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Idempotent states on compact quantum groups and their
classification on Uq.2/, SUq.2/, and SOq.3/

Uwe Franz�, Adam Skalski, and Reiji Tomatsu

Abstract. Unlike for locally compact groups, idempotent states on locally compact quantum
groups do not necessarily arise as Haar states of compact quantum subgroups. We give a simple
characterisation of those idempotent states on compact quantum groups that do arise as Haar
states on quantum subgroups. We also show that all idempotent states on the quantum groups
Uq.2/, SUq.2/, and SOq.3/ (q 2 .�1; 0/[ .0; 1�) arise in this manner and list the idempotent
states on the compact quantum semigroups U0.2/, SU0.2/, and SO0.3/. In the Appendix we
provide a short new proof of the coamenability of deformations of classical compact Lie groups
based on their representation theory.
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1. Introduction

It is well known that if X is a locally compact topological semigroup, then the
space of regular probability measures on X possesses a natural convolution product.
Analogously, if A is the algebra of continuous functions on a compact quantum
semigroup, i.e., a unital C�-algebra together with a coproduct (i.e., coassociative
unital �-homomorphism)� W A ! A ˝A, then one can consider a natural associative
convolution product on the state space of A,

� ? � D .�˝ �/ B�; �;� 2 S.A/:
It is natural to ask whether one can characterise the states that satisfy the idempotent
property

� ? � D �:

A particular and most important example of an idempotent state is the Haar state on
a given compact quantum group in the sense of Woronowicz [Wor98]. More general
idempotent states arise naturally in considerations of Cesàro limits of convolution

�The first author was supported by a Marie Curie Outgoing International Fellowship of the EU (Contract
Q-MALL MOIF-CT-2006-022137) and ANR Project (Number 2011 BS01 008 01).



222 U. Franz, A. Skalski, and R. Tomatsu

operators on the algebras of functions on compact quantum groups, cf. [FS08a].
They are also an important ingredient in the construction of quantum hypergroups
[CV99] and occur as initial value '0 of convolution semigroups .'t /t�0 of states on
quantum groups if one relaxes the initial condition '0 D ", cf. [FSc00]. In the finite-
dimensional case idempotent states are in one-to-one correspondence with quantum
pre-subgroups studied in [BBS99]. They may also be used in the study of Hopf
images of representations of the algebras of functions on compact quantum groups
introduced in [BB10].

For classical compact groups, Kawada and Itô proved that all idempotent measures
are induced by Haar measures of compact subgroups, see [KI40], Theorem 3. Later
this result was extended to arbitrary locally compact topological groups, see [Hey77]
and references therein. In [Pal96] Pal showed that this characterisation does not
extend to quantum groups by giving an example of an idempotent state on the Kac–
Paljutkin quantum group that cannot arise as the Haar state on a quantum subgroup.
In [FS09a] the first two authors began a systematic study of idempotent states on
compact quantum groups, later continued in [FS09b]. In particular we exhibited
further examples of idempotent states on quantum groups that are not induced by
Haar states of quantum subgroups. Such examples are actually quite frequent and
may be thought of as the dual manifestation of the existence of non-normal subgroups.
We also gave a characterisation of idempotent states on finite quantum groups in terms
of quantum sub-hypergroups and established a one-to-one correspondence between
idempotent states and quantum pre-subgroups of [BBS99].

In this work we continue the analysis started in [FS09a] and show a simple and
easily verifiable characterisation of those idempotent states that arise as Haar states on
quantum subgroups, so-called Haar idempotents. This, as in the finite-dimensional
case, leads to natural examples of Haar idempotents on group C�-algebras of amenable
discrete groups having non-normal subgroups. The second main result of the present
paper is the classification of all idempotent states on the compact quantum groups
Uq.2/, SUq.2/, and SOq.3/ for q 2 .�1; 1� n f0g. Surprisingly, it turns out that they
are all induced by quantum subgroups, cf. Theorems 4.7, 5.1, and 5.2. As a byproduct
we obtain the classification of quantum subgroups of the afore-mentioned quantum
groups. In the case of SUq.2/ and SOq.3/ these have been known due to the work
of Podleś [Pod95], but our approach provides a different proof.

For the value q D 0, the quantum cancellation properties fail and U0.2/, SU0.2/,
and SO0.3/ are no longer compact quantum groups. But they can still be considered
as compact quantum semigroups so that, as explained above, their state spaces have
natural convolution products. Using this we determine all idempotent states on U0.2/,
SU0.2/, and SO0.3/, see Theorems 6.3 and 6.5 and 6.6. It turns out that in spite of
the fact that the underlying C�-algebras are isomorphic for all q 2 .�1; 1/, in the
case q D 0 there exist additional families of idempotent states which do not appear
when q 6D 0. Interestingly, for q D �1 the Kac algebra U�1.2/ admits non-Haar
idempotent states. The full classification is however in this case more complicated
and requires different techniques, and we refer to future work [FST11].
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The detailed plan of the paper is as follows. In Section 2 we list the background
results and definitions we need in the rest of the paper. In particular we recall the
definitions of the quantum groups being the subject of the paper, discuss their repre-
sentation theory and present explicit formulas for their Haar states. Although most of
the facts presented in this section are well known, the details of the respective repre-
sentation theories are somewhat scattered through literature (and in the case of Uq.2/

even not fully recorded), so we decided to describe them here in detail to facilitate a
coherent use of terminology and notation in the remainder of the paper.

Section 3 introduces idempotent states on compact quantum groups, provides
the characterisation of those idempotent states that arise as Haar states on quantum
subgroups (extending the results for finite quantum groups given in [FS09a]) and
briefly discusses the cocommutative situation under the coamenability assumption.

Section 4 contains main technical arguments of the paper and ends with the char-
acterisation of all idempotent states on Uq.2/ for q 2 .�1; 1� n f0g.

In Section 5 we show how one can deduce the corresponding statements for
SUq.2/ and SOq.3/. In view of Theorem 4.1 of [FS09b] this allows us immediately
to conclude which of the coidalgebras of C.SUq.2// studied by the third named
author in [Tom08] are expected, i.e., are images of a Haar state preserving conditional
expectation (we refer to both of these papers for precise terminology).

Section 6 contains the classification of the idempotent states on compact quantum
semigroups U0.2/, SU0.2/, and SO0.3/.

Finally in Section 7, we use the result of [FS09a] showing that idempotent states on
compact quantum groups are group-like projections in the dual quantum group, giving
rise to algebraic quantum hypergroups by the construction presented in [LVD07],
and discuss the quantum hypergroups associated to these group-like projections for
the case of SUq.2/. The Appendix contains a new short proof of coamenability
of deformations of classical compact Lie groups based on the representation theory
developed in [KS98].

2. Notation and preliminaries

The symbol ˝ will denote the spatial tensor product of C�-algebras, ˇ will be reserved
for the purely algebraic tensor product. We write N0 or ZC for N [ f0g.

2.1. Compact quantum groups. The notion of compact quantum groups has been
introduced in [Wor87a]. Here we adopt a rewording of Definition 2.1 in [Wor98].

Definition 2.1. A C�-bialgebra (the algebra of continuous functions on a compact
quantum semigroup) is a pair .A; �/, where A is a unital C�-algebra,� W A ! A ˝ A
is a unital, �-homomorphic map which is coassociative

.�˝ idA/ B� D .idA ˝�/ B�:
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If the quantum cancellation properties

Lin..1˝ A/�.A// D Lin..A ˝ 1/�.A// D A ˝ A;

are satisfied, then the pair .A; �/ is called the algebra of continuous functions on a
compact quantum group.

In quantum group theory it is quite common to write A D C.G/, where G
denotes the underlying compact quantum group; note however that the symbol G is
only defined indirectly.

The map � is called the coproduct of A, it induces the convolution product

� ? � ´ .�˝ �/ B�; �;� 2 A�:

If G is a compact quantum group, then a unitaryU 2 Mn.C.G// is called a finite-
dimensional unitary representation of G if for all i; j D 1; : : : ; nwe have�.Uij / DPn

kD1 Uik ˝ Ukj . It is said to be irreducible if the only matrices T 2 Mn.C/ with
T U D UT are multiples of the identity matrix.

Possibly the most important feature of compact quantum groups is the existence of
the dense �-subalgebra A � C.G/ (the algebra of matrix coefficients of irreducible
unitary representations of G), which is in fact a Hopf �-algebra, for example� W A !
A ˇ A. This �-Hopf algebra is also denoted by A D Pol.G/, and treated as the
analog of polynomial functions of G.

Another fact of crucial importance is given by the following result, Theorem 2.3
of [Wor98].

Theorem 2.2. Let G be a compact quantum group and let A D C.G/. There exists
a unique state h 2 A� (called the Haar state of G) such that

.h˝ idA/ B�.a/ D .idA ˝ h/ B�.a/ D h.a/ 1

for all a 2 A.

The algebra C.G/ is said to be in reduced form if the Haar state h is faithful.
If this is not the case, pass to the quotient by the kernel of h. This procedure in
particular does not influence the underlying Hopf �-algebra A; in fact the reduced
object may be viewed as the natural completion of A in the GNS representation with
respect to h (as opposed for example to the universal completion of A, for details
see [BMT01]). In general the reduced and universal object need not coincide. This
leads to certain technical complications which are not of essential importance in
our context (for example, if a discrete group � is not amenable, the reduced C�-
algebra of � is a proper quantum subgroup of the universal C�-algebra of � , even
though they have ‘identical’ Haar states). To avoid such difficulties we focus on
the class of coamenable compact quantum groups ([BMT01], see the Appendix to
this paper for more information), for which the reduced and universal C�-algebraic
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completions of A are naturally isomorphic. All deformations of classical compact
Lie groups, in particular the quantum groups Uq.2/, SUq.2/ and SOq.3/we consider
in Sections 4 and 5, are known to be coamenable ([Ban99]). Banica’s proof is based
on the fusion rules appearing in the quantum group-theoretic representation theory;
in the Appendix we give an alternative proof based on the C�-algebraic representation
theory developed in [KS98].

