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Abstract. We introduce here the Hopf algebra structure describing the noncommutative
renormalization of a recently introduced translation-invariant model on Moyal space. We
define Hochschild one-cocyles B-ji/- which allows us to write down the combinatorial Dyson—
Schwinger equations for noncommutative quantum field theory. One- and two-loops examples
are explicitly worked out.
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1. Introduction

Hochschild cohomology was shown, in the context of commutative quantum field
theory (QFT), to play an important role in the understanding of different perturbative
and non-perturbative issues [3], [23]. Using suitable Hochschild 1-cochains BY,
one can thus write down the combinatorial Dyson—Schwinger equation, extending
perturbative to non-perturbative physics.

On the other hand, noncommutative geometry is an interesting framework for
both mathematics and theoretical physics (see for example [7], [9]). Noncommuta-
tive quantum field theory (NCQFT) on Moyal space has recently gained attention
through the proposition of several models which were proved to be perturbatively
renormalizable. Thus, despite the ultraviolet/infrared mixing problem [26] (a new
type of non-local divergence which appears when implementing QFT on the Moyal
space), several models are now known to be renormalizable. A first such model is
the Grosse—Wulkenhaar model [13], which however explicitly breaks the translation-
invariance of QFT. Recently, a translation-invariant model was proposed in [14]; this
new model was also proved to be renormalizable at any order in perturbation theory
[14].

The Hopf algebra structure of perturbative renormalization was implemented for
the Grosse—Wulkenhaar model in [33]. In this paper we first repeat this for the
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translation-invariant model [14]. This task is more involved because of a more com-
plicated power counting mechanism. We then go further and introduce Hochschild
1-cocyles Bi adapted for this noncommutative framework. This allows us to write
down the combinatorial Dyson—Schwinger equations for both these types of noncom-
mutative models. Nothing here involves mathematical sophistication beyond what
was necessary for commutative field theory. But finer technical details have to be
clarified, and are done so here by explicit example.

This paper is structured as follows. The next section recalls the definition of the
Moyal space and lists the field theoretical models known so far to be renormalizable
in this noncommutative frame. Particularly, we recall the translation-invariant model
introduced in [14]. In Section 3 we introduce the Hopf algebra structure which
describes the renormalization of this noncommutative model. The pre-Lie and Lie
algebra structures associated to graphs are also presented. Section 4 analyzes in detail
several differences (from a diagrammatic point of view) which appear when one uses
the ribbon graph representation of NCQFT instead of the usual Feynman graphs of
commutative QFT. In Section 5 we introduce Hochschild 1-cocyles B_{ which allow
to write down the combinatorial Dyson—Schwinger equations in NCQFT. We give
here the corresponding theorems; note that these results hold for all renormalizable
noncommutative models listed in Section 2. Finally, in the last section we completely
work out as the crucial part of this paper the one- and two-loop implementations of
the theorems of Section 5.

2. Scalar field theory on the Moyal space and renormalizability

In this section we briefly recall the definition of the Moyal space; we then list the field
theoretical models (translation-invariant or not) known so far to be renormalizable on
it.

The noncommutative Moyal space is given by

[x*, x¥], = 1O*”,

where the noncommutative matrix ® writes

0 6 0 0
60 0 0
=10 0o o o
0 0 -6 0

Note that by » we denote the Moyal-Weyl product.

2.1. The “naive” ¢*4 model; Feynman graphs (planarity and non-planarity)
— ribbon graphs. In order to obtain field theory on this space, the first thing that
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comes to mind is to replace the ordinary commutative local product of fields by the
Moyal-Weyl product

1 1 A
S[¢]:/d4x(iau¢*3“¢+§u2¢*¢+4—!¢*¢*¢*¢). 2.1)

Note that an Euclidean metric is used.
In momentum space the action (2.1) writes

1 1 A
S = [ @*p(30u00"0 + 51000+ b w b b +4).

An important consequence of the utilization of the non-local product * is that
the interaction part does not longer preserve the invariance under permutation of
incoming (outgoing) fields. This invariance is restricted to a cyclical permutation.

Furthermore, there exits a basis — the matrix base — of the Moyal algebra for which
the Moyal-Weyl product becomes an ordinary matrix product. For these reasons, an
appropriate way to draw the associated Feynman graphs is to use ribbon graphs, that
is to use ribbons instead of lines for the propagators.

