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Abstract. We introduce a new filtration on Hopf algebras, the standard filtration, generalizing
the coradical filtration. Its zeroth term, called the Hopf coradical, is the subalgebra generated
by the coradical. We give a structure theorem: any Hopf algebra with injective antipode is
a deformation of the bosonization of the Hopf coradical by its diagram, a connected graded
Hopf algebra in the category of Yetter–Drinfeld modules over the latter. We discuss the steps
needed to classify Hopf algebras in suitable classes accordingly. For the class of co-Frobenius
Hopf algebras, we prove that a Hopf algebra is co-Frobenius if and only if its Hopf coradical
is so and the diagram is finite dimensional. We also prove that the standard filtration of such
Hopf algebras is finite. Finally, we show that extensions of co-Frobenius (resp. cosemisimple)
Hopf algebras are co-Frobenius (resp. cosemisimple).
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Introduction

There are few general techniques to deal with the classification of Hopf algebras;
one of them is the so-called Lifting Method [AS2] under the assumption that the
coradical is a subalgebra. In the present paper we propose to extend this technique
by considering the subalgebra generated by the coradical, called the Hopf coradical,
and the related standard filtration, which is a generalization of the coradical filtration.
Its zeroth term is the Hopf coradical while the remaining ones are iterative wedge
operations of it. The standard filtration of a Hopf algebra H is always a Hopf algebra
filtration, provided that the antipode is injective, and we can consider its associated
graded Hopf algebra gr H . The latter is a bosonization of the Hopf coradical HŒ0� by
a connected graded Hopf algebra R in the category of Yetter–Drinfeld HŒ0�-modules
(the diagram of H ). Then H is a deformation or quantization of gr H for a suitable
cohomology theory. We summarize our considerations in Theorem 1.3, that can be
thought of either as a structure theorem for Hopf algebras with injective antipode, or
as a proposal for the classification of Hopf algebras in suitable classes (e.g., those
of finite dimensional, or co-Frobenius, or finite Gelfand–Kirillov dimension Hopf
algebras). We discuss the different problems to be solved for the success of this
proposal in Section 1.
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In Section 2 we focus on the class of co-Frobenius Hopf algebras with the tech-
niques just introduced. These are Hopf algebras having nonzero integral and there
exist relevant examples of them: either finite dimensional or cosemisimple Hopf al-
gebras, coordinate algebras of certain algebraic groups [Su] or more generally group
schemes [Do2], families of quantum groups at a root of one [APW], [AD], and quan-
tum groups attached to some Hecke symmetries [H]. This notion can be rephrased
in representation theoretic terms: a Hopf algebra is co-Frobenius iff the injective
hulls of the simple comodules are finite dimensional iff the projective cover of any
comodule do exist.

Our second main result, Theorem 2.5, particularizes the previous structure theo-
rem as follows: a Hopf algebra is co-Frobenius if and only if its Hopf coradical is
so and the diagram is finite dimensional. This reduces the classification in this class
to those which are generated by cosemisimple coalgebras and the finite dimensional
graded connected Hopf algebras in the corresponding categories of Yetter–Drinfeld
modules. It is natural to investigate cosemisimple Hopf algebras as part of this pro-
gram. Towards this end, we study extensions of co-Frobenius Hopf algebras. Given
an extension of Hopf algebras 1 ! A ! B ! C ! 1 with B faithfully coflat as a
C -comodule, Theorem 2.10 asserts that B is co-Frobenius if and only if A and C are
co-Frobenius. This result is used to detect all co-Frobenius quotients of quantized
coordinate algebras of simple algebraic groups at root of one, Examples 2.11. In
our last main result, Theorem 2.13, we prove that B has a nonzero left integral that
restricted to A is nonzero if and only if A is co-Frobenius and C is cosemisimple.
We derive from this that B is cosemisimple if and only if A and C so are. New char-
acterizations of co-Frobenius Hopf algebras are established to achieve these results,
Theorems 2.3 and 2.8.

A conjecture posed in [AD] states that a co-Frobenius Hopf algebra has finite
coradical filtration. Related to this problem, in Theorem 2.5 we also show that a
Hopf algebra is co-Frobenius if and only if the Hopf coradical is so and its standard
filtration is finite. After acceptance of the present paper, it was proved in [ACE],
Theorem 1.2, that the conjecture is true.

Contents of Section 1 were presented by N. Andruskiewitsch at the meetings
“Conference in Hopf algebras and Noncommutative Algebra”, Sde-Boker (Israel),
May 24–27, 2010 and “XXI Escola de Algebra”, Brasilia (Brazil), July 25–31, 2010.
The main results of Section 2 were expounded by J. Cuadra at the conference “Quan-
tum groups: Galois and integration techniques”, Clermont-Ferrand (France), August
30–September 3, 2010.

Conventions and notations. Our main references for the theory of Hopf algebras
are [Mo], [Sw1]. We shall work over a ground field k. Let C be a coalgebra with
comultiplication � and counit ". For subspaces D; E � C recall from [Sw1],
Proposition 9.0.0, that the wedge of D and E is defined to be D ^ E D fc 2 C j
�.c/ 2 D ˝ C C C ˝ Eg. Using the dual algebra C �, it is D ^ E D .D?E?/?,
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where ? stands for the annihilator subspace (in C � and C ). We inductively defineV0
D D D and

VnC1
D D .

Vn
D/ ^ D for n > 0.

We denote by � the antipode of any Hopf algebra H and by H C the kernel of
the counit. We shall use that �.D ^ E/ � �.E/ ^ �.D/ and that this is an equality
when � is bijective.

1. The standard filtration

Let H be a Hopf algebra. We shall consider several invariants of H . The first one,
already present in [Sw1], is the coradical filtration fHngn�0, whose terms are defined
as follows:

� H0 is the coradical, i.e., the sum of all simple subcoalgebras of H .

� Hn D VnC1
H0.

