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The spectral radius in C0.X/-Banach algebras
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Abstract. The spectral radius of an element of a C0.X/-Banach algebra can be calculated as
the supremum of the spectral radii in the fibres. As a consequence, calculations in K-theory
for such algebras can potentially be carried out fibrewise.
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1. Introduction

The impetus to write this article has been to give a proof of the fact that the Banach
algebras A.G;C0.R; B// and C0.R;A.G;B// are isomorphic in (topological) K-
theory, where G is a locally compact Hausdorff group, B is a G-Banach algebra and
A.G/ is an unconditional completion of Cc.G/; as an example, L1.G;C0.R; B// and
C0.R;L1.G;B// are isomorphic in K-theory. These results already appeared in the
work of V. Lafforgue, see [Laf02], Section 1.7, and also a variant for groupoids can
be found in [Laf06]. Results of this type are important because they make it possible
to lift positive results on the Bost conjecture for K0 to higher topological K-groups
without any extra work. However, no proof has been published yet.

In the present article, the original, direct argument that V. Lafforgue has indicated
to me is generalised in several directions. Firstly, we replace R by a general second
countable locally compact Hausdorff space X . The main part of the argument is
now a statement about C0.X/-Banach algebras, namely the spectral radius formula
mentioned in the abstract (see Theorem 3.4) and its consequence

Theorem 1.1. Let A and A0 be C0.X/-Banach algebras and let ' W A ! A0
be a C0.X/-linear contractive homomorphism of Banach algebras. Assume that
'x W Ax ! A0

x is spectral and dense for all x 2 X and that X is second count-
able. Then ' is spectral and dense and, therefore, '� W K�.A/ ! K�.A0/ is an
isomorphism.

Recall that a continuous homomorphism W B ! B 0 of Banach algebras is called
spectral if it preserves the spectral radius of elements, or, equivalently, if b 2 B is
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invertible in B if and only if  .b/ is invertible in B 0; the morphism  is called
dense if its image .B/ is dense inB 0. It is a well-known fact that spectral and dense
homomorphisms are isomorphisms in K-theory, see for example [CMR07] or [Bos90]
(and the references therein) and the survey article [Nic10] for more information on
spectral and dense morphisms and their relation to K-theory.

To complete the proof of the original result on unconditional completions, what
is now sufficient to show is that the fibres of A.G;C0.X;B// and C0.X;A.G;B//

are isometrically isomorphic (because isomorphisms are clearly spectral and dense).
It turns out that this is, at the heart of it, a statement not about Banach algebras, but
about Banach spaces, and not about groups but about locally compact spaces.

If we replace the group G (or, more generally, the groupoid G ) with an arbitrary
locally compact Hausdorff space Y and the unconditional completion A.G/ with
what we call a monotone completion H .Y / (which is, technically, the same as an
unconditional completion but without the algebra structure), and if E D .Ey/y2Y is
an upper semi-continuous (u.s.c.) field of Banach spaces over Y , then the result we
are going to show can now be formulated as follows:

Theorem 1.2. The two C0.X/-Banach spaces H .Y;EX/ and H .Y;E/X have the
same fibres over points in X .

To make this statement precise and to prove it will be the subject of Section 4.2.
But before we start, we list some consequences of our main theorems.

Corollary 1.3. LetG be a locally compact Hausdorff group and letB be aG-Banach
algebra. Let A.G/ be an unconditional completion of Cc.G/. Let X be a locally
compact Hausdorff space. Then the canonical homomorphism of C0.X/-Banach
algebras

� W A.G;BX/ ! A.G;B/X

is an isometric isomorphism on the fibres. If X is second countable, then this means
that � is spectral and dense, and hence

�� W K�.A.G;BX// Š K�.A.G;B/X/:

Proof. Take .G;X;A; BG/ instead of .Y;X;H ; E/ inTheorem 1.2. HereBG denotes
the trivial field of Banach spaces over G with fibre B .