The following definition was introduced by Podleś in the context of compact
matrix pseudogroups (Definition 1.3 of [Pod95]).

Definition 2.3. A compact quantum group G0 is said to be a quantum subgroup
of a compact quantum group G if there exists a surjective compact quantum group
morphism j W C.G/ ! C.G0/, i.e., a surjective unital �-homomorphism j W C.G/ !
C.G0/ such that

�C.G0/ B j D .j ˝ j / B�C.G/:

Strictly speaking, one should consider the pairs .G0; j / since C.G/ can contain
several copies of C.G0/ with different morphisms (in the same way as a classical
group can have different but isomorphic subgroups). We will not distinguish between
.G1; j1/ and .G2; j2/ if there exists an isomorphism of quantum groups‚ W C.G1/ !
C.G2/ such that ‚ B j1 D j2. Note that such isomorphic pairs induce the same
idempotent state � D hG1

B j1 D hG2
B j2, since uniqueness of the Haar states

implies hG1
D hG2

B‚.
Any coamenable compact quantum group contains itself and the trivial compact

quantum group feg as quantum subgroups; further these two quantum subgroups will
be called trivial. If G is a compact group and a compact quantum group G contains
G as a quantum subgroup, via a morphism j W C.G/ ! C.G/, we will simply say
that G is a subgroup of G.

Definition 2.4. A quantum subgroup .G0; j / of a compact quantum group G is called
normal if the images of the conditional expectations

EG=G0 D .id ˝ .hG0 B j // B�;
EG0nG D ..hG0 B j /˝ id/ B�;

coincide, cf. [Wan08], Proposition 2.1 and Definition 2.2. In this case the quotient
C.G=G0/ ´ EG=G0.C.G// has a natural structure of the algebra of continuous
functions on a compact quantum group.

2.2. q-numbers. Let q 6D 1. We will use the following notation for q-numbers,

.xI q/n D .1 � x/.1 � qx/ : : : .1 � qn�1x/;�
n

k

�
q

D .qI q/n
.qI q/k.qI q/n�k

;

for n 2 ZC, 0 � k � n, x 2 R.
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2.3. The Woronowicz quantum group SUq.2/ [Wor87a], [Wor87b]. For q 2 R,
we denote by Pol.SUq.2// the �-bialgebra generated by ˛ and � , with the relations

˛� D q�˛; ˛�� D q��˛; ��� D ���;
��� C ˛�˛ D 1; ˛˛� � ˛�˛ D .1 � q2/���;

and comultiplication and counit defined by setting

�.˛/ D ˛ ˝ ˛ � q�� ˝ �; �.�/ D � ˝ ˛ C ˛� ˝ �;

and ".˛/ D 1, ".�/ D 0. For q 6D 0, Pol.SUq.2// admits an antipode. On the
generators, it acts as

S.˛/ D ˛� and S.�/ D �q�:

Denote by C.SUq.2// the universal enveloping C�-algebra of Pol.SUq.2//.
Then � extends uniquely to a non-degenerate coassociative homomorphism
� W C.SUq.2// ! C.SUq.2// ˝ C.SUq.2//, and the pair .C.SUq.2//;�/ is a
C�-bialgebra. For q 6D 0, SUq.2/ is even a compact quantum group.

Observe that the mapping ˛ 7! ˛� and � 7! q�� induces isomorphisms
Pol.SU1=q.2// ! Pol.SUq.2//, C.SU1=q.2// ! C.SUq.2//. Therefore it is suffi-
cient to consider q 2 Œ�1; 1�.

2.3.1. Representation theory of C.SUq.2// [Wor87b], [VS88]. The C�-algebra
C.SUq.2// has two families of irreducible representations. The first family consists
of the one-dimensional representations 	� , 0 � 
 < 2� , given by

	� .˛/ D ei� ; 	� .�/ D 0:

The other family consists of infinite-dimensional representations�� , 0 � 
 < 2� ,
acting on a separable Hilbert space h by

�� .˛/en D
´p

1 � q2n en�1 if n > 0;

0 if n D 0;

�� .�/en D ei�qnen;

where fen j n 2 N0g is an orthonormal basis for h.
This list is complete, i.e., any irreducible representation ofC.SUq.2// is unitarily

equivalent to a representation in one of the two families above (Theorem 3.2 of
[VS88]). It is known that the C�-algebra C.SUq.2// is of type I, therefore any
representation can be written as a direct integral over the irreducible representations
given above.
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2.3.2. Quantum subgroups of SUq.2/. Let Pol.U.1// denote the �-algebra gen-
erated by one unitary w, ww� D w�w D 1. With �.w/ D w ˝ w, ".w/ D 1,
S.w/ D w�, this becomes a �-Hopf algebra. Its enveloping C�-algebra C.U.1// is
the algebra of continuous functions on a compact group U.1/. Note that the �-algebra
homomorphism Pol.SUq.2// ! Pol.U.1// defined by ˛ 7! w, � 7! 0 extends to a
surjective compact quantum group morphism j W C.SUq.2// ! C.U.1//, i.e., U.1/
is a quantum subgroup of SUq.2/. Furthermore, Podleś ([Pod95], Theorem 2.1)
showed that, for q 2 .�1; 0/ [ .0; 1/, U.1/ and its closed subgroups are the only
non-trivial quantum subgroups of SUq.2/. This will also follow from the results in
Section 4.

There exists a second morphism j 0 W C.SUq.2// ! C.U.1//, determined by
j 0 W ˛ 7! w�, � 7! 0. But we do not need to distinguish between the pairs
.C.U.1//; j / and .C.U.1//; j 0/ since they are related by the automorphism ‚ of
C.U.1// with ‚.wk/ D .w�/k , ‚..w�/k/ D wk , k 2 N0.

2.3.3. Representations of SUq.2/. Let q 2 .�1; 0/[ .0; 1/. We recall a few basic
facts about the representations of SUq.2/, for more details see [Wor87a], [Wor87b],
[VS88], [MMNC88], [Koo89]. For each non-negative half-integer s 2 1

2
ZC there

exists a .2sC1/-dimensional irreducible unitary representationu.s/ D .u
.s/

k`
/�s�k;`�s

of SUq.2/ which is unique up to unitary equivalence. Note that the indices k, ` run
over the set f�s;�s C 1; : : : ; s � 1; sg, they are integers if s 2 ZC is integer, and
half-integers if s 2 .1

2
ZC/nZC is a half-integer. This convention is used throughout

the paper.
The matrix coefficients u.s/

k`
, s 2 1

2
ZC, �s � k; ` � s, span Pol.SUq.2// and are

linearly dense in C.SUq.2//, which will be sufficient for our calculations. We have

u.0/ D .1/; u.1=2/ D
�
˛ �q��
� ˛�

�
;

u.1/ D
0@ ˛2 �qp

1C q2��˛ q2.��/2p
1C q2�˛ 1 � .1C q2/��� �qp

1C q2˛���
�2

p
1C q2˛�� .˛�/2

1A ;
and the matrix coefficients of the higher-dimensional representations are of the form

u
.s/

k`
D

8̂̂̂<̂
ˆ̂:
˛�k�`p

.s/

k`
�k�` for k C ` � 0; k � `;

˛�k�`p
.s/

k`
.��/`�k for k C ` � 0; k � `;

.˛�/kC`p
.s/

k`
�k�` for k C ` � 0; k � `;

.˛�/kC`p
.s/

k`
.��/`�k for k C ` � 0; k � `;

where p.s/

k`
is a polynomial in ��� .

In particular, for s an integer, u.s/
00 D ps.�

�� I 1; 1I q2/ is the little q-Legendre
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polynomial and u.s/
s0 D

s�
2s

s

�
q2

.˛�/s� s .

If we define a Z-grading on Pol.SUq.2// by

deg˛ D deg˛� D 0; deg � D 1; deg �� D �1;

then we have

degu.s/

k`
D k � `:

With this grading, it is straight-forward to verify the formula

S2.a/ D q2 deg aa

for the square of the antipode on homogeneous elements.

2.3.4. The Haar state of SUq.2/. As stated in Theorem 2.2, there exists a unique
invariant state h on the compact quantum group SUq.2/, called the Haar state. It was
first computed by Woronowicz in [Wor87a]; it is the identity on the one-dimensional
representation, and vanishes on the matrix coefficients of all other irreducible repre-
sentations, i.e.,

h.u
.s/

k`
/ D ı0s

for s 2 1
2
ZC, �s � k; ` � s. On polynomials p.���/ 2 CŒ����, it is equal to

Jackson’s q-integral ([Koo89]),

h.p.���// D .1 � q2/

1X
kD0

q2kp.q2k/ μ
Z 1

0

p.x/ dq2x:

2.4. The compact quantum group SOq.3/. A compact quantum group G0 is called
a quotient group of G if there exists an injective morphism of quantum groups
j W C.G0/ ! C.G/. The compact quantum group SOq.3/ can be defined as the
quotient of SUq.2/ by the quantum subgroup Z2, cf. [Pod95]. Pol.SOq.3// is the
subalgebra of Pol.SUq.2// spanned by the matrix coefficients of the unitary irre-
ducible representations of SUq.2/ with integer label, and C.SOq.3// is its norm
closure. The Haar state on SOq.3/ is simply the restriction of the Haar state on
SUq.2/.

