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Abstract. The Green–Julg theorem states that KG
0 .B/ Š K0.L1.G;B// for every compact

group G and every G-C�-algebra B . We formulate a generalisation of this result to proper
groupoids and Banach algebras. This is a key result in the proof that the Bost assembly map
is surjective for proper Banach algebra coefficients.
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Let G be a proper locally compact Hausdorff groupoid with unit spaceX and assume
that G carries a Haar system. In [Tu99], the following C�-algebraic theorem is proved,
which reduces to the classical Green–Julg theorem if G is a compact group.1

Theorem (Tu). If G is � -compact and proper and if B is a G -C�-algebra, then there
is a canonical isomorphism

KKG .C0.X/; B/ Š KKX=G .C0.X=G /; B Ìr G /: (1)

In order to translate this theorem into the setting of Banach algebras, we choose
the language of V. Lafforgue’s bivariant K-theory KKban, introduced in [Laf02] and
[Laf06]. More precisely, we proceed as follows:

� We replace the G -C�-algebra B by a G -Banach algebra, so the left-hand side of
(1) should then be replaced by2 KKban

G .C0.X/; B/.

� The crossed product of B with G is replaced by A.G ; B/, where A.G / is some
unconditional completion of Cc.G / as, for example, L1.G /.

1Actually, Proposition 6.25 of [Tu99] is more general than cited here: It allows C�-algebras in the first
variable that are of a more general form. We confine ourselves to “trivial” coefficients in the first variable.
Note that this theorem of Tu also generalises Theorem 5.4 in [KS03].

2Actually, it should be replaced by KKban
G .CX ; B/ where CX denotes the constant field over X with

fibre C. We will sometimes identify C0.X/ and CX to obtain statements of theorems which look familiar.
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� For technical reasons, we do not use KKban
X=G on the right-hand side but a variant

called RKKban which is defined in the first section of this article.

This way, we obtain the following conjecture:

Conjecture. If G is proper, if B is a G -Banach algebra and if A.G / is an uncondi-
tional completion of Cc.G /, then there is a canonical isomorphism

KKban
G .C0.X/; B/ Š RKKban.C0.X=G /I C0.X=G /;A.G ; B//: (2)

Note that the right-hand side reduces to K0.A.G ; B// if X=G is compact, see
Corollary 1.9.

We show this conjecture under some regularity conditions:

� Firstly, B should be a non-degenerate G -Banach algebra, i.e., the span of BB
is dense in B . It is conceivable that this condition can be removed but the price
one has to pay is the technical challenge of adapting the definition of KKban and
its variants to make it suitable also for degenerate Banach algebras.

� Secondly, we want G to carry a cut-off function (which is automatic ifX=G is � -
compact). The first two conditions allow us to define a canonical homomorphism
JB

A
from the left-hand side to the right-hand side of (2).

� Thirdly, to show that this homomorphism JB
A

is bijective, we need to impose
some conditions on the unconditional completion A.G /:

– If we let the unconditional completion A.G / be regular (this notion will
be explained in Section 4.3; the completion L1.G / and its symmetrised
version L1.G /\L1.G /� are regular), then we are able to define a canonical
homomorphism from the right-hand side to the left-hand side of (2) and
show that JB

A
is split surjective.

– For split injectivity, we need that A.G / satisfies some additional regularity
condition (which is true if A.G / equals L1.G / or its symmetrised version).
The proof of the injectivity part is only sketched in this article, and the
reader is referred to [Par07] for the details.

– It is conceivable that one can show that the right-hand side is independent
of A.G /, which would settle the conjecture without any conditions on
A.G /. We have partial results in this direction, for example, in the case
that G D G Ë X , where G is a locally compact group acting properly
and co-compactly on a locally compact space X , see Corollary 2.5 and
Proposition A.2.

Note that, already from the surjectivity part of the generalised Green–Julg Theo-
rem, it is possible to deduce the split surjectivity of the Bost assembly map for proper
Banach algebra coefficients as carried out in [Par13b].

In the first section of this article, we introduce a variant RKKban of KKban for
Banach algebras which carry an action of C0.X/, where X is a locally compact
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Hausdorff space. This theory serves as a recipient for the descent homomorphism
and also appears on the right-hand side of the generalised Green–Julg theorem. It
has the feature that if X is compact, then

RKKban
G .C.X/IA˝ C.X/; B/ Š KKban

G .A;B/:

The second section introduces the main theorem in more detail, outlines the proof
and gives some corollaries.

The third section makes some useful tools and concepts available for the proof of
the main theorem, e.g., cut-off pairs (a refinement of cut-off functions) and monotone
completions (a refinement of unconditional completions).

The fourth section contains the actual proof of the generalised Green–Julg theo-
rem.

In an appendix, the dependence of K�.A.G ; B//, for proper G , on the uncondi-
tional completion A.G / is studied.

Most of the results of this article are contained in the doctoral thesis [Par07],
which comprises full proofs and all technical details; I would like to thank my Ph.D.
supervisor Siegfried Echterhoff. I also thank Vincent Lafforgue, who has drawn my
attention to the study of the Bost conjecture for proper Banach algebra coefficients,
for his helpful advice. This research has been supported by the Deutsche Forschungs-
gemeinschaft (SFB 478).

Notation. All Banach spaces and Banach algebras that appear in this article are
supposed to be complex. References which explain the necessary notation and the
concepts to understand Banach algebras that carry actions of groupoids are [Laf06]
and [Par09a].

1. C0.X/-Banach algebras and RKKban-theory

Let X be a locally compact Hausdorff space. The notion of a C0.X/-C�-algebra is
well-known in the literature, and it has already been generalised to the concept of
a C0.X/-Banach algebra, see [Blan96]. For C0.X/-C�-algebras, there is a natural
variant of KK-theory called RKK. This section is dedicated to the development
of an analogous theory for C0.X/-Banach algebras. This can be thought of as an
intermediate step between KKban for ordinary Banach algebras as defined in [Laf02]
and the variant of KKban for fields of Banach algebras as defined in [Laf06].

The starting point for our definition of RKK is the following observation: If A
and B are C0.X/-C�-algebras and .E; T / is a cycle for RKK.C0.X/IA;B/, thenE
carries a canonical action of C0.X/ defined through the identificationE Š E˝B B ,
just let C0.X/ act on the second factor. This action is the unique action of C0.X/

on E that is compatible with the module action of B . The usual condition on an
RKK-cycle, namely that .�a/.eb/ D .ae/.�b/ for all a 2 A, e 2 E, b 2 B

and � 2 C0.X/, then just means that the actions of C0.X/ on A and E should be
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compatible. So E is what could be called a C0.X/-Hilbert A-B-module. The corner
stone for the definition of RKKban should hence be the notion of a C0.X/-BanachA-
B-pair (ifA andB are C0.X/-Banach algebras). The fundamental notion underlying
all this is a notion of a C0.X/-Banach space, which turns out to be rather simple:

1.1. C0.X/-Banach spaces, C0.X/-Banachalgebras, etc. A C0.X/-Banach space
E is by definition a non-degenerate Banach C0.X/-module, where non-degeneracy
means that C0.X/ � E is (dense in) E. If E and F are C0.X/-Banach spaces, then
we take the bounded linear C0.X/-linear maps from E to F as morphisms from E

to F . We are going to denote the morphisms from E to F by LC0.X/.E; F /.
If E is a Banach space, then EX D C0.X;E/ is a C0.X/-Banach space with the

canonical action of C0.X/.
Let E1 and E2 be C0.X/-Banach spaces. Let E1 � E2 be the product Banach

space (with the sup-norm). ThenE1 �E2 is a C0.X/-Banach space with the obvious
product action. Similarly, there is a notion of the sum E1 ˚ E2 of C0.X/-Banach
spaces E1 and E2 using the sum-norm. It is compatible with the C0.X/-tensor
product that we are going to define below. Let F be another C0.X/-Banach space.
A C-bilinear map � W E1 �E2 ! F is called C0.X/-bilinear if � is C0.X/-linear in
every component. There is a universal space E1 ˝C0.X/ E2 for continuous C0.X/-
bilinear maps on E1 �E2, called the C0.X/-tensor product. It can be constructed as
a quotient of the projective tensor product E1 ˝� E2 and is itself a C0.X/-Banach
space in an obvious way.

Definition 1.1. A C0.X/-Banach algebra B is a Banach algebra B which is at the
same time a C0.X/-Banach space such that the multiplication ofB is C0.X/-bilinear.

A homomorphism of C0.X/-Banach algebras ' W A ! B is simply a contractive
C0.X/-linear homomorphism ' of algebras.

For the rest of Section 1.1, let A, B and C be C0.X/-Banach algebras.
We define the fibrewise unitalisation of B to be B ˚ C0.X/. The norm on B ˚

C0.X/ is the sum-norm and multiplication is given by .b; '/ � .c;  / ´ .bcC bC
'c; ' / for all b; c 2 B , '; 2 C0.X/. In the theory of C0.X/-Banach algebras, the
fibrewise unitalisation is the adequate substitute for the ordinary unitalisation, e.g., it
should be used in the definition of pushouts along homomorphisms of C0.X/-Banach
algebras. We will not stress this technical point in what follows.

A C0.X/-Banach B-module is a Banach B-module E which is at the same
time a C0.X/-Banach space such that the module action is C0.X/-bilinear. We
define C0.X/-Banach B-C -bimodules analogously. Let E, F be C0.X/-Banach B-
modules. Then we write LC0.X/

B .E; F / for the subspace of LB.E; F / of operators
which are also C0.X/-linear. Note that if E is a non-degenerate Banach B-module,
then all elements of LB.E; F / are automatically C0.X/-linear.

There is also an obvious notion of homomorphisms with coefficient maps between
C0.X/-Banach modules, compare the definition in [Par09b].
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Let E be a right C0.X/-Banach B-module and let F be a left C0.X/-Banach
B-module. The balanced C0.X/-tensor product E ˝C0.X/

B F of E and F over B
is defined to be the universal object for the B-balanced C0.X/-multilinear maps on
E � F . It can be obtained by taking E ˝B F and dividing out elements of the form
e' ˝ f � e ˝ 'f . Note that if E or F is B-non-degenerate, then it is not hard to
show that the usual balanced tensor product and the balanced C0.X/-tensor product
agree: E ˝C0.X/

B F D E ˝B F:

The pushout along homomorphisms of C0.X/-Banach algebras is defined as in
the ordinary case, compare [Laf02], p. 12, but using the fibrewise unitalisation defined
above. It has the expected (functorial) properties.

Definition 1.2. Let B be a C0.X/-Banach algebra. A C0.X/-Banach B-pair E
is a B-pair E such that E< and E> are C0.X/-Banach B-modules and such that
the inner product is C0.X/-bilinear. If A is another C0.X/-Banach algebra, then a
Banach A-B-pair E is a C0.X/-Banach A-B-pair if it is a C0.X/-Banach B-pair
and the actions of A on E< and E> are C0.X/-bilinear.

For example, if B is a C0.X/-Banach algebra, then .B;B/ is a C0.X/-Banach
B-pair.

LetE andF be C0.X/-BanachB-pairs. Then an elementT of LB.E; F / is called
C0.X/-linear ifT < andT > are C0.X/-linear. The subspace of all C0.X/-linear maps
in LB.E; F / is denoted by LC0.X/

B .E; F /.
The definitions of concurrent homomorphisms with coefficient maps between

C0.X/-Banach pairs, the C0.X/-tensor product of C0.X/-Banach pairs and the
pushout of C0.X/-Banach pairs along homomorphisms of C0.X/-Banach algebras
are the obvious variation of the corresponding definitions for ordinary Banach pairs,
requiring all maps to be C0.X/-linear (compare the discussion for Banach modules
above).

Proposition 1.3. LetE andF be C0.X/-BanachB-pairs. Then KB.E; F / is always
contained in LC0.X/

B .E; F /, i.e., C0.X/-linearity is automatic for compact operators.

Proof. Let f > 2 F> and e< 2 E<. Let T ´ jf >ihe<j. To show that T > is
C0.X/-linear let e> 2 E> and ' 2 C0.X/. Then

T >.'e>/ D f >he<; 'e>i D f >.'he<; e>i/ D '.f >he<; e>i/ D 'T >.e>/:

Similarly one shows that T < is C0.X/-linear. Now the set of all C0.X/-linear ele-
ments in LB.E; F / is a closed subspace, so it contains the whole of KB.E; F /.

It is easy to see that KB.E; F / is a C0.X/-Banach space and that the canonical
bilinear map from F> �E< to KB.E; F / is C0.X/-bilinear. IfG is another C0.X/-
Banach B-pair, then the composition of elements of KB.F;G/ and KB.E; F / is
C0.X/-bilinear. In particular, KB.E/ is a C0.X/-Banach algebra.



154 W. Paravicini

Definition 1.4. Let E and F be C0.X/-Banach B-pairs. Then T 2 LB.E; F / is
called locally compact if �T is compact for all � 2 C0.X/.

Note that it suffices to check �T 2 KB.E; F / for all � 2 Cc.X/. Note also
that locally compact operators are automatically C0.X/-linear. The bounded locally
compact operators form a closed subset of LC0.X/

B .E; F /.

1.2. RKKban
G

.C0.X/I A; B/

1.2.1. Gradings and group actions. A graded C0.X/-Banach space is a C0.X/-
Banach spaceE endowed with a grading automorphism commuting with the C0.X/-
action.