These are coalgebra versions of the Jacobson radical and its powers; indeed, H0 D J ?
and Hn D .J nC1/?, where J denotes the Jacobson radical of H �. The coradical
filtration is a coalgebra filtration. Furthermore, if H0 is a Hopf subalgebra, then it
is also an algebra filtration [Mo], Lemma 5.2.8, and its associated graded coalgebra
gr H D L

n�0 Hn=Hn�1 is a graded Hopf algebra (H�1 D 0). Let � W grH ! H0

be the homogeneous projection; since it splits the inclusion of H0 in gr H , the diagram

R D .gr H/co � D fx 2 gr H j .id ˝ �/�.x/ D x ˝ 1g
turns out to be a Hopf algebra in the category H0

H0
YD of Yetter–Drinfeld H0-modules

and gr H Š R # H0. Here # stands for the Radford biproduct or bosonization, see
for example [AS2]. The study of the diagram is central for the understanding of Hopf
algebras whose coradical is a Hopf subalgebra. But this is not always the case, and
the main goal of this paper is to propose a new approach in the general situation. We
start by defining a new filtration, the standard filtration fHŒn�gn�0, as follows:

� The Hopf coradical HŒ0� is the subalgebra generated by H0.

� HŒn� D VnC1
HŒ0�.

By convenience, we set HŒ�1� D 0. Of course, HŒ0� D H0 just means that the latter
is a subalgebra; then it is a Hopf subalgebra and the coradical filtration coincides with
the standard one. The basic properties of the standard filtration are collected in the
next result.

We assume throughout this section that �.H0/ � H0; this holds, for instance,
if � is injective. Actually, we are mostly interested in Hopf algebras with bijective
antipode.

Lemma 1.1. With notation as above:

(i) HŒ0� is a Hopf subalgebra of H and its coradical is H0.
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(ii) Hn � HŒn� and fHŒn�gn�0 is a Hopf algebra filtration of H .

(iii) If � is bijective, then �.HŒn�/ D HŒn�.

Proof. (i) We know that HŒ0� D S
r�0 H

.r/
0 ; where H

.r/
0 D H0

r: : : H0 for r > 0

and H
.0/
0 D k. Then HŒ0� is a subcoalgebra of H because each H

.r/
0 is so. Since

�.H0/ � H0 by assumption, �.H
.r/
0 / � H

.r/
0 and thus �.HŒ0�/ � HŒ0�. For the

second statement, the coradical of HŒ0� is HŒ0� \ H0 D H0.

(ii) This can be similarly proved as [Mo], Lemma 5.2.8; we include the proof for
the sake of completeness. Each HŒn� is a subcoalgebra of H , because it is defined as an
iterative wedge of subcoalgebras, and HŒn� � HŒnC1�, [Sw1], Proposition 9.0.0 (i).
Moreover, from Hn D VnC1

H0 � VnC1
HŒ0� D HŒn� and H D S

n�0 Hn we

obtain H D S
n�0 HŒn�. Since HŒn� D VnC1

HŒ0�; by [Sw1], Theorem 9.1.6,
�.HŒn�/ � Pn

iD0 HŒi� ˝ HŒn�i�; showing that fHŒn�gn�0 is a coalgebra filtration.
We now prove that it is an algebra filtration, that is, HŒn�HŒm� � HŒnCm� for all
n; m � 0. For n D 0, it follows by induction on m and the following computation:

�.HŒ0�HŒm�/ � .HŒ0� ˝ HŒ0�/.HŒ0� ˝ HŒm� C HŒm� ˝ HŒm�1�/

� HŒ0�HŒ0� ˝ HŒ0�HŒm� C HŒ0�HŒm� ˝ HŒ0�HŒm�1�

� HŒ0� ˝ H C H ˝ HŒm�1�:

Analogously, HŒn�HŒ0� � HŒn� for all n � 0. To prove the general statement, we
apply induction on n and m. A computation similar to the preceding one shows by a
recursive argument that HŒn�HŒm� � HŒnCm�1� ^ HŒ0� D HŒnCm�. Finally, since �

is an anti-coalgebra map, by induction we have

�.HŒn�/ D �.HŒ0� ^ HŒn�1�/ � �.HŒn�1�/ ^ �.HŒ0�/ � HŒn�1� ^ HŒ0� D HŒn�:

(iii) Use that for � bijective, �.D ^E/ D �.E/^�.D/ for any pair of subspaces
D, E of H .

We may consider the graded Hopf algebra gr H D L
n�0 HŒn�=HŒn�1� asso-

ciated with the standard filtration in view of the previous lemma. As before, if
� W gr H ! HŒ0� is the homogeneous projection, that splits the inclusion of HŒ0� in

gr H , then the diagram R D .gr H/co � is a Hopf algebra in the category
HŒ0�

HŒ0�
YD of

Yetter–Drinfeld HŒ0�-modules and

gr H Š R # HŒ0�: (1)

For n � 0 set grn H D HŒn�=HŒn�1�, the homogenous component of degree n in
gr H . We are going to see that the filtration of gr H associated with the grading and
the standard filtration of gr H coincide.

Proposition 1.2. .gr H/Œn� D L
i�n gri H for all n � 0.
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Proof. The proof is similar to that of [AS1], Lemma 2.3, where this result is es-
tablished when H0 is a subalgebra. We proceed by induction on n. The filtra-
tion attached to the grading is a coalgebra filtration. By [Sw1], Proposition 11.1.1,
.gr H/0 � gr0 H D HŒ0�. From here, .gr H/Œ0� � HŒ0�. On the other hand,
H0 is a cosemisimple subcoalgebra of gr H (as a subcoalgebra of HŒ0�). Hence
H0 � .gr H/0 and consequently gr0 H D HŒ0� � .gr H/Œ0�.

The following computation shows that
L

i�n gri H � .gr H/Œn�:

�.grn H/ �
nL

lD0

grl H ˝ grn�l H

� gr0 H ˝ gr H C gr H ˝ � L
i�n�1

gri H
�

D .gr H/Œ0� ˝ gr H C gr H ˝ .gr H/Œn�1�:

To prove the other inclusion, we observe that .gr H/Œn� is a graded subspace, that
is, .gr H/Œn� D L

m�0.grm H \ .gr H/Œn�/; the wedge of two graded subspaces is
graded. Thus, it suffices to check that grm H \ .gr H/Œn� D 0 for m > n. Pick 0 ¤
Nh 2 HŒm�=HŒm�1� and write �.h/ D x C y C z with x 2 Pn�1

iD0 HŒi� ˝ HŒm�i�; y 2
HŒm� ˝ HŒ0� and z 2 Pm�1

iDn HŒi� ˝ HŒm�i�. Applying the corresponding projections
defining the comultiplication of gr H [Sw1], p. 229, we can write �. Nh/ D Nx C Ny C Nz
with Nx 2 Ln�1

iD0 gri H ˝ grm�i H , Ny 2 grm H ˝ gr0 H and Nz 2 Lm�1
iDn gri H ˝

grm�i H . We claim that Nz ¤ 0. Otherwise, z 2 Pm�1
iDn HŒi� ˝ HŒm�1�i� and hence

�.h/ 2 HŒn�1� ˝ HŒm� C HŒm� ˝ HŒm�n�1�:

This yields h 2 HŒn�1� ^ HŒm�n�1� D HŒm�1� and hence Nh D 0, a contradiction.
Since Nz ¤ 0, we get that �. Nh/ … .gr H/Œn�1� ˝ gr H C gr H ˝ .gr H/Œ0�. Therefore,
Nh … .gr H/Œn�.

