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Some ‘homological’ properties of the stable Higson corona

Rufus Willett

Abstract. We establish certain ‘homological properties’ of the stable Higson corona used by
Emerson and Meyer to study the Dirac-dual-Dirac approach to the Baum–Connes conjecture
[5]. These are used to obtain explicit isomorphisms between the K-theory groups of stable
Higson coronas, and the K-theory groups of certain geometrically defined boundaries. This is
sufficient to give a simple proof of the strong Novikov conjecture for torsion-free hyperbolic
groups and torsion-free groups acting properly and cocompactly on CAT.0/ spaces, and also
provides an input into an index theorem in single operator theory [15], [16].
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1. Introduction

LetX be a proper metric space. In work on the Baum–Connes conjecture [5] Emerson
and Meyer introduce the stable Higson corona c.X/ (see Definition 2.2 below), a
‘large-scale’ geometric invariant of X . They develop some further properties of this
object in [4], in particular putting (a reduced version of) it in K-theoretic duality with
the Roe algebra of X , C�.X/. Indeed, it follows from [4], Theorem 6.1, that there
exists a natural pairing

K�.cred.X//˝K�.C �.X// ! Z

which is moreover rationally nondegenerate in many interesting cases: for example,
if the space X is uniformly contractible, and the coarse assembly and coarse co-
assembly maps are both isomorphisms.

This suggests a close analogy between the stable Higson corona and the Roe
algebra, which we aim to develop in this piece. Specifically, we show that the K-
theory of the stable Higson corona has certain ‘homological properties’, such as
satisfying a Mayer–Vietoris sequence for coarsely excisive [11] decompositions of
metric spaces, and invariance under coarse homotopy equivalence [8]. These closely
mirror properties of the Roe algebra that were proved in [11], [8], [9], [7] by Higson,
Pedersen, Roe and Yu. This approach to the stable Higson corona was suggested to
the author by John Roe.
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Our principal motivation was to provide a relatively simple and self-contained
proof of an index theorem in single operator theory [16], [15], following on from
work of Rabinovich, Roch and Silbermann [13], and Rabinovich, Roch and Roe
[12]. The main ingredient necessary for this application to operator theory is the
first part of the theorem below; it is a corollary of the homological properties that
we establish for the stable Higson corona (see Propositions 4.3 and 4.5 below, and
Section 4 for definitions).

Theorem 1.1. Say that X is a proper geodesic CAT.0/ metric space, @vX its visual
boundary, and K a copy of the compact operators on a separable infinite dimensional
Hilbert space. Then there is natural inclusion

i W C.@vX/˝ K ! c.X/

which induces an isomorphism on K-theory.
Say thatX is a proper quasi-geodesic Gromov hyperbolic space, @GX its Gromov

boundary and K a copy of the compact operators on a separable infinite dimensional
Hilbert space. Then there is a natural inclusion

i W C.@GX/˝ K ! c.X/:

which induces an isomorphism on K-theory.

It is a simple corollary that the coarse co-assembly map of Emerson and Meyer is an
isomorphism; moreover, the strong Novikov conjecture for torsion-free groups acting
on such spaces follows from this. This is not a new result, and indeed follows from
the work of Emerson and Meyer on the stable Higson corona [4]. Nonetheless, the
proofs given here are elementary, in particular, using only K-theory and no bivariant
KK-theory; they thus provide a simple approach to the Novikov conjecture for such
groups.

Outline of the article. Section 2 below recalls the definition of the stable Higson
corona and some of its basic properties from [4]. Section 3 proves our main results
on homological properties of the stable Higson corona. Section 4 concludes the piece
with some concrete geometric examples: roughly, in cases of non-positive curvature
the results of Section 3 can be used to show that the inclusion of the continuous
functions on a geometrically defined boundary into the stable Higson corona induces
an isomorphism on K-theory; a very special case of such a result is what we need
for the index theorem of [16]. The connection with the coarse co-assembly map, and
thus with the strong Novikov conjecture, is pointed out at the end of the section.
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2. Definitions

Although almost everything below could be done in the context of general coarse
spaces (see [15], Chapter 4 and Appendix A), we choose to restrict ourselves to
the case of metric spaces. This is mainly to keep the piece more self-contained
and readable, but also as all the coarse spaces we are interested in are metrizable.
Throughout then, X , Y , Z denote proper metric spaces; ‘proper’ means here that
closed balls are compact. The main examples we have in mind are finitely generated
groups equipped with a word metric, and complete Riemannian manifolds.