LetG be a locally compact Hausdorff group that acts continuously onX . Note that
C0.X/ is aG-Banach algebra when equipped with theG-action .g�/.x/ ´ �.g�1x/,
� 2 C0.X/, g 2 G, x 2 X . AG-C0.X/-Banach space is aG-Banach spaceE which
is at the same time a C0.X/-Banach space such that the actions of G and C0.X/ are
compatible in the following sense:

g.�e/ D .g�/.ge/; � 2 C0.X/; g 2 G; e 2 E;
i.e., the product C0.X/ �E ! E is G-equivariant.

From these definitions we also get an obvious definition of a graded G-C0.X/-
Banach space. Taking this as a starting point one can define gradedG-C0.X/-Banach
algebras and graded equivariant homomorphisms between them, graded G-C0.X/-
Banach pairs, etc.

1.2.2. Definition of RKKban
G

.C0.X/I A; B/

Definition 1.5. Let A and B be G-C0.X/-Banach algebras. Then the class
Eban

G .C0.X/IA;B/ is defined to be the class of pairs .E; T / such that E is a non-
degenerate gradedG-C0.X/-BanachA-B-pair and, if we forget the C0.X/-structure,
the pair .E; T / is an element of Eban

G .A;B/. Note that T in the definition is automat-
ically C0.X/-linear because E is non-degenerate.

The constructions one usually performs with KKban-cycles are obviously com-
patible with the additional C0.X/-structure, so we can form the sum of KKban-cycles
and take their pushout along homomorphisms ofG-C0.X/-Banach algebras. We also
have a C0.X/-linear notion of morphisms of KKban-cycles, giving us a C0.X/-linear
version of isomorphisms of KKban-cycles. Hence also the notion of homotopy makes
sense in the C0.X/-setting so we can formulate the following definition:

Definition 1.6. The class of all homotopy classes of elements of Eban
G .C0.X/IA;B/ is

denoted by RKKban
G .C0.X/IA;B/. The sum of cycles induces a law of composition

on RKKban
G .C0.X/IA;B/ making it an abelian group.
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The fact that the composition on RKKban
G .C0.X/IA;B/ has inverses can be

proved just as in the case without the C0.X/-structure, i.e., Lemme 1.2.5 of [Laf02]
and its proof are compatible with the additional C0.X/-module action. There is an
obvious forgetful group homomorphism

RKKban
G .C0.X/IA;B/ ! KKban

G .A;B/:

1.3. Comparison with the KKban-theory for fields of Banach algebras. Let G be
a locally compact Hausdorff groupoid with unit space X . In [Laf06], V. Lafforgue
has introduced an equivariant KKban-theory for G -Banach algebras. A G -Banach
algebra is, in particular, an upper semi-continuous field of Banach algebras over X .
If A is such a field, then one can consider �0.X;A/, the space of all sections of A
which vanish at infinity. The Banach algebra �0.X;A/ carries a canonical action of
C0.X/ making it a C0.X/-Banach algebra. However, it is not clear how to find an
elegant way to model a general G -action on A on the level of elements of �0.X;A/.
Nevertheless, it is rather straightforward in the case that G D G Ë X where G is a
locally compact Hausdorff group acting on X . In this case, �0.X;A/ is a G-C0.X/-
Banach algebra in a canonical fashion. We have the following result whose proof can
be found in [Par07], Section 4.7.

Proposition 1.7. LetA andB beGËX -Banach algebras. Then there is a canonical
isomorphism

KKban
GËX .A;B/ Š RKKban

G .C0.X/I�0.X;A/; �0.X;B//:

Conversely, start with aG-C0.X/-Banach algebra A. For all x 2 X , the quotient
Banach algebra Ax D A=.C0.Xnfxg/A/ is called the fibre of A overx; it comes with
a natural quotient map A 3 a 7! ax 2 Ax . One can regard F.A/ ´ .Ax/x2X as a
GËX -Banach algebra. Let us denote theG-C0.X/-Banach algebra�0.X;F.A// by
G.A/ and call it the Gelfand transform of A. There is a canonical homomorphism
�A from A to G.A/ which sends every a 2 A to the section x 7! ax 2 Ax . Sadly
enough, �A needs neither be injective nor surjective, we only know that it has dense
image; we do not have A Š �0.X;F.A// in general. The homomorphism �A is
isometric (and therefore an isomorphism) if and only if the C0.X/-Banach algebra
A is what is called locally C0.X/-convex, i.e., for all �1; �2 2 C0.X/, �1; �2 � 0,
�1 C �2 � 1 and all a1; a2 2 A we have

k�1a1 C �2a2k � maxfka1k; ka2kgI
see [Gie82] and also Appendix A.2 of [Par07].

If A is a G Ë X -Banach algebra, then �0.X;A/ is automatically locally C0.X/-
convex. Actually, A 7! �0.X;A/ defines an equivalence of categories between the
category of G Ë X -Banach algebras and the category of locally C0.X/-convex G-
C0.X/-Banach algebras, the inverse functor being F. � /. The functor A 7! G.A/ on
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the category ofG-C0.X/-Banach algebras therefore has its values in the subcategory
of locally C0.X/-convex G-C0.X/-Banach algebras. It is a projector in the sense
that G.G.A// is naturally isomorphic to G.A/.

The functors F. � / and G. � / can also be applied to G-C0.X/-Banach spaces,
G-C0.X/-Banach pairs etc. It is an interesting fact that F. � / is multiplicative in the
sense that it intertwines the (fibrewise) tensor product of G Ë X -Banach spaces and
the C0.X/-tensor product of G-C0.X/-Banach spaces; this can be proved using the
result that the C0.X/-tensor product of locally C0.X/-convex spaces is again locally
C0.X/-convex, see [Par08].

If A and B are arbitraryG-C0.X/-Banach algebras, then it is possible to construct
a group homomorphism

RKKban
G .C0.X/I A;B/ ! RKKban

G .C0.X/I G.A/;G.B//:

It is not clear under which conditions this is an isomorphism if A and B are not
locally C0.X/-convex. A first result along these lines is proved in [Par13a] showing
that A and G.A/ have the same (non-equivariant) K-theory.

To conclude, one can say that KKban
G and RKKban agree on the (equivalent) cate-

gories ofGËX -Banach algebras / locally C0.X/-convexG-C0.X/-Banach algebras,
but on the one hand, KKban

G can be extended much further to Banach algebras which
carry actions of arbitrary groupoids, on the other hand, RKKban can be extended
to G-C0.X/-Banach algebras which fail to be locally C0.X/-convex (and that such
algebras appear naturally is the raison d’être for this theory).

A much more elaborate discussion of the two concepts can be found in Chapter 4
of [Par07].

1.4. Special case: X compact. We conclude this section by discussing how RKKban
G

reduces to ordinary KKban
G -theory if X is a compact space. To this end, let G be a

locally compact Hausdorff group and X be a locally compact Hausdorff space on
which G acts.

Proposition 1.8. Let A be a non-degenerate G-Banach algebra and let B be a non-
degenerate G-C0.X/-Banach algebra. If X is compact, then there is a canonical
isomorphism

RKKban
G .C.X/IA˝ C.X/; B/ Š KKban

G .A;B/:

If we take A to be C with the trivial G-action, then A˝ C.X/ is isomorphic to
C.X/:

Corollary 1.9. Let B be a non-degenerate G-C0.X/-Banach algebra. If X is com-
pact, then

RKKban
G .C.X/I C.X/; B/ Š KKban

G .C; B/:
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This, together with Théorème 1.2.8 of [Laf02], implies that if X is compact andG is
the trivial group, then

RKKban.C.X/I C.X/; B/ Š KKban.C; B/ Š K0.B/:

Proof of the Proposition 1.8. First note that the projective tensor product A˝ C.X/

is a non-degenerate G-C.X/-Banach algebra so that RKKban
G .C.X/IA˝ C.X/; B/

makes sense.
Now observe that there is a canonical forgetful homomorphism

RKKban
G .C.X/IA˝ C.X/; B/ ! KKban

G .A˝ C.X/; B/:

Moreover, there is a canonical homomorphism jA of G-Banach algebras from A to
A ˝ C.X/, namely the map a 7! a ˝ 1. This gives a group homomorphism from
KKban

G .A˝ C.X/IB/ to KKban
G .A;B/. Let

� W RKKban
G .C.X/IA˝ C.X/; B/ ! KKban

G .A;B/

be the composition of these two homomorphisms. We show that � is an isomorphism.
We first prove surjectivity: Let .E; T / 2 Eban

G .A;B/. Instead of defining a C.X/-
structure on E, which we do not know how to do, we define a structure on the cycle
.E ˝B B; T ˝ 1/ 2 Eban

G .A;B/, where E ˝B B D .B ˝B E
<; E> ˝B B/. Note

that .E ˝B B; T ˝ 1/ D .E; T /˝B Morban
G .IdB/, so it is homotopic to .E; T /, see

[Par09b], Proposition 5.28 (5). On E> ˝B B we define a canonical C.X/-structure:
if e> 2 E> and b 2 B and ' 2 C.X/, then '.e> ˝ b/ ´ e> ˝ .'b/. This
makes E> ˝B B a right G-C.X/-Banach B-module. We proceed similarly on the
left-hand side. It is easy to see that E ˝B B is a G-C.X/-Banach B-pair with this
C.X/-action. The operator T ˝1 is clearly C.X/-linear (which is automatic anyway,
because E ˝B B is non-degenerate).

Now we have to define an action of A˝ C.X/ on E˝B B: If a 2 A, � 2 C.X/,
e> 2 E> and b 2 B , then we define .a˝ �/.e> ˝ b/ ´ .ae>/˝ .�b/. This gives
an action of A ˝ C.X/ on E> ˝B B making it a G-C.X/-Banach A ˝ C.X/-B-
bimodule. A similar definition can be made for the left-hand side. We check that
A˝ C.X/ acts on E ˝B B by elements of LB.E ˝B B/. Let therefore be a 2 A,
� 2 C.X/, e< 2 E<, e> 2 E> and b<; b> 2 B . Then

hb< ˝ e<; .a˝ �/.e> ˝ b>/i D hb< ˝ e<; .ae>/˝ .�b>/i
D b<he<; ae>i.�b>/

D .�b</he<a; e>ib>

D h.b< ˝ e</.a˝ �/; e> ˝ b>i:
By trilinearity and continuity of both sides, this equation can be extended from the
elementary tensors to all of A ˝ C.X/, B ˝B E

< and E> ˝B B . So E ˝B B is
in Eban

G .C.X/IA˝ C.X/; B/. Applying � to it means forgetting the C.X/-structure
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and reducing the A˝ C.X/-action back to the A-action on E ˝B B , so we are back
to where we started. Hence � is surjective.

The same argument shows that � is injective: Let .E0; T0/ and .E1; T1/ be el-
ements of the class Eban

G .C.X/IA ˝ C.X/; B/ such that �.E0; T0/ and �.E1; T1/

are homotopic in Eban
G .A;B/. Find .E; T / 2 Eban

G .C.X/IA ˝ C.X/; BŒ0; 1�/ such
that �.E; T / 2 Eban

G .A;BŒ0; 1�/ is a homotopy from �.E0; T0/ to �.E1; T1/. Now
evB

i;�.E; T / is contained in Eban
G .C.X/IA ˝ C.X/; B/ for all i 2 f0; 1g, and

�.evB
i;�.E; T // is isomorphic (in Eban

G .A;B/) to .Ei ; Ti /. NowEi is a non-degenerate
B-pair, so it is easy to see that the C.X/-structure onE is unique. Hence the isomor-
phism between �.evB

i;�.E; T // and .Ei ; Ti / must be C.X/-linear. Also the action
of A˝ C.X/ is uniquely determined by the actions of A and C.X/, so the isomor-
phism between �.evB

i;�.E; T // and .Ei ; Ti /must also respect this structure. In other
words, it is an isomorphism of cycles in Eban

G .C.X/IA˝ C.X/; B/. So .E0; T0/ and
.E1; T1/ are homotopic. Hence � is injective.

2. A generalised Green–Julg theorem

2.1. Proper groupoids and cut-off functions. In this paragraph we recall two no-
tions which we need for the formulation of the theorem.

Definition2.1. A locally compact Hausdorff groupoid is calledproper if the following
map is proper, i.e., inverses of compact sets are compact:

G ! G .0/ � G .0/; 	 7! .r.	/; s.	//:

We collect some examples:

(1) Let G be a locally compact Hausdorff group acting from the left on a locally
compact Hausdorff spaceX . Then the transformation groupoidGËX is proper
if and only if the action of G on X is proper.

(2) More generally, if G is a locally compact Hausdorff groupoid and X is a left
G -space, then G ËX is proper if and only if X is a proper G -space.

(3) A locally compact Hausdorff group is proper (as a groupoid) if and only if it is
compact.

Definition 2.2 ([Tu99], Définition 6.7.). A continuous function c W X ! Œ0;1Œ is
called cut-off function for G if

(1)
R

G x c.s.	// d
x.	/ D 1 for all x 2 X ;

(2) r W supp.c B s/ ! X is proper.

The latter condition means that supp c \ GK is compact for all compact subsets
K of X .

Recall from [Tu04] that there is a cut-off function for G if X=G is � -compact.
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2.2. The theorem and some corollaries. For the remainder of Section 2, let G be
a locally compact proper Hausdorff groupoid with unit space X and that carries a
Haar system 
. Let A.G / be an unconditional completion of Cc.G / and let B be a
non-degenerate G -Banach algebra. In particular, this implies that X=G is a locally
compact Hausdorff space.

The generalised Green–Julg theorem that we prove in this article asserts that we
have an isomorphism

KKban
G .C0.X/; B/ Š RKKban.C0.X=G /I C0.X=G /;A.G ; B// (3)

if G is a proper groupoid. We construct this isomorphism only under certain condi-
tions, more precisely, we proceed as follows:

(1) We define a natural homomorphism JB
A

from the left-hand side to the right-hand
side of (3) in case that G admits a cut-off function.