Corollary 1.4. In particular, taking X D R in the preceding corollary, we obtain an
isomorphism

K�.A.G; SB// Š K�.SA.G;B// Š K�C1.A.G;B//;

where S denotes the suspension functor for Banach algebras A 7! C0.R; A/.
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Corollary 1.5. Let G be a locally compact Hausdorff groupoid equipped with a Haar
system and let B be a G -Banach algebra. Let A.G / be an unconditional comple-
tion of Cc.G /. Let X be a locally compact Hausdorff space. Then the canonical
homomorphism of C0.X/-Banach algebras

� W A.G ; BX/ ! A.G ; B/X

is an isometric isomorphism on the fibres (note that BX is a G -Banach algebra in a
canonical fashion). IfX is second countable, then � is spectral and dense, and hence

�� W K�.A.G ; BX// Š K�.A.G ; B/X/:

Proof. Take .G ; X;A; r�B/ instead of .Y;X;H ; E/ in Theorem 1.2.

Corollary 1.6. We have an isomorphism

K�.A.G ; SB// Š K�.SA.G ; B// Š K�C1.A.G ; B//:

I would like to thank Vincent Lafforgue for his helpful advice. This research has
been supported by the Deutsche Forschungsgemeinschaft (SFB 478).

Note. All Banach spaces and Banach algebras that appear in this article are supposed
to be complex.

2. C0.X/-Banach algebras and their fibres

Let X be a locally compact Hausdorff space. The notion of a C0.X/-C�-algebra is
well known in the literature, and it has already been generalised to the concept of a
C0.X/-Banach algebra, see [Bla96]. Here, we define it by introducing first what a
C0.X/-Banach space is:

A C0.X/-Banach space is by definition a non-degenerate Banach C0.X/-module,
where non-degeneracy means that C0.X/ �E is (dense in)E. IfE and F are C0.X/-
Banach spaces, then we take the bounded linear C0.X/-linear maps from E to F as
morphisms from E to F . We are going to denote the morphisms from E to F by
LC0.X/.E; F /.

If E is a Banach space, then EX D C0.X;E/ is a C0.X/-Banach space with the
canonical action of C0.X/.

Definition 2.1. A C0.X/-Banach algebra B is a Banach algebra B which is at the
same time a C0.X/-Banach space such that the multiplication ofB is C0.X/-bilinear.

A homomorphism of C0.X/-Banach algebras ' W A ! B is simply a continuous
C0.X/-linear homomorphism ' of algebras.
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Let E be an upper semi-continuous field of Banach spaces over X (see [Laf06]).
Consider�0.X;E/, the space of all sections ofE which vanish at infinity. The Banach
space�0.X;E/ carries a canonical action of C0.X/making it a C0.X/-Banach space.

Conversely:

Definition 2.2. LetE be a C0.X/-Banach space. For all x 2 X , the quotient Banach
spaceEx D E=.C0.X nfxg/E/ is called the fibre ofE over x; it comes with a natural
quotient map E 3 e 7! ex 2 Ex .

One can regard F.E/ ´ .Ex/x2X as an upper semi-continuous field of Banach
spaces over X . Let us denote the C0.X/-Banach space �0.X;F.E// by G.E/ and
call it the Gelfand transform of E. There is a canonical contractive linear map �E
from E to G.E/ which sends every e 2 E to the section x 7! ex 2 Ex . Sadly
enough, �E needs neither be injective nor surjective, we only know that it has dense
image; we do not have E Š �0.X;F.E// in general. The linear map �E is isometric
(and therefore an isomorphism) if and only if the C0.X/-Banach space E is what is
called locally C0.X/-convex, i.e., for all �1; �2 2 C0.X/, �1; �2 � 0, �1 C �2 � 1

and all e1; e2 2 E we have

k�1e1 C �2e2k � maxfke1k; ke2kgI

see [Gie82] and also Appendix A.2 of [Par07].
If E is an upper semi-continuous field of Banach spaces over X , then �0.X;E/

is automatically locally C0.X/-convex. Actually, E 7! �0.X;E/ defines an equiva-
lence of categories between the category of upper semi-continuous fields of Banach
spaces over X and the category of locally C0.X/-convex C0.X/-Banach spaces, the
inverse functor being F. � /. Therefore the functor E 7! G.E/ on the category
of C0.X/-Banach spaces has its values in the subcategory of locally C0.X/-convex
C0.X/-Banach spaces. It is a projector in the sense that G.G.E// is naturally iso-
morphic to G.E/.