The following definition fixes the precise frameworks we work in.

Definition 2.1. A function f W X ! Y is called a coarse map if it is proper, and if for
all R > 0 there exists S > 0 such that if dX .x; x

0/ � R then dY .f .x/; f .x
0// � S .

Two coarse maps f; g W X ! Y are called close if there exists C � 0 such that
dY .f .x/; g.x// � C for all x 2 X .

The category CC (for ‘continuous coarse’) has objects proper metric spaces and
morphisms continuous coarse maps.

The category C (for ‘coarse’) has objects proper metric spaces and morphisms
equivalence classes of coarse maps, where the equivalence relation is defined by
closeness.

Our main objects of study are taken from [4], Definitions 3.1, 3.2 and 5.4; for the
reader’s convenience, we repeat these definitions below.

Definition 2.2. Let A be a normed vector space and f W X ! A be a bounded map.
Then for any R > 0 the variation of f at scale R, a function rRf W X ! RC, is
defined by

.rRf /.x/ ´ supfkf .x/ � f .y/kA j d.x; y/ � Rg:
The map f is said to be of vanishing variation if for all R > 0, rRf tends to zero
at infinity.

Let now K D K.H / denote a copy of the compact operators on a separable
infinite dimensional Hilbert space. The stable Higson compactification of X is the
C�-algebra

Nc.X/ ´ ff W X ! K j f is continuous, bounded and of vanishing variationg:

Note that it contains the C�-algebra C0.X;K/ of continuous functions from X to
K that vanish at infinity as an ideal. Emerson and Meyer define the stable Higson
corona of X to be the C�-algebra

c.X/ ´ Nc.X/
C0.X;K/

:
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Let now B D B.H / denote a copy of the C�-algebra of bounded operators
on a separable infinite dimensional Hilbert space H . The reduced stable Higson
compactification is defined to be the C�-algebra

Ncred.X/ ´ ff W X ! B jf is continuous, bounded, of vanishing variation

and satisfies f .x/ � f .y/ 2 K for all x; y 2 Xg:
The reduced stable Higson corona is defined to be the quotient

cred.X/ ´ Ncred.X/

C0.X;K/
:

The following collects together [4], Proposition 3.7, Lemma 3.10 and Proposi-
tion 5.5, all of which we will need.

Proposition 2.3. (1) The assignments X 7! Nc.X/ and X 7! Ncred.X/ give rise to
contravariant functors from the category CC to the category of C�-algebras and
�-homomorphisms; the assignments X 7! c.X/ and X 7! cred.X/ give rise to
contravariant functors from the category C to the category of C�-algebras and
�-homomorphisms.

(2) IfX is noncompact, then the inclusionsK ! Nc.X/; c.X/as constant functions
induce injections on K-theory. Moreover, in this case the natural inclusions Nc.X/ !
Ncred.X/; c.X/ ! cred.X/ induce isomorphisms

K�.Ncred.X// Š K�.Nc.X//
K�.K/

and K�.cred.X// Š K�.c.X//
K�.K/

Remarks 2.4. (1) In the references cited above Emerson and Meyer show functorial-
ity ofX 7! c.X/; cred.X/ only for closeness classes of Borel coarse maps. However,
it follows from our assumptions that any coarse map can be assumed Borel up to
closeness (see [15], Remark A.6), so we do get functoriality on the category C ; this
minor point makes the details of the arguments in Section 4 slightly easier.

(2) In the case that X is compact (equivalently, bounded), part (2) above fails.
Indeed, in this case c.X/ D 0 while cred.X/ is isomorphic to the Calkin algebra; we
will use this in Example 3.8 below.

(3) Emerson and Meyer also define a version of the stable Higson corona with
coefficients in another C�-algebra. To keep notation uncluttered we will not discuss
this explicitly, but it is not hard to see that all of our proofs carry over without change
to this more general case.

3. Homological properties of the stable Higson corona

For brevity, we restrict attention in the main part of this section to the reduced corona
functor from Definition 2.2; some additional results for Ncred.X/ are included at the
end of the section.
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From now on, if � W X ! Y is a coarse map, then we denote by

�] W cred.Y / ! cred.X/ and �� W K�.cred.Y // ! K�.cred.X//

its image under the functors cred. � / and K�.cred. � // respectively. We use the same
notation for the images of continuous coarse maps under the reduced stable Higson
compactification functor and its composition with the K-theory functor, as well as
the unreduced versions of all these functors.