(2) We define a natural homomorphismMB
A

in the other direction in case that A.G /

is what we call regular, see Section 4.3.

(3) We show JB
A

BMB
A

D Id if both conditions are satisfied.

(4) We sketch how to show MB
A

B JB
A

D Id if A.G / satisfies some additional
regularity condition.

Observe that already the split surjectivity of JB
A

is an interesting result as it
implies the split surjectivity of the Bost assembly map with proper Banach algebra
coefficients, see [Par13b]. We hence state the surjectivity part of the generalised
Green–Julg theorem separately:

Theorem 2.3. Let A.G / be a regular unconditional completion of Cc.G /. Assume
that there is a cut-off function for G . Then the natural homomorphism

JB
A W KKban

G .C0.X/; B/ ! RKKban.C0.X=G /I C0.X=G /;A.G ; B//

is split surjective (with natural splitMB
A

) for all non-degenerate Banach algebrasB .

The definition of a regular unconditional completion will be given in Section 4.3.
As we have mentioned above, the injectivity part of our generalised Green–Julg
theorem needs some extra regularity conditions. We now formulate the final result
for further reference and we will introduce the necessary vocabulary only later (see
Sections 3.4, 4.2, and 4.6).

Theorem 2.4 (Generalised Green–Julg Theorem). Let G be proper and let A.G /

be an unconditional completion of Cc.G / such that there exists a pair H .G / of
monotone completions of Cc.G / satisfying (H1)–(H4) and such that there exists an
H .G /-cut-off pair for G . Then there is an isomorphism

JB
A W KKban

G .C0.X/; B/ Š RKKban.C0.X=G /I C0.X=G /;A.G ; B//;

natural in the non-degenerate G -Banach algebra B .
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The hypotheses of the theorem imply that G admits a cut-off function and that
A.G / is regular. Hence the surjectivity part of the theorem is contained in Theo-
rem 2.3. The proof of the injectivity part is rather lengthy and will only be sketched
in Section 4.6.

Note that, according to Corollary 1.9, the right-hand side reduces to K0.A.G ; B//

if X=G is compact. In Appendix A we show that K0.A.G ; B// does not depend on
A.G / as long as A.G / is regular or what we call strictly positive, see Definition A.3.
This allows us to formulate the following corollary where the assumptions on A.G /

are less restrictive than in the above theorem.

Corollary 2.5. Let A.G / be an unconditional completion of Cc.G / which is either
regular or strictly positive. LetX=G be compact. Thenwe have natural isomorphisms

KKban
G .C0.X/; B/ Š RKKban.C0.X=G /I C0.X=G /;A.G ; B// Š K0.A.G ; B//

for all non-degenerate G -Banach algebras B .

Proof. As mentioned above, the second isomorphism is given by Corollary 1.9, and
it is natural in B .

Now consider the case that A.G / D L1.G /. We will see in Section 4.6 that
L1.G / satisfies all technical conditions that are needed for the generalised Green–
Julg theorem to hold (in particular, it is regular). This shows also the first isomorphism
in the special case A.G / D L1.G /.

It follows from Proposition A.2 that K0.A.G ; B// does not depend on the partic-
ular regular or strictly positive unconditional completion A.G / in the sense that
K0.A.G ; B// and K0.A

0.G ; B// are naturally isomorphic for any pair of (regu-
lar or strictly positive) unconditional completions A.G / and A0.G /. Therefore
KKban

G .C0.X/; B/ and K0.A.G ; B// are naturally isomorphic for any regular or
strictly positive unconditional completion A.G /. This shows the corollary.

Now consider the special case that G D GËX whereG is a locally compact Haus-
dorff group acting properly on a locally compact Hausdorff spaceX . Let A.G/ be an
unconditional completion of Cc.G/. It is shown in Lemma A.4 that A.G;C0.X// is
a strictly positive unconditional completion of Cc.GËX/, so we obtain the following
corollary to Corollary 2.5.

Corollary 2.6. Let G be a locally compact Hausdorff group acting properly on a
locally compact Hausdorff space X such that X=G is compact. If B is a locally
C0.X/-convex G-C0.X/-Banach algebra, then

RKKban
G .C0.X/I C0.X/; B/ Š RKKban.C0.X=G/I C0.X=G/;A.G;B//

Š K0.A.G;B//

for every unconditional completion A.G/ of Cc.G/.
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The proofs of the corollaries depend heavily on the degree to which K0.A.G ; B//

does not depend on the unconditional completion A.G /. The general version of the
theorem for non-compactX=G would be valid for arbitrary unconditional completions
if one could show similar independence results for RKKban. So one is led to ask:

Question 2.7. Is RKKban.C0.X=G /I C0.X=G /;A.G ; B// independent of A.G / for
non-compact X=G and arbitrary (possibly non-regular) A.G /?

3. A tool kit for the proof

In this section, let G be a locally compact proper Hausdorff groupoid with unit space
X and carrying a Haar system 
. Recall that this implies thatX=G is locally compact
and Hausdorff.

3.1. Proper groupoids and the descent. Let A.G / be an unconditional completion
of Cc.G / and letE be a G -Banach space.3 For all � 2 �c.G ; r

�E/ and � 2 C0.X=G /

define

.��/.	/ ´ �.�.	//�.	/

for all 	 2 G , where � denotes the (open) projection map � W G ! X=G . This
defines a module action of C0.X=G / on �c.G ; r

�E/which lifts to a module action on
A.G ; E/. More precisely, A.G ; E/ is a non-degenerate Banach C0.X=G /-module,
i.e., it is a C0.X=G /-Banach space. Note that, depending on the choice of A.G /, the
C0.X=G /-Banach space A.G ; E/ does not have to be locally C0.X=G /-convex; it is
however in important cases, e.g., if A.G / D L1.G /.

The convolution product and also the descent of continuous linear maps respects
the C0.X=G /-structure; in particular, if B is a G -Banach algebra, then A.G ; B/ is
not only a Banach algebra but a C0.X=G /-Banach algebra, and if E is a G -Banach
B-pair, then A.G ; E/ is a C0.X=G /-Banach A.G ; B/-pair, etc. Let A and B be
G -Banach algebras. It is not hard to show that the descent homomorphism from
KKban

G .A;B/ to KKban.A.G ; A/;A.G ; B// introduced in Section 1.3 of [Laf06] is
indeed a homomorphism

jA W KKban
G .A;B/ ! RKKban.C0.X=G /I A.G ; A/;A.G ; B//:

Because A.G ; B/ does not have to be locally C0.X=G /-convex in general, it seems
advisable to use RKKban instead of KKban

X=G , the version of KKban for fields over
X=G .

3See [Laf06] or [Par09a] for the definitions of these concepts.
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3.2. Cut-off functions and cut-off pairs. Given a cut-off function c as introduced
in Definition 2.2, one often uses the function c1=2 in the theory of C�-algebras. In
the Banach algebra setting, the exponent 1

2
is no longer the inevitable choice, also

c1=p with 1 < p < 1 can appear quite naturally. Because we are dealing with
Banach pairs rather than Banach modules, it even makes sense to extend the notion
of a cut-off function as follows:

Definition 3.1. A cut-off pair for G is a pair .c<; c>/ such that

(1) c< 2 C.X/�0 with r W supp.c< B s/ ! X proper;

(2) c> 2 C.X/�0 with r W supp.c> B s/ ! X proper;

(3)
R

G x c
<.s.	//c>.s.	// d
x.	/ D 1 for all x 2 X .

In particular, x 7! c<.x/c>.x/ is a cut-off function. Conversely, if c is a cut-off
function for G and p; p0 2�1;1Œ such that 1

p
C 1

p0
D 1, then .c1=p0

; c1=p/ is a cut-off
pair. We can even cover the case p D 1:

Proposition 3.2. If G is such that X=G is � -compact and c is a cut-off function for
G , then there exists a function d 2 C.X/ with kdk1 D 1 such that .d; c/ is a cut-off
pair.

Proof. Let .Kn/n2N be an exhausting sequence of compacts in X=G such thatKn is
contained in the interior ofKnC1 for all n 2 N. DefineLn ´ supp c\��1.Kn/ for
alln 2 N (where� denotes the canonical surjection fromX toX=G ). Then theLn are
all compact. Recursively, find functions f1; f2; f3 : : : such that fn 2 Cc.�

�1.Kn//,
0 � fn � 1 and fnjLn

� 1 and fn � fnC1 for all n 2 N. Define f ´ S
n2N fn.

Then this is a well-defined continuous function on X such that 0 � f � 1. It
satisfies f jsupp c � 1. Moreover, it satisfies the support condition: Let K � X=G

be compact. Find an n 2 N such that K � Kn. Then the closed set ��1.K/ is
contained in ��1.Kn/, so ��1.K/ \ suppf is contained in ��1.Kn/ \ suppf D
��1.Kn/ \ suppfn D suppfn. Now suppfn is a compact subset of ��1.Kn/, so
��1.K/ \ suppf is compact as a closed subset of a compact subset.

On the level of functions with compact support, we can define a homomorphism
from Cc.X=G / to Cc.G / quite generally; it is a delicate question for which comple-
tions of Cc.G / this homomorphism can be extended continuously to C0.X=G /.

Definition and Proposition 3.3. Let .c<; c>/ be a cut-off pair for G . For all � 2
Cc.X=G /, define

.'.�//.	/ ´ c>.r.	//�.�.	//c<.s.	//

for all 	 2 G . Then '.�/ 2 Cc.G /, and ' is a continuous homomorphism of algebras
from Cc.X=G / to Cc.G / (with the convolution product).
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Proof. Let � W X ! X=G denote the quotient map and letK � X=G be the support
of �. Then K1 ´ supp c< \ ��1.K/ is compact in X and so is K2 ´ supp c> \
��1.K/. So f	 2 G W s.	/ 2 K1; r.	/ 2 K2g is compact and contains the support
of '.�/. So '.�/ 2 Cc.G /.

Let �1; �2 2 Cc.G /. Then for all 	 2 G :

.'.�1/ 	 '.�2//.	/

D
Z

G r.�/

c>.r.	 0//�1.�.	
0// c<.s.	 0//c>.r.	 0�1	//�2.�.	

0�1	//

c<.s.	 0�1	// d
r.�/.	 0/

D c>.r.	// .�1�2/.�.	// c
>.s.	//

Z
G r.�/

c<.s.	 0// c>.s.	 0// d
r.�/.	 0/
„ ƒ‚ …

D1

D .'.�1�2//.	/:

In the C�-algebra case, the interesting cut-off pair is of course .c
1
2 ; c

1
2 /, where c

is a cut-off function for G . In this case,4 the homomorphism ' W Cc.X=G / ! Cc.G /

preserves the involution and can be extended to a 	-homomorphism from C0.X=G / to
C�

r .G /. The pullback along this 	-homomorphism gives a homomorphism of groups
from KKX=G .C�

r .G /; B Ìr G / to KKX=G .C0.X=G /; B Ìr G /.
Can the same homomorphism ' W Cc.X=G / ! Cc.G / be extended to a homomor-

phism from C0.X=G / to A.G / if A.G / is an unconditional completion of Cc.G /? This
would come in handy in the construction of a homomorphism from KKban

G .C0.X/; B/

to RKKban.C0.X=G /I C0.X=G /;A.G ; B//whereB is a G -Banach algebra, compare
Section 2.2. One could simply take the descent homomorphism and compose it with
the pullback along '.

Apparently, ' is not bounded even for rather elementary unconditional comple-
tions like L1.G / and rather simple cut-off pairs. The construction works for C�-
algebras because the choice of the cut-off pair is compatible with the norm on C�

r .G /

which is defined through the action of Cc.G / on L2.G /. In Section 4.1, we will find
another way to define the homomorphism for our generalised Green–Julg theorem
because we do not want to deal with the technical problems that come with unbounded
homomorphisms or with the compression of a Banach algebra by an unbounded pro-
jection.

Instead, we will define the homomorphism in a single step: If E is a G -Banach
B-pair, then we are not even trying to define '�A.G ; E/ but we consider a “smaller”
space D.X;E/, which is a (monotone) completion of �c.X;E/. The underlying
observation is that we can realise Cc.X/ as a subspace of Cc.G / by the use of a
cut-off pair, and this construction is compatible with the left action of Cc.X=G /. See
Section 4.1.4 for more details of this embedding.

4See Proposition 6.23 in [Tu99] for a proof.
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3.3. Automatic equivariance. There is a feature of proper groupoids which will
prove very convenient in the upcoming sections:

Proposition 3.4. Let A and B be G -Banach algebras (with G being proper and
allowing a cut-off function). Then the operators and homotopies in the definition of
KKban

G .A;B/ can be assumed to be G -equivariant.

Proof. The basic idea here, as in the proof of the corresponding result for C�-algebras,
is to use the cut-off function and the integration with respect to the Haar system to
make given operators equivariant, compare the discussion before Proposition 6.24
in [Tu99]. On a technical level, we do this by integrating fields of operators with
compact support; note that we define this integration pointwise:

LetE and F be G -BanachB-pairs. Let T D .T <; T >/ 2 Lr�B.r
�E; r�F / have

compact support. ThenZ
G x

T� d
x.	/ ´
� Z

G x

T <
� d
x.	/;

Z
G x

T >
� d
x.	/

�

is a continuous field of linear operators from E to F . The same definition makes
sense if T has proper support, i.e., if the support of .� B r/ � T is compact for all
� 2 Cc.X/. The operator

R
G x T� d
x.	/ is compact if T 2 Kr�B.r

�E; r�F / has
compact support.