From the preceding, we deduce that .gr H/n � L
i�n grn H . But the latter is not

an equality in general; in other words, gr H is not coradically graded.
The diagram inherits the grading from gr H , that is, R D L

n�0 Rn, where
Rn D R \ grn H . With respect to this grading, R is a graded Hopf algebra in
HŒ0�

HŒ0�
YD , gri H D Ri # HŒ0� for every i � 0 and R0 D R0 D k1, see [AS1],

Lemma 2.1. Furthermore, R1 � P.R/ as in the proof of [AS1], Lemma 2.4.

To sum up this discussion, we have the following structure theorem.

Theorem 1.3. Any Hopf algebra with injective antipode is a deformation of the
bosonization of aHopf algebra generated by a cosemisimple coalgebra by a connected
graded Hopf algebra in the category of Yetter–Drinfeld modules over the latter.

To provide significance to this result, we should address some fundamental ques-
tions. Suppose that we aim to classify all Hopf algebras H in a class C , which is
suitable in the following sense:
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(1) H belongs to C iff gr H belongs to C ;

(2) if H belongs to C , then HŒ0� belongs to C .

Typically, the classes of finite dimensional, or with finite Gelfand–Kirillov dimension,
or co-Frobenius Hopf algebras are suitable. See Section 2 for the latter class.

Question I. Let C be a cosemisimple coalgebra compatible with the class in the
appropriate sense and S W C ! C an injective anti-coalgebra morphism (in the typical
examples, one should assume S bijective). Classify all Hopf algebras L generated
by C , belonging to the class C , and such that � jC D S .

Question II. Given L as in the previous item, classify all connected graded Hopf
algebras R in L

LYD such that R # L belongs to C .

Question III. Given L and R as in previous items, classify all deformations or
liftings, that is, classify all Hopf algebras H such that gr H Š R # L.

Remark 1.4. There is an alternative dual approach to the one shown before. Namely,
let H be a Hopf algebra with surjective antipode and let J denote its Jacobson radical.
Let us consider

J! D T
m�0

Vm
J:

This the largest Hopf ideal contained in J . In the finite dimensional case, J! was
studied in [CH]. Consider the filtration by Hopf ideals .J n

! /n�0 and the associated
graded Hopf algebra gr H D L

n�0 J n
! =J nC1

! , where J 0
! D H . If H is finite di-

mensional, then .gr H/� Š gr.H �/. However, this setting might be more convenient
for the classification of quasi-Hopf algebras, [EG], [An].

1.1. Hopf algebras generated by cosemisimple coalgebras. In this subsection, we
assume that k is an algebraically closed field of characteristic 0. We discuss what is
known about the Question I. Notice that this question contains the classification of
all semisimple Hopf algebras, which is largely open, except for some dimensions.

It is convenient to use the following terminology.

Definition 1.5. A basis .eij /1�i;j �m of a coalgebra C will be called a multiplicative
matrix if �.eij / D Pm

pD1 eip ˝ epj and ".eij / D ıij , the Kronecker symbol.

We recall now a remarkable result of Ştefan, used in classification results of low
dimensional Hopf algebras [St], [N], [GaV].

Theorem 1.6 ([St], Theorem 1.5). Let H be a Hopf algebra and C an �-invariant
4-dimensional simple subcoalgebra. If 1 < ord.�j2

C
/ D n < 1, then there are

a root of unity ! and a multiplicative matrix .eij /1�i;j �2 such that ord.w2/ D n

and eij satisfy all relations defining Op�!.SL2.k//. In particular, there is a Hopf
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algebra morphism Op�!.SL2.k// ! H , which is surjective if C generates H as
an algebra.

This raises the question of classifying all quantum subgroups of the quantum
group SL2, that is, the quotient Hopf algebras of Oq.SL2.k//. This problem was
considered in [P]. The determination of all quantum subgroups of a quantum group
at a root of one or, in equivalent terms, to determine all Hopf algebra quotients of a
quantized coordinate algebra at a root of one (over C), was accomplished in [Mü], for
finite dimensional quotients of the quantum group SLN , and in [AG], for quantum
versions of simple groups. At the present moment, there is no intrinsic condition
describing these quotients, as in the beautiful result of Ştefan for SL2.

Definition 1.7 ([R2], Lemma 2). Let C be a coalgebra and S 2 GL.C / an anti-
coalgebra map. The algebra

H .S/ ´ T .C /=hc.1/S.c.2// � ".c/; S.c.1//c.2/ � ".c/ W c 2 C i

is a Hopf algebra, with comultiplication induced by that of C and antipode induced
by S , which satisfies the following universal property: if K is a Hopf algebra with
antipode �K and f W C ! K is a coalgebra map such that �Kf D f S; then there is
a unique Hopf algebra map Qf W H .S/ ! K such that Qf jC D f .

Given s 2 N, let 1 < d1 < � � � < ds and n1; : : : ; ns be natural numbers. For
1 � r � s, let Fr 2 GLdr

.k/. We consider the coalgebras

Dr D .Cdr
/nr ; C D

sL
rD1

Dr ;

where Cdr
is a comatrix coalgebra of dimension d 2

r . Fix .e
r;k
ij /1�i;j �dr

a multi-
plicative matrix of the k-th copy of Cdr

in Dr , for any k, and define Sr 2 GL.Dr/

by

Sr.e
r;k
ij / D

´
e

r;kC1
ji ; 1 � k < nr ;

aij ; k D nr ;

where A D .aij / is given by A D Fr.e
r;1
j i /F �1

r . Let S D Ls
rD1 Sr 2 GL.C /. We

denote H .Fr ; nr/1�r�s D H .S/. This definition is a generalization of the one in
[Bi]; a similar construction in the setting of Hopf C �-algebras was introduced in [W].
See also [VDW], [BB], [BiN] for variations and applications.