Podleś [Pod95] showed that SOq.3/ and SO�q.3/ are isomorphic.

2.4.1. The semigroup case q D 0. We define Pol.SO0.3// to be the unital �-
subalgebra of Pol.SU0.2// generated by ˛2, �2, �˛, ��˛, and ��� , i.e.,

Pol.SO0.3// D spanf.˛�/r�k˛s; .˛�/r.��/k˛s j r; k; s 2 ZC with rCkCs eveng:
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Since

�..˛�/r�k˛s/ D
kP

�D0

.˛�/rCk����˛s ˝ .˛�/r�k��˛sC� ;

�..˛�/r.��/k˛s/ D
kP

�D0

.˛�/r.��/�˛sCk�� ˝ .˛�/rC�.��/k��˛s;

this is a sub �-Hopf algebra in Pol.SU0.2//. The C�-bialgebra C.SO0.3// is then
defined as the norm closure of Pol.SO0.3// in C.SU0.2//. Note that C�-algebras
C.SUq.2// are isomorphic for all q 2 .�1; 1/ [Wor87b], Theorem A2.2.

2.4.2. The conditional expectation E W C.SUq.2// ! C.SOq.3//. Looking at
the defining relations of SUq.2/, it is clear that # W ˛ ! �˛, � ! �� extends
to a unique �-algebra automorphism of C.SUq.2//. Therefore E D 1

2
.id C #/

defines a completely positive unital map from C.SUq.2// to itself. If �2 D hZ2
B j

denotes the idempotent state on SUq.2/ induced by the Haar measure of Z2, with
j W SUq.2/ ! C.Z2/ the corresponding surjective morphism (see Definitions 3.1
and 3.2), then we can write E also as

E D .id ˝ �2/ B�:
Checking

E.u.s/

k`
/ D

´
u

.s/

k`
if s 2 ZC;

0 else;

we can show that the range of E is equal to C.SOq.3//. Furthermore, E satisfies

� B E D .id ˝ E/ B� D .E ˝ id/ B� D .E ˝ E/ B�:

2.4.3. Quantum subgroups of SOq.3/. Here the restriction of the morphism
j W C.SUq.2// ! C.U.1// toC.SOq.3// is no longer surjective, its range is equal to
the subalgebra ff 2 C.U.1// j f .z/ D f .�z/ for all z 2 U.1/g D C.U.1/=Z2/.
Since U.1/=Z2 Š U.1/, we see that SOq.3/ contains U.1/ Š SO.2/ and its closed
subgroups as quantum subgroups. Podleś [Pod95] showed that these are the only non-
trivial quantum subgroups of SOq.3/. Again this can be deduced from the results of
Section 5.

2.5. The compact quantum group Uq.2/ [Koe91], [Wys04], [ZZ05]. Let q 2 R.
Then Pol.Uq.2// is defined as the �-bialgebra generated by a, c, and v, with the
relations

av D va; cv D vc; cc� D c�c;
ac D qca; ac� D qc�a; vv� D v�v D 1;

aa� C q2cc� D 1 D a�aC c�c;
�.a/ D a˝ a � qc�v� ˝ c; �.c/ D c ˝ aC a˝ c; �.v/ D v ˝ v;
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".a/ D ".v/ D 1; ".c/ D 0:

For q 6D 0, Pol.Uq.2// admits an antipode, given by

S.a/ D a�; S.v/ D v�; S.c/ D �qcv;
on the generators.

Denote the universal enveloping C�-algebra of Pol.Uq.2// by C.Uq.2//. Then
� W Pol.Uq.2// ! Pol.Uq.2//ˇ Pol.Uq.2// extends uniquely to a non-degenerate
coassociative homomorphism � W C.Uq.2// ! C.Uq.2//˝C.Uq.2//, and the pair
.C.Uq.2//;�/ is a C�-bialgebra. For q 6D 0, Uq.2/ is even a compact quantum
group. It is again sufficient to consider q 2 Œ�1; 1� since Uq.2/ and U1=q.2/ are
isomorphic.

2.5.1. Quantum subgroups of Uq.2/. The mapping a 7! ˛, c 7! � , v 7! 1

extends to a surjective compact quantum group morphism C.Uq.2// ! C.SUq.2//

and shows that SUq.2/ is a quantum subgroup of Uq.2/. The C�-algebraC.Uq.2// is
isomorphic to the tensor product of C.SUq.2// and C.U.1//. Moreover the compact
quantum group, Uq.2/ is equal to a twisted product of SUq.2/ and U.1/, cf. [Wys04],
written as Uq.2/ D SUq.2/ Ë� U.1/.

Another quantum subgroup of Uq.2/ is the two-dimensional torus. Denote by
Pol.T 2/ the �-Hopf algebra generated by two commuting unitaries, i.e., by w1, w2

with the relations

w1w
�
1 D 1 D w�

1w1; w2w
�
2 D 1 D w�

2w2; w1w2 D w2w1; w1w
�
2 D w�

2w1;

�.w1/ D w1 ˝ w1; �.w2/ D w2 ˝ w2; ".w1/ D ".w2/ D 1:

Then C.T 2/ is the C�-enveloping algebra of Pol.T 2/. Then the mapping a 7! w1,
c 7! 0, v 7! w2 extends to a unique surjective compact quantum group morphism
C.Uq.2// ! C.T 2/.

We will see that the twisted products SUq.2/ Ë� Zn, n 2 N, the torus T 2, and
its closed subgroups are the only non-trivial quantum subgroups of Uq.2/, cf. Corol-
lary 4.8.

2.5.2. Representations of Uq.2/. Unitary irreducible representations of Uq.2/ can
be obtained as tensor product of unitary irreducible representations of SUq.2/ with
representations of U.1/, cf. [Wys04]. In this way one obtains the following family of
unitary irreducible representations of Uq.2/,

v.s;p/ D .u
.s/

k`
vpCsC`/�s�k;`�s

for p 2 Z, s 2 1
2
ZC. The matrix coefficients of these representations clearly span

Pol.Uq.2//. Therefore they are dense in C.Uq.2// and will be sufficient for the
calculations in this paper.
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Assume that q 6D 0. We want to compute the action of the square of the antipode
on the matrix coefficients of the unitary irreducible representations defined above.
Since we have S2.a/ D a, S2.c/ D q2c, and S2.v/ D v, we get

S2.u
.s/

k`
vpCsC`/ D q2.k�`/u

.s/

k`
vpCsC` (2.1)

with p 2 Z, s 2 1
2
ZC, and �s � k; ` � s.

2.5.3. The Haar state of Uq.2/. The Haar state h on Uq.2/ can be written as a
tensor product of the Haar state on SUq.2/ and the Haar state on U.1/. It acts on the
matrix coefficients of the unitary irreducible representations given above by

h.u
.s/

k`
vpCsC`/ D ı0sı0p

for s 2 1
2
ZC, �s � k; ` � s, p 2 Z.

2.6. Multiplicative domain of a completely positive unital map. The following
result by Choi on multiplicative domains will be useful for us.

Theorem 2.5 ([Cho74], Theorem 3.1, [Pau02], Theorem 3.18). Let T W A ! B be a
completely positive unital linear map between two C�-algebras A and B . Set

DT D fa 2 A j T .aa�/ D T .a/T .a�/; T .a�a/ D T .a�/T .a/g:
Then we have

T .ab/ D T .a/T .b/ and T .ba/ D T .b/T .a/

for all a 2 DT and b 2 A.

3. Idempotent states on compact quantum groups

In this section we formally introduce the notion of idempotent states on a C�-bi-
algebra, provide a characterisation of those idempotent states on compact quantum
groups which arise as Haar states on quantum subgroups and discuss commutative
and cocommutative cases.

Definition 3.1. Let .A; �/ be a C�-bialgebra. A state � 2 A� is called an idempotent
state if

.� ˝ �/ B� D �;

i.e., if it is idempotent for the convolution product.

If A D C.G/ for a compact quantum group G, we will also simply say that � as
above is an idempotent state on G.
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Definition 3.2. A state � 2 C.G/� is called a Haar state on a quantum subgroup
of G (or a Haar idempotent) if there exists a quantum subgroup (G0; j ) of G and
� D hG0 B j , where hG0 denotes the Haar state on G0.

It is easy to check that each Haar state on a quantum subgroup of G is idempotent.
It follows from the example of Pal in [Pal96] and our work in [FS09a] that not every
idempotent state is a Haar idempotent. We have the following simple characterisation,
extending Theorem 4.5 of [FS09a].

Theorem 3.3. Let G be a compact quantum group, let � 2 C.G/� be an idempotent
state and let N� D fa 2 C.G/ W �.a�a/ D 0g denote the null space of �. Then � is
a Haar idempotent if and only if N� is a two-sided (equivalently, self-adjoint) ideal.

Proof. It is an easy consequence of the Cauchy–Schwarz inequality that N� is a left
ideal; thus it is a two-sided ideal if and only if it is self-adjoint.