We can use this procedure to produce equivariant operators. Fix a cut-off function
c for G . For all T 2 LB.E; F /, we define

T G
x D

Z
G x

c.s.	// 	Ts.�/ d
x.	/; x 2 X;

Then T G is an equivariant element of LB.E; F /. The construction commutes with
the pushout: If B 0 is another G -Banach algebra and ' W B ! B 0 is a G -equivariant
homomorphism, then '�.T G / D .'�.T //G as elements of LG

B0.'�.E/; '�.F //.
Now let .E; T / 2 Eban

G
.A;B/. Then .E; T G / is in Eban

G
.A;B/ and homotopic to

.E; T /. To see this, let a 2 �c.X;A/. For all x 2 X , we have

ax.Tx � T G
x / D

Z
G x

c.s.	//ar.�/.Tr.�/ � 	Ts.�// d
x.	/:

The family 	 7! c.s.	//ar.�/.Tr.�/ �	Ts.�// is compact and of compact support, so
the integral is compact. SoT andT G “differ by a compact operator”. By Lemma 3.19
of [Par09a], .E; T G / is a KKban-cycle and homotopic to .E; T /.

We have a similar result for homotopies: If .E0; T0/ and .E1; T1/ are homotopic
in Eban

G
.A;B/ and if T0 and T1 are equivariant, then there is an equivariant homotopy

between them.
This shows that the map .E; T / 7! .E; T G / is bijective on the level of KKban

G -
classes.
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3.4. Monotone completions. In [Laf02] and [Laf06], the notion of an unconditional
completion was introduced which is a special case of what we propose to call a
monotone completion. Already the article [Laf02] provides us with some interesting
examples of monotone completions which are not unconditional completions.5 The
difference simply is that an unconditional completion is required to carry a product
making it a Banach algebra whereas an unconditional completion is a Banach space
without any product.

Let Y be a locally compact Hausdorff space.

Definition 3.5. A semi-norm k � kH on Cc.Y / is called monotone if, for all '1; '2 2
Cc.Y /, the following condition holds:

j'1.y/j � j'2.y/j/ H) k'1kH � k'2kH for all y 2 Y: (4)

Let H .Y / denote the (Hausdorff-)completion of Cc.Y / with respect to this semi-
norm; this Banach space is called a monotone completion of Cc.Y /.

For the rest of this section, let H .Y / be a monotone completion of Cc.Y /.
For technical reasons and as for unconditional norms, we extend monotone norms

to a larger class of functions on Y :

Definition 3.6. Let Fc.Y / be the set of all (locally) bounded functions ' W Y ! R
with compact support. Let F C

c .Y / be the set of elements of Fc.Y / which are non-
negative. Define

k'kH ´ inffk kH W  2 Cc.Y /;  � 'g
for all ' 2 F C

c .Y /.

Note that, by property (4), the new semi-norm agrees on CC
c .Y / with the semi-

norm we started with. For all '1; '2; ' 2 F C
c .Y / and all c � 0, we have

(1) '1 C '2 2 F C
c .Y / and k'1 C '2kH � k'1kH C k'2kH ;

(2) c' 2 F C
c .Y / and kc'kH D ck'kH ;

(3) if '1 � '2, then k'1kH � k'2kH .

Hence we can use the extended semi-norm to define a semi-norm on sections of
u.s.c. fields of Banach spaces.

For the rest of this section, let E be a u.s.c. field of Banach spaces over Y .

Definition 3.7. We define the following semi-norm on �c.Y;E/:

k�kH ´ ky 7! k�.y/kEy
kH :

The Hausdorff completion of�c.Y;E/with respect to this semi-norm will be denoted
by H .Y;E/.

5For example H 2.G; A/ defined after Lemme 1.6.5 or the “normalised” completions Lp;l
norm.G; A/

appearing in 4.5.
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Note that the function y 7! k�.y/k appearing in the preceding definition is not
necessarily continuous. However, it has compact support and is non-negative upper
semi-continuous, so we can apply the extended semi-norm on F C

c .Y / to it.
If E is the trivial bundle over Y with fibre E0, then �c.Y;E/ is Cc.Y;E0/. The

completion H .Y;E/ of Cc.Y;E0/ could hence also be denoted as H .Y;E0/ and
might be considered as a sort of tensor product of H .Y / and E0. If in particular
E0 D C, then H .Y;E/ D H .Y;C/ D H .Y /.

Definition 3.8. Let F be another u.s.c. field of Banach spaces over Y and let T be a
bounded continuous field of linear maps from E to F . Then � 7! T B � is a linear
map from �c.Y;E/ to �c.Y; F / such that kT B �kH � kT k k�kH . Hence T induces
a canonical continuous linear map from H .Y;E/ to H .Y; F / with norm � kT k.

This way, we define a functor from the category of u.s.c. fields of Banach spaces
over Y to the category of Banach spaces, which is linear and contractive on the
morphism sets.

Note that the canonical map from�c.Y;E/ to H .Y;E/ is continuous if we take the
inductive limit topology on �c.Y;E/ and the norm topology on H .Y;E/. It follows
that if a subset of �c.Y;E/ is dense in �c.Y;E/ for the inductive limit topology, then
its canonical image in H .Y;E/ is dense for the norm topology.

4. The proof

In this section, let G be a locally compact Hausdorff groupoid with unit spaceX and
carrying a Haar system 
.

4.1. The homomorphism J B
A

. In Section 4.1, assume that G is proper and admits
a cut-off function.

4.1.1. The algebraic construction of J B
A

on the level of sections with compact
support. Let E be a G -Banach B-pair. Define the operations

.e>ˇ/.x/ ´
Z

G x

	e>.s.	//	ˇ.	�1/ d
x.	/

and

.ˇe</.x/ ´
Z

G x

ˇ.	/	e<.s.	// d
x.	/;

where x 2 X , and the �c.G ; r
�B/-valued bracket

hhe<; e>ii.	/ ´ he<.r.	//; 	e>.s.	//iEr.�/
;

where 	 2 G , for all e< 2 �c.X;E
</, e> 2 �c.X;E

>/ and ˇ 2 �c.G ; r
�B/.
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This turns �c.X;E
>/ into a right �c.G ; r

�B/-module and �c.X;E
</ into a left

�c.G ; r
�B/-module. These module actions are separately continuous, and they are

non-degenerate for the inductive limit topologies ifE is non-degenerate. The bracket
is C-bilinear and �c.G ; r

�B/-linear on the left and on the right. Moreover, it is
separately continuous for the inductive limit topologies.

Moreover, there are canonical actions of C.X=G / on the modules �c.X;E
</ and

�c.X;E
>/ given by

.�e>/.x/ ´ �.�.x//e>.x/

for all � 2 C.X=G /, e> 2 �c.X;E
>/ and x 2 X (and analogously for the left-hand

side). The module actions and the bracket are compatible with these actions.
Let E and F be G -Banach B-pairs and let T be a G -equivariant continuous field

of operators from E to F . For all e> 2 �c.X;E
>/, define

.�c.X; T
>/e>/.x/ ´ T >

x .e
>.x//

for all x 2 X . Then e> 7! �c.X; T
>/e> is C-linear, C.X=G /-linear, �c.G ; r

�B/-
linear on the right and continuous for the inductive limit topology. The same formula
defines a similar map f < 7! �c.X; T

</f < on the left-hand side. The pair .f < 7!
�c.X; T

</f <, e> 7! �c.X; T
>/e>/ of linear operators is formally adjoint with

respect to the brackets on .�c.X;E
</; �c.X;E

>// and .�c.X; F
</; �c.X; F

>//:

hhf <�c.X; T
</; e>ii D hhf <; �c.X; T

>/e>ii:

4.1.2. The analytic part of the construction of J B
A

. In the C�-world, the right
module �c.G ; r

�B/-action and the inner product on �c.X;E/ is sufficient to define
the structure B Ìr G -Hilbert module if E is a Hilbert B-module. There can only be
one norm on �c.X;E/ which completes to a Hilbert module and the bracket actually
gives such a norm.

In the Banach-world, the situation is more complicated. If B is a G -Banach
algebra and E is a G -Banach B-pair, then we will see that there are several ways
to complete �c.X;E

</ and �c.X;E
>/ to give a C0.X=G /-Banach A.G ; B/-pair.

However, it turns out that every (monotone) pair of such completions will give rise
to the same homomorphism JB

A
.

Let D<.X/ and D>.X/ be monotone completions of Cc.X/. Assume that the
pair D.X/ ´ .D<.X/;D>.X// satisfies the following compatibility conditions
with A.G /:

(D1) kˇ�<kD< � kˇkA k�<kD< for all �< 2 Cc.X/, ˇ 2 Cc.G /, and
k�>ˇkD> � k�>kD> kˇkA for all �> 2 Cc.X/, ˇ 2 Cc.G /.

(D2) khh�<; �>iikA � k�<kD< k�>kD> for all �< 2 Cc.X/, �> 2 Cc.X/.

We can extend the actions of Cc.G / on Cc.X/ from the left and from the right and
also the inner product to continuous bilinear maps which turn D.X/ into a Banach
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A.G /-pair. Note that the action of C0.X=G / on Cc.X/ also gives a continuous non-
degenerate action of C0.X=G / on D<.X/ and D>.X/ making D.X/ a C0.X=G /-
Banach A.G /-pair.

Let E D .E<; E>/ be a G -Banach B-pair. On �c.X;E
</ define k�<kD< ´

kx 7! k�<.x/k kD< as in Definition 3.7 and define a semi-norm k�kD> on�c.X;E
>/

similarly. Then the actions of �c.G ; r
�B/ on �c.X;E

</ and on �c.X;E
>/ and the

bracket satisfy

kˇ�<kD< � kˇkA k�<kD< ;

k�>ˇkD> � k�>kD> kˇkA;

khh�<; �>iikA � k�<kD< k�>kD>

for all ˇ 2 �c.G ; r
�B/, �< 2 �c.X;E

</ and �> 2 �c.X;E
>/. As in Definition 3.7,

write D<.X;E</ for the completion of�c.X;E
</ for the semi-norm k�kD< ; define

D>.X;E>/ analogously. With the extensions of the actions of �c.G ; r
�B/ and the

extension of the bracket,

D.X;E/ ´ .D<.X;E</;D>.X;E>//

is a C0.X=G /-Banach A.G ; B/-pair.
If F is another G -Banach B-pair and T 2 LB.E; F / is G -equivariant, then

�c.X; T
>/ is a bounded linear map from �c.X;E

>/ to �c.X; F
>/ with norm less

than or equal to kT >k, so it extends to a bounded C-linear, C0.X=G /-linear and
A.G ; B/-linear map D.X; T >/ from D.X;E>/ to D.X; F>/ of the same norm.
Similarly, one gets a bounded linear map D.X; T </ from D.X; F</ to D.X;E</.
Together, this defines a linear operator

D.X; T / ´ .D.X; T </;D.X; T >// 2 LC0.X=G /

A.G ;B/
.D.X;E/;D.X; F //

of norm less than or equal to kT k. The assignmentE 7! D.X;E/ andT 7! D.X; T /

is a contractive functor from the category of G -Banach B-pairs and bounded G -
equivariant operators to the category of C0.X=G /-Banach A.G ; B/-pairs. Similarly,
one can define D.X;ˆ/ for G -equivariant concurrent homomorphisms.

We omit the longsome proof of the following result which can be found in [Par07],
Section 7.2.3:

Proposition 4.1. LetS 2 LB.E; F / be bounded, G -equivariant and locally compact.
Then D.X; S/ is locally compact in the sense of Definition 1.4, i.e., �D.X; S/ is
compact for all � 2 Cc.X=G /.

4.1.3. The construction for KKban-cycles

Theorem 4.2. Let .E; T / be a cycle in Eban
G
.C0.X/; B/. We assume that T is

G -equivariant, compare Proposition 3.4. Equip D.X;E/ with the obvious grad-
ing operator. Then D.X; T / is odd and

JB
A;D.E; T / ´ .D.X;E/;D.X; T // 2 Eban.C0.X=G /I C0.X=G /;A.G ; B//:
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Proof. The important property that we have to check is that D.X; T /2 � 1 is locally
compact. But

D.X; T /2 � 1 D D.X; T 2 � 1/;
and T 2 � 1 is locally compact. Since T 2 � 1 is also G -equivariant, we can apply
Proposition 4.1 which implies that D.X; T 2 � 1/ is locally compact.

It can be shown that the map JB
A;D

is compatible with the pushforward along
equivariant homomorphisms of G -Banach algebras, with homotopies and with the
sum of cycles; see [Par07], Section 7.2.3, for the proofs.

As a consequence of these results, we have:

Proposition 4.3. The map .E; T / 7! .D.X;E/;D.X; T // gives rise to a group
homomorphism

JB
A;D W KKban

G .C0.X/; B/ ! RKKban.C0.X=G /I C0.X=G /;A.G ; B//

which is natural in the non-degenerate G -Banach algebra B .

4.1.4. Uniqueness and existence. The following uniqueness result was shown in
[Par07]:

Definition and Proposition 4.4. Let D.X/ and D 0.X/ be pairs of monotone com-
pletions of Cc.X/ which both satisfy (D1) and (D2). Then JB

A;D
D JB

A;D 0 as homo-

morphisms from KKban
G .C0.X/; B/ to RKKban.C0.X=G /I C0.X=G /;A.G ; B//. We

hence write JB
A

for this homomorphism.

Another question is whether such pairs D.X/ of monotone completions exist. We
have a positive answer because we have assumed that G admits a cut-off function;
there are even quite a few such completions: for every cut-off pair c, we construct a
compatible pair of monotone completions that we call Ac.X/.