Thus, the “usual” commutative ¢* vertex becomes some ribbon ¢** vertex as

X=X

Figure 1. The local vertex is replaced in NCQFT with a non-local, Moyal vertex.

This has important consequences on the definition of the pre-Lie structure of
insertions of such ribbon graphs (see Section 3.2). Let us first give an important
topological definition of these ribbon graphs:

Definition 2.1. A planar graph is called regular if it has a single face (the external
one) broken by external edges.

While this definition takes recourse to the parlance in noncommutative field theory,
it just takes into account standard combinatorial facts: Let us call a graph a genus-n
graph if it can be drawn without self-intersection on all surfaces with genus > n.
Then a planar graph is genus-0.

Now, a genus-n graph can be drawn on a surface of genus n without self-intersec-
tions. Its internal edges and vertices hence allow for a unique labeling of faces on this
genus n surface. Let k be the number of such faces which contain an external edge
of the graph. A planar regular graph is a genus-0 graph with k = 1. If k > 1, we call
the graph irregular. An example of a 2-point planar irregular graph is the tadpole of
Fig. 2.
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S

Figure 2. The “non-planar” tadpole. This graph is planar irregular (it has two broken faces).

2.2. The Grosse-Wulkenhaar-like models. The Grosse—Wulkenhaar model is a
scalar quantum field theory on the four-dimensional Moyal space. Its action [13] is
given by

1 Q2 1 A
S = [ d*x(= 30000+ 5292 4 Jn? 9+ Lo wdn g () 22)

with X, = 2(®~!x),. This model has been shown renormalizable to all orders of
perturbation, using different field theoretical or algebraic methods.

Several field theoretical properties have been adapted to this type of noncommu-
tative models (see [18], [28] , [30], [29], [16], [10] and references within). Some
algebraic geometrical properties of the parametric representation of the Grosse—
Wulkenhaar model have been proved in [1].

Let us now give an elementary definition for what a primitive element in a Hopf
algebra of graphs should mean for a physicist:

Definition 2.2. A primitive divergent graph of a quantum field theoretical model
is a graph whose Feynman amplitude is divergent but which does not contain any
subgraph for whom the Feynman amplitude is also divergent.

Working for example in position space, one can prove that, for the Grosse—
Waulkenhaar-like models, multiplying the graph amplitude with the external fields
¢(x;) and integrating against these positions x; leads to a divergent result for the
planar regular 2- and 4-point graphs. This comes from the fact that, when doing so,
one takes into account contributions from “exceptional” configurations (namely for
the 4-point function, the four points x; form a parallelogram) and generic ones. It is
these “exceptional” configurations which lead to a divergent result (see [15] for the
general analysis or Section 3.4 for some explicit 1-loop examples).

When working in position space, we consider in this paper graphs integrated
against the positions x; (see again Section 3.4).

A Hopf algebra structure adapted for this noncommutative renormalization was
defined in [33]. The main idea is that the notion of locality, crucial in commutative
field theory, is replaced by a new one, of “Moyality”, stating that the counterterms
will have the same, non-local “Moyal” form as the terms in the original actions. For
a more detailed discussion on this aspect the interested reader is referred to [2].

For the sake of completeness let us mention here that a noncommutative version
of the Gross—Neveu model was also proved to be renormalizable at any order in
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perturbation theory [34]. Different attempts for generalizing the Grosse—Wulkenhaar
idea to a gauge model have then been made and intensively studied [11].

2.3. A translation-invariant scalar model. Note that the Grosse—Wulkenhaar model
(2.2) is manifestly not translation-invariant. In order to preserve the translation-
invariance, one possibility is to modify the propagation in a different way ([14]):

1 1 1 1
S = [ d*pGoutp" s + 00 + agzss+ VgD, @I

where a some dimensionless parameter and V *[¢] is the corresponding potential in
momentum space. The propagator is

1
P2 +m? + gzapz .

(2.4)

One further chooses a > 0 such that the propagator (2.4) is positively defined. In
[14], this model was proved to be renormalizable at any order in perturbation theory.
Furthermore, its renormalization group flows [2] and parametric representation [31]
were implemented; a mechanism for taking the commutative limit has been proposed
[25] (for a review on all these developments, see [32]). Also, a propagator (2.4) like
above has appeared in recent work on non-abelian gauge theory in the context of the
Gribov—Zwanziger result [12]. A connection between those results and a suitable
noncommutative model is unknown though at the time of writing.