The functors F. � / and G. � / can also be applied to C0.X/-Banach algebras; the
fact that underlies this observation is that F. � / and G. � / are compatible with the
(fibrewise) tensor product of upper semi-continuous fields of Banach spaces over X
and the C0.X/-tensor product of C0.X/-Banach spaces; this can be proved using the
result that the C0.X/-tensor product of locally C0.X/-convex spaces is again locally
C0.X/-convex, see [Par08].

So if we have a C0.X/-Banach algebra A, then we can form an upper semi-
continuous field F.A/ of Banach algebras over X and a C0.X/-Banach algebra
G.A/ D �0.X;F.A//, and a C0.X/-Banach algebra A is called locally C0.X/-
convex if and only if the underlying C0.X/-Banach space is locally C0.X/-convex,
and this is the case if and only if the canonical homomorphism �A W A ! G.A/ is an
(isometric) isomorphism of Banach algebras.
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3. The spectral radius in C0.X/-Banach algebras

In this section, we analyse to what extend the spectral radius of an element of a
C0.X/-Banach algebra is determined by its fibrewise spectral radii. If A is a Banach
algebra, then we write �A.a/ for the spectral radius of a 2 A in A.

3.1. A formula for the spectral radius. In this paragraph, letA be a C0.X/-Banach
algebra.

Lemma 3.1. For all x0 2 X , for all a 2 A and all " > 0 there is a neighbourhood
V of x0 in X such that for all � 2 Cc.X/ with 0 � � � 1 and supp� � V we have

k�ak � kax0
k C ":

Proof. Let x0 2 X , a 2 A and " > 0. Recall the following formula of Varela (see
[Var74]; it also follows from Lemme 1.10 of [Bla96] or Lemma 4.2.6 of [Par07]):

kax0
k D inffk�ak W � 2 Cc.X/ 9V � X open W �jV D 1; 0 � � � 1; x0 2 V g:

In particular, we can choose a �0 2 Cc.X/ such that 0 � �0 � 1 and �0 � 1 on a
neighbourhood V of x0 and such that k�0ak � kax0

k C ". Let � 2 Cc.X/ be such
that 0 � � � 1 and supp� � V . Then ��0 D � and hence

k�ak D k��0ak � k�k1k�0ak � kax0
k C ":

Lemma 3.2. For all a 2 A, all x0 2 X and all " > 0 there exists a neighbourhood
V of x0 such that for all � 2 Cc.X/ with 0 � � � 1 and supp� � V we have

�A.�a/ � �Ax0
.ax0

/C ":

Proof. Let a 2 A, x0 2 X and " > 0. Find a k 2 N such that kak
x0

k1=k �
�Ax0

.ax0
/C "=2. Apply Lemma 3.1 to the element ak of A to find a neighbourhood

V of x0 such that

k�0akk1=k � .kak
x0

k C . "
2
/k/1=k � kak

x0
k1=k C "

2

for all functions �0 2 Cc.X/with 0 � �0 � 1 and supp�0 � V . Let � 2 Cc.X/ such
that 0 � � � 1 and supp� � V . Then using the above inequality for �0 D �k we
obtain

�A.�a/ � k�kakk1=k � kak
x0

k1=k C "
2

� �Ax0
.ax0

/C ":

Lemma 3.3. Let �; �0 2 Cc.X/ such that 0 � � � �0. Let a 2 A. Then k�ak �
k�0ak.
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Proof. Find a function �00 2 Cc.X/ such that 0 � �00 � 1 and �00 � 1 on the support
of �0. Let " > 0. Then �0 C "�00 satisfies � � �0 C "�00. Moreover, we have that

x 7! �.x/

�0.x/C "�00.x/

defines a continuous function on the open set fx0 2 X W �00.x0/ > 0g, and we have
�.x/ D 0 for all x in the open set X n supp�. So defining

ı.x/ ´
´

�.x/
�0.x/C"�00.x/

if �00.x/ > 0;
0 if �.x/ D 0

for all x 2 X defines a function ı 2 Cc.X/ such that 0 � ı � 1. We have

ı.�0 C "�00/a D �a

and hence

k�ak D kı.�0 C "�00/ak � kık1k.�0 C "�00/ak � k�0ak C "kak:
Because this is true for all " > 0, we can conclude that k�ak � k�0ak.