So let c D .c<; c>/ be a cut-off pair for G . Let E be a G -Banach B-pair. Define

j<
E;c W �c.X;E

</ ! �c.G ; E
</; e< 7! .	 7! c<.s.	//e<.r.	///

and

j>
E;c W �c.X;E

>/ ! �c.G ; E
>/; e> 7! .	 7! c>.r.	//	e>.s.	///:

Then jE;c D .j<
E;c ; j

>
E;c/ is a pair of injective maps such that

(1) j<
E;c is C-linear, �c.X=G /-linear and �c.G ; r

�B/-linear on the left,

(2) j>
E;c is C-linear, �c.X=G /-linear and �c.G ; r

�B/-linear on the right,

(3) for all e< 2 �c.X;E
</ and e> 2 �c.X;E

>/, we have

hj<
E;c.e

</; j>
E;c.e

>/i�c.G ;r�B/ D hhe<; e>ii:
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Define a C0.X=G /-Banach A.G ; B/-pair Ac.X;E/ D .Ac.X;E</;Ac.X;E>//

by pulling back the norms of A.G ; E/ along jE;c and completing �c.X;E/ for this
norms. Alternatively, one could take the closure of the image of jE;c . The norms on
the left and the right part are given by

ke<kAc.X;E</ ´ kj<
E;c.e

</kA.G ;E</ D k	 7! c<.s.	//ke<.r.	//kkA

and

ke>kAc.X;E>/ ´ kj>
E;c.e

>/kA.G ;E>/ D k	 7! c>.r.	//ke>.s.	//kkA

for all e< 2 �c.X;E
</ and e> 2 �c.X;E

>/.
Note that the norms depend on A.G / as well as on c. The pair Ac.X/ D

..Ac/<.X/; .Ac/>.X// is a pair of monotone completions of Cc.X/ satisfying
(D1) and (D2). Note that JB

A;Ac as a homomorphism from KKban
G .C0.X/; B/ to

RKKban.C0.X=G /I C0.X=G /;A.G ; B// does not depend on c by 4.4; without the
detour via more general compatible pairs D.X/ of monotone completions this latter
fact seems to be hard to prove.

4.2. Monotone completions as analogues of L2.G ; B/. If B is a G -C�-algebra,
then there is a canonical G -Hilbert B-module L2.G ; B/ with a left action of B Ìr G .
We want to find an analogue of this module for the case that B is a general G -Banach
algebra. Apparently, it is not sufficient (or not systematic, at least) to just consider
pairs of the type .L2.G ; B/;L2.G ; B//; we want to treat rather general unconditional
completions, so it seems appropriate to consider rather general completions of the
space�c.G ; r

�B/ as substitutes of L2.G ; B/; our treatment should at least cover pairs
of the form .L1.G ; B/; �0.G ; B// or .Lp0

.G ; B/;Lp.G ; B// for p; p0 2�1;1Œ with
1=p C 1=p0 D 1 (compare the precise definitions below).

Our substitute for L2.G / is a general pair of monotone completions of Cc.G /

which satisfies some compatibility conditions with A.G / and the action of G ; we
will usually denote such a pair by H .G /, and write H .G ; B/ for its version with
coefficients in B . It seems advisable to even consider pairs of the form H .G ; E/

where E is a G -Banach B-pair because this makes the constructions a bit clearer.
The important result is that (under certain conditions) the unconditional completion
A.G ; B/ acts on H .G ; B/ by locally compact operators. This allows us to use
the tensor product ˝A.G ;B/H .G ; B/ to turn A.G ; B/-pairs into G -Banach B-pairs
preserving locally compact operators between them.

Recall that, in this section, G denotes a locally compact Hausdorff groupoid with
left Haar system 
 and X denotes the unit space of G . Recall also that A.G / is
an unconditional completion of Cc.G / and that B is a non-degenerate G -Banach
algebra.

Let H .G / D .H <.G /;H >.G // be a pair of monotone completions of Cc.G /
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such that the bilinear map

h � ; � iCc.X/ W Cc.G / � Cc.G / ! Cc.X/;

.'<; '>/ 7!
�
x 7!

Z
G x

'<.	/'>.	�1/ d
x.	/

�
;

satisfies

(H1) kh'<; '>iCc.X/k1 � k'<kH< k'>kH> for all '<; '> 2 Cc.G /.

In this case, h � ; � iCc.X/ can be extended to a continuous bilinear map
h � ; � iC0.X/ W H <.G / � H >.G / ! C0.X/ which is C0.X/-bilinear if we consider
the following actions of C0.X/:

.��</.	/ ´ �.r.	//�<.	/ and .�>�/.	/ ´ �>.	/�.s.	//

for all � 2 C0.X/, �< 2 Cc.G / � H <.G /, �> 2 Cc.G / � H >.G / and 	 2 G .

Examples 4.5. Let p 2 Œ1;1Œ. Define the norm

k�<kp;r ´ sup
x2X

� Z
G x

j�<.	/jp d
x.	/

� 1
p

for all �< 2 Cc.G /. The corresponding monotone completion is called Lp
r .G /. Note

that L1.G / D L1
r .G /. Secondly, define

k�>kp;s ´ sup
x2X

� Z
G x

j�>.	�1/jp d
x.	/

� 1
p

for all �> 2 Cc.G /. The corresponding monotone completion is called Lp
s .G /.

(1) The pairs .L1.G /;C0.G // and .C0.G /;L1
s .G // are pairs of monotone comple-

tions of Cc.G / satisfying (H1).

(2) If p; p0 2�1;1Œ such that 1
p

C 1
p0

D 1, then .Lp0

r .G /;L
p
s .G // also satisfies (H1).

(3) In particular, this applies to .L2
r .G /;L

2
s .G //.

Now letE be a G -BanachB-pair. Define a right action of�.X;B/on�c.G ; r
�E>/

by

.�>ˇ/.	/ ´ �>.	/ 	ˇ.s.	//; �> 2 �c.G ; r
�E>/; ˇ 2 �.X;B/; 	 2 G ;

and a left action of �.X;B/ on �c.G ; r
�E</ by

.ˇ�</.	/ ´ ˇ.r.	// �<.	/; ˇ 2 �.X;B/; �< 2 �c.G ; r
�E</; 	 2 G :
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These actions define continuous actions of �0.X;B/ on H >.G ; E>/ (from the right)
and H <.G ; E</ (from the left). Define a bilinear map h � ; � i�c.X;B/:

�c.G ; r
�E</ � �c.G ; r

�E>/ ! �c.X;B/;

.�<; �>/ 7!
�
x 7!

Z
G x

h�<.	/; 	�>.	�1/iEr.�/
d
x.	/

�
:

This map extends to a contractive bracket from H <.G ; E</�H >.G ; E>/ to�0.X;B/

which makes H .G ; E/ ´ .H <.G ; E</;H >.G ; E>// a C0.X/-Banach �0.X;B/-
pair. If E is non-degenerate, then so is H .G ; E/.

Note that the C0.X/-structures on H <.G ; E</ and H >.G ; E>/ are not the same
in general: on the left-hand side it is induced by the range map r , on the right-hand
side by the source map s. This implies that the fibre of H <.G ; E</ over some x 2 X
should be regarded as a completion of �c.G

x; E<
x /, whereas the fibre of H >.G ; E>/

over x should be regarded as a completion of �c.Gx; .r
�E>/jGx

/.
Assume now that H .G / has also the following properties:

(H2) k�< 	 �kH<.G / � k�<kH<.G / k�kA.G / for all �; �< 2 Cc.G /, and
k� 	 �>kH>.G / � k�kA.G / k�>kH>.G / for all �; �> 2 Cc.G /.

Let A be another G -Banach algebra and let E be a G -Banach A-B-pair. For all
a 2 �c.G ; r

�A/, all �< 2 �c.G ; r
�E</ and all �> 2 �c.G ; r

�E>/, define

.a�>/.	/ D .a 	 �>/.	/ D
Z

G r.�/

a.	 0/ 	 0�>.	 0�1	/ d
r.�/.	 0/

and

.�<a/.	/ D .�< 	 a/.	/ D
Z

G r.�/

�<.	 0/ 	 0a.	 0�1	/ d
r.�/.	 0/

for all	 2 G . These actions lift to actions of A.G ; A/on H >.G ; E>/ and H <.G ; E</,
respectively. Equipped with them, H .G ; E/ becomes a C0.X/-Banach �0.X;B/-
pair on which A.G ; A/ acts by elements of LC0.X/

�0.X;B/
.H .G ; E//.

Proposition 4.6. If �.X;A/ acts onE by locally compact operators and G is proper,
then A.G ; A/ acts on H .G ; E/ by locally compact operators.

Proof. Let a 2 �c.G ; r
�A/ have compact support. If we can show that the action of

a on H .G ; E/, denoted by �.a/ 2 L�0.X;B/.H .G ; E//, is locally compact, then we
are done. Let � 2 Cc.X/. We have to show that ��.a/ is compact. It was shown in
[Par07], Appendix E.8.3, that an operator which is given by a compact kernel with
compact support is compact. We thus prove that ��.a/ is such an operator. Define

k.�1;�2/ ´ �.s.	1//�A.a.	2// 2 LBr.�1/
.Er.�1//
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for all .	1; 	2/ 2 G 	r;r G . Then the action of ��.a/ on �c.G ; r
�E>/ is given by

.��.a//>.�>/.	/ D �.s.	//

Z
G r.�/

a.	 0/	 0�>.	 0�1	/ d
r.�/.	 0/

D
Z

G r.�/

�.s.	//a.	 0/	 0�>.	 0�1	/ d
r.�/.	 0/

D
Z

G r.�/

k.�;� 0/	
0�>.	 0�1	/ d
r.�/.	 0/

for all �> 2 �c.G ; r
�E>/ and 	 2 G . A similar calculation for the left-hand side

shows that ��.a/ is indeed given by the kernel k.
The field of operators .�A.a.	2///.�1;�2/2G�r;r G is locally compact, so the same

is true for k. Moreover, the support of k is compact: Since G is proper, the setK ´
f	 2 G W r.	/ 2 supp�; s.	/ 2 r.supp a/g is compact. Let .	1; 	2/ 2 G 	r;r G .
Then k.�1;�2/ ¤ 0 implies that 	1 2 K and 	2 2 supp a. So .	1; 	2/ is contained in
K � supp a. Hence k has compact support.

As a corollary of Proposition 4.6 and because B is non-degenerate, we get:

Corollary 4.7. If G is proper, then A.G ; B/ acts on H .G ; B/ by locally compact
operators.

We now want to put an action of G on H .G ; E/. Technically, we have to replace
H .G ; E/ with the u.s.c. field F.H .G ; E// of pairs over X , compare Section 1.3. So
it is natural to assume:

(H3) The C0.X/-Banach space H <.G / is locally C0.X/-convex with respect to the
C0.X/-action induced by r and H >.G / is locally C0.X/-convex with respect
to the action induced by s.

For all 	 2 G , define a map ˛<
� from Cc.G

s.�// to Cc.G
r.�// by

�< 7! ˛<
� .�

</ D 	�< D .	 0 7! �<.	�1	 0//

and a map ˛>
� from Cc.Gs.�// to Cc.Gr.�// by

�> 7! ˛>
� .�

>/ D 	�> D .	 0 7! �>.	 0	//:

To get an action of G on F.H .G ; E//we have to assume that ˛< and ˛> are families
of isometric maps, i.e., if we have that

(H4) k	�<kH<.G r.�// D k�<kH<.G s.�// for all �< 2 Cc.G
s.�// and all 	 2 G , and

k	�>kH>.Gr.�// D k�>kH>.Gs.�// for all �> 2 Cc.Gs.�// and all 	 2 G .

Note that all the examples of 4.5 satisfy (H3) and (H4).
The following result is proved in [Par07], 7.3.12, the proof involves some addi-

tional technical constructions which we prefer to omit here.
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Definition and Proposition 4.8. Let E be a G -Banach B-pair. Define

˛<
� W �c.G

s.�/; r�E</ ! �c.G
r.�/; r�E</; �< 7! 	�< ´ .	 0 7! 	�<.	�1	 0//;

and

˛>
� W �c.Gs.�/; r

�E>/ ! �c.Gr.�/; r
�E>/; �> 7! 	�> ´ .	 0 7! �>.	 0	//;

for all 	 2 G . Then ˛<
� and ˛>

� are isometric for all 	 2 G and extend to isometric
isomorphisms H <.G s.�/; r�E</ ! H <.G r.�/; r�E</ and H >.Gs.�/; r

�E>/ !
H >.Gr.�/; r

�E>/, respectively. The field .˛<
� ; ˛

>
� /�2G is a continuous field of iso-

morphisms making F.H .G ; E// a G -Banach B-pair.

Now that we assume that H .G / does not only satisfy (H1) and (H2) but also (H3)
and (H4), we can refine Proposition 4.6 as follows:

Proposition 4.9. LetE be a G -Banach A-B-pair. Then F.H .G ; E// is a G -Banach
B-pair on which A.G ; A/ acts by bounded G -equivariant fields of linear operators.
If G is proper and �.X;A/ acts on E by locally compact operators, then the action
of A.G ; A/ on F.H .G ; E// is by G -equivariant bounded locally compact fields of
operators.

Because B is non-degenerate, �.X;B/ acts on B by locally compact operators.
Hence we have:

Corollary 4.10. If G is proper, then A.G ; B/ acts on FH .G ; B/ by locally compact
G -equivariant operators.

To finish this section, we state and prove an extension result which shows that the
bracket on H .G ; E/ is the restriction of the convolution product. This fact will be
used in Section 4.5.3 and also in Section A.3, in the case E D B .

Lemma 4.11. Let E be a G -Banach B-pair. Then the convolution

�c.G ; r
�E</ � �c.G ; r

�E>/ ! �c.G ; r
�B/;

.�<; �>/ 7! �< 	 �> D
�
	 7!