As a first step we establish a Mayer–Vietoris type sequence for the functor X 7!
K�.cred.X//; Emerson and Meyer point out that something like this exists ([4], Re-
mark 5.7) but do not develop it any further. For a decomposition X D A[B to give
rise to such a sequence, it must satisfy some notion of excision appropriate to the
coarse category; that used below is taken from [11], Definition 1.1.

Definition 3.1. For any subspace Y of X and R > 0 define

N.Y;R/ D fx 2 X j d.x; y/ < R for some y 2 Y g:

Let X D A [ B be a decomposition of X into closed subspaces. It is called
coarsely excisive if for all R > 0 there exists S > 0 such that

N.A;R/ \N.B;R/ � N.A \ B; S/:

Example 3.2. R D .�1; 0� [ Œ0;1/ is a coarsely excisive decomposition, but

X WD f.x; y/ 2 Œ��=2; �=2� � RC j y D jtan.x/jg
D f.x; y/ 2 X j x � 0g [ f.x; y/ 2 X j x � 0g

(equipped with the subspace metric from R2) is not.

The next lemma is closely related to [11], Proposition 2.1.

Lemma 3.3. Let X D A [ B be a decomposition of X into closed subspaces. Let
iA W A ! X , iB W B ! X , jA W A \ B ! A, jB W A \ B ! B be the associated
inclusion maps.

Then ifX D A[B is coarsely excisive there is a pullback diagram of C�-algebras

cred.X/
i
]
A ��

i
]
B

��

cred.A/

j
]

A
��

cred.B/
j

]
B �� cred.A \ B/.

(1)
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Proof. Pullbacks always exist in the category of C�-algebras and �-homomorphisms:
the pullback P over the diagram

P ��

��

cred.A/

j
]

A
��

cred.B/
j

]
B �� cred.A \ B/

can be concretely constructed as

P D f.a; b/ 2 cred.A/˚ cred.B/ j j ]
A.a/ D j

]
B.b/g;

equipped with the obvious projection maps to cred.A/ and cred.B/.
If Y is a proper metric space, denote the image of f 2 Ncred.Y / under the quotient

map to cred.Y / by Œf �. To show the existence of the diagram (1) above it suffices to
prove that the map cred.X/ ! P defined by

Œf � 7! .Œf jA�; Œf jB �/ (2)

is an isomorphism of C�-algebras. It is not hard to check that it is a well-defined,
injective �-homomorphism. Surjectivity is shown below.

Say then that .ŒgA�; ŒgB �/ is an element of P . It follows from the definition of P
that there exists h 2 C0.A\B;K/ such that gA �gB D h on A\B . Surjectivity of
the restriction map C0.B;K/ ! C0.A\B;K/ implies that h extends to an element
of C0.B;K/, which we also denote h. Define a function f W X ! K by

f .x/ D
´
gA.x/; x 2 A;
gB.x/C h.x/; x 2 B:

This is well defined as gA.x/ D gB.x/ C h.x/ on A \ B . If f is in Ncred.X/, then
Œf � 2 cred.X/ maps to .ŒgA�; ŒgB �/ under the �-homomorphism in line (2) above.
The function f is continuous and bounded as gA and gB C h are, and as they agree
on the closed subset of X where both are defined. Moreover, assuming A and B
are non-empty (indeed, if one is empty the lemma is trivial), the coarse excisiveness
condition forces A \ B to be non-empty, whence f .x/ � f .y/ is compact for all
x; y 2 X . It thus suffices to show that f is of vanishing variation.

To this end, let R; " > 0. Then there exists S � R such that

N.A;R/ \N.B;R/ � N.A \ B; S/:
Moreover, by vanishing variation of gA on A and gB C h on B , there exist compact
subsets KA � A, KB � B such that for all a 2 AnKA (resp. b 2 BnKB )

j.rSgA/.a/j < " (resp. j.rS .gB C h//.b/j < "/:
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Adopting the convention that if one of .rSf /.x/, .rSg/.x/ does not make sense
then we just set it zero, it follows that for all x 2 Xn.KA [KB/,

j.rRf /.x/j � maxfj.rSgA/.x/j; j.rS .gB C h//.x/jg < ":
This shows that f has vanishing variation, completing the proof.

The second ingredient needed to establish a Mayer–Vietoris sequence is surjec-
tivity of the restriction maps j ]

A and j ]
B .

Lemma 3.4. Let A � X a closed subspace. Then the restriction �-homomorphism

Ncred.X/ ! Ncred.A/

is surjective.