Write A D C.G/. Suppose first that � is a Haar idempotent, i.e., there exists
a compact quantum group G0 and a surjective compact quantum group morphism
j W A ! C.G0/ such that � D hG0 B j . Recall that we assumed hG0 to be faithful,
so that N� D fa 2 A j j.a�a/ D 0g D fa 2 A j j.a/ D 0g, which is obviously
self-adjoint.

Suppose then that N� is a two-sided self-adjoint ideal. Let B ´ A=N� and let
�� W A ! B denote the canonical quotient map. We want to define the coproduct on
B by the formula

�B B ��.a/ D .�� ˝ ��/ B�.a/ 2 B ˝ B: (3.1)

We need to check that it is well defined: to this end we employ a slightly modified
idea from the proof of Theorem 2.1 of [BMT01]. A standard use of Cauchy–Schwarz
inequality implies that �jN�

D 0, so that there exists a faithful state  2 B� such
that  B �� D �. Faithfulness of  implies that also the map idB ˝  W B ˝ B ! B
is faithful (note that here faithfulness of a positive map T is understood in the usual
sense, namely Ta D 0 and a � 0 imply a D 0) and thus also  ˝  2 .B ˝ B/� is
faithful. Suppose then that a 2 N� . We have then

0 D �.a�a/ D .� ˝ �/ B�.a�a/ D . ˝  / B .�� ˝ ��/.�.a
�a//;

so .�� ˝��/�.a
�a/ D 0 as well. The last statement implies that .�� ˝��/�.a/ D 0

and the validity of the definition given in the formula (3.1) is established. The fact
that �B is a coassociative unital �-homomorphism follows immediately from the
analogous properties of �; similarly the cancellation properties of B follow from
obvious equalities of the type

.B ˝ 1B/�B.B/ D .�� ˝ ��/..A ˝ 1A/�.A//

and the cancellation properties of A. Thus .B; �B/ is the algebra of continuous
functions on a compact quantum group G0 and it remains to check that  defined
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above is actually the invariant state on B. This is however an immediate consequence
of the observation

. ˝  / B�B B �� D .� ˝ �/ B� D � D  B �� ;

so that  is an idempotent state and, as it is faithful, it has to coincide with the Haar
state of G0 ([Wor98]).

Note that in fact the theorem remains valid without the assumption of faithfulness
of hG0 . The proof of the ‘only if’ part remains the same, and the other implication
follows from the modular properties of Haar states on not necessarily coamenable
compact quantum groups implying that their null spaces are always self-adjoint.

The following proposition proved in [FS09a], Section 3, will be useful for the
classification of idempotent states in the next two sections.

Proposition 3.4. Let � 2 C.G/� be an idempotent state. Then � is invariant under
the antipode, in the sense that �.a/ D � B S.a/ for all a 2 Pol.G/.

Note that the states invariant under the antipode are automatically invariant under
the scaling automorphism group f�t j t 2 Rg discussed in [Wor98]. This is the
content of the next proposition.

Proposition 3.5. Let ! 2 C.G/� satisfy the condition !jPol.G/ D ! BS jPol.G/. Then

! B �t D !; t 2 R:

Proof. The assumed invariance of ! under the antipode is equivalent to the equality
! B ��i jPol.G/ D !jPol.G/. The idea of the rest of the proof is based on the use
of Woronowicz characters, as in the proof of Lemma 2.9 (2) in [Tom07]. Let v 2
B.Hv/ˇ Pol.G/ be an irreducible unitary representation of G. We have

Tv ´ .idB.Hv/ ˝ !/.v/ D .idB.Hv/ ˝ ! B ��i /.v/ D Fv.idB.Hv/ ˝ !/.v/.Fv/
�1;

where Fv D .idB.Hv/ ˝ f1/.v/ and f1 is the Woronowicz character on Pol.G/. The
last formula implies that Tv commutes with Fv . Since Fv is a (strictly) positive
operator on a finite-dimensional Hilbert space, we can consider the unitary group it
generates and deduce immediately that for each t 2 R we have F it

v Tv D TvF
it
v . But

this implies that

.idB.Hv/ ˝ !/.v/ D F it
v .idB.Hv/ ˝ !/.v/F �it

v D .idB.Hv/ ˝ ! B �t /.v/:

The fact that Pol.G/ is a linear span of the coefficients of the irreducible unitary
representations of G shows that !.a/ D !.�t .a// for each a 2 Pol.G/; density of
Pol.G/ in C.G/ ends the proof.
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Corollary 3.6. Let � 2 C.G/� be an idempotent state. Then � is preserved by the
scaling automorphism group and the conditional expectation E� ´ .�˝ idC.G//B�
associated to � commutes with the modular group of the Haar state:

E� B 
t D 
t B E� ; t 2 R:

Proof. It is an immediate consequence of the last lemma and the commutation relation
� B 
t D .
t ˝ ��t / B� (t 2 R). The fact that E� is a conditional expectation was
established in [FS09b].

3.1. Idempotent states on cocommutative compact quantum groups. Suppose
now that a compact quantum group G is cocommutative, i.e., � D � B �, where
� W C.G/ ˝ C.G/ ! C.G/ ˝ C.G/ denotes the usual tensor flip. It is easy to
deduce from the general theory of duality for quantum groups ([KV00]) that C.G/
is isomorphic to the C�-algebra of a (classical) discrete group � , which should be
thought of as the algebra of continuous functions on a quantum group dual y� . Note that
the notation C �.�/ � C.y�/, which can be considered as a definition of the compact
quantum group y� , is compatible with the usual Pontryagin duality for locally compact
abelian groups. For the reasons mentioned in the previous section, in general, we need
to distinguish between the reduced and the universal version ofC.y�/; thus we restrict
our attention to amenable � . The following generalises Theorem 6.2 of [FS09a] to
the infinite-dimensional context.

Theorem 3.7. Let � be an amenable discrete group and A D C �.�/ � C.y�/. There
is a one-to-one correspondence between idempotent states on A and subgroups of � .
An idempotent state � 2 A� is a Haar idempotent if and only if the corresponding
subgroup of � is normal.

Proof. The dual of A may be identified with the Fourier–Stieltjes algebra B.�/. The
convolution of functionals in A� then corresponds to the pointwise multiplication of
functions in B.�/, and � 2 B.�/ corresponds to a positive (respectively, unital)
functional on A if and only if it is positive definite (respectively, �.e/ D 1). This
implies that � 2 B.�/ corresponds to an idempotent state if and only if it is an
indicator function (of a certain subset S � �) which is positive definite. It is a
well-known fact that this happens if and only if S is a subgroup of � ([HR70],
Corollary (32.7) and Example (34.3 a)). It remains to prove that if S is a subgroup
of � then �S 2 B.�/ is a Haar state on a quantum subgroup of y� if and only if S is
normal. For the ‘if’ direction assume that S is a normal subgroup and consider the
C�-bialgebra B D C �.�=S/ (recall that quotients of amenable groups are amenable).
LetF.�/ denote the dense �-subalgebra of A given by the functionsf D P

�2� ˛���

(˛� 2 C, f� j ˛� ¤ 0g finite). Define j W F.�/ ! B by

j.f / D P
�2�

˛��Œ��;
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where f is as above. So defined j is bounded: note that it is a restriction of the
transpose of the map T W B� ! A� given by

T .�/.�/ D �.Œ��/; � 2 B.�=S/; � 2 �:
The map T is well defined as it maps positive definite functions into positive definite
functions; these generate the relevant Fourier–Stieltjes algebras. Further the closed
graph theorem allows to prove that T is bounded; therefore so is T � W A�� ! B��
and j D T �jF .�/. It is now easy to check that the extension of j to A is a surjective
unital �-homomorphism (onto B). Since the invariant state on B is given by

hB

� P
�2�=S

˛���

� D ˛Œe�;

there is
hB.j.f // D P

�2S

˛� ;

so that hB B j corresponds via the identification of A� and B.�/ exactly to the char-
acteristic function of S .

The other direction follows exactly as in [FS09a]; we reproduce the argument for
the sake of completeness. Suppose that S is a subgroup of � which is not normal
and let �0 2 � , s0 2 S be such that �0s0�

�1
0 … S . Denote by �S the state on A

corresponding to the indicator function of S . Define f 2 A by f D ��0s0
� ��0

.
Then

f �f D 2�e � �s�1
0

� �s0
; ff � D 2�e � ��0s�1

0
��1

0
� ��0s0��1

0
:

This implies that
�S .f

�f / D 0; �S .ff
�/ D 2;

so that ker �S is not self-adjoint and �S cannot be a Haar idempotent.

Corollary 3.8. Let G be a coamenable cocommutative compact quantum group. The
following are equivalent:

(1) all idempotent states on G are Haar idempotents;

(2) C.G/ Š C �.�/ for an amenable Dedekind (i.e., containing no non-normal
subgroups) discrete group � .

Finite Dedekind groups have been first studied by Dedekind and then charac-
terised by Baer in [Bae66]. They are also sometimes called quasi-Hamiltonian (and
Hamiltonian groups are non-abelian Dedekind groups).

Remark 3.9. If � is a discrete abelian group, then there is a one-to-one correspon-
dence between subgroups of y� (the Pontryagin dual of �) and subgroups of �: if
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N is a subgroup of � , then 1�=N is a subgroup of y� . This is part of the general
fact that the subgroup of a dual group corresponds to the dual of a quotient group.
Theorem 3.7 and its proof show that the analogous statement remains true for not
necessary abelian discrete groups � – quantum subgroups of y� are given by 1�=N ,
whereN is a normal subgroup of � (normality is needed to make �=N a group). It is
natural to ask whether one can construct the C�-algebra C �.�=S/ and equip it with
some extra algebraic structure if S is a non-normal subgroup of � . A partial answer
to this question (for finite S ) can be found in [DeVD10].