Z
G r.�/

h�<.	 0/; 	 0�>.	 0�1	/iEr.�/
d
r.�/.	 0/

�

extends to a contractive bilinear map

H <.G ; E</ � H >.G ; E>/ ! �0.G ; r
�B/;

(also) written as a convolution product, such that the bracket on H .G ; E/ is the
composition of this map and the restriction map from �0.G ; r

�B/ to �0.X;B/.
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Proof. Let �< 2 �c.G ; r
�E</ and �> 2 �c.G ; r

�E>/. For all 	 2 G , we have

.�< 	 �>/.	/ D h�<
r.�/; 	�

>
s.�/ir.�/

and hence

k.�< 	 �>/.	/k D kh�<
r.�/; 	�

>
s.�/ir.�/k

� k�<
r.�/kH<.G ;E</r.�/

k	�>
s.�/kH>.G ;E>/r.�/

D k�<
r.�/kH<.G ;E</r.�/

k�>
s.�/kH>.G ;E>/s.�/

� k�<kH<.G ;E</ k�>kH>.G ;E>/

because H >.G / satisfies (H4). Hence the convolution is continuous with norm � 1

and extends to a map H <.G ; E</ � H >.G ; E>/ ! �0.G ; r
�B/ with the desired

properties.

4.3. Regular unconditional completions. For simplicity, we introduce the follow-
ing abbreviation:

Definition 4.12. An unconditional completion A.G / of Cc.G / is said to be regu-
lar if there exists a pair H .G / of monotone completions of Cc.G / which satisfies
(H1)–(H4).

Note that there might exist many different such pairs of monotone completions
on which a regular unconditional completion acts, the important part of the definition
really is the existence of such a pair, not its particular shape.

Regularity is essential in our construction of the homomorphismMB
A

down below.

Examples 4.13. Most examples of unconditional completions that we have come
across so far are regular for rather obvious reasons:

(1) The unconditional completion L1.G / acts on the pair .L1.G /;C0.G //.

(2) The symmetrised version L1.G /\L1.G /� is also regular because the norm defin-
ing it dominates the norm k � k1. Further, it acts on the pair .L2

r .G /;L
2
s .G // (see

[Ren80]). It should not be too hard to check that it also acts on .Lp0

r .G /;L
p
s .G //

for all p; p0 2�1;1Œ such that 1
p

C 1
p0

D 1.

(3) The completion Amax.G / acts on .L2
r .G /;L

2
s .G // by definition; see Section 3

of [Laf06].

(4) If G is a locally compact Hausdorff group acting on some locally compact
Hausdorff space X , then L1.G;C0.X// is a regular completion of Cc.G Ë X/
because its norm dominates the norm of the regular completion L1.G ËX/.

There are cases of non-regular unconditional norms even when G is a group, see
Example A.6.
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4.4. The (inverse) homomorphism M B
A

. In Section 4.4, let G be proper and A.G /

be regular.
Recall that we used the name � for the canonical projection from X to X=G .

Let � also denote the map from G to X=G that maps 	 to �.r.	// D �.s.	//

(which extends � W X ! X=G ). If we regard X=G as a locally compact Hausdorff
groupoid, then the map � W G ! X=G is actually a strict morphism of groupoids.
If E is a u.s.c. field of Banach spaces over X=G , then ��E is a G -Banach space
(with a rather trivial action).6 If T is a continuous field of linear maps between
u.s.c. fields of Banach spaces over X=G , then ��T is an G -equivariant continuous
field of linear maps between G -Banach spaces. We use these facts to define our
“inverse homomorphism”:

(1) The first step is the map7 F. � / which yields a homomorphism F. � /:
RKKban.C0.X=G /I C0.X=G /;A.G ; B// ! KKban

X=G .CX=G ;F.A.G ; B///:

(2) The second step is the pullback homomorphism along � :

�� W KKban
X=G .CX=G ;F.A.G ; B/// ! KKban

G .CX ; �
�F.A.G ; B///:

Note that this homomorphism, on the level of cycles, produces cycles with G -
equivariant operator.

(3) Pick a pair H .G / of monotone completions of Cc.G / satisfying (H1)–(H4).
Note that there is a canonical action of ��F.A.G ; B// on F.H .G ; B//.
By Corollary 4.7, the algebra A.G ; B/ acts on F.H .G ; B// by locally compact
operators. If � 2 Cc.X/ and a 2 A.G ; B/, then x 7! �.x/a�.x/ is a section
of ��.F.A.G ; B/// with compact support. Such sections act on F.H .G ; B//

by locally compact operators with compact support, so they act by compact
operators. By a density argument, all sections of ��.F.A.G ; B/// that vanish
at infinity act on F.H .G ; B// by compact operators. Hence we can regard
F.H .G ; B// as a Morita cycle8 from ��F.A.G ; B// to B Š F.�0.X;B//.
The important point is that this Morita cycle carries an action of G which makes
it a G -equivariant Morita cycle. Morita cycles act on KKban from the right, so
we get a homomorphism

˝��F.A.G ;B//F.H .G ; B// W KKban
G .CX ; �

�F.A.G ; B/// ! KKban
G .CX ; B/:

If a cycle has a G -equivariant operator, then it stays equivariant under this ho-
momorphism.

The composition of these three homomorphisms gives the desired natural homo-
morphism,

MB
A;H W RKKban.C0.X=G /I C0.X=G /;A.G ; B// ! KKban

G .CX ; B/;

6See [Laf06] or [Par09a], Section 4.1, for a definition of the pullback along strict morphisms.
7See Section 1.3 or [Par07], Chapter 4, for a definition of the functor F. � /.
8See [Par09a], Section 3.3.6, for a definition; compare [Par09b], Definition 5.7.
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which produces cycles with G -equivariant operators.

Proposition 4.14. Let H 0.G / D .H 0<.G /;H 0>.G // be another pair of monotone
completions of Cc.G / satisfying (H1)–(H4). Then thenatural homomorphismsMB

A;H

andMB
A;H 0 are equal. We call this natural homomorphismMB

A
.

Proof. We first consider the case that k � kH< � k � kH 0< and k � kH> � k � kH 0> . In
this case, we have a canonical homomorphism ˆ from H 0.G ; B/ to H .G ; B/ which
gives us an equivariant homomorphism F.ˆ/ from F.H 0.G ; B// to F.H .G ; B//.
The homomorphism F.ˆ/ is actually a morphism of equivariant Morita cycles from
��F.A.G ; B// to B . A careful revision of the proof that ��F.A.G ; B// acts by
compact operators on F.H 0.G ; B// and on F.H .G ; B// shows that F.ˆ/ satisfies
the conditions of Theorem 3.20 of [Par09a] and hence induces a homotopy from
F.H 0.G ; B// to F.H .G ; B//. SoMB

A;H 0 D MB
A;H

because the tensor product with
Morita cycles lifts to homotopy classes.9

Now consider the general case. By taking the maximum of the norms on H <.G /

and H 0<.G / we define a monotone completion H 00<.G / of Cc.G /; similarly, we
define H 00>.G /. The pair H 00.G / ´ .H 00<.G /;H 00>.G // also satisfies (H1)–(H4).
By the first part of the proof we can conclude MB

A;H
D MB

A;H 00 D MB
A;H 0 .

4.5. J B
A

B M B
A

D Id on the level of KKban. We now prove Theorem 2.3. Let G be
proper and let A.G / be regular. Assume moreover that G admits a cut-off function.

4.5.1. Idea of the proof. First, we choose a pair D.X/ of monotone completions
of Cc.X/ satisfying (D1) and (D2). Second, because A.G / is regular, we can also
choose a pair H .G / D .H <.G /;H >.G // of monotone completions of Cc.G / sat-
isfying (H1)–(H4). Let .E; T / 2 Eban.C0.X=G /I C0.X=G /;A.G ; B//. We have to
show that .E; T / is homotopic to JB

A;D
.MB

A;H
.E; T //. The obvious strategy is to

define a morphism from JB
A;D

.MB
A;H

.E// to E which induces a homotopy; there
is a canonical candidate for such a morphism defined on a dense subspace, but this
candidate does not extend to a continuous morphism on the entire space: The norms
on JB

A;D
.MB

A;H
.E// and E seem to be difficult to compare in general.

We overcome this problem by constructing a pair zE ´ . zE<; zE>/ of C-vector
spaces which are equipped with compatible Cc.X=G /-module structures and left/right
�c.G ; r

�B/-module structures and a bilinear map from zE< � zE> to �c.G ; r
�B/.

On this pair, which could be called a “pre-A.G ; B/-pair”, we construct a pair of
formally adjoint operators zT . Moreover, we define canonical “homomorphisms”ˆE

from zE to E and ‰E from zE to JB
A;D

.MB
A;H

.E// which intertwine zT and T and

9See [Par09a], Section 3.3.6, or [Par07], Section 3.8.
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JB
A;D

.MB
A;H

.T //, respectively:

. zE; zT /
ˆE

������������
‰E

��������������

.E; T / JB
A;D

.MB
A;H

.E; T //.

One can think of zE as a dense subspace of both,E andJB
A;D

.MB
A;H

.E//. Now we put

on zE the supremum of the semi-norms which are induced by the two homomorphisms,
making the homomorphisms continuous. We then show that the completion of zE to-
gether with the continuous extension of zT is in Eban.C0.X=G /I C0.X=G /;A.G ; B//

and that the two homomorphisms induce homotopies. Hence also .E; T / and
JB

A;D
.MB

A;H
.E; T // are homotopic.

4.5.2. A sufficient condition for homotopy. The central tool to construct these ho-
motopies is the following sufficient condition for the homotopy of RKKban-cycles
that generalises a corresponding theorem for KKban-cycles, compare [Par09b], The-
orem 2.1. The main idea is that the mapping cylinder of a homomorphism ˆ of
RKKban-cycles gives a homotopy between the cycles. For this to be true, ˆ has to
satisfy a technical condition which says that the operators which are required to be
compact in the definition of RKKban-cycles can be approximated simultaneously by
finite rank operators for both cycles which ˆ connects. This is what is meant by
“.ˆ; .T; T 0// 2 Eban.C0.Z/I IdA; IdB/” in the following theorem:

Theorem 4.15. Let Z be a locally compact Hausdorff space and let C and D
be C0.Z/-Banach algebras. Let .E; T /; .E 0; T 0/ be elements of Eban.C0.Z/IC;D/.
If there is a C0.Z/-linear morphism ˆ from .E; T / to .E 0; T 0/ (with coefficient
maps IdC and IdD) such that .ˆ; .T; T 0// 2 Eban.C0.Z/I IdC ; IdD/, then
.E; T / 
 .E 0; T 0/.

The necessary concepts are explained in [Par09b] for KKban; to obtain the re-
sult for C0.Z/-Banach algebras it suffices to add compatible C0.Z/-Banach spaces
structures. You can also prove an equivariant version by simply adding group actions
everywhere.

4.5.3. The construction of zE , ˆE and ‰E . We are going to cut the proof into a
series of statements and definitions. In this section, letE andF be C0.X=G /-Banach
A.G ; B/-pairs.

The pair zE: Define

zE> ´ E> ˝�c.G ;r�B/ �c.G ; r
�B/
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and
zE< ´ �c.G ; r

�B/˝�c.G ;r�B/ E
<:

These vector spaces carry canonical and compatible actions of �c.G ; r
�B/ and

Cc.X=G /. A bracket on zE is defined by

h � ; � i W zE< � zE> ! �c.G ; r
�B/;

hˇ< ˝ e<; e> ˝ ˇ>i.	/ ´ ˇ< 	 he<; e>i 	 ˇ> D hˇ<e<; e>ˇ>i:
We check that the bracket has indeed its values in �c.G ; r

�B/: The element
he<; e>i is in A.G ; B/ by definition, and we now show that the product ˇ< 	ˇ 	ˇ>

is in �c.G ; B/ for all ˇ<; ˇ> 2 �c.G ; B/ and ˇ 2 A.G ; B/. If we regard ˇ< as an
element of H <.G ; B/ andˇ> as an element of H >.G ; B/, then we can conclude from
Lemma 4.11 that the map ˇ 7! ˇ< 	ˇ	ˇ> is continuous from A.G ; B/ to �0.G ; B/

because A.G / acts on H .G /. Moreover, the support of the product ˇ< 	 ˇ 	 ˇ> is
always contained in the set f	 2 G W r.	/ 2 r.suppˇ</; s.	/ 2 s.suppˇ>/g, which
is compact because G is proper.

The map ˆE : Define

ˆ>
E W zE> ! E>; e> ˝ ˇ> 7! e>ˇ>;

and

ˆ<
E W zE< ! E<; ˇ< ˝ e< 7! ˇ<e<:

Both maps are obviously �c.G ; r
�B/- and Cc.X=G /-linear. Furthermore, the

pair ˆE D .ˆ<
E ; ˆ

>
E / is compatible with the brackets on zE and E.

The map ‰E : Let e> 2 E> and ˇ> 2 �c.G ; r
�B/. Since ˇ> has compact sup-

port, the functionx 7! .e>˝ˇ>/x D e>
�.x/

˝ˇ>
x is in�c.X; �

�F.E>/˝��F.A.G ;B//

F.H >.G ; B///; we can regard this function as an element ‰>
E .e

> ˝ ˇ>/ of
D>.X; ��F.E>/ ˝��F.A.G ;B// F.H >.G ; B///; here � W X ! X=G denotes the
canonical projection. This gives rise to a map ‰>

E from zE> to JB
A;D

.MB
A;H

.E//>.
Similarly we define

‰<
E .ˇ

< ˝ e</x ´ ˇ<
x ˝ e<

�.x/ 2 H <.G ; B/x ˝A.G ;B/�.x/
E<

�.x/

for all e< 2 E<, ˇ< 2 �c.G ; r
�B/ and x 2 X , giving us a �c.G ; r

�B/-linear and
Cc.X=G /-linear map‰<

E from zE< toJB
A;D

.MB
A;H

.E//<. The pair‰E D .‰<
E ; ‰

>
E /

is compatible with the brackets on zE and JB
A;D

.MB
A;H

.E//.