Unfortunately the proof given below is a little technical; see [3], Theorem 1.4, for
a simpler proof in the ‘classical’ case of complex-valued functions.

Proof. Let f 2 Ncred.A/ and " > 0. As �-homomorphisms have closed image, it
suffices to prove that there exists Qf 2 Ncred.X/ such that k Qf .a/� f .a/kB.H/ < " for
all a 2 A.

Fix a basepoint a0 2 A and let

v W A ! RC [ f1g
be any function that is non-decreasing with respect to distance from a0, tends to
infinity at infinity in A, and is such that

� v.a/ � supfR > 0 j .rRf /.a/ < "g for all a 2 A;

� .rv.a/f /.a/ ! 0 as a ! 1.

Such a v exists by continuity and vanishing variation of f . Further, for each a 2 A,
let

Ua D BX .a;
p
v.a//;

the open ball inX about a of radius
p
v.a/. Let � W RC ! RC be any non-decreasing,

subadditive function such that �.0/ D 0, �.t/ > 0 for all t > 0, �.t/ ! 1 as t ! 1
and such that

d.x;A/ � �.d.x; a0// implies x 2 S
a2A

Ua

for all x 2 X . One may then define

F D fx 2 X j d.x;A/ � �.d.x; a0//g;
a closed subset of X containing A and covered by fUaga2A. Let f�igi2I be a locally
finite continuous partition of unity on F subordinate to fUag. For each i 2 I , let
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ai 2 A be such that �i is supported in Uai
. Using Tietze’s extension theorem, extend

each �i to a Œ0; 1�-valued function defined on all of X and supported in Uai
. Finally,

define a function

 W X ! RC; x 7! max
²
�.d.x; a0// � d.x;A/

�.d.x; a0//
; 0

³
;

(which is supported in F , and equal to one on A) and define

Qf W X ! C; x 7!  .x/
P
i2I

�i .x/f .ai /:

The choice of the cover fUag guarantees that kf .a/� Qf .a/k < " for all a 2 A, and
moreover that Qf is bounded, continuous, supported in F and satisfies f .x/�f .y/ 2
K for all x; y 2 X . To finish the proof of the lemma it thus suffices to prove that Qf
is of vanishing variation.

To this end, say x; y 2 X satisfy d.x; y/ � R for some R > 0. Then

k Qf .x/ � Qf .y/k
� j .x/j�� P

i2I

.�i .x/ � �i .y//f .ai /
�� C j. .x/ �  .y//j�� P

i2I

�i .y/f .ai /
��

� j .x/j�� P
i2I

.�i .x/ � �i .y//f .ai /
�� C j .x/ �  .y/jkf kNcred.A/:

Assume without loss of generality that  .x/;  .y/ do not both vanish.

Case 1: Exactly one of  .x/;  .y/ is zero.
Without loss of generality, assume that  .x/ vanishes. Then the above becomes

k Qf .x/ � Qf .y/k � j .y/jkf k
D

�
�.d.y; a0// � d.y;A/

�.d.y; a0//

�
kf k

�
�
�.d.x; a0//C �.R/ � d.x;A/CR

�.d.y; a0//

�
kf k

using subadditivity of �. By assumption that  .x/ D 0, this in turn is bounded by�
�.R/CR

�.d.y; a0//

�
kf k;

which gets arbitrarily small as long as y gets far from a0.

Case 2: Both of  .x/;  .y/ are non-zero.
Using a similar argument to that in case 1, j .x/� .y/j can be made arbitrarily

small by assuming that x; y are suitably far from a0. It thus remains to show that the
term

j .x/j�� P
i2I

.�i .x/ � �i .y//f .ai /
�� � �� P

i2I

.�i .x/ � �i .y//f .ai /
��
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can be made arbitrarily small by assuming x and y are suitably far from a0. Now,
by assumption that  .x/ ¤ 0 ¤  .y/, it follows that x; y 2 F , whence there exist
ax; ay 2 A such that d.ax; x/ � p

v.ax/ and d.ay ; y/ � p
v.ay/. Moreover, as

v.a/ ! 1 as a ! 1 in A, if x; y 2 X are suitably far from a0, then if i 2 I

satisfies either �i .x/ ¤ 0 or �i .y/ ¤ 0, then d.ai ; ax/ � v.ax/. Finally, then, by
assumption that .rv.a/f /.a/ ! 0 as a ! 1,�� P

i2I

.�i .x/��i .y//f .ai /
�� � ��f .ax/�P

i2I

�i .x/f .ai /
��C��f .ax/�P

i2I

�i .y/f .ai /
��

can be made arbitrarily small for ax suitably far from a0 (which in turn can be forced
by stipulating that x, y are suitably far from a0). This completes the proof.