Theorem 3.4. For every a 2 A, the function

x 7! �Ax
.ax/

is upper semi-continuous and vanishes at infinity. If X is second countable, then

�A.a/ D max
x2X

�Ax
.ax/

for all a 2 A.

Proof. For the first assertion, let a 2 A, let x0 2 X and let " > 0. Find a neighbour-
hood V of x0 as in Lemma 3.2. Let � 2 Cc.X/ be such that 0 � � � 1, supp� � V

and � � 1 on a neighbourhood U of x0. Let x 2 U . Then

�Ax
.ax/ � �A.�a/ � �Ax0

.ax0
/C "

follows from .�a/x D ax and from Lemma 3.2. From this we see that x 7! �Ax
.ax/

is upper semi-continuous. From �Ax
.ax/ � kaxk for all x 2 X it follows that

x 7! �Ax
.ax/ vanishes at infinity because x 7! kaxk does.

Now for the second assertion. We first reduce to the case that X is compact.
Consider the one-point compactification XC. The C0.X/-Banach algebra A is also
a C.XC/-Banach algebra with A1 D f0g. We therefore have �AC.a/ D �A.a/ and
maxx2XC �Ax

.ax/ D maxx2X �Ax
.ax/ for all a 2 A. If X is second countable,
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then XC is compact and metrisable. Hence it suffices to consider the case that X is
compact and metrisable.

So let X be a compact metric space. Let a 2 A. Define

m ´ max
x2X

�Ax
.ax/:

We show that �A.a/ � mC " for all " > 0.
Let " > 0. For all x 2 X find an (open) neighbourhood Vx as in Lemma 3.2 for

a, " and x. Then .Vx/x2X is an open covering ofX . Find a finite subset S ofX such
that .Vs/s2S is also a covering of X . Find some ı > 0 such that every subset of X
of diameter less than ı is contained in one of the sets Vs . Find a finite refinement U

of fVs W s 2 Sg (i.e. a finite set of open subsets of X which covers X and such that
every element of U is contained in a Vs) such that every element of U has diameter
less than ı=2 (to produce such a refinement first take any open cover of X by sets of
diameter less than ı=2, find a finite subcover; this finite subcover is automatically a
refinement of fVs W s 2 Sg).

Define N ´ f� � U W T
� ¤ ;g. This is a finite (combinatorial) simplicial

complex. Note that
S
� has diameter less than ı for all� 2 N , so

S
� is contained

in a Vs with s 2 S .
Let .�U /U 2U be a continuous partition of unity subordinate to the finite cover U.
If � 2 N , then �� ´ P

U 2� �U satisfies 0 � �� � 1 and is supported in a set
Vs with s 2 S , hence

�A.��a/ � �As
.as/C " � mC ": (1)

If x 2 X , then �x ´ fU 2 U W x 2 U g is in N . So for all x 2 X :P
U 2U

�U .x/ D 1 D P
U 2�x

�U .x/ D ��x
.x/

In particular, we have
1 � P

�2N

.��.x//
k

for all k 2 N and x 2 X . It hence follows from Lemma 3.3 that

kakk � P
�2N

k.��/
kakk

for all k 2 N. It follows that

kakk1=k �
� P

�2N

k.��a/
kk

�1=k

for all k 2 N. The left-hand side approaches �A.a/ if k ! 1, the right-hand side
converges to

max
�2N

�A.��a/
.1/� mC ":
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So we have shown that
�A.a/ � mC "

for all " > 0, so �A.a/ � m.

3.2. Consequences of the spectral radius formula. We can now prove Theorem 1.1
which we restate here for the reader’s convenience (in a slightly more precise version).