Let us end this section by mentioning that propositions for noncommutative
translation-invariant gauge models have been made and investigated in detail [4].

3. Hopf algebra for the noncommutative model (2.3). Planar irregular graphs

3.1. Considerations on its primitive divergent graphs. As proved in [14], the
primitive divergent graphs of the translation-invariant model (2.3) are again the 2-
and 4-point graphs. However, a more thorough discussion is requested here. In
the case of the planar regular graphs, these 2- and 4-point graphs will lead to the
renormalization of the mass, field strength and coupling constant, just like in the
case of the commutative ¢* model. A more tricky situation appears for the planar
irregular graphs. The 4-point function graphs are proved to be convergent. The 2-
point function graphs (which are the ones encoding the UV/IR mixing) are again
convergent. Nevertheless, when going in the UV regime of their internal momenta,
they lead a priori to a 1/ p? contribution to the respective Feynman amplitude ( p being
the external momenta of the respective 2-point graph). However, the modification of
the propagation given in (2.3) will insure the renormalizability of the model. These 2-
point planar irregular graphs will just lead to a finite renormalization for the coefficient
a in the action (2.3).



260 A. Tanasi and D. Kreimer

When inserting these 2-point graphs into bigger graphs, the latter become non-
planar (for example, when inserting the tadpole of Fig. 2 in any planar ribbon graph,
the resulting ribbon graph is non-planar). In the case of the “naive” model (2.1), the
Feynman amplitudes of these graphs is UV convergent but IR divergent (because of
the UV/IR mixing). In the case of the model (2.3), these non-planar graphs are also
convergent in IR regime, thanks to the 1/p? terms in the propagator (see again the
proofs of [14] or [31]).

Let us conclude by stating that, for the reasons explained above, the primitive
divergent graphs of the model (2.3) are taken to be the planar regular 2- and 4-point
graphs. See also Section 3.5 below.

3.2. Insertions of graphs; the pre-Lie and Lie structures. In this section we
explain the operation of insertion of graphs and the difficulties encountered when
doing this for the ribbon graphs of NCQFT. These difficulties come from the fact
that one has to deal with a non-local vertex with restricted symmetry (see Fig. 1).
This insertion operations allows us to define the pre-Lie structure of Feynman ribbon
graphs.

Definition 3.1. The residue res of a ribbon graph is the graph obtained by shrinking
all its internal edges.

Note that the edges of any 4-point ribbon vertex present a cyclic ordering. Fur-
thermore, for a regular graph, its external edges also define a cyclic ordering on the
distinguished face containing the external edges.

Let the set of residues be (if we want to distinguish mass and wave function
renormalization explicitly, we have to label edges accordingly for these external
structures [8] without essential changes to our set-up)

R=l ),
The insertion operation is defined as the bilinear map

TyoTy:=Y n(, T2, )T (3.1)
T

The coefficient n(I'y, [z, I') counts the number of ways to shrink I'; to its residue in
the graph I" such that I'; is obtained.

Let us first deal with the insertions of planar regular graphs. We consider here
insertions of a 4-point function, the 2-point function insertions being easier and thus
left to the reader.

Since the graph to be inserted is considered regular, one has all the external edges
breaking the same (external) face. We can thus define the afore-mentioned cyclic
ordering on these external edges (see Fig. 3). One can then establish a bijection
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Figure 3. A 4-point planar regular graph to be inserted in some Moyal vertex. Since all the
external edges are on the same face (the external) one, we can define a cyclic ordering.

between these external edges and the edges of the Moyal vertex where the insertion
will be made (the gluing data, see Fig. 4).

Figure 4. The Moyal vertex where the insertion is made has a cyclic ordering symmetry of its
edges. One can thus realize the bijection with the external edges of the graphs to be inserted.

This gluing data can either
(1) respect the cyclic ordering (see Fig. 5) or
(2) do not respect the cyclic ordering (see Fig. 6)

We now denote by
Fl Oc Fg = Zn(Fl, Fz, F)F
Iy

the insertion as defined in (3.1). The sum on the right-hand side is always over regular
graphs, and hence only insertions which respect the cycling ordering contribute.

\\2 2,
3 1
oY
3, 1
7, n

Figure 5. Insertion of a 4-point planar regular graph with gluing data respecting the cyclic
ordering.
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Figure 6. Insertion of a 4-point planar regular graph with gluing data not respecting the cyclic
ordering.