The existence of Mayer–Vietoris sequences as set out below follows from the two
preceding lemmas.

Proposition 3.5. Let X D A [ B be a coarsely excisive decomposition and iA, iB ,
jA, jB be as in Lemma 3.3.

Then there exists a Mayer–Vietoris sequence

! Ki .c
red.X//

i�

A
˚i�

B����! Ki .c
red.A//˚Ki .c

red.B//
j �

A
�j �

B����! Ki .c
red.A \ B// ! :

It is moreover natural for morphisms of excisive decompositions in the category C in
the obvious sense.

Proof. This is a special case of the general notion of Mayer–Vietoris sequence asso-
ciated to a pullback diagram of C�-algebras (see for example [1], 21.3.2) such that
the right-hand and bottom maps are surjective. The naturalness follows from natural-
ness for this general Mayer–Vietoris sequence with respect to morphisms of pullback
diagrams.

This result seems to be of interest in itself; in what follows, however, we will only
use a very special case of it as a crutch to Proposition 3.10.

The second ingredient needed for this proposition is a vanishing theorem for
coarsely flasque spaces (cf. [10], Lemma 6.4.2). These are defined below.

Definition 3.6. X is coarsely flasque if there exists a continuous coarse map � W X !
X such that:

� � is close to the identity in the sense of Definition 2.1;

� for any compact subset K � X there exists NK 2 N such that �n.x/ 62 K for
all n � NK and x 2 X ;

� for allR > 0 there exists S > 0 such that d.�n.x/; �n.y// � S for all x; y 2 X
with d.x; y/ � R and n 2 N.
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The prototypes of coarsely flasque spaces are those of the form X D Y � N
equipped with some natural product metric and with � defined by � W .y; n/ 7!
.y; nC 1/. The examples we will actually use (in the proof of Proposition 3.10) are
only slightly more complicated than this.

The following now gives a vanishing result for the K-theory of the corona func-
tor. The proof is an Eilenberg swindle; as it is essentially the same as that of [4],
Theorem 5.2, we only give a brief sketch.

Proposition 3.7. Let X be a coarsely flasque space. Then

K�.cred.X// D 0:

Sketch of proof. Concretely realize cred.X/ as maps into some B.H /. Choose a
decomposition H D L

n2N Hn of H into countably many infinite-dimensional sub-
spaces and unitary isomorphisms Vn W H ! Hn. Define moreover conjugating maps

�n W T 7! VnT V
�

n

and (provisionally) define a �-homomorphism from Ncred.X/ to itself via the formula

.�f /.x/ D L
n2N

�n.f B �n.x//:

One needs to check that this is well defined and descends to a �-homomor-
phism from cred.X/ to itself. Having done so, � passes to an endomorphism �� of
K�.cred.X//. Note finally that if x is any class in K�.cred.X// then ��.x/ D
x C ��.x/, whence x D 0 as required.

Example 3.8. We now have enough information to compute K-theory groups in the
case of Rn. Indeed, using Remark 2.4, part (2), one has that

Ki .c
red.point// D

´
Z; i D 1;

0; i D 0:

Using this, and an application of the Mayer–Vietoris sequence from Proposition 3.5
to the coarsely excisive decomposition R D .�1; 0�[ Œ0;1/ from Example 3.2, and
using also Proposition 3.7 to show that K�.cred..�1; 0�// D K�.cred.Œ0;1/// D 0,
one gets that

Ki .c
red.R// D

´
Z; i D 0;

0; i D 1:

The general case now follows from the coarsely excisive decomposition Rn D Rn�1�
.�1; 0�[Rn�1 � Œ0;1/, induction and Propositions 3.7 and 3.5 again; one sees that

Ki .c
red.Rn// D

´
Z; i D nC 1 mod 2;

0; i D n mod 2:
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See for example [10], Theorem 6.4.10, for the corresponding computation in the case
of the Roe algebra.

The results we have so far can now be put together to yield a homotopy invariance
result; the notion of homotopy we use is almost the same as that from [7], Section 11.