Theorem 3.5. Let A and A0 be C0.X/-Banach algebras and let ' W A ! A0 be a
C0.X/-linear contractive homomorphism of Banach algebras. Suppose that
'x W Ax ! A0

x is spectral for all x 2 X and that X is second countable. Then
' is a spectral homomorphism. Moreover, if 'x is dense for all x 2 X , then ' is
dense, too, and '� W K�.A/ ! K�.A0/ is an isomorphism.

Proof. If a 2 A, then by Theorem 3.4,

�A0.'.a// D max
x2X

�A0
x
. '.a/x„ƒ‚…
D'x.ax/

/ D max
x2X

�Ax
.ax/ D �A.a/:

So ' is spectral.
Now assume that '.A/ is fibrewise dense in A0.
We first consider the case that A0 is locally C0.X/-convex (see the discussion in

Section 2). The space '.A/ is not only fibrewise dense inA0, but also invariant under
C0.X/, so it is dense in A0 by the Stone–Weierstrass Theorem for locally C0.X/-
convex C0.X/-Banach spaces (an early variant of this is Theorem 7.9 of [Hof72];
see also Proposition 2.3 in [DG83]). Hence '� is an isomorphism in this case.

Now letA0 be arbitrary and let �A0 W A0 ! G.A0/ be the canonical homomorphism
of A0 into its Gelfand transform G.A0/ (compare Section 2). By construction, �A0

is a fibrewise isomorphism and G.A0/ is locally C0.X/-convex. In particular, �A0

is an isomorphism in K-theory by the preceding part of the proof. Also �A0 B ' is a
fibrewise homomorphism into G.A0/, so it is an isomorphism in K-theory, too. So '
is an isomorphism in K-theory as well.

We have shown and used the following fact in the proof of the preceding propo-
sition, but it is certainly worth to be stated explicitly (it is analogous to a theorem
by Arens, Eidlin and Novodvorskii for the Gelfand transformation of commutative
Banach algebras, see [Bos90], Theorem 1.3.2, or [Tay76], Section 7.5):

Corollary 3.6. Let X be second-countable. Let A be a C0.X/-Banach algebra and
let G.A/ be the Gelfand transform of A (in the sense introduced in Section 2). Then
the canonical map from A to G.A/ is a fibrewise isomorphism and therefore an
isomorphism in K-theory:

K�.A/ Š K�.G.A//:
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As another consequence of the spectral radius formula, we recover Proposition 2.8
of [Bla96] (at least for second countable X ):

Corollary 3.7. Let X be second-countable. Let A be a C0.X/-C�-algebra. Then
kak D maxx2X kaxkAx

for all a 2 A.

Proof. Also the fibres of A are C�-algebras, and we can conclude that

kak2 D ka�ak D �A.a
�a/ D max

x2X
�Ax

.a�
xax/ D max

x2X
ka�

xaxkAx
D max

x2X
kaxk2

Ax
:

4. Monotone completions and their fibres

4.1. Definition. In [Laf02] and [Laf06], the notion of an unconditional completion
was introduced which is a special case of what we propose to call a monotone com-
pletion. Already the article [Laf02] provides us with some interesting examples of
monotone completions which are not unconditional completions.1 The difference
simply is that an unconditional completion is required to carry a product making it a
Banach algebra whereas an unconditional completion is a Banach space without any
product.

Let Y be a locally compact Hausdorff space.

Definition 4.1. A semi-norm k � kH on Cc.Y / is called monotone if, for all '1; '2 2
Cc.Y /, the following condition holds:

j'1.y/j � j'2.y/j/ H) k'1kH � k'2kH for all y 2 Y: (2)

Let H .Y / denote the (Hausdorff-)completion of Cc.Y / with respect to this semi-
norm; this Banach space is called a monotone completion of Cc.Y /.

For the rest of this section, let H .Y / be a monotone completion of Cc.Y /.
For technical reasons and as for unconditional norms, we extend monotone norms

to a larger class of functions on Y :

Definition 4.2. Let Fc.Y / be the set of all (locally) bounded functions ' W Y ! R
with compact support. Let F C

c .Y / be the set of elements of Fc.Y / which are non-
negative. Define

k'kH ´ inffk kH W  2 Cc.Y /;  � 'g
for all ' 2 F C

c .Y /.