Question IV. Compute the Hopf algebra quotients of H .Fr ; nr/1�r�s in suitable
classes (e.g., finite dimensional, or with finite Gelfand–Kirillov dimension, or co-
Frobenius).
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1.2. Connected braided Hopf algebras. We point out here the connection of Ques-
tion II with Nichols algebras. Let L be a Hopf algebra generated by a cosemisimple
coalgebra in our class C and let CL be the class of connected braided Hopf algebras
R in L

LYD such that R # L 2 C .
The most relevant examples of connected braided Hopf algebras in L

LYD are
the Nichols algebras: given V 2 L

LYD , there exists a unique (up to isomorphisms)
connected braided Hopf algebra B.V / D L

n�0 Bn.V / with the properties

V Š B1.V / D P.B.V // and V generates B.V / as an algebra.

If R is a connected braided Hopf algebra in L
LYD , then there is a canonical

subquotient Nichols algebra B.V /, namely V D R1. Therefore, if the class CL is
closed under subquotients, then it would be important to solve the following problem.

Question V. Given L as above, classify all Nichols algebras in CL.

It would be interesting to understand how to construct any braided connected Hopf
algebra as a suitable extension of Nichols algebras. For generalities on extensions in
categories of Yetter–Drinfeld modules, see [Be], [BeD].

1.3. Liftings or deformations. As for Question III, the classification of all Hopf
algebras H such that gr H Š R # L, with R and L as above, is a particular instance
of the general problem of detecting all filtered objects with a fixed graded object G.
These objects are usually called deformations or quantizations of G, and they are
controlled with a suitable cohomology theory. In the Hopf algebra case, they are
called liftings [AS2] and the pertinent cohomology theory is that of [GeS1], [GeS2],
see [DuCY], [MaW].

2. Co-Frobenius Hopf algebras

Let H be a Hopf algebra. We will denote the category of left (resp. right) H -
comodules by HM (resp. MH ). Given M 2 HM, throughout this section, EH .M/

stands for the injective hull of M . If S 2 HM is simple, we can always take EH .S/

as a left coideal of H , see [Gr], 1.5g, or [DNR], Corollary 2.4.15. Recall that a
left integral for H is a linear map

R W H ! k such that ˛ � R D ˛.1H /
R

for all
˛ 2 H �. Equivalently,

R
.h.2//h.1/ D R

.h/1H for all h 2 H . This is just saying thatR W H ! k is a left H -comodule map. Let Rat.H �/ denote the maximal rational
submodule of H �, as left H �-module.

Theorem 2.1. The following statements are equivalent:

(i) H has a nonzero left integral.

(ii) Rat.H �/ ¤ 0.
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(iii) EH .S/ is finite dimensional for every S 2 HM simple.

(iv) EH .k/ is finite dimensional.

(v) HM has a nonzero finite dimensional injective object.

Proof. (i) () (ii) () (iii) is [L], Theorem 3, cf. also [Sw2], 2.10. (iii) H) (iv),
(iv) H) (v) are evident.1 (v) H) (i) is [DN], Proposition 2.3.

A Hopf algebra satisfying any of these statements is called co-Frobenius. Other
characterizations may be found in [DNR], Theorem 5.3.2; some new ones are given
in Theorems 2.3 and 2.8. All these characterizations are equivalent to their right
versions, that will be used but not explicitly stated.

2.1. The standard filtration of co-Frobenius Hopf algebras. In [R1], Corollary 2,
Radford showed that if H is a co-Frobenius Hopf algebra whose coradical H0 is
a subalgebra, then H has finite coradical filtration. This is a consequence of his
beautiful result:

Theorem 2.2 ([R1], Proposition 4). Let H be a co-Frobenius Hopf algebra. Then
H D H0EH .k/.

As H0 is a subalgebra, the coradical filtration fHngn�0 is an algebra filtration.
Since EH .k/ is finite dimensional, it embeds in Hm for some m and therefore
H D H0EH .k/ � H0Hm � Hm. Note also that H is finitely generated as a
left H0-module. In [AD] the relation between co-Frobenius Hopf algebras and the
finiteness of the coradical filtration was again analyzed. In that paper, an alternative
proof of this fact was provided, it was proved that a Hopf algebra with finite coradical
filtration is co-Frobenius [AD], Theorem 2.1, and the following conjecture was posed:

Conjecture 1 ([AD], p. 153). The coradical filtration of a co-Frobenius Hopf algebra
is finite.2

In this subsection we generalize the above-mentioned results by proving that a
Hopf algebra H is co-Frobenius if and only if the Hopf coradical HŒ0� is co-Frobenius
and the standard filtration is finite. We will also show that this finiteness condition
is reflected in the fact that the diagram R in (1) is finite dimensional. In the proof of
these results we will need the following new characterization of co-Frobenius Hopf
algebras.

Theorem 2.3. The following assertions are equivalent:

(i) H is co-Frobenius.

1Direct proof of (iv) H) (iii): if S 2 HM is simple, then S ˝ EH .k/ is injective and contains S , so
EH .S/ is a subcomodule of S ˝ EH .k/ and consequently finite dimensional.

2As of February 2012, it is known that the conjecture is true, see [ACE], Theorem 1.2.
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(ii) Every nonzero H -comodule has a nonzero finite dimensional quotient.

(iii) Every nonzero injective H -comodule has a nonzero finite dimensional quotient.

(iv) There is an injective H -comodule which has a nonzero finite dimensional quo-
tient.

Proof. (i) H) (ii). Let 0 ¤ M 2 HM. Then EH .M/ Š L
i2I EH .Si /, where

fSigi2I is a set of simple subcomodules of M [Gr], 1.5h. By hypothesis one has
dim EH .Si / < 1 for every i 2 I . Fix j 2 I and set N D L

i2I�fj g EH .Si /. Then
0 ¤ EH .M/=N Š EH .Sj / is finite dimensional, hence M=M \ N too. We show
that M=M \N ¤ 0. If M \N D M , then M \EH .Sj / D M \N \EH .Sj / D 0,
contradicting the fact that M is essential in EH .M/.

(ii) H) (iii) and (iii) H) (iv) are obvious.