Definition 3.9. Let �0; �1 W X ! Y be morphisms in the category C . They are said
to be elementarily coarsely homotopic if there exists a map H W X � N ! Y and a
coarse map X ! N denoted x 7! nx such that:

� H.x; 0/ D �0.x/ for all x 2 X ;

� for all x 2 X and all n � nx , H.x; n/ D �1.x/;

� if Z ´ f.x; n/ 2 X � N j n � nxg is equipped with the restriction of the
metric d..x; n/; .y;m// ´ dX .x; y/C jn�mj from X � N, thenH restricted
to Z is a coarse map.

Such an H is called an elementary coarse homotopy between �0 and �1.
Coarse homotopy is then the equivalence relation on morphisms in C generated

by elementary coarse homotopy.

As an example, note that while the Euclidean and hyperbolic planes are not iso-
morphic in the category C , they are ‘coarse homotopy equivalent’: the inverse of
the exponential map, which goes from the manifold to its tangent space at a fixed
basepoint, is a coarse homotopy equivalence.

The proof of the following theorem is precisely the same as that of [10], Proposi-
tion 12.4.12; indeed, one can interpret that theorem as showing that any functor from
C to abelian groups with Mayer–Vietoris sequences and that vanishes on flasque
spaces is coarse homotopy invariant. For the reader’s convenience we give a brief
sketch.

Proposition 3.10. Let �0; �1 W X ! Y be morphisms in the category C that are
coarsely homotopic. Then the induced maps

��
0 ; �

�
1 W K�.cred.Y // ! K�.cred.X//

are the same.

Sketch of proof. It suffices to show the result when �0; �1 are elementarily coarsely
homotopic. Let H W X � N ! Y be an elementary coarse homotopy between them,
which we extend to all of X � Z by defining H.x; n/ D H.x; 0/ for n < 0. Let

Z ´ f.x; n/ 2 X � Z j x 2 X; 0 � n � nxg
be as in the definition of elementary coarse homotopy and define inclusion maps
i0; i1 W X ! Z by

i0.x/ D .x; 0/ and i1.x/ D .x; nx/I
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i0 is clearly coarse, while i1 is coarse by definition of an elementary coarse homotopy.
Note also that H is coarse when restricted to Z, and that

H B ij D �j for j D 0; 1I (3)

it thus suffices to show that the maps

i�0 ; i�1 W K�.cred.X/ ! K�.cred.Z//

are in fact equal.
Let � be the coordinate projection fromX � Z toX . Let A D f.x; n/ 2 X � Z j

n � 0g, A0 D f.x; n/ 2 X � Z j n � nxg and B D f.x; n/ 2 X � Z j n � 0g.
Then both of the decompositionsX � Z D A[B andX � Z D A0 [B are coarsely
excisive; a commutative diagram of the associated Mayer–Vietoris sequences together
with coarse flasqueness ofA,A0,B then shows that i�0 W K�.cred.Z// ! K�.cred.X//

is an isomorphism.
As �� is a one-sided inverse to both i�0 and i�1 , it now follows that all three of these

maps are isomorphisms, and moreover that i�0 ; i�1 are both equal to .��/�1.

For the last two results of this section, we return to the stable Higson compacti-
fication. Firstly, define a notion of continuous coarse homotopy by forcing all maps
in Definition 3.9 to be continuous, and replacing N with RC. Using essentially the
same ingredients as in Proposition 3.10 (see [15], Chapter 4, for details), we then
have the following homotopy invariance result.

Proposition 3.11. Let �0; �1 W X ! Y be morphisms in the category CC that are
continuously coarsely homotopic. Then the induced maps

��
0 ; �

�
1 W K�.Ncred.Y // ! K�.Ncred.X//

are the same.

The last result in this section is another vanishing result, closely related to [4],
Proposition 8.9.

Definition 3.12. LetX be a proper metric space. A continuous coarse map s W X ! X

is called a scaling if d.s.x/; s.y// � d.x; y/=2 for all x; y 2 X .

Proposition 3.13. Say s W X ! X is a scaling. Then the map

s� W K�.Ncred.X// ! K�.Ncred.X//

is zero.

The idea of the proof is essentially the same as that of [10], Theorem 12.4.11, so
we only give a sketch below. For details see [15], Proposition 4.3.16.
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Sketch of proof. Choose a decomposition H D L
n2N Hn, and corresponding uni-

taries Vn and conjugating maps �n as in Proposition 3.7. Define (provisionally) a
map from Ncred.X/ to itself via the formula

.�f /.x/ D L
n2N

�n.f B sn.x//I

note that � does not preserve C0.X;K/, so � does not pass to the corona cred.X/.
To show that � is well defined, we must check that for any f 2 Ncred.X/, �f is

continuous, of vanishing variation, and such that �f .x/� �f .y/ 2 K for all x; y 2
X . These all follow readily once we have observed that because f is of vanishing
variation it is uniformly continuous; hence the (global) modulus of continuity of
f B sn gets arbitrarily small as n tends to infinity.