4. Idempotent states on Uq.2/ (q 2 .�1; 0/ [ .0; 1�)

For q D 1, C.Uq.2// is equal to the C�-algebra of continuous functions on the
unitary group U.2/, and by Kawada and Itô’s classical theorem all idempotent states
onC.U.2// come from Haar measures of compact subgroups of U.2/. In this section
we shall classify the idempotent states on C.Uq.2// for �1 < q < 1, q ¤ 0. It turns
out that they all correspond to Haar states of quantum subgroups of Uq.2/.

We begin with some preparatory lemmas.

Lemma 4.1. Let � W Pol.Uq.2// ! C be an idempotent state. Then we have

�.u
.s/

k`
vr/ D 0 if k 6D `;

and �.u.s/

kk
vr/ 2 f0; 1g for all s 2 1

2
ZC, r 2 Z, �s � k; ` � s.

Proof. By Proposition 3.4, we have�BS D � on Pol.Uq.2//. Therefore, by equation
(2.1),

�.u
.s/

k`
vr/ D � B S2.u

.s/

k`
vr/ D q2.k�`/�.u

.s/

k`
vr/;

i.e., �.u.s/

k`
vr/ D 0 for k 6D `.

Define the matrices Ms;p.�/ 2 M2sC1.C/ by

Ms;p.�/ D .�.u
.s/

k`
vpCsC`//�s�k;`�s:

Then � D � ? � is equivalent to

Ms;p.�/ D .Ms;p.�//
2

for all s 2 1
2
ZC, p 2 Z. Since we have already seen that these matrices are diagonal,

it follows that the diagonal entries can take only the values 0 and 1.

Lemma 4.2. If � W Pol.Uq.2// ! C is an idempotent state with �.u.1/
00 / D 1, then

there exists an idempotent state Q� W Pol.T 2/ ! C such that

� D Q� B �T 2 :
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Proof. By the previous lemma, �.c/ D �.c�/ D 0

We have u.1/
00 D 1�.1Cq2/c�c, therefore �.u.s/

00 / D 1 is equivalent to �.c�c/ D
0. Then, by Theorem 2.5, c; c� 2 D� , and � vanishes on expressions of the form uc,

cu, uc�, c�u with u 2 Pol.Uq.2//. But since vc D cv and u.s/

k`
c D q�.k�`/cu

.s/

k`
,

u
.s/

k`
c� D q�.k�`/c�u.s/

k`
for s 2 1

2
ZC, �s � k; ` � s, we can deduce that � vanishes

on the ideal
�c D fu1cu2; u1c

�u2 j u1; u2 2 Pol.Uq.2//g
generated by c and c�. It follows that we can divide out �c , i.e., there exists a unique
state Q� on Pol.Uq.2//=�c such that the diagram

Pol.Uq.2//
	 ��

�

��

Pol.Uq.2//=�c

Q�����������������

C

commutes.
But ".�c/ D 0,

�.�c/ � �c ˇ Pol.Uq.2//C Pol.Uq.2//ˇ �c ;

and S.�c/ � �c , i.e., �c is also a Hopf �-ideal and Pol.Uq.2//=�c is a �-Hopf alge-
bra. One easily verifies that Pol.Uq.2//=�c Š Pol.T 2/. Since �T 2 W Pol.Uq.2// !
Pol.T 2/ is a surjective coalgebra morphism, its dual ��

T 2 W .Pol.T 2//� 3 f 7!
��

T 2.f / D f B �T 2 2 .Pol.Uq.2///
� is an injective algebra homomorphism, and

Q� D .��
T 2/

�1.�/ is again idempotent.

Lemma 4.3. If � W Pol.Uq.2// ! C is an idempotent state with �.u.1/
00 / D 0, then

�.u
.s/
00 / D 0 for all integers s � 1, i.e., we have �jCŒc�c� D hjCŒc�c�.

Proof. Recall that u.1/
00 D 1 � .1C q2/c�c. Therefore �.u.s/

00 / D 0 is equivalent to
�.c�c/ D 1

1Cq2 .

Assume that there exists an integer s > 1 with �.u.s/
00 / D 1. Then the Cauchy–

Schwarz inequality implies that �..u.s/
00 /

�u.s/
00 / � 1. The unitarity of the representa-

tion v.s;p/ gives

1 D
sP

kD�s

.u
.s/

k0
vpCs/�u.s/

k0
vpCs D

sP
kD�s

.u
.s/

k0
/�u.s/

k0
;

therefore
�

� P
k2f�s;:::;sg

k 6D0

.u
.s/

k0
/�u.s/

k0

	
� 0;
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and in particular �..u.s/
s0 /

�u.s/
s0 / D 0. We have

.u.s/
s /�u.s/

s0 D
�
2s

s

�
q2

..a�/scs
��
.a�/scs

D
�
c2s

s

�
q2

.c�/scsas.a�/s

D .c�c/s.1 � q2c�c/ : : : .1 � q2sc�c/:

By the representation theory of C.SUq.2//, c�c is a positive self-adjoint contrac-
tion, with the spectrum 
.c�c/ � fq2n j n 2 ZCg [ f0g, and therefore the
product .1 � q2c�c/ : : : .1 � q2sc�c/ defines a strictly positive operator. There-
fore �..u.s/

s;0/
�u.s/

s;0/ D 0 implies �..c�c/s/ D 0, which is impossible if �.c�c/ D
1

1Cq2 > 0.

Therefore �.u.s/
00 / D 0 for all integers s � 1.

Lemma 4.4. Let

A0 D spanfu.s/

k`
vr j s 2 1

2
ZC; s > 0; �s � k; ` � s; r 2 Zg;

i.e., A0 is the subspace spanned by the matrix coefficients of the unitary irreducible
representations of dimension at least two.

Assume that �jCŒc�c� D hjCŒc�c�, i.e.,

�.u
.s/
00 / D ı0s

for s 2 ZC.
Then we have �jA0

D hjA0
, i.e.,

�.u
.s/

k`
vr/ D 0

for all r 2 Z, s 2 1
2
ZC, s > 0, and �s � k; ` � s.

Proof. By Lemma 4.1, we already know that �.u.s/

k`
vr/ 2 f0; 1g, and �.u.s/

k`
vr/ D 0

for k 6D `. Assume that there exist s 2 1
2
ZC, s > 0, �s � k � s and r 2 Z such

that
�.u

.s/

kk
vr/ D 1:

We will show that this is impossible if � agrees with the Haar state h on the subalgebra
generated by c�c.

By the Cauchy–Schwarz inequality, we have

�..u
.s/

kk
/�u.s/

kk
/ � j�.u.s/

kk
vr/j2 D 1:
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Applying � to
sP

`D�s

.u
.s/

`k
/�u.s/

`k
D 1;

we can deduce P
`2f�s;:::;sg

`6Dk

�..u
.s/

`k
/�u.s/

`k
/ D 0:

But this contradicts �jCŒc�c� D hjCŒc�c� becauseP
`2f�s;:::;sg

`6Dk

.u
.s/

`k
/�u.s/

`k
D 1 � .u.s/

kk
/�u.s/

kk

is a non-zero positive element in CŒc�c� and the Haar state is faithful.

Before we formulate the main theorem of this section we need two more remarks
which will be used in the proof.

Remark 4.5. Since C.T 2/ is commutative, by Kawada and Itô’s theorem all idem-
potent states on C.T 2/ are induced by Haar measures of compact subgroups of the
two-dimensional torus T 2.

Remark 4.6. As a compact quantum group Zn is given by

Pol.Zn/ D C.Zn/ D spanfw0; : : : ; wn�1g;
with wkw` D wkC` mod n, S.wk/ D wn�k D .wk/

�, �.wk/ D wk ˝ wk , and
".wk/ D 1 for k D 0; : : : ; n � 1. The Haar state of Zn is given by h.wk/ D
ı0k . C.Zn/ can also be obtained from Pol.U.1// by dividing out the Hopf �-ideal
fu1.w

n � 1/u2I u1; u2 2 Pol.U.1//g.
Analogous to [Wys04], Section 4, one can define the twisted product SUq.2/ Ë�

Zn. Alternatively, Pol.SUq.2/Ë� Zn/ can be obtained from Uq.2/ Š SUq.2/Ë� U.1/
by dividing out the Hopf ideal fu1.v

n � 1/u2 j u1; u2 2 Pol.Uq.2//g, and defining
C.SUq.2/Ë� Zn/ as its C�-completion. This construction shows that SUq.2/Ë� Zn

is a quantum subgroup of Uq.2/ Š SUq.2/ Ë� U.1/. As in the case of Uq.2/,
C.SUq.2/ Ë� Zn/ D C.SUq.2// ˝ C.Zn/ and the Haar state of SUq.2/ Ë� Zn is
equal to the tensor product of the Haar states of SUq.2/ and Zn.

We can now give a description of all idempotent states on Uq.2/. It turns out that
they are all induced by Haar states of quantum subgroups of Uq.2/.

Theorem 4.7. Let q 2 .�1; 0/ [ .0; 1/. Then the following is a complete list of the
idempotent states on the compact quantum group Uq.2/.

(1) The Haar state h of Uq.2/.
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(2) Q� B �T 2 , where �T 2 denotes the surjective quantum group morphism
�T 2 W C.Uq.2// ! C.T 2/ and Q� is an idempotent state on C.T 2/. In
particular if Q" denotes the counit of C.T 2/, then Q" B�T 2 is the counit of Uq.2/.