(iv) H) (i). Let M 2 HM be such injective comodule and g W M ! P a surjective
comodule map with 0 ¤ P of finite dimension. We know that M Š L

i2I EH .Si /

for a set fSigi2I of simple subcomodules of M [Gr], 1.5h. There exists j 2 I

such that gjEH .Sj / W EH .Sj / ! P is nonzero. Composing the canonical projection
�j W H ! EH .Sj / with this map, we obtain that its image N is a nonzero finite
dimensional quotient comodule of H . By dualizing, N � is a finite dimensional left
ideal of H �. Then 0 ¤ N � � Rat.H �/ and by Theorem 2.1, H is co-Frobenius.

Remark 2.4. The equivalence between (i) and (iv) is formulated in [Do1], p. 223,
for group schemes although its proof is completely different and strongly uses results
and tools of group scheme theory. That Rat.H �/ ¤ 0 implies H co-Frobenius is the
key fact that allows us to prove this result in a much simpler manner. This must be
seen as another instance of the power of the Fundamental Theorem of Hopf Modules.

We are now in a position to prove our second main result:

Theorem 2.5. The following assertions are equivalent:

(i) H is co-Frobenius.

(ii) HŒ0� is co-Frobenius and H is finitely generated as a left HŒ0�-module.

(iii) HŒ0� is co-Frobenius and the standard filtration is finite.

(iv) The associated graded Hopf algebra gr H is co-Frobenius.

(v) HŒ0� is co-Frobenius and the diagram R of H is finite dimensional.

Moreover, if HŒ0� is co-Frobenius, then HŒ0� D H0
m: : : H0 for some m � 0.

Proof. (i) H) (ii). Since H is co-Frobenius, its antipode is bijective [R1], Proposi-
tion 2, and hence �.H0/ D H0. By Lemma 1.1, HŒ0� is a Hopf subalgebra of H ; it is
co-Frobenius because Hopf subalgebras inherit such a property [Su], Theorem 2.15.
By Theorem 2.2, H D H0EH .k/ � HŒ0�EH .k/ � H .



The structure of (co-Frobenius) Hopf algebras 93

(ii) H) (iii). Let h1; : : : ; hr 2 H be such that H D HŒ0�h1 C � � � C HŒ0�hr .
There is m � 0 such that h1; : : : ; hr 2 HŒm�. Then H D HŒ0�h1 C � � � C HŒ0�hr �
HŒ0�HŒm� D HŒm� by Lemma 1.1.3

(iii) H) (i). Let m � 0 be minimal such that H D HŒm�. Since HŒ0� is
co-Frobenius, the right HŒ0�-comodule H=HŒm�1� D HŒm�=HŒm�1� has a finite di-
mensional quotient HŒ0�-comodule M ¤ 0 by Theorem 2.3. Then M is a quotient
H -comodule of H . Since H is injective, Theorem 2.3 applies.

(iii) H) (iv). By hypothesis, .gr H/Œ0� D HŒ0� is co-Frobenius and the standard
filtration of H is finite. In view of Proposition 1.2 the standard filtration of gr H is
finite. By (iii) H) (i), gr H is co-Frobenius.

(iv) H) (iii). Since HŒ0� is a Hopf subalgebra of gr H , we have that HŒ0� is co-
Frobenius. On the other hand, the standard filtration of gr H is finite by (i) H) (iii)
applied to gr H . From Proposition 1.2, it follows that the standard filtration of H is
finite.

(iv) () (v). The proof of this equivalence given in [AD], p. 148, when H0 is a
subalgebra is also valid in this setting. The argument is as follows. For r 2 R write
�R.r/ D r .1/ ˝ r .2/ 2 R ˝ R. Denoting the HŒ0�-comodule structure map of R by
� W R ! HŒ0� ˝R, set �.r/ D r.�1/ ˝ r.0/. The comultiplication of R # HŒ0� is given
by �.r # h/ D .r .1/ # r .2/

.�1/h.1// ˝ .r .2/
.0/ # h.2// for r # h 2 R # HŒ0�. Notice

that if K is a left coideal of HŒ0�; then R # K is a left coideal of R # HŒ0�.
By Proposition 1.2, .gr H/0 D .HŒ0�/0 D H0. Under the Hopf algebra iso-

morphism gr H Š R # HŒ0�; the coradical .gr H/0 corresponds to R0 # H0 D
k # H0. In other words, there is a bijective correspondence between the set of
isomorphism classes of simple H -comodules and the set of isomorphism classes
of simple gr H -comodules. Take fSigi2I a set of simple left coideals of H such
that gr H D L

i2I Egr H .Si / and HŒ0� D L
i2I EHŒ0�

.Si /. Then R # HŒ0� DL
i2I R # EHŒ0�

.Si / as left comodules. This implies that R # EHŒ0�
.Si / is an in-

jective left coideal of R # HŒ0� containing k # Si . Observe that k # Si is the only
simple left coideal contained in R # EHŒ0�

.Si /: if S � R # EHŒ0�
.Si / is another

one, then S � .R # EHŒ0�
.Si // \ .R # HŒ0�/0 � k # Si , hence S D k # Si . Then

Egr H .Si / Š R # EHŒ0�
.Si /. The claim now follows:

gr H is co-Frobenius () dim Egr H .k/ < 1 () dim R < 1 and
dim EHŒ0�

.k/ < 1 () dim R < 1 and HŒ0� is co-Frobenius.
Finally, if HŒ0� is co-Frobenius, then HŒ0� D .HŒ0�/0EHŒ0�

.k/ by Theorem 2.2.

Recall from Lemma 1.1 that HŒ0� D S
r�0 H

.r/
0 . Since dim EHŒ0�

.k/ < 1, there

is t � 0 such that EHŒ0�
.k/ � H

.t/
0 . Then HŒ0� D .HŒ0�/0EHŒ0�

.k/ � H0H
.t/
0 D

H
.tC1/
0 .

3The hypothesis �.H0/ � H0 assumed in Lemma 1.1 is not needed here. Nevertheless, �.H0/ � H0

holds. Since HŒ0� is co-Frobenius, � jHŒ0�
is bijective and consequently �..HŒ0�/0/ D .HŒ0�/0. Recall

now that .HŒ0�/0 D H0.
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Remark 2.6. Notice that our proof of (i) () (iv) in Theorem 2.5 is different
from that in [AD] when H0 is a subalgebra. Given a simple left H -comodule
S , a gr H -comodule gr EH .S/ attached to EH .S/ is constructed as gr EH .S/ DL

i�0 gri EH .S/ with gri EH .S/ D .EH .S/ \ Hi /=.EH .S/ \ Hi�1/. It is then
proved there that gr EH .S/ Š Egr H .S/.

