is bounded. The functional ¢ on £(J) is

linear and positive (thi trace of the product of the two positive operators En|D|™?
and T is positive). Let ¢ (T') be the right-hand side of (139). Proposition 14.5 shows
that, since |D|™7 € £1:)(H}), the functional ¥ is a positive linear functional on
£(F). One uses Proposition 14.5 (b) to check the positivity, using for 7 > 0,

Tro(T|D|7?) = Tro,(TY2|D|72T"?) > 0.
Let us show that for any 7 > 0 one has ¢(T) < ¥(T). One has
on(T'?|D|7PT'?) = on (ID|7?/*T|D|777?)
using A = |D|~?/2T'/2 in
un(A*A) = n,(AA™) forall A € K, n € N.

Thus one gets

1
Y(T) = Tr,(T|D|~?) = Lim, — on(ID|"P/2T|D|?/?).
0

By (137), one has

on(ID["P2T|D|7?/?) = sup{Te(ID|""/>T|D|?/?E) | dim E = N}
= Te(|D|?T|D|"P?Ex) = Te(En|D|7PT)
since Ey and |D|~?/2 commute. Thus oy (|D|"?/2T|D|~?/2) > Tr(Eyx|D|~?T)
and after dividing by log N and applying Lim,, to both sides one gets the inequality
¢(T) < ¥ (T). But, by (140), ¢(1) = Tre,(|D|7?) = ¥ (1), and thus the positive

functional § = v —¢ is equal to 0 by the Schwarz inequality |0(T)|?> < 6(T*T)6(1).
O

With | D| as above, we let as in (104), for any A > 0,

P(A) =1p(D)), ad) =Tr P(R).
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Lemma 14.7. Assume that
liminf A™?a(1) > 0. (141)

Then, for any bounded operator T € £(H), one has
1 1
pLim, —— Tr(En|D|"PT) = Limypr_ —— Tr(P(A)|D|7PT). (142)
log N log A

Proof. We can assume by linearity that 7 > 0. We have (using (105)) constants
c¢1 > 0 and ¢, < oo such that

1A? <a(d) < AP, (143)
We let
f(N)=Te(En|DIPT), g(A) =Te(P(A)|D|T).
Since dim P(A) < N implies P(A) < Ey, we get, using P(A)|D|™? < En|D|7?,
f(N) > g(A) forall A,coA? < N. (144)
Similarly, since dim P(A) > N implies P(1) > Ey, we get
f(N) <g(A) forall A,c;A? > N. (145)
We extend f(N) to positive real values of N as a non-decreasing step function.
The arbitrariness of the extension is irrelevant since f(N + 1) — f(N) — 0 when
N — oo and we are interested in Lim,, bgﬁ f(N), which is insensitive to bounded

perturbations of f. By construction, the Cesaro mean satisfies the following scale
invariance, for bounded functions f,

MO, (f)A) = M(fHA)] =0 asA — oo, (146)

where it > 0 and 6,,(f)(X) = f(nw ') forall A € R . It follows from (144) and
(145) that f(c1N) < g(NVP) < f(caN) up to o(N) and for any positive real N.
Thus the scale invariance of the Cesaro mean (146) together with log N/logc N — 1
gives

1 1 1/
M(@f(N))—M(@g(N 7)) —0

so that 1 1 {
Lim, —— f(N) = — Lim, ———g(N/?),
i 1o SN = = Lo (g (V1)
and the required equality (142) follows from Definition 14.3. O

Corollary 14.8. Assuming (141), one has

1
p Tto(T|D|?) = Limr_y @Tr(P(/\)|D|_pT) forall T € Z(J). (147)
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Proof. This follows from Lemmas 14.6 and 14.7. O

Theorem 14.9. Assume that (141) holds. Suppose that [ € C.([0,00[) and let
p=7p fooo uP= f(u) du. Then for any bounded operator T € £.(H) one has

Lim2_,_, , e? Tr(f(e|D|)T) = p Tro,(T|D| 7). (148)
Proof. Let g(u) = u? f(u) viewed as an integrable function on the multiplicative

group R% , endowed with its normalized Haar measure d *u = dT" We can assume
that 7 > 0. We consider the positive measure on R given by d(1) where

B(A) = Tr(P(A)IDI7PT), (149)

which is a non-decreasing step function of A. The measure df is a positive linear
combination of Dirac masses, df = ) ®,6,,. One has

dB(X) = Tr(dP(M)|D|"PT) = AP Te(dP (M) T),
s? Tr(f(e|D)T) = &P / f(EA)Tr(dP(M)T) = /spkpf(sk)dﬂ(l)

so that

e? Tr(f (el DDT) = /g(sf\)dﬂ(?t). (150)

The convolution of the measure df with the function g(u) = g(u~!) makes sense,
since both have support in an interval [u, co[ with ug > 0, and gives the function

(& *dp)u) = /g(u_ll) dp(A).
Thus, with h(e) = &? Tr(f(e|D|)T), one gets using (150),

h(u™) = (& » dB)(u). (151)

The convolution of the measures g(u)d*u and df is absolutely continuous with
respect to d *u and is given, with 6,,(v) = uv for all u, v > 0, by

@+ dp)*u = [ Goudpdu (152
We extend the definition of the Cesaro mean (138) to measures y by

1 A
MGDQ) = /1 du,

so that
M(u)(A) = M(h)(A) for u = hd*u. (153)
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One has (A1) = O(log A) since
A
BA) = Te(PMIDI™)IT = /0 u Pdo(u)||T|.

while o(#) = Onear 0, and ¥~ ?«/(u) is bounded by (143). This gives after integrating
by parts

A A
/ u Pda(u) = A"Pa(d) +/ pu P la(u)du < ca(1 + plogd) + ¢'.
0 0

Moreover for v > 1 one gets, by the above integration by parts,

VA
B — () < T A uPdau) < | Tllea(l + log ).

One has
M dﬁ) A) = —1 Adﬁ = —1 ﬁ A —ﬁ 1) (154)

Thus one has constants a and b such that
|M (6. (dB))(X) — M(dB)()| < (a + b|logul)(logr)~"
for any u. Thus since g(u) and |log u|g(u) are integrable,
M(/g(u)eu(dﬂ)d*u) . M(dﬂ)/g(u)d*u 0.

Equivalently, using (151), (152), (153) and [ g(u) d*u = [ g(u) d*u,

M(h) — M(d,B)/g(u)d*u —0, h@)=hw").
Now by (154) and (147) one has
Limj ., M(dB)(A) = p Tru(T|D|7P).

Thus we finally get

(r / ¢()d*u)Tr(T| D7) = Limys o M(P)(A).
The right-hand side is given, by definition, by
Limysrp M(R)(X) = o(M(K) W), k@) = M(h)@'/P).

Thus we still need to compare k() = M(h)(u'/?) with ky(u) = M(h(AV/?))(u),
but a simple computation shows that k(u) = kq(u). O
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Corollary 14.10. Assume that (141) holds. Let f € C.([0,00[)" be a positive
function. Let p = p fooo uP=! f(u) du. One has, when ¢ — 0,

liminf e? Tr( f(e|D)T) < p Tro,(T|D|7?). (155)

Proof. Let § = liminf e? Tr(f(¢|D|)T). Then for any ¢ < 1 one has h(e) =
e? Tr(f(e|D)T) > ¢§ for e < e, > 0. It follows that Lim2—,_,  h(s) > ¢§. Thus

by (148) one has ¢§ < pTr, (T |D|™?) and obtains (155). O
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