(3) The states induced by the Haar states of the compact quantum subgroups
SUq.2/ Ë� Zn of Uq.2/ Š SUq.2/ Ë� U.1/, for n 2 N. The case of n D 1

corresponds to the Haar state on SUq.2/ viewed as a quantum subgroup of
Uq.2/.

Proof. Let� W C.Uq.2// ! C be an idempotent state on Uq.2/. Clearly� is uniquely
determined by its restriction to Pol.Uq.2//.

We distinguish two cases.

Case (i): �.u.1/
00 / D 1. In this case Lemma 4.2 shows that � is induced by

an idempotent state on the quantum subgroup T 2 of Uq.2/, i.e., � D Q� B �T 2 for
some idempotent state Q� W C.T 2/ ! C. This case includes the counit " of Uq.2/, it
corresponds to the trivial subgroup f1g of T 2.

Case (ii): �.u.1/
00 / D 0. In this case Lemma 4.3 and Lemma 4.4 imply that �

agrees with the Haar state h on the subspace A0, i.e.,

�.u
.s/

k`
vr/ D 0

for all s 2 1
2
ZC, s > 0, �s � k; ` � s, and r 2 Z. It remains to determine � on

the �-subalgebra algfv; v�g generated by v since Pol.Uq.2// D A0 ˚ algfv; v�g as
a vector space. But this subalgebra is isomorphic to the �-Hopf algebra Pol.U.1//
of polynomials on the unit circle, and therefore �jalgfv;v�g has to be induced by the
Haar measure of a compact subgroup of U.1/. We have the following possibilities.

(1) �jalgfv;v�g D "U.1/, i.e., the restriction of � to algfv; v�g is equal to the counit
of Pol.U.1// . In this case we have

�.u
.s/

k`
vr/ D

´
1 if s D k D ` D 0 and r 2 Z;

0 else:

This formula shows that � D hSUq.2/ B �SUq.2/, where �SUq.2/ is the quantum
groups morphism fromC.Uq.2// ontoC.SUq.2// and hSUq.2/ denotes the Haar
state of SUq.2/.

(2) �jalgfv;v�g D hU.1/, i.e., the restriction of � to algfv; v�g is equal to the Haar
state of Pol.U.1// . In this case we have

�.u
.s/

k`
vr/ D

´
1 if s D k D ` D 0 and r D 0;

0 else:

We see that � is the Haar state h of Uq.2/.
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(3) �jalgfv;v�g is the idempotent state on U.1/ induced by the Haar measure of the
subgroup Zn � U.1/ for some n 2 N, n � 2. In this case we have

�.u
.s/

k`
vr/ D

´
1 if s D k D ` D 0 and r 	 0 mod n;

0 else:

It follows that� is induced by the Haar state of the quantum subgroup SUq.2/Ë�

Zn of Uq.2/ Š SUq.2/ Ë� U.1/.

Conversely, all the states we have found are induced by Haar states on quantum
subgroups of Uq.2/, therefore they are clearly idempotent. This can be also checked
directly.

We see that all idempotent states on Uq.2/ are induced from Haar states of quantum
subgroups of Uq.2/. We can also deduce the complete list of quantum subgroups of
Uq.2/.

Corollary 4.8. Let q 2 .�1; 0/ [ .0; 1/. Then the following is a complete list of the
non-trivial quantum subgroups of Uq.2/.

(1) The two-dimensional torus and its closed subgroups.

(2) The compact quantum groups of the form SUq.2/ Ë� Zn, with n 2 N (here
the twisting is identical to the one appearing in the identification Uq.2/ Š
SUq.2/ Ë� T ).

5. Idempotent states on compact quantum groups SUq.2/ and SOq.3/

(q 2 .�1; 0/ [ .0; 1�)

Let us first discuss the case q D 1. C.SU1.2// and C.SO1.3// are respectively the
algebras of continuous functions on the groups SU.2/ and SO.3/. All idempotent
states correspond to Haar measures on compact subgroups. The list of these subgroups
can be found, e.g., in [Pod95].

Consider now the generic case q 2 .�1; 0/ [ .0; 1/. Every idempotent state on
SUq.2/ induces an idempotent state on Uq.2/ since SUq.2/ is a quantum subgroup
of Uq.2/. This observation allows us to deduce all idempotent states on SUq.2/ from
Theorem 4.7. We omit the details and just state the result.

Theorem 5.1. Let q 2 .�1; 0/[.0; 1/. TheHaar state, the counit, and the idempotent
states induced by the quantum subgroups U.1/ and Zn, 2 � n � 1, are the only
idempotent states on SUq.2/.
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Since the morphism j W C.SUq.2// ! C.U.1// gives the diagonal matrices

.j.u
.s/

k`
//�s�k;`�s D

0BBB@
z2s

z2s�2

: : :

z�2s

1CCCA ;
we get

.hU.1/ B j /.u.s/

k`
/ D

´
1 if s 2 ZC; k D ` D 0;

0 else;

and, for n 2 N,

.hZ2n
B j /.u.s/

k`
/ D

´
1 if s 2 ZC; k D `; 2k 	 0 mod 2n;

0 else;
(5.1)

.hZ2nC1
B j /.u.s/

k`
/ D

´
1 if k D `; 2k 	 0 mod 2nC 1;

0 else:
(5.2)

Consider now the idempotent states on SOq.3/. Since C.SOq.3// is a subalgebra
of C.SUq.2// and since the inclusion map is a quantum group morphism, every
idempotent state on SUq.2/ gives an idempotent state on SOq.3/ by restriction. We
will show that all idempotent states on SOq.3/ arise in this way. It follows that all
idempotent states on SOq.3/ are induced from Haar states of quantum subgroups.

Theorem 5.2. Let q 2 .�1; 0/[ .0; 1/ and n an odd integer. Then the restrictions to
C.SOq.3// of the idempotent states hZn

B j and hZ2n
B j coincide.

Furthermore, the Haar state, the counit, and the states induced from the Haar
states on the quantum subgroups U.1/ Š SO.2/ and its closed subgroups are the
only idempotent states on SOq.3/.

Proof. The first statement follows from equations (5.1) and (5.2).
Let now � be an idempotent state on SOq.3/. Denote by E the conditional

expectation from C.SUq.2// onto C.SOq.3// introduced in Paragraph 2.4.2. Then
O� D � B E defines an idempotent state on SUq.2/ such that � D O�jC.SOq.3//. With
this observation Theorem 5.2 follows immediately from Theorem 5.1.

Remark 5.3. This method applies to quotient quantum groups in general. If .G0; j /
is a normal quantum subgroup of G (see Definition 2.4), then all idempotent states
on C.G=G0/ arise as restrictions of idempotent states on C.G/.

As a corollary to Theorems 5.1 and 5.2, we recover Podleś’ classification [Pod95]
of the quantum subgroups of SUq.2/ and SOq.3/.

Corollary 5.4. Letq 2 .�1; 0/[.0; 1/. Then U.1/ Š SO.2/and its closed subgroups
are the only non-trivial quantum subgroups of both SUq.2/ and SOq.3/.
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6. Idempotent states oncompactquantumsemigroupsU0.2/, SU0.2/andSO0.3/

In this section we compute all idempotent states on U0.2/, SU0.2/ and SO0.3/. As in
the cases q ¤ 0 considered earlier, we begin with the C�-bialgebra C.U0.2//. Again
we first need some preparatory observations and lemmas.

Note that �T 2 W C.Uq.2// ! C.T 2/ is a well-defined �-algebra and coalgebra
morphism also for q D 0, so T 2 and its compact subgroups induce idempotent states
on U0.2/.

For q D 0 the algebraic relations of a and c become

cc� D c�c; aa� D 1; ac D ac� D 0; a�a D 1 � c�c:

Since a is a coisometry, we have a decreasing family of orthogonal projections
.a�/nan, n 2 N, which are group-like, i.e., �..a�/nan/ D .a�/nan ˝ .a�/nan,
and c�c D 1 � a�a is also an orthogonal projection.

Denote by M the unital semigroup U.1/ 
 .ZC [ f1g/ with the operation

.z1; n1/ � .z2; n2/ D .z1z2;min.n1; n2//

for z1; z2 2 U.1/, n1; n2 2 ZC[f1g. This is an abelian semigroup with unit element
eM D .1;1/. Equip ZC [ f1g with the topology in which a subset of ZC [ f1g is
open if and only if it is either an arbitrary subset of ZC or the complement of a finite
subset of ZC (i.e., ZC [ f1g is the one-point-compactification of ZC), and equip
M D U.1/ 
 .ZC [ f1g/ with the product topology.

The C�-bialgebra C.M/ will play an important role in this section.

Lemma 6.1. A probability measure � onM is idempotent if and only if there exists
an n 2 ZC [ f1g and an idempotent probability 	 on U.1/ such that � D 	˝ ın.

Proof. Any probability onM can be expressed as a sum� D P1
nD0 	n ˝ın C	1 ˝

ı1, where 	n, n 2 ZC [ f1g are uniquely determined positive measures on U.1/
with total mass

P1
nD0 	n.U.1//C	1.U.1// D 1, and ın denotes the Dirac measure

on ZC [ f1g, i.e.,

ın.Q/ D
´
1 if n 2 Q;
0 if n 62 Q;

for Q � ZC [ f1g. We have

.ın ? ım/.Q/ D .ın ˝ ım/.f.k; `/ 2 .ZC [ f1g/2 j min.k; `/ 2 Qg/

D
´
1 if min.n;m/ 2 Q;
0 if min.n;m/ 62 Q;

i.e., ın ? ım D ımin.n;m/. Therefore

�?2 D 	?21 ˝ ı1 C
1P

nD0

�
	n ?