2.2. Exact sequences of co-Frobenius Hopf algebras. In this subsection we will
show that the central term B in an extension of Hopf algebras k ! A ! B ! C ! k
is co-Frobenius if and only if A and C are co-Frobenius. We will also prove that B

possesses a nonzero left integral
R

such that
R jA ¤ 0 if and only if A is co-Frobenius

and C is cosemisimple. We will derive from this that B is cosemisimple if and only
if A and C so are.

The first result mentioned will be obtained as a consequence of Theorem 2.3 and
another new characterization of co-Frobenius Hopf algebras that we present next. We
will need the following description of the cotensor product.

Lemma 2.7 ([S1], Lemma 3.1). Let M be a right H -comodule and X be a left H -
comodule. Let X � denote X but viewed as a right comodule via the antipode. Then
M �H X D .M ˝ X �/co H .

A homological condition characterizing co-Frobenius Hopf algebras is that the
category of right (resp. left) comodules has enough projective objects, [L], Theorems 3
and 10. In the particular case of the coordinate algebra of a group scheme, Donkin
showed that the existence of a nonzero projective object suffices to characterize such
Hopf algebras, [Do2], Lemma 1. We observe that Donkin’s result easily extends to
arbitrary Hopf algebras.

Theorem 2.8. The following statements are equivalent:

(i) H is co-Frobenius.

(ii) MH possesses a nonzero projective object.

(iii) Every injective right H -comodule is projective.

Proof. (i) H) (ii). By [L], as said above.

(ii) H) (iii). First we prove that every projective right H -comodule M is injec-
tive. For N; X; Y 2 MH with X of finite dimension there is a natural isomorphism
HomH .N ˝ X; Y / Š HomH .N; Y ˝ X�/; where X� is the left dual of X con-
structed using the antipode. Then N ˝ X is projective if N is so. To show that M

is injective we must check that for an epimorphism g W Z ! X of finite dimensional
left H -comodules, the map idM �H g D .idM ˝g/jM�H Z W M �H Z ! M �H X

is surjective. It is known that the notions of injective and coflat are equivalent in
the category of comodules over a coalgebra, [T1], Appendix, 2.1. Since M ˝ X �

is projective, the map idM ˝ g W M ˝ Z� ! M ˝ X � splits, so there exists a right
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H -comodule map � W M ˝ X � ! M ˝ Z� such that .idM ˝ g/� D idM˝X� . Tak-
ing into account the inclusions .idM ˝ g/..M ˝ Z�/co H / � .M ˝ X �/co H and
�..M ˝ X �/co H / � .M ˝ Z�/co H and Lemma 2.7, id �H g splits and then it is
surjective. Hence M is injective.

Let P 2 MH be a nonzero projective object and Q a nonzero finite dimensional
subcomodule of P . Consider the canonical map k ! Q ˝ Q�. Let S 2 MH be
simple. We have an injective comodule map S ! Q ˝ Q� ˝ S ! P ˝ Q� ˝ S .
The latter is projective, so it is injective by the previous paragraph. Then EH .S/ is
a direct summand of P ˝ Q� ˝ S . Since P ˝ Q� ˝ S is projective, EH .S/ is
projective. Finally, every injective object in MH is isomorphic to a direct sum of
injective hulls of simple comodules, thus it is projective.

(iii) H) (i). By hypothesis, EH .k/ is projective. It is known that a projective
indecomposable comodule is finite dimensional, [GN], Lemma 1.2.

We give an application of the previous theorem addressed to prove the announced
result on exact sequences of Hopf algebras. Recall that a right H -comodule M is
said to be finitely cogenerated if there is a monomorphism of right H -comodules
from M into H n for some n 2 N.

Corollary 2.9. Let g W H ! K be a Hopf algebra map.

(i) If H is co-Frobenius and H is injective as right K-comodule, then K is co-
Frobenius.

(ii) If H is finitely cogenerated as a right K-comodule and K is co-Frobenius, then
H is co-Frobenius.

Proof. Let Res W HM ! KM and Ind ´ H �K�W KM ! HM be the restriction
and induction functors respectively. We know that Res is left adjoint to Ind. If
H is injective as a right K-comodule, then Ind is exact, and hence Res preserves
projective objects. On the other hand, Ind preserves injective objects because Res is
always exact.

(i) By hypothesis and Theorem 2.8, there is a nonzero projective object P 2 HM.
Then Res P is a nonzero projective object in MK and, using again Theorem 2.8, K

is co-Frobenius.
(ii) Let f W H ! Kn be the monomorphism of K-comodules given by hypothesis.

Take M 2 KM finite dimensional. We have a monomorphism of vector spaces
f �K idM W H �K M ! Kn �K M Š M n. From here, Ind M D H �K M

is finite dimensional. Since K is co-Frobenius, Ind EK.k/ is a finite dimensional
injective object in HM. Moreover, Ind EK.k/ ¤ 0 because it contains Ind k and
Ind k D H �K k D .H ˝ k�/co K Š H co K ¤ 0. By Theorem 2.8, H is co-
Frobenius.

Recall from [ADe] that a sequence of morphisms of Hopf algebras

k ! A
��! B

��! C ! k



96 N. Andruskiewitsch and J. Cuadra

is exact if � is injective, � is surjective,

ker � D BAC (2)

and

Bco C D A: (3)

There are some simplifications of this definition, see [ADe], [S3], [T2]:

� If A is stable under the adjoint action of B (i.e., A is normal) and B is faithfully
flat as an A-module, then (2) implies (3).

� If C is a quotient comodule of B under the adjoint coaction (i.e., C is conormal)
and B is faithfully coflat as a C -comodule, then (3) implies (2).

� A is a normal Hopf subalgebra of B and B is faithfully flat as an A-module
is equivalent to B is faithfully coflat as a C -comodule and C is a conormal
quotient Hopf algebra of B .

We are now ready to prove the announced result:

Theorem 2.10. Let k ! A ! B ! C ! k be an exact sequence of Hopf algebras
with B faithfully coflat as a C -comodule. Then B is co-Frobenius if and only if A

and C are co-Frobenius.