The constructions for linear operators: Let S 2 LA.G ;B/.E; F / be an operator
between the C0.X=G /-Banach A.G ; B/-pairs E and F . Define

zS> W zE> ! QF>; �> ˝ ˇ> 7! S>.�>/˝ ˇ>;

and
zS< W QF< ! zE<; ˇ< ˝ �< 7! ˇ< ˝ S<.�</:
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Note that zS ´ . zS<; zS>/ is formally adjoint in the following sense:

h zS<.ˇ< ˝ �</; �> ˝ ˇ>i D ˇ< 	 hS<.�</; �>i 	 ˇ>

D ˇ< 	 h�<; S>.�>/i 	 ˇ>

D hˇ< ˝ �<; zS>.�> ˝ ˇ>/i
for all ˇ<; ˇ> 2 �c.G ; r

�B/, �< 2 �c.X; F
</ and �> 2 �c.X;E

>/.
By direct calculation one checks:

(1) The maps ˆE and ˆF intertwine zS and S in the obvious sense.

(2) The maps ‰E and ‰F intertwine zS and JB
A;D

.MB
A;H

.S//.

4.5.4. Putting a norm on zE . If Qe> 2 zE>, then define

kQe>k ´ maxfkˆ>
E . Qe>/k; k‰>

E . Qe>/kg:
This is a semi-norm on zE>. Let xE> be the (Hausdorff-) completion of zE> with
respect to this semi-norm. In an analogous fashion, define a semi-norm on zE< and
call the completion xE<. The actions of �c.G ; r

�B/ and Cc.X=G / on zE extend to
non-degenerate actions of A.G ; B/ and C0.X=G / on xE. The bracket on zE extends
to a continuous bracket on xE, making xE a C0.X=G /-Banach A.G ; B/-pair.

Now the mapˆ>
E extends by continuity to a continuous linear map from xE> toE

which is A.G ; B/- and C0.X=G /-linear. Similar things can be said aboutˆ<
E ,‰>

E and
‰<

E . We get homomorphismsˆE from xE toE and‰E from xE to JB
A;D

.MB
A;H

.E//.

Let S 2 LA.G ;B/.E; F / as above. Then the map zS> satisfies

k zS>. Qe>/k � kS>k kQe>k
for all Qe> 2 zE> and extends therefore to an operator xS> from xE> to xF>. Analogously
for zS<. We thus get an element xS 2 LA.G ;B/. xE; xF / of norm � kSk. The map
S 7! xS is C-linear and functorial. The homomorphisms ˆE and ˆF intertwine xS
and S in the obvious sense and the homomorphisms ‰E and ‰F intertwine xS and
JB

A;D
.MB

A;H
.S//.

By direct comparison of the operators one can show:

Lemma 4.16. Let e< 2 �0.X;E
</, f > 2 �0.X; F

>/, ˇ<; ˇ> 2 �c.G ; r
�B/. If

S D jf >ˇ>ihˇ<e<j 2 KA.G ;B/.E; F /;

then
xS D jf > ˝ ˇ>ihˇ< ˝ e<j 2 KA.G ;B/. xE; xF /

and

JB
A;D

�
MB

A;H .S/
� D j‰>

F .f
> ˝ ˇ>/ih‰<

E .ˇ
< ˝ e</j

2 KA.G ;B/.J
B
A;D.M

B
A;H .E//; J

B
A;D.M

B
A;H .F ///:
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It follows for all S 2 KA.G ;B/ .E; F / that xS and JB
A;D

.MB
A;H

.S// are compact and

that . xS; S/ 2 K.ˆE ; ˆF / as well as . xS; JB
A;D

.MB
A;H

.S/// 2 K.‰E ; ‰F /. The
precise definition of K.ˆE ; ˆF / can be found in [Par09b]; compare the discussion
around Theorem 4.15.

4.5.5. The proof of J B
A

B M B
A

D Id. We show that . xE; xT / is homotopic to .E; T /
and to JB

A;D
.MB

A;H
.E; T //, where .E; T / 2 Eban.C0.X=G /I C0.X=G /;A.G ; B//.

If � 2 Cc.X=G / and S ´ �.T 2 � 1/, then . xS; S/ is in K.ˆE ; ˆE / and
. xS; JB

A;D
.MB

A;H
.S/// 2 K.‰E ; ‰E / by Lemma 4.16. If follows that . xE; xT / is in

Eban.C0.X=G /I C0.X=G /;A.G ; B// and, using Theorem 4.15, that it is homotopic
to .E; T / as well as to JB

A;D
.MB

A;H
.E; T //.

4.6. Sketch of the proof of M B
A

BJ B
A

D Id. We first have to introduce an additional
technical concept to be able to formulate the precise conditions under which we can
show the injectivity part of the generalised Green–Julg theorem:

Let H .G / D .H <.G /;H >.G // be a pair of monotone completions of Cc.G /

satisfying (H1)–(H4). A cut-off pair c D .c<; c>/ for G is called an H .G /-cut-off
pair if

kGx 3 	 7! c>.r.	//kH>.Gx/ D 1 and kG x 3 	 7! c<.s.	//kH<.G x/ D 1

for all x 2 X .

Examples 4.17. Assume that X=G is � -compact. Let c be a cut-off-function for G .

(1) Proposition 3.2 gives a H .G /-cut-off pair .c; d/ for H .G / D .L1.G /;C0.G //.

(2) If p; p0 2�1;1Œ such that 1
p

C 1
p0

D 1, then .c
1

p0 ; c
1
p / is a H .G /-cut-off pair

for the pair H .G / D .Lp0

r .G /;L
p
s .G //.

Observe that these examples show that L1.G /, L1.G /\ L1.G /� and Amax .G / are
not only regular (see Examples 4.13) but satisfy the hypotheses of the generalised
Green–Julg theorem 2.4 for � -compact X=G .

The technical reason to consider H .G /-cut-off pairs is that they allow us to embed
�0.X;E/ into H .G ; E/ as a direct summand, whereE is a G -BanachB-pair. This is
a Banach algebraic analogue of the fact that every G -C�-algebra B can be embedded
into L2.G ; B/ as a direct summand, see Proposition 6.21 of [Tu99].

Recall that the hypotheses of our main result, Theorem 2.4, are that we are given

� an unconditional completion A.G / of Cc.G /,

� a pair H .G / of monotone completions of Cc.G / satisfying (H1)–(H4),

� an H .G /-cut-off pair c for G , and

� a non-degenerate G -Banach algebra B .
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These hypotheses imply that G admits a cut-off function and that A.G / is regular.
Hence the surjectivity part of the theorem has already been settled; more specifically,
we have JB

A
BMB

A
D Id.

We want to show that, under these hypotheses,MB
A

BJB
A

D Id as an endomorphism
of the group RKKban.C0.X=G /I C0.X=G /;A.G ; B//.

Idea of the proof of MB
A

B JB
A

D Id: Let .E; T / 2 Eban
G
.C0.X/; B/ with G -

equivariant T . The idea is to define a homomorphism ˆE from MB
A;H

.JB
A;Ac .E//

to E that commutes with the operator MB
A;H

.JB
A;Ac .T // and T . We then show that

ˆE induces a homotopy by checking the technical conditions of Theorem 3.20 of
[Par09a]. Note that we use the particular pair Ac.X/ of monotone completions of
Cc.X/ here, see Section 4.1.4.

The central ingredient in the construction of ˆE is a homomorphism

Ac.X;E/˝A.G ;B/ H .G ; B/ ! �0.X;E/:

To define it, observe that the convolution gives a homomorphism

A.G ; E/˝A.G ;B/ H .G ; B/ ! H .G ; E/:

By definition, Ac.X;E/ embeds into A.G ; E/, so we can embed Ac.X;E/˝A.G ;B/

H .G ; B/ into A.G ; E/˝A.G ;B/ H .G ; B/. On the other hand, �0.X;E/ is contained
as a direct summand in H .G ; E/ because c is a H .G /-cut-off pair, so we can compose
with the projection onto this summand to obtain the desired homomorphism. The
homomorphism ˆE is constructed from it by some standard operations.

The main difficulty of the proof is to check that the homomorphism ˆE really
gives a homotopy between MB

A;H
.JB

A;Ac .E; T // and .E; T /. This boils down to
some approximation arguments for compact operators which are carried out in detail
in [Par07], Section 7.8.

A. Appendix: Does K�.A.G ; B// depend on A.G /?

In this section, let G be a locally compact Hausdorff groupoid with Haar system and
unit space X and let A.G / be an unconditional completion of Cc.G /.

A.1. Properness and the invariance of K-theory

Conjecture A.1. Let G be proper and let B be a (possibly degenerate) G -Banach al-
gebra. Then the group K�.A.G ; B// is independent of the choice of the unconditional
completion A.G / of Cc.G /.

By “independent” we mean that there is a canonical isomorphism K�.A.G ; B// Š
K�.A0.G ; B// whenever A0.G / is another choice of an unconditional completion.
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We are not able to show this conjecture in full generality, yet, even for the case
that the coefficients are trivial, i.e., B D C0.X/. But in this section, we will give
proofs for important cases:

PropositionA.2. If G is proper and ifA.G / is either a regular or a strictly positive un-
conditional completion of Cc.G / and ifB is a G -Banach algebra, then K�.A.G ; B//
is independent of the choice of the (regular or strictly positive) unconditional com-
pletion A.G /.

The notion of regularity was defined in Section 4.3. Strict positivity is a condition
on the fibres Ax.G / of A.G /with respect to the left action by C0.X/ (i.e., the fibration
with respect to the range map r of G ) which is fairly elementary to check in concrete
examples:

Definition A.3 (Strictly positive norm). Let A.G / be an unconditional completion
of Cc.G / for a norm k � kA. Then the norm k � kA and the completion A.G / are called
strictly positive if for all compact K � X there is a function � 2 Cc.G /�0 such that
infx2K k�kAx > 0.

Note that strict positivity is not symmetric in the sense that it treats the range
and the source map differently. But in spite of this aesthetical drawback, this notion
seems to be quite useful in concrete examples. As a start, if G D G is a group, then
every unconditional norm on Cc.G/ is strictly positive. More generally:

Lemma A.4. If G D G Ë X where G is a locally compact Hausdorff group act-
ing (properly or not) on a locally compact Hausdorff space X , and if A0.G/ is an
unconditional completion of Cc.G/, then A.G Ë X/ ´ A0.G;C0.X// is a strictly
positive unconditional completion of Cc.G ËX/.

Proof. Let K � X be compact. Fix a function �0 ¤ 0 in Cc.G/�0. Find a function
� 2 Cc.G ËX/�0 such that, for all x 2 K and g 2 G, we have �.g; g�1x/ D �0.g/
(if we fix the range map of the groupoid G Ë X to send .g; x/ to gx). The fibre of
A0.G;C0.X// over x 2 X can be identified with A0.G/, and this identification sends
� to �0 for all x 2 K. So, actually,

inf
x2K

k�kAx D k�0kA0 > 0:

As an exercise, one can prove the following alternative characterisation of strict
positivity:

Lemma A.5. Let A.G / be an unconditional completion of Cc.G / for a norm k � kA.
Then A.G / is strictly positive if and only if the following holds: for all � 2 Cc.G /

and all 	 2 G with �.	/ ¤ 0 there exists U � X open with r.	/ 2 U such that
infx2U k�kAx > 0.
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Also, note that L1.G / is both, strictly positive and regular. But there are also
regular unconditional completions which are not strictly positive and vice versa:

Examples A.6. (1) Let X ´ Œ0; 1� and G ´ X � X . Let the Haar system on G be
induced from the Lebesgue measure on X . Define a norm on Cc.G / by

kf kA ´ sup
y2X

Z 1

0

jf .x; y/j dx:

Then A.G / is an unconditional completion of Cc.G / which is not strictly positive.
Note that it would be if we had taken the fibration with respect to the source map s
and not the range map r . Note, moreover, that A.G / D L1.G /�, so A.G / is regular.

(2) Let G and X be as above, but this time consider the norm

kf kB ´ k jf j kC � :

Then B.G / is an unconditional completion of Cc.G / which is not strictly positive.
As it dominates the C�-norm, it is regular.

(3) Let G be the group Z and let 
 2 R n f0g. Define a norm on Cc.Z/ by

kf kD ´ P
k2Z

e�kjf .k/j:

This is an unconditional norm on Cc.Z/. If it were regular, one could argue from
(H2) and (H4) that kelkD D 1 for all l 2 Z, but kelkD D e�l ¤ 1. So D.Z/ is not
regular. It is, nevertheless, strictly positive.

Of course, one can combine these examples to obtain a completion which is neither
regular nor strictly positive.

In the rest of the appendix, we will prove PropositionA.2. The strategy of the proof
will be to check that the algebra �c.G ; r

�B/ of continuous sections with compact
support is dense and hereditary (see below) in the algebra A.G ; B/ in question, which
will give us the necessary information on the K-theory of A.G ; B/.

In Section A.2, we will introduce some background knowledge on hereditary
subalgebras and see how this concept can help us, and in Section A.3 and Section A.4
we then deal with the regular and the strictly positive case, respectively.