�
	n C 2

1P
mDnC1

	m C 2 	1
�� ˝ ın:
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Clearly, if 	1 is an idempotent probability on U.1/ and 	n D 0 for n 2 ZC, then
� D 	1 ˝ ı1 is idempotent.

Assume now that 	1.U.1// < 1. Then there exists a unique n 2 ZC such
that

P1
mDnC1 	m.U.1// < 1,

P1
mDn 	m.U.1// D 1 (i.e., n is the biggest integer m

for which 	�m D 	1 C P1
kDm 	k is a probability). Let p D 	n.U.1//. If � is

idempotent, then we have

p D �.U.1/ 
 fng/ D �?2.U.1/ 
 fng/ D .	n ? .2	�n � 	n//.U.1// D 2p � p2:

Since p D 	n.U.1// > 0 by the choice of n, we get p D 1, i.e., 	m D 0 for m 6D n

and 	n is a probability. Then 	n has to be idempotent, and � D 	n ˝ ın is of the
desired form.

Conversely, any probability of the form � D 	n ˝ ın with n 2 ZC [ f1g and
	n idempotent is idempotent.

For k 2 Z and n 2 ZC, define functions ‚k
n W M ! C by

‚k
n.z;m/ D

´
zk if m � n;

0 if m < n:

The span of these functions is dense in C.M/, and they satisfy

‚k
n‚

`
m D ‚kC`

max.n;m/
; .‚k

n/
� D ‚�k

n ; and ".‚k
n/ D ‚k

n.eM / D 1:

For their coproduct, we have

�‚k
n..z1; m1/; .z2; m2// D ‚k

n.z1z2;min.m1; m2//

D
´
.z1z2/

k if m1; m2 � n;

0 else;

i.e., �‚k
n D ‚k

n ˝‚k
n.

Proposition 6.2. The semigroup M is a quantum quotient semigroup of U0.2/, in
the sense that there exists an injective �-algebra homomorphism j from Pol.M/ ´
spanf‚k

n j n 2 ZC; k 2 Zg to Pol.U0.2// such that

�M B j D .j ˝ j / B�:

Proof. For n 2 ZC and k 2 Z, define Ek
n D .˛�/n˛nvk 2 Pol.U0.2//. From the

defining relations of U0.2/, one can check that the Ek
n satisfy the same �-algebraic

and coalgebraic relations as the ‚k
n, i.e., j.‚k

n/ D Ek
n defines a �-bialgebra homo-

morphism j W Pol.M/ ! Pol.U0.2//.
Let us show that j is injective. Assume there exists a non-zero function f DP

k;n �k;n‚
k
n such that j.f / D 0. Let n0 be the smallest integer for which there
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exists a k 2 Z such that �k;n 6D 0. Take the representation � D �0 ˝ idL2.T / of
C.U0.2// Š C.SU0.2// ˝ C.U.1// (recall that �0 was defined in Section 2.3.1).
Since j.f / D 0, the operator � D �.j.f // D P

�k;n�0..˛
�/n˛n/vk has to vanish.

Apply � to en0
˝ 1. Since �0..˛

�/n˛n/en0
D 0 for n > n0, we get �.en0

˝ 1/ DP
k �n0;ke0 ˝ vk 2 h ˝ L2.T /, which implies �n0;k D 0 for all k, a contradiction

to the choice of n0.

We can now give a description of all idempotent states on U0.2/.

Theorem 6.3. The following gives a complete list of the idempotent states on U0.2/.

(1) The idempotent states induced by the Haar measures on the two-dimensional
torus T 2 and its closed subgroups. If 	 denotes the Haar measure of T 2 or one
of its closed subgroups, then the corresponding idempotent state �
 is given by

�
..a
�/rckasv`/ D ı0k

Z
T 2

ws�r
1 w`

2 d	.w1; w2/

for n;m 2 ZC, k; ` 2 Z. This includes the counit of U0.2/, for the trivial
subgroup f1g of T 2.

(2) The family ‰n;m D  n ˝ �m, n 2 ZC, m 2 N [ f1g. Here �m is an
idempotent state on C.U.1//, namely the Haar measure on U.1/ for m D 1
and the idempotent state induced by the Haar measure of Zm for m 2 N. And
 n, n 2 ZC, is the idempotent state on SU0.2/ defined by

 n..˛
�/r�k˛s/ D

´
1 if r D s � n and k D 0;

0 else:

Proof. Let � W C.U0.2// ! C be an idempotent state on U0.2/. Then � induces
an idempotent state � B j on C.M/. By Lemma 6.1, � B j is integration against a
probability measure of the form 	 ˝ ın with n 2 ZC [ f1g and 	 an idempotent
measure on U.1/. This determines � on the subalgebra generated by v and .a�/rar ,
r 2 N: we have

�..a�/rarvk/ D
´
	.vk/ if r � n;

0 else;

for k 2 Z, r 2 ZC.

Case (i): n D 1. For k > 0 and any r; s 2 ZC, ` 2 Z, we have

j�..a�/rckasv`/j2 � �..a�/rar/�..a�/s.c�/kckas/

D �..a�/sas � .a�/sC1asC1/

D 0;
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and therefore � vanishes on the �-ideal �c generated by c. As in the proof of
Lemma 4.2, it follows that � is induced by an idempotent state on Pol.U0.2//=�c Š
Pol.T 2/, i.e., � is of the form given in (1).

Case (ii): n D 0. Using again the Cauchy–Schwarz inequality, we get

j�..a�/rcka0v`/j2 � �..a�/rar/�..a�/sas � .a�/sC1asC1/; (6.1)

j�..a�/rckasv`/j2 � �..a�/rar � .a�/rC1arC1/�..a�/sas/; (6.2)

j�..a�/rasv`/j2 � �..a�/rar/�..a�/sas/ (6.3)

fork; r; s 2 ZC, ` 2 Z. This shows that�..a�/rckarv`/vanishes, unless r D s D 0.
But then � D � ? � implies that

�.ckv`/ D .� ˝ �/.�.ckv`// D
kP

�D0

�..a�/k��c�v`/�.ck��a�v`/ D 0

for k > 0, s 2 Z. By hermitianity �..c�/kv`/ D 0 for k > 0, and � has the form
given in (2) with n D 0.

Case (iii): n 2 N. We use once more the Cauchy–Schwarz inequality. For k 6D 0,
(6.1) and (6.2) imply that �..a�/rckasv`/ vanishes unless r D s D n. But then we
can show that � D � ? � implies �..a�/nckanv`/ D 0 in the same way as in the
previous case.

For k D 0, we see from (6.3) that �..a�/rasv`/ vanishes unless r; s � n. The
elements .a�/rasv` are group-like, therefore �..a�/rasv`/ 2 f0; 1g. If we can show
�..a�/rasv`/ 6D 1 for r 6D s, we are done since then �..a�/rckasv`/ is non-zero
only if r D s � n. We get �..a�/rasv`/ D ırs	.v

`/ for r; s � n, i.e., � has the form
given in (2).

We show �..a�/rasv`/ 6D 1 for r 6D s by contradiction. Assume that there exists
a triple .r0; s0; `0/ such that �..a�/r0as0v`0/ D 1 and choose such a triple with
maximal r0. Set

b D .a�/r0as0v`0 C .a�/s0ar0v�`0 � 1:
Maximality of r0 implies that r0 > s0 and

�..a�/2r0�s0as0v2`0/ D �..a�/s0a2r0�s0v�2`0/ D 0;

therefore we get

�.b�b/ D �..a�/r0ar0/C �..a�/s0as0/C 1

C �..a�/2r0�s0as0v2`0/C �..a�/s0a2r0�s0v�2`0/

� 2�..a�/r0as0v`0/ � 2�..a�/s0ar0v�`0/

D �1;
which is clearly a contradiction to the positivity of �.
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Conversely, using the formulas

�
�
.a�/rckasv`

� D
kP

�D0

.a�/rCk��c�asv` ˝ .a�/rck��asC�v`;

�
�
.a�/r.c�/kasv`

� D
kP

�D0

.a�/r.c�/�asCk��v` ˝ .a�/rC�.c�/k��asv`;

with r; s; k 2 ZC, ` 2 Z, for the coproduct in Pol.U0.2//, one can check that all
states given in the theorem are indeed idempotent.

Remark 6.4. The state ‰0;1 introduced in the theorem above can be considered as
the Haar state on U0.2/ since it is invariant, i.e.,

‰0;1 ? f D f ? ‰0;1 D f .1/‰0;1
for any f 2 C.U0.2//

�. But ‰0;1 is not faithful. Its algebraic null space

N‰0;1
D fu 2 Pol.U0.2// j ‰0;1.u�u/ D 0g
D span f.a�/kcma`vn j k 2 ZC; m; n 2 Z; ` � 1g

is a left ideal but not self-adjoint or two-sided. It is a subcoalgebra, i.e., we have

�N‰0;1
� N‰0;1

ˇN‰0;1
;

but it is not a coideal since the counit does not vanish on N‰0;1
.

The complete description of the idempotent states on SU0.2/ follows now directly
from Theorem 6.3 and the comments before Theorem 4.7.

Theorem 6.5. The following gives a complete list of the idempotent states on SU0.2/.