The proof is now completed by an Eilenberg swindle just as in the case of the
proof of Proposition 3.7.

4. Some examples

In this section we will use the properties above to compute some examples. These
all rely on the following definition.

Definition 4.1. A geometric compactification ofX is a compactification xX such that
any continuous function f W xX ! C is of vanishing variation when restricted to X .

A geometric boundary of X is a corona @X ´ xXnX associated to a geometric
compactification of X .

Examples 4.2. The two most interesting examples for us both come from notions of
non-positive curvature. For background and precise definitions in both cases, see [2].

(1) Say X is a proper geodesic CAT.0/metric space. Then the visual compactifi-
cation xXv , and associated visual boundary @vX , ofX are geometric. For example,X
might be a simply connected manifold of non-positive sectional curvature, in which
case @vX is a (topological) sphere. A different example is given when X is an
affine Bruhat–Tits building, in which case @vX is homeomorphic to the Borel–Serre
boundary of X .

(2) Say X is a Gromov hyperbolic space. Then the Gromov boundary @GX is
a geometric boundary of X . The main examples of interest here are perhaps word
hyperbolic groups and simply connected manifolds of strictly negative curvature.

These examples are well known to experts in the area, so we will not give a proof
here; see [15], Lemma 4.6.2, for a proof in the CAT.0/ case, and [14], Proposition 2.3,
for a proof in the Gromov hyperbolic case.

Now, if @X is a geometric boundary of X then there is a canonical inclusion

i W C.@X/˝ K ! c.X/ (4)
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(cf. [4], Proposition 3.6). In the case of the examples in 4.2 above, we can use the
results of Section 3 to show that these maps induce isomorphisms on K-theory. In
both cases, we only sketch the proofs here; complete proofs can be found in [15],
Section 24.6 and 4.7.

Proposition 4.3. Say that X is a proper geodesic CAT.0/ metric space. Then the
inclusion

i W C.@vX/˝ K ! c.X/

from (4) above induces an isomorphism on K-theory.

Sketch of proof. Fix a basepoint x0 2 X . Then for any x 2 X , there is a unique
geodesic segment �x from x0 to x. Define by s.x/ D �x.d.x0; x/=2/ a map
s W X ! X ; it follows from the CAT.0/ inequality that s is a scaling. It is moreover
continuously coarsely homotopic to the identity via the homotopy

H W X � RC ! X; .x; t/ 7!
´
�x.d.x; x0/=2C t /; 0 � t � d.x; x0/=2;

x; t > d.x; x0/=2:

Hence by Propositions 3.11 and 3.13, the map s� W K�.Ncred.X// ! K�.Ncred.X//

induced by s is both zero and the identity. It follows from Proposition 2.3 that
K�.Ncred.X// is zero, whence K�.Nc.X// Š Z, with a generator being given by any
constant map to a rank one projection.

Finally, consider the commutative diagram

0 �� C0.X/˝ K �� Nc.X/ �� c.X/ �� 0

0 �� C0.X/˝ K �� C. xX/˝ K ��

��

C.@v/˝ K ��

i

��

0,

where the vertical maps are induced by inclusion. As the visual compactification
is contractible, the argument above shows that the central vertical map induces an
isomorphism on K-theory. Hence i induces an isomorphism on K-theory by the five
lemma.

Note that in some cases of interest, for example manifolds of non-positive cur-
vature, the proposition allows for very explicit descriptions of the generators of
K�.cred.X// in terms of Bott-type elements. The following example also helps make
the isomorphism induced by i a little more explicit in some sense.

Example 4.4. If X is as in the proposition above, one can also construct an explicit
inverse to i� using asymptotic morphisms. Indeed, fix a basepoint x0 in X , and for
each t > 0, let St denote the sphere of radius t about x0. For each t � s, there are
natural (and compatible) projections pt;s W St ! Ss such that @vX can be defined
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as the limit of the inverse system .St ; pt;s/ (see [2], II.8.5, for details). Hence in
particular for each t > 0, there is a natural inclusion map it W C.St / ! C.@vX/.