A.2. Hereditary subalgebras and K-theory

Definition A.7 (Hereditary subalgebra). Let A be a subalgebra of a complex algebra
B . Then A is called hereditary in B if AB A � A.

This concept was used in similar circumstances by Lafforgue in [Laf02], Sec-
tion 1.7. We will use a slightly refined version of it: Actually, the algebra �c.G ; r

�B/
does not necessarily have to be a subalgebra of its completion A.G ; B/ because the
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canonical map � from �c.G ; r
�B/ to A.G ; B/ does not have to be injective; the point

is that the pointwise norm-function of an element of �c.G ; r
�B/ does not have to be

continuous, so it is conceivable that it has “norm” zero without vanishing. However,
the kernel of � can easily be seen to be nilpotent, which is good enough.

Lemma A.8. Let � W A ! B be a homomorphism of complex algebras such that �.A/
is a hereditary subalgebra of B and such that the kernel of � is nilpotent. Then, for
all a 2 A, we have: if 1C �.a/ is invertible in the unitalisation zB of B , then 1C a

is invertible in zA.

Proof. Let a 2 A such that 1C �.a/ is invertible in zB . Let 1C b be the inverse of
1 C �.a/ in zB . Then, as in the proof of Lemma 1.7.9 of [Laf02] or Lemma 8.2.2
of [Par07], b D ��.a/C �.a/2 C �.a/b�.a/ belongs to �.A/. Find a0 2 A such that
�.a0/ D b. Then Q�..1Ca/.1Ca0// D .1C �.a//.1C �.a0// D 1 D Q�..1Ca0/.1Ca//.
This means that .1 C a/.1 C a0/ D 1 C n for some n in the kernel of �. But such
an element is always invertible, so 1C a is right-invertible in zA. Similarly, 1C a is
left-invertible in zA, so it is invertible.

Remark A.9. Note that Lemma A.8 is insensitive to amplification: If n 2 N and
� W A ! B satisfies the hypotheses of the lemma, then also Mn.�/ W Mn.A/ ! Mn.B/

satisfies them. So the conclusion holds for a 2 Mn.A/ as well.

LemmaA.10. Let W B1 ! B2 be a continuous homomorphism of Banach algebras
with dense image. Let A be a dense subalgebra of B1 such that  .A/ is a hered-
itary subalgebra of B2 and such that the kernel of  jA is nilpotent. Then  is an
isomorphism in K-theory:

K�.B1/ Š K�.B2/:

Proof. Note that  jA satisfies the conditions of Lemma A.8. This means that  is
relatively spectral in the sense of Nica with respect to the dense subalgebra A, see
[Nic10], i.e., for every element a inAwe have spB1

. .a// D spB2
.a/. By the above

remark, we can conclude that  is even completely relatively spectral in the sense
of Nica, so it follows from Theorem 1.2 of [Nic10] that  is an isomorphism in
K-theory.

If one does not want to invoke the machinery of [Nic10], one can also find a more
direct proof along the lines of the proof of Lemma 1.7.10 of [Laf02].

LemmaA.11. LetB be a complex algebra. For each submultiplicative semi-norm p
onB letBp denote the completion ofB with respect to p and let �p W B ! Bp denote
the canonical “inclusion”. Consider the class C of all those p such that �p.B/ is
hereditary inBp and such that �p has nilpotent kernel. Then K�.Bp/ does not depend
on p 2 C .
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Proof. We first consider the case that we have p and q in C such that q � p. Let
 denote the canonical homomorphism from Bp to Bq and write A for �p.B/ � Bp .
Then  W Bp ! Bq satisfies the hypotheses of Lemma A.10, so  � W K�.Bp/ !
K�.Bq/ is an isomorphism.

If p and q are arbitrary in C , then we can consider r ´ maxfp; qg, which is also
in C . Then we can apply the first part of the proof to p and r and p and r and q,
respectively.

The link between the concept of a hereditary subalgebra and the proper groupoids
and unconditional completions is given by the following lemma. In combination with
Lemma A.11 it implies Proposition A.2.

Lemma A.12. Let G be proper and let B be a G -Banach algebra. Let A.G / be a
regular or strictly positive unconditional completion and let � denote the canonical
map from �c ´ �c.G ; r

�B/ into its completion A ´ A.G ; B/. Then the threefold
convolution product �c � �c � �c ! �c can be (uniquely) extended to a trilinear
separately continuous map �c � A � �c ! �c .

It follows that �.�c/ is hereditary inA and that the kernelN of � satisfies�cN�c D
0; in particular, N is nilpotent.

Proof. To show that the threefold convolution product on �c extends to a trilinear
separately continuous map �c � A � �c ! �c will be shown in Section A.3 and
Section A.4 in the regular and strictly positive case, respectively. Because of the
continuity in the second component and the density of �.�c/ in A this extension is
unique.

From �.�c/A�.�c/ D �.�cA�c/ � �.�c/ it follows that �.�c/ is hereditary in A.
If n 2 �c is in the kernel of � and f1; f2 2 �c , then f1nf2 D f1�.n/f2 D f10f2 D 0.

Remark A.13. The core of the argument why “�c 	 A 	 �c � �c” holds does not
involve the properness and, before we start with the actual proof, we want to explain it
in the case that G D G is a (unimodular) group, thatB D C and that A.G/ D L1.G/.
The interesting part of what we have to show is that Cc.G/ 	 L1.G/ 	 Cc.G/ is
contained in C.G/, the space of all continuous functions on G.

Firstly, consider Cc.G/ as a subspace of L2.G/. Because L1.G/ acts on L2.G/

by convolution, canonically, we see that

Cc.G/ 	 L1.G/ 	 Cc.G/ � L2.G/ 	 L1.G/ 	 L2.G/ � L2.G/ 	 L2.G/ � C0.G/:

The last inclusion can easily be shown using the Cauchy–Schwartz inequality. What
we will show below for the regular case will be a generalisation of this idea.

Secondly and alternatively, one could proceed as follows: Show that already
L1.G/	Cc.G/ � C.G/; in this simple case, this can be achieved by regarding Cc.G/

as a subset of C0.G/, on which L1.G/ acts canonically by convolution. Actually, it
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is true that A.G/ 	 Cc.G/ � C.G/ for any unconditional completion A.G/ if G is
a group. An argument for this fact has been indicated to me by Vincent Lafforgue,
and a generalisation to strictly positive unconditional completions is what we show
below in Section A.4.

A.3. Regular unconditional completions. Let B be a G -Banach algebra and let
A.G / be a regular unconditional completion. Let A.G / act on the equivariant pair
H .G / of locally convex monotone completions of Cc.G / satisfying (H1)–(H4) as in
Definition 4.12.

We now show that the threefold convolution product on �c ´ �c.G ; r
�B/ can

be extended to a trilinear separately continuous map from �c � A.G ; B/ � �c to �c

if G is proper.

Lemma A.14. Let G be proper and let A.G / be regular. Let � be the canonical map
from �c.G ; r

�B/ to A.G ; B/. Then �.�c.G ; r
�B// is a hereditary subalgebra of

A.G ; B/ and the kernelN of � satisfies �c.G ; r
�B/N�c.G ; r

�B/ D 0; in particular,
it is nilpotent with N 3 D 0.

Proof. Let A.G / act on the equivariant pair H .G / of locally convex monotone
completions of Cc.G /. Let ˇ<; ˇ> 2 �c.G ; r

�B/. Let Kr ´ r.suppˇ</ and
Ks ´ s.suppˇ>/. The two sets Kr and Ks are compact subsets of G .0/. Because
G is proper, the set K ´ f	 2 G W r.	/ 2 Kr ; s.	/ 2 Ksg is compact. For all
ˇ 2 �c.G ; r

�B/, we have supp.ˇ< 	 ˇ 	 ˇ>/ � K. Because A.G / acts on H .G /,
we also have, by Lemma 4.11 and property (H2):

kˇ< 	 ˇ 	 ˇ>k1 � kˇ<kH<kˇkAkˇ>kH> :

It follows that .ˇ< 	 ˇn 	 ˇ>/n2N is a Cauchy sequence in �K.G ; r
�B/ whenever

.ˇn/n2N is a Cauchy sequence in �c.G ; r
�B/ for the semi-norm k � kA; in this

case, .ˇ< 	 ˇn 	 ˇ>/n2N converges to some element of �K.G ; r
�B/, and hence

�.ˇ< 	 ˇn 	 ˇ>/ D �.ˇ</�.ˇn/�.ˇ
>/ converges to some element in the image of � if

n ! 1. Thus the image of � is hereditary in A.G ; B/.
Now letˇ 2 �c.G ; r

�B/ satisfy �.ˇ/ D 0 2 A.G ; B/. Letˇ<, ˇ> be elements of
�c.G ; r

�B/. By (H2), kˇ< 	ˇ	ˇ>k1 � kˇ<kH<kˇkAkˇ>kH> D 0, so ˇ< 	ˇ	
ˇ> D 0. This shows that the kernel N of � satisfies �c.G ; r

�B/N�c.G ; r
�B/ D 0.

Example A.15. Let G be a locally compact Hausdorff group acting properly on
some locally compact Hausdorff space X . Then L1.G Ë X/ and L1.G;C0.X// are
two regular unconditional completions of Cc.G Ë X/. Because G Ë X is a proper
groupoid, we have a canonical isomorphism

K�.L1.G;C0.X/// Š K�.L1.G ËX//:
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Because the unconditional norm given by L1.G;C0.X// dominates k � k1, the iso-
morphism in K-theory is given by the canonical homomorphism from L1.G;C0.X//

to L1.G ËX/.

A.4. Strictly positive unconditional completions

Lemma A.16. For all f 2 C.G / and g 2 Cc.G / the function f 	 g is well defined
and continuous. The so defined product from C.G / � Cc.G / to C.G / is separately
continuous if we equip Cc.G / with the inductive limit topology and C.G / with the
topology of uniform convergence on compact sets. The same holds for the product
with the factors reversed.

Let A.G / be an unconditional completion of Cc.G / for an unconditional strictly
positive norm k � kA, see Definition A.3.

Lemma A.17. The convolution on Cc.G / extends to a well-defined product from
A.G / � Cc.G / to C.G / which is separately continuous.

Proof. LetK be a compact subset of G . We show that the convolution from Cc.G /�
CK.G / to C.G / extends continuously to a map on A.G /� CK.G /. This would show
separate continuity for the extension of the convolution to a map on A.G / � Cc.G /.

So let L be a compact subset of G . We have to show that the map .f; g/ 7!
.f 	 g/jL from Cc.G / � CK.G / to C.L/ is bounded. Because the norm on A.G / is
strictly positive, we can find a function � 2 Cc.G /�0 such that infx2r.L/ k�kAx

> 0

and 0 � � � 1. Define V ´ supp�.
Note that the set KL�1V is a compact subset of G , so we can find a function

 2 Cc.G / such that 0 �  � 1 and  � 1 on KL�1V . We define

CK;L ´ k kA

infx2r.L/ k�kAx

:

Let f 2 Cc.G / and g 2 CK.G / and x 2 G .0/.
We have

j .s�1v/j kgk1 � jg.s�1l/j:
for all v 2 V , for all l 2 L and all s 2 G such that r.s/ D r.v/ D r.l/ D x: If
s�1l is in suppg � K, then this means that s�1v D s�1l l�1v is in KL�1V , so
 .s�1v/ D 1 and the above inequality holds in this case. If s�1l is not in suppg,
then the inequality holds trivially.

Now for all l 2 L and v 2 V such that r.v/ D r.l/ D x we have

kgk1jf j 	 j j.v/ D
Z

s2G x

jf j.s/j j.s�1v/kgk1 ds

�
Z

s2G x

jf j.s/jgj.s�1l/ ds D jf j 	 jgj.l/ � Œjf j 	 jgj.l/��.v/:
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Because supp� D V , the same inequality holds for all v 2 G x . Because the norm
k � kA is unconditional, we have k kgk1jf j 	 j j kAx

� Œjf j 	 jgj.l/�k�kAx
. This

implies that
kgk1kf kAx

k kA � Œjf j 	 jgj.l/�k�kAx

for all l 2 L.

j.f 	 g/.l/j � Œjf j 	 jgj.l/� � k kA

k�kAx

kgk1kf kAx
� CK;Lkgk1kf kA:

This is true for all l 2 L, so

kf 	 gkL � CK;Lkgk1kf kA:

This is the continuity property that we wanted to prove.

Let G be a proper locally compact Hausdorff groupoid. Let B be a G -Banach
algebra. Define �c ´ �c.G ; r

�B/. Let A.G / be a strictly positive unconditional
completion of Cc.G /.

Corollary A.18. Let f1; f3 2 �c ´ �c.G ; r
�B/. Then the map f2 7! f1 	 f2 	 f3

from �c.G ; r
�B/ to �c.G ; r

�B/ extends to a continuous linear map from A.G ; B/

to the Banach space �K.G ; r
�B/ � �c , where K � G is the compact set f	 2 G W

r.	/ 2 s.suppf1/ and s.	/ 2 r.suppf3/g.
In particular, the image of �c in its completion A.G ; B/ is a hereditary sub-

algebra. Moreover, the kernel N of the embedding of �c into A.G ; B/ satisfies
�cN�c D 0, so in particular we have N 3 D 0.

Proof. Because G is proper, the set K is compact.
It is clear that supp.f1 	f2 	f3/ � K for all f2 2 �c . Moreover, we have shown

above that

kf1 	 f2 	 f3kK � k jf1j 	 jf2j 	 jf3j kK � Ckf2kA;

where the constant C does only depend on f1 and f3. This shows the first part of the
corollary.

The same inequality, for varying f1 and f3 (and hence for varying C and K)
shows the second part of the corollary.
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