Proof. Let us first assume that A and C are co-Frobenius. The induction functor
Ind ´ B �C �W CM ! BM is exact because B is coflat as a right C -comodule.
A nonzero left integral

R C W C ! k for C is a surjective map of left C -comodules.

Then Ind
R C W Ind C ! Ind k in BM is surjective. Obviously Ind C Š B , and

Ind k D B �C k D .B ˝ k�/co C Š Bco C D A. So A is a quotient of B as a left
B-comodule. Since A is co-Frobenius, A has a nonzero finite dimensional quo-
tient left A-comodule (and hence B-comodule). Therefore B has a nonzero finite
dimensional quotient left B-comodule and by Theorem 2.3, B is co-Frobenius.

Conversely, if B is co-Frobenius, then A is co-Frobenius by [Su], Theorem 2.15.
That C is co-Frobenius follows from Corollary 2.9 (i) since B is injective as a right
C -comodule.

Examples 2.11. (1) For commutative Hopf algebras, Sullivan proved Theorem 2.10
by totally different methods in [Su], Theorem 2.20.

(2) If the exact sequence k ! A ! B ! C ! k is cleft, then B is a bicross-
product of A and C . It is shown in [BDGN], Proposition 5.2, that B is co-Frobenius
if A, C are so by checking that

R A ˝ R C is a nonzero integral for B where
R A,

R C

are nonzero integrals for A and C respectively.

In the next examples k is an algebraically closed field of characteristic zero.

(3) Let G be a connected, simply connected, simple complex algebraic group
and let � be a primitive `-th root of 1, ` odd and 3 − ` if G is of type G2. It was
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shown in [AD], Example 4.1, using the Hopf socle that the quantum group O�.G/

is co-Frobenius. An alternative proof follows from Theorem 2.10. For, O�.G/ is
noetherian and fits into an exact sequence k ! O.G/ ! O�.G/ ! xH ! k, where
dim xH < 1 and O.G/ is central in O�.G/. Hence O�.G/ is faithfully flat over O.G/

by [S3], Theorem 3.3.

(4) Let D D .IC; I�; N; �; 	; ı/ be a subgroup datum as in [AG], Definition 1.1,
and let AD be the Hopf algebra (quotient of O�.G/) constructed in [AG], §2. Then
AD is co-Frobenius iff the algebraic group � is reductive. By [AG], Theorem 2.17,
AD fits into the following diagram with exact rows and surjective vertical maps:

k �� O.G/ ��

����

O�.G/

����

�� xH
����

�� k

k �� O.�/ �� AD
�� H �� k.

Hence AD is noetherian, O.�/ is central and dim H < 1; thus AD is faithfully flat
over O.�/ again by [S3], Theorem 3.3. It is known that O.�/ is co-Frobenius iff �

is reductive [Su], Theorem 3. Then Theorem 2.10 applies.

(5) If H is a co-Frobenius Hopf algebra and 	 W H ˝ H ! k is a convolution
invertible 2-cocycle, then the twisted algebra H � is again co-Frobenius, since the
coalgebra structure remains unchanged, see [DT] for details. In this way, many al-
gebras of functions on multiparametric quantum groups are co-Frobenius, like those
studied in [AST], which are twistings of O�.GL.n//. However, there are multipara-
metric quantum groups that do not arise as twistings as we point out next. Also, the
twisting operation does not preserve quotient Hopf algebras.

(6) Let ` be an odd natural number such that ˛�1ˇ is a primitive `-th root of unity
and ˛` D 1 D ˇ`. The 2-parameter quantum group O˛;ˇ .GL.n// introduced in
[T3] is co-Frobenius. For, O˛;ˇ .GL.n// is noetherian and fits into an exact sequence

k ! O.GL.n// ! O˛;ˇ .GL.n// ! xH ! k, where dim xH D `n2
and O.GL.n//

is central in O˛;ˇ .GL.n//, see [Ga], 5.1 and 5.3. Then Theorem 2.10 applies. No-
tice that these 2-parameter quantum groups are not twistings of the quantum GL.n/

discussed above, see [Ga], Remark 3.2 (b), and [T4], Theorem 2.6.

(7) Let D D .IC; I�; N; �; 	; ı/ be a subgroup datum as in [Ga], Definition 1.1,
and let AD be the Hopf algebra constructed in [Ga], Section 5.3 (different to the
mentioned above from [AG]). Then AD is co-Frobenius iff the algebraic group �

is reductive. By [Ga], Theorem 5.23, AD fits into the following diagram with exact
rows and surjective vertical maps:

k �� O.GL.n// ��

����

O˛;ˇ .GL.n//

����

�� xH
����

�� k

k �� O.�/ �� AD
�� H �� k.

Then Theorem 2.10 applies.
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There is another result of Sullivan, [Su], Theorem 1.5 (whose proof was apparently
never published), stating that if A � B are commutative Hopf algebras, then B has
a left (right) integral

R
such that

R jA ¤ 0 if and only if A has a nonzero integral and
the quotient Hopf algebra B=BAC is cosemisimple. We next prove this theorem for
exact sequences of arbitrary Hopf algebras. The following technical result will be
needed:

Lemma 2.12. Let H be a co-Frobenius Hopf algebra with nonzero left integral
R
.

Then:

(i) EH .k/ 2 MH has a unique maximal subcomodule M .

(ii)
R jEH .k/ ¤ 0 and

R jM D 0.

Proof. (i) Let M ´ Rad EH .k/ be the radical of EH .k/, i.e., the intersection of
all its maximal subcomodules. Let g 2 H be the distinguished group-like element.
By Theorem 5.2 of [Cu], EH .k/= Rad EH .k/ Š kg. Since kg is simple, M is the
unique maximal subcomodule of EH .k/.

(ii) The distinguished group-like element satisfies
R

.h.1//h.2/ D R
.h/g for all

h 2 H . Hence f W H ! kg, h 7! R
.h/g is a morphism in MH . Decompose

H D EH .k/˚P as a right H -comodule. Then
R

.h.2//h.1/ D R
.h/1H 2 EH .k/\P

for all h 2 P . Hence
R jP D 0. Since

R ¤ 0, it must be
R jEH .k/ ¤ 0. Thus,

f jEH .k/ W EH .k/ ! kg is a nonzero morphism in MH . Its kernel coincides with
M by (i) and so

R jM D 0.