(1) The family �n, n 2 N[f1g where �1 is the counit, �1 the idempotent induced
by the Haar state of quantum subgroup U.1/, and �n, 2 � n < 1, denotes the
idempotent state induced by the Haar state on the quantum subgroup Zn.

(2) The family  n, n 2 ZC defined by

 n..˛
�/r�k˛s/ D

´
1 if k D 0; r D s � n;

0 else;

for r; s 2 ZC, k 2 Z, with the convention ��k D .��/k .

Similarly, using the conditional expectation introduced in Paragraph 2.4.2, we
can derive a complete classification of the idempotent states on SO0.3/. The proof
is identical to the proof of Theorem 5.2 and therefore omitted.

Theorem 6.6. All idempotent states on SO0.3/ arise as restrictions of idempotent
states on SU0.2/. Moreover �njC.SO0.3// D �2njC.SO0.3// for n an odd integer.
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7. The idempotent states on SUq.2/ as elements of the dual and associated
quantum hypergroups

Let G be a compact quantum group and A D Pol.G/ the corresponding Hopf �-
algebra dense inC.G/. Then A is (the algebra of functions on) an algebraic quantum
group in the sense ofVan Daele ([VD98]), and so is its dual yA, given by the functionals
of the form h. � a/ with a 2 A. By [FS09a], Lemma 3.1, an idempotent state � on
C.G/ defines a group-like projection p� in the multiplier algebraM. yA/ of the dual,
and therefore, by [LVD07], Theorem 2.7, and [FS09a], Theorem 2.4, an algebraic
quantum hypergroup yAp�

. As an algebra, yAp�
D p�

yAp� , and the coproduct of yAp�

is given by
y�p�

D .p� ˝ p�/y�.a/.p� ˝ p�/

for a 2 yAp�
, where y� denotes the coproduct of yA.

Let q 2 .�1; 0/[ .0; 1/. In this section we will consider the case of the compact
quantum group SUq.2/ and describe the algebraic quantum hypergroups associated
to its idempotent states. Note that in this case the dense Hopf �-algebra is A D
Pol.SUq.2// D spanfu.s/

k`
j s 2 1

2
ZC; �s � k; ` � sg. We will use the basis

e
.s/

kl
D 1 � q2.2sC1/

q2.s�k/.1 � q2/
h..u

.s/

k`
/� � /

for yA, which can be thought of as the algebra of trigonometric polynomials on the
quantum group dual 2SUq.2/. Using the orthogonality relation

h..u
.s/

k`
/�u.s0/

k0`0/ D ıss0ıkk0ı``0

q2.s�k/.1 � q2/

1 � q2.2sC1/
;

for s; s0 2 1
2
ZC, �s � k; ` � s, �s0 � k0; `0 � s0, cf. [Koo89], eq. (5.12), we

can check that this basis is dual to the basis fu.s/

k`
j s 2 1

2
ZC; �s � k; ` � sg of

Pol.SUq.2//. The algebraic quantum group yA D Pol.2SUq.2// is of discrete type
and is equal to the algebraic direct sum

yA D L
s2 1

2 ZC

M2sC1 :

The e.s/

k`
form a basis of matrix units for M2sC1 D spanfe.s/

kl
j �s � k; ` � sg.

The Haar state h and the counit " give the elements ph D 1 and p" D e
.0/
00

in M. yA/, and the associated algebraic quantum hypergroups are yAph
D yA and

yAp"
D C.

The remaining cases are more interesting.
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7.1. The idempotent state �2 D hZ2
B j induced by the quantum subgroup Z2.

We have

p�2
D

1X
sD0

sP
kD�s

e
.s/

kk
D

1P
sD0

12sC1;

i.e., p�2
is the sum of the identity matrices from the odd-dimensional matrix algebras

M2sC1, s 2 ZC. This projection is in the center ofM. yA/, therefore yA2 D p�2
yAp�2

will be an algebraic quantum group. We get

yA2 D L
s2ZC

M2sC1 D Pol 2SOq.3/;

i.e., yAp�2
is the algebra of trigonometric polynomials on the algebraic quantum group

dual to SOq.3/. This is to be expected as Z2 is the only nontrivial normal quantum
subgroup of SUq.2/ and SOq.3/ is the corresponding quotient quantum group.

7.2. The idempotent state �1 D hU.1/ B j induced by the quantum subgroup
U.1/. Here

p�1
D

1P
sD0

e
.s/
00

and this projection is not central. We get

yAp1
D

1L
sD0

C;

which is a commutative algebraic quantum hypergroup of discrete type. This is the
dual of the hypergroup introduced in [Koo91], Section 7.

7.3. The idempotent states �n D hZn B j , 3 � n < 1. The remaining cases also
give non-central projections,

p�2n
D

1P
sD0

d s
n eP

kD�d s
n e
e

.s/

nk;nk
; p�2nC1

D P
s2 1

2 ZC

P
�s�k�s

2k�0 mod 2nC1

e
.s/

kk
;

for 1 � n < 1, cf. equations (5.1) and (5.2). They lead to non-commutative algebraic
quantum hypergroups yAn D p�n

yAp�n
,

yA2n D
1L

kD0

nM2kC1; yA2nC1 D
1L

kD0

.2nC 1/Mk;

of discrete type (in the formulas above nM2kC1 denotes n direct copies of the matrix
algebra M2kC1 and similarly .2nC 1/Mk denotes 2nC 1 direct copies of the matrix
algebra Mk).

Note that since the quantum subgroups considered in the last two sections are not
normal, the objects we obtain have only the quantum hypergroup structure (and can
be informally thought of as duals of quantum hypergroups obtained via the double
coset construction, [CV99]).
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Appendix

The goal of the appendix is to provide an alternative proof of coamenability of the
deformations of classical compact Lie groups. To facilitate the discussion, for a
compact quantum group G we use bG to denote the dual of G (which is a discrete
quantum group), C.G/red and C.G/ to denote respectively the reduced and universal
C�-algebras associated with G, and L1.G/ to denote the corresponding von Neu-
mann algebra (we refer for example to [Tom07] for precise definitions). Note that
contrary to the main body of the paper we do not assume that the Haar state on G
is faithful so that G need not be in reduced form. We adopt the following definition
([BMT02], [Tom06]).

Definition A.1. A compact quantum group G is said to be coamenable if the dual
quantum group bG is amenable, that is, L1.bG/ has an invariant mean.

The following result gives a useful criterion to check coamenability:

Theorem A.2 ([BMT02], Theorem 4.7, [Tom06], Corollary 3.7, Theorem 3.8). A
compact quantum group G is coamenable if and only if there exists a counit on
C.G/red if and only if there exists a �-homomorphism from C.G/red onto C.

The second equivalence is fairly easy to show, in the first the forward implication
was established in [BMT02] and the backward implication in [Tom06].

Let G be a classical compact Lie group and Gq the q-deformation with the pa-
rameter �1 < q < 1, q ¤ 0 (see [KS98]). The function algebra C.Gq/ is the
universal C�-algebra generated by certain polynomial elements. The Haar state is
denoted by h.

The following theorem was proved by T. Banica ([Ban99], Corollary 6.2). We
present another proof using Korogodski–Soibelman’s results on the representation
theory of C.Gq/.

Theorem A.3. The quantum group Gq is coamenable.

Proof. Let us introduce the left ideal Nh ´ fa 2 C.Gq/ j h.a�a/ D 0g, which is
in fact an ideal of C.Gq/. The reduced version C.Gq/red is defined as the quotient
C.Gq/=Nh. By Theorem A.2 to show that Gq is coamenable it suffices to show that
the C�-algebra C.Gq/red has a character.

Consider an irreducible representation � W C.Gq/red ! B.H	/. Composing this
map with the canonical surjection 	 W C.Gq/ ! C.Gq/red, we get an irreducible
representation � B 	 of C.Gq/. Thanks to [KS98], Theorem 6.2.7 (3), §3, we may
assume that � B 	 is of the form

� B 	 D .�si1
˝ � � � ˝ �sik

˝ �t / B�.k/
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or

� B 	 D �t ;

where si1 : : : sik is the reduced decomposition in the Weyl group of G, and t 2 T ,
the maximal torus of G. In the latter case � is a one-dimensional representation. In
the former case, we remark that the counit of C.Gq/ factors through im �si

for every
i , that is, there exists �i W im �si

! C such that �i B �si
D " (see the argument in

[Tom07], p. 294).
Then we introduce a representation Q� ´ .�i1 ˝ � � � ˝ �ik ˝ id/ B� of C.Gq/red,

which is well defined and one-dimensional. Indeed,

Q� B 	 D ."˝ � � � ˝ "˝ �t / B�.k/ D �t :

Thus we have proved in each case the existence of a one-dimensional representation
of the C�-algebra C.Gq/red, and Gq is coamenable.

Acknowledgements. Big part of this research was done at the Mathematisches
Forschungsinstitut Oberwolfach during a stay within the Research in Pairs Programme
from September 7 to September 20, 2008. We thank the MFO for giving us this op-
portunity.

This work was started while the first author was visiting the Graduate School of
Information Sciences of Tohoku University as Marie-Curie fellow. He would like to
express his gratitude to Professors Nobuaki Obata, Fumio Hiai, and the other members
of the GSIS for their hospitality.

Note added in proof. Several results of Section 3 of this paper have recently been
generalised to idempotent states and contractive idempotent functionals on the alge-
bras of functions on locally compact quantum groups, see [SS12], [NSSS12].
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