1For example H 2.G; A/ defined after Lemme 1.6.5 or the “normalised” completions Lp;l
norm.G; A/

appearing in 4.5.
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Note that, by property (2), the new semi-norm agrees on CC
c .Y / with the semi-

norm we started with. For all '1; '2; ' 2 F C
c .Y / and all c � 0, we have

(1) '1 C '2 2 F C
c .Y / and k'1 C '2kH � k'1kH C k'2kH ;

(2) c' 2 F C
c .Y / and kc'kH D ck'kH ;

(3) if '1 � '2, then k'1kH � k'2kH .

Hence we can use the extended semi-norm to define a semi-norm on sections of
u.s.c. fields of Banach spaces.

For the rest of this section, let E be a u.s.c. field of Banach spaces over Y .

Definition 4.3. We define the following semi-norm on �c.Y;E/:

k�kH ´ ky 7! k�.y/kEy
kH :

The Hausdorff completion of�c.Y;E/with respect to this semi-norm will be denoted
by H .Y;E/.

Note that the function y 7! k�.y/k appearing in the preceding definition is not
necessarily continuous. However, it has compact support and is non-negative upper
semi-continuous, so we can apply the extended semi-norm on F C

c .Y / to it.
If E is the trivial bundle over Y with fibre E0, then �c.Y;E/ is Cc.Y;E0/. The

completion H .Y;E/ of Cc.Y;E0/ could hence also be denoted as H .Y;E0/ and
might be considered as a sort of tensor product of H .Y / and E0. If in particular
E0 D C, then H .Y;E/ D H .Y;C/ D H .Y /.

Definition 4.4. Let F be another u.s.c. field of Banach spaces over Y and let T be a
bounded continuous field of linear maps from E to F . Then � 7! T B � is a linear
map from �c.Y;E/ to �c.Y; F / such that kT B �kH � kT k k�kH . Hence T induces
a canonical continuous linear map from H .Y;E/ to H .Y; F / with norm � kT k.

This way, we define a functor from the category of u.s.c. fields of Banach spaces
over Y to the category of Banach spaces, which is linear and contractive on the
morphism sets.

Note that the canonical map from�c.Y;E/ to H .Y;E/ is continuous if we take the
inductive limit topology on �c.Y;E/ and the norm topology on H .Y;E/. It follows
that, if a subset of �c.Y;E/ is dense in �c.Y;E/ for the inductive limit topology,
then its canonical image in H .Y;E/ is dense for the norm topology.

4.2. A more precise formulation of Theorem 1.2. Let �1 W Y � X ! Y and
�2 W Y � X ! X be the canonical projections. Note that ��

1E D .Ey/.y;x/2Y �X

is an upper semi-continuous field of Banach spaces over Y � X . The pushforward
�1;�.��

1E/ is an upper semi-continuous field over Y , the fibre over y 2 Y being iso-
morphic to EyX D C0.X;Ey/. We denote this pushforward by EX D .EyX/y2Y .
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We form the Banach space H .Y;EX/ and compare it to C0.X;H .Y;E// D
H .Y;E/X . Note that there is a canonical contractive linear map � from H .Y;EX/

to H .Y;E/X .
The second space is actually a C0.X/-Banach space. If x 2 X , then the fibre of

H .Y;E/X over x is canonically isomorphic to H .Y;E/. On the other hand, there is a
canonical contractive linear map ex from H .Y;EX/ to H .Y;E/: If evE

x denotes the
canonical evaluation map at x from EX to E, then ex D H .Y; evE

x /. The following
diagram commutes:

H .Y;EX/
� ��

ex

�������������
H .Y;E/X

evH.Y;E/
x

��
H .Y;E/.