An extension of semisimple Hopf algebras is semisimple by [BM], Theorem 2.6 (2),
and [S2], Theorem 2.2, see also [A], Proposition 3.1.18. Item (ii) of the next result
extends this fact to cosemisimple Hopf algebras.

Theorem 2.13. Let k ! A ! B ! C ! k be an exact sequence of Hopf algebras
with B faithfully coflat as a C -comodule.

(i) There is a nonzero left integral
R

for B such that
R jA ¤ 0 if and only if A is

co-Frobenius and C is cosemisimple.

(ii) The Hopf algebra B is cosemisimple if and only if A and C so are.

Proof. Let notation be as in the proof of Theorem 2.10.

(i) Assume that A is co-Frobenius and C is cosemisimple. We may chooseR C W C ! k splitting the inclusion map i W k ! C . Then the map of left B-

comodules Ind
R C W B ! A splits Ind i W A ! B . Under the previous isomorphisms

Ind k Š A and Ind C Š B , the map Ind i corresponds to the inclusion map of A

into B . So A is isomorphic to a direct summand of B as a left B-comodule. Set
B Š A ˚ Q for some Q 2 BM. Since A is co-Frobenius, there is a nonzero left
integral

R A W A ! k (i.e., a map of left A-comodules). Then it is also a map of left
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B-comodules. The map
R B W B ! k defined by

R B jA D R A and
R B jQ D 0 is a

nonzero left integral for B .
Conversely, it is clear that A is co-Frobenius. We prove that C is cosemisimple.

We can take the injective hull EA.k/ as a B-subcomodule of EB.k/ (viewing EA.k/

as a B-comodule). Suppose that EA.k/ ¤ EB.k/. Then EA.k/ � M , with M

the unique maximal subcomodule of EB.k/. From the hypothesis and the precedent
lemma, we have 0 ¤ R jA.EA.k// D R

.EA.k// � R
.M/ D 0; a contradiction.

Therefore EA.k/ D EB.k/. This means that EA.k/ is injective when viewed as a
right B-comodule. If S 2 MA is simple, we know that EA.S/ is a direct summand
of S ˝ EA.k/ as an A-comodule (hence as a B-comodule either). Since the latter
is injective as a B-comodule, EA.S/ so is. This implies that A is injective as a right
B-comodule. There is a right B-comodule Q such that B Š A ˚ Q. Applying the
restriction functor Res W MB ! MC , we get Res B Š Res A ˚ Res Q. Taking into
account that Bco C D A, we have that Res A is isomorphic to a direct sum of copies
of k. As Res B is injective, from the above, k is injective as a C -comodule, and so
C is cosemisimple.

(ii) If B is cosemisimple, a nonzero left integral
R

for B satisfies
R

.1B/ ¤ 0.
Then

R jA.1A/ ¤ 0, giving that A and C are cosemisimple. Finally, if A and C are
cosemisimple, by (i), there exists a left integral

R
for B such that

R jA ¤ 0. Since A

is cosemisimple, 0 ¤ R jA.1A/ D R
.1B/. From this, B is cosemisimple.

Remark2.14. Notice that the hypothesis of B being faithfully coflat as a C -comodule
was not used in the proof of the implication from right to left in both statements.

2.3. Finite dual co-Frobenius Hopf algebras. In this last subsection we give one
more application of Theorem 2.8. We obtain a result dual to Corollary 2.9 for finite
dual Hopf algebras. We previously need the dual version of Lemma 2.7 that appears
in [S1], Lemma 4.1.

Let K be a Hopf algebra. Given a right K-module M denote the quotient vector
space M=MKC by M .

Lemma 2.15. Let M and X be right and left K-modules respectively. Let X � denote
X but viewed as a right module via the antipode. Then M ˝ X � Š M ˝K X .

As usual H 0 denotes the finite or Sweedler dual of H , i.e., the subspace of H �
spanned by the matrix coefficients of all finite dimensional H -modules.

Proposition 2.16. Let g W K ! H be a Hopf algebra map. Assume that H is finitely
generated as a right K-module. Then:

(i) If K0 is co-Frobenius, then H 0 is co-Frobenius.

(ii) If H 0 is co-Frobenius and H is flat as a right K-module, then K0 is co-
Frobenius.
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Proof. Let KMf and HMf denote the categories of finite dimensional left K-modules
and H -modules respectively. We may identify KMf as the full subcategory of finite

dimensional objects in MK0
.

Since HK is finitely generated, there exists an epimorphism of right K-mod-
ules g W Kn ! H for some n 2 N. If M 2 KMf , then the induced linear map
g ˝K idM W M n Š Kn ˝K M ! H ˝K M is surjective and hence H ˝K M

is finite dimensional. Thus we may consider the induction and restriction functors
Ind D H ˝K�W KMf ! HMf and Res W HMf ! KMf . We know that Res is right
adjoint to Ind. The functor Ind preserves projective objects because Res is exact.

(i) The projective cover P.k/ of k in MK0
belongs to KMf , see [L], Theorem 10,

Lemma 15. Then Ind P.k/ 2 HMf is projective. It will be nonzero if we show
that its quotient Ind k is nonzero. For, we apply Lemma 2.15 to obtain Ind k D
H ˝K k Š H ˝ k� Š xH D H=HKC. The latter is nonzero since 1H … HKC. The
projective objects in HMf coincide with the finite dimensional projective objects in

MH 0
(this follows from the local finiteness of comodules). By Theorem 2.8, H 0 is

co-Frobenius.

(ii) As H is flat as a right K-module, Ind is exact and so Res preserves injective
objects. If H 0 is co-Frobenius, there is a nonzero finite dimensional injective Q 2
MH 0

by Theorem 2.8. So Res Q is injective in KMf . Taking into account that the

injective objects in KMf are exactly the finite dimensional injective objects in MK0
,

and using once again Theorem 2.8, K0 is co-Frobenius.

Examples of co-Frobenius (indeed cosemisimple) Hopf algebras were constructed
in [Cu], Corollary 3.3, as finite dual Hopf algebras of group algebras of locally finite
groups whose elements have order not divisible by char.k/. More generally, it was
shown there that if H is a Hopf algebra that is Von Neumann regular as an algebra,
then H 0 is cosemisimple.
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