Define now
et W Nc.X/ ! C.@vX/˝ K

to be the composition of restriction toSt and (the stabilization of) it . Taking quotients
by functions vanishing at infinity on both sides, the maps et fit together to give a �-
homomorphism

˛ W c.X/ ! Cb.Œ0;1/; C.@vX/˝ K/

C0.Œ0;1/; C.@vX/˝ K/

(this is not true before passing to quotients – consider a three-regular tree), or in other
words an asymptotic morphism from c.X/ to C.@vX/˝ K .

It is not hard to see that if ˛� W K�.c.X// ! K�.C.@vX/ ˝ K/ is the map on
K-theory induced by ˛, then ˛� Bi� is the identity onK�.C.@vX/˝K/. As moreover
i� is an isomorphism, one must have that ˛� is in fact a two-sided inverse to i�; I do
not, however, know how to prove this latter fact directly. Having this explicit inverse
to i� is important for the index theorem of [16].

Proposition 4.5. Say that X is a proper quasi-geodesic Gromov hyperbolic space.
Then the inclusion

i W C.@GX/˝ K ! c.X/:

from (4) above induces an isomorphism on K-theory.

Sketch of proof. Embed the Gromov boundary @GX as a subset of the unit sphere
of some Euclidean space Rn (as @GX is compact and finite dimensional, such an
embedding always exists). Define the open cone over @GX to be

O@GX ´ ftx 2 Rn j t 2 RC; x 2 @GXg:
Note that this admits a (geometric) compactification by @GX , and essentially the same
argument as used in the proof of the previous proposition shows that the inclusion

iO W C.@GX/˝ K ! c.O@GX/

induces an isomorphism on K-theory. On the other hand, one can argue as in [9] that
there is an ‘exponential map’ exp W O@gX ! X ; roughly, points of @GX are given
as equivalence classes Œ�� of quasi-geodesic rays inX , and the map exp takes a point
t Œ�� 2 O.@GX/ to �.t/. One can then use our homotopy invariance results to show
that (a slightly altered version of) exp induces an isomorphism

exp� W K�.c.X// ! K�.c.O@GX//

(for details of this argument, again see [15], Section 4.7). We now have that the
composition

.exp�/�1 B iO� W K�.C.@GX/˝ K/ ! K�.c.X//
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is an isomorphism; a computation showing that it is equal to i� now completes the
proof.

To conclude this piece, we have the following application to the coarse co-
assembly map and strong Novikov conjecture.

Corollary 4.6. Let X be a space as in either of Propositions 4.3 or 4.5 above, and
assume moreover thatX is uniformly contractible. Then the coarse co-assembly map
for X is an isomorphism.

As a corollary, the strong Novikov conjecture holds for any torsion-free group
with finite classifying space acting properly cocompactly by isometries on a proper
geodesic CAT.0/ space, or for any torsion-free Gromov hyperbolic group.

Proof. Let X be as in the statement of the theorem, let @X denote the relevant ge-
ometric boundary (either the visual boundary, or Gromov boundary as appropriate),
and xX the associated compactification. There is then a commutative diagram

0 �� C0.X;K/ �� C. xX;K/ ��

��

C.@X;K/ ��

i

��

0

0 �� C0.X;K/ �� Nc.X/ �� c.X/ �� 0.

As the left- and right-hand vertical maps induce isomorphisms on K-theory, the central
one must too; moreover, as xX is contractible (see [15], Lemma 4.6.1), this implies
that the inclusion K ! Nc.X/ as constant functions induces an isomorphism on K-
theory. From Proposition 2.3, part 2, then, K�.Ncred.X// D 0. However, in the case
of uniformly contractible X , the coarse co-assembly is defined to be the K-theory
boundary map associated to the short exact sequence

0 ! C0.X;K/ ! Ncred.X/ ! cred.X/ ! 0

and the fact that is an isomorphism follows from the K-theory long exact sequence.
The statement for a group acting properly cocompactly by isometries on a proper

CAT.0/ space X follows from [5], Theorem 5, the fact that a group satisfying the
hypotheses given is coarsely equivalent to the space X , the fact that the coarse co-
assembly map is invariant under coarse equivalences, and the fact that a contractible
space admitting a cocompact group action is automatically uniformly contractible.
The statement for a Gromov hyperbolic group � follows by letting X be its Rips
complex Pd .�/ for some d suitably large (see [6], Chapter 4, and the same argument
as in the CAT.0/ case.
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