Note that there is a canonical C0.X/-structure on H .Y;EX/: If � 2 �c.Y;EX/ and
� 2 C0.X/, then .��/.y/ ´ � � �.y/ for all y 2 Y ; to interpret this formula note
that �.y/ is contained in the fibre .EX/y of EX over y 2 Y which is isomorphic to
C0.X;Ey/ (as mentioned above), hence there is a canonical product between C0.X/

and .EX/y . The linear map � is clearly C0.X/-linear and hence it induces a canonical
homomorphism �x from the fibre H .Y;EX/x to .H .Y;E/X/x Š H .Y;E/ for every
x 2 X . We can hence extend the above diagram to the following commutative square

H .Y;EX/
� ��

ex

�������������

�x

��

H .Y;E/X

evH.Y;E/
x

��
H .Y;EX/x �x

�� H .Y;E/,

where we write �x for the canonical projection which maps f 2 H .Y;EX/ to
fx 2 H .Y;EX/x .

So a more precise formulation of Theorem 1.2 is:

Theorem4.5. For allx0 2 X , themap �x0
W H .Y;EX/x0

! H .Y;E/ is an isometric
isomorphism.

Proof. Let x0 2 X . Because �.�c.Y;EX// is dense in H .Y;E/X , we know that �x0

has dense image. Hence it suffices to show that �x0
is isometric. We now show:

For all f 2 H .Y;EX/ and all " > 0 there is a function � 2 Cc.X/ such that
0 � � � 1, �.x0/ D 1, and such that

k�f kH � kex0
.f /kH C ":

This is sufficient because �x0
.fx0

/ D ex0
.f / and fx0

D .�f /x0
, which implies that

k�x.fx0
/k � kfx0

k � k.�f /x0
k D k�f kH

Š� kex0
.f /kH C " D k�x0

.fx0
/k C ":
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If we prove this for arbitrary " > 0, then we have shown that �x0
is isometric (note

that the first inequality follows from the fact that k�x0
k � k�k � 1).

We first treat the case that f 2 �c.Y � X;��
1E/ � �c.Y;EX/. Let " > 0. The

set K ´ �1.suppf / � Y is compact. Let U be a compact neighbourhood of K
in Y . Because H .Y / is a monotone completion of Cc.Y /, we can find a constant
C � 0 such that k�kH � Ck�k1 for all � 2 Cc.Y / such that supp � � U .

Because .y; x/ 7! kf .y; x/�f .y; x0/kEy
is upper semi-continuous and vanishes

on the compact setK � fx0g, we can choose a neighbourhood V of x0 inX such that

sup
.y;x/2K�V

kf .y; x/ � f .y; x0/kEy
� "

C
:

Let � 2 Cc.X/ be a function such that 0 � � � 1, �.x0/ D 1 and supp� � V .
Choose a function ıK 2 Cc.G / such that 0 � ıK � 1, ıK � 1 on K and

supp ıK � U . For all y 2 K we have

sup
x2X

k�.x/f .y; x/k D sup
x2V

k�.x/f .y; x/k � sup
x2V

kf .y; x/k
� sup

x2V

.kf .y; x/ � f .y; x0/k C kf .y; x0/k/
� kf .y; x0/k C "

C
ıK.y/;

and for y 2 Y nK we have

sup
x2X

k�.x/f .y; x/k D 0 � kf .y; x0/k C "
C
ıK.y/:

Because kıKkH � C , we have

k�f kH D ky 7! sup
x2X

k�.x/f .y; x/kkH � ky 7! kf .y; x0/k C "
3C
ıK.y/kH

� ky 7! kf .y; x0/kkH C "
C

kıKkH � kex0
.f /kH C ":

We now treat the general case, so let f be an arbitrary element of H .Y;EX/. Let
" > 0. Then we can find an f 0 2 �c.Y � X;��

1E/ such that kf � f 0kH � "=3.
Note that this also implies kex0

.f /�ex0
.f 0/kH � "=3. By the first part of the proof

we can find a function � 2 Cc.X/ such that 0 � � � 1, �.x0/ D 1 and

k�f 0kH � kex0
.f 0/kH C "

3
:

Now

k�f kH � k�f 0kH C "
3

� kex0
.f 0/kH C 2"

3
� kex0

.f /kH C ":
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