Let us illustrate all this by working out the explicit example of Fig. 7.

Figure 7. Example of a ribbon graph insertion which respects the cyclic ordering.

One can also consider some gluing data not respecting this cyclic ordering (as in
Fig. 6). The result is shown in Fig. 8. Note that in the case of commutative ¢* theory
the first graph on the right-hand side of Fig. 7 and the graph of Fig. 8 are equivalent.
Indeed, one can use the symmetry under permutation of the incoming/outgoing fields
of the local vertex to rewind the non-planar graph of Fig. 8 to the planar regular one
of Fig. 7. This is not allowed in NCQFT because of the restricted symmetry of the

Moyal vertex.

Figure 8. Result of the insertion of Fig. 7 if one uses some gluing data not respecting the cyclic
ordering.

§>
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Furthermore, in NCQFT another type of insertion is possible: one can insert a
4-point graph which is planar irregular. Not having all its external edges on the same
face, one cannot define anymore some cyclic ordering on them. One can insert such a
graph in a Moyal vertex in a way that reduces the number of broken faces and does not
increase the genus of the resulting graph. This becomes clear in the example of Fig. 9.
Inserting planar irregular graphs into planar graphs in a way that a planar (regular or

7\

2N

Figure 9. An example of an insertion of a planar irregular graph leading to a planar regular
graph. The number of broken faces is thus reduced. We have inserted a planar irregular (thus
convergent) graph in some planar regular one. The result is again planar regular.

irregular) graph is obtained is also possible for 4-point graphs with 3 broken faces,
in a similar way. This is still possible because one has two legs on a particular face.

Nevertheless this is no longer possible for 4-point planar irregular graphs with
4 faces broken by external legs (consider for example the graph of Fig. 10). This

Figure 10. An example of 4-point graph with four faces broken by external legs. Each face is
broken by a single line. For this reason, when inserting such a graph in some Moyal vertex,
the resulting graph is non-planar.

comes from the fact that one does not have anymore two legs on the same face,
whose presence, by a properly defined gluing data, could have prevented the final
graph to become non-planar. One can thus conclude that in any way such a graph is
inserted into a Moyal vertex the genus of the resulting graph increases.

As already mentioned in Section 3.1, the same situation occurs when one inserts
a planar irregular 2-point graph (like for example the non-planar tadpole graph of
Fig. 2) into some planar graphs.

We will come back to this important issue in the sequel. Note that such phenomena
are irrelevant in commutative theories, as explained above.
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We close this section by a short remark on the accompanying Lie algebras. Con-
sidering the gluing data compatible with the cyclic ordering, one has an obvious
pre-Lie algebra structure. Antisymmetrizing the pre-Lie product gives a Lie bracket

[T1, 2] =T 0 Ty =Tp 0 Iy, (3.2)

which defines a Lie algebra structure L. Consider now the graded dual of the universal
enveloping algebra of this Lie structure. This gives the renormalization Hopf algebra,
an algebra which is described in Section 3.3. The fact that the products (3.1) and
(3.2) are indeed pre-Lie and Lie products, respectively, can thus be seen as a direct
consequence of the existence of the Hopf algebra structure described in the following
section.

3.3. Definition of ribbon graph Hopf algebras. Let now the unital associative
algebra freely generated by 1PI non-commutative Feynman graphs (including the
empty set, which we denote by 1). The product m is bilinear, commutative and
given by the operation of disjoint union.

We first define a core Hopf algebra #1p;, which is a straightforward generalization
of the core Hopf algebra defined for a commutative theory in [5]. See [21], [22] for
further details. The coproduct is defined by

ArH > HQH, AT=TQIlxp+1pT+ > yaTI/y, (3.3)
yCI 1Pl

for all I' € #p;. The definitions of the counit and antipode follow directly and one
can easily check that J¢;p; is a Hopf algebra with all its cohomological richness (see
for example [5], [22]).

We then define the renormalization Hopf algebra J as follows. In position space,
let A the area of the geometric figure formed by the external points x1, x5, .... (For
a graph with two external legs, such an area is obviously non-existent, A = 0.) Let
now a specified graph be the pair (I', A). We define the coproduct

(r.A)® (/y.A), AT, A) = (T, A) @ 15 + 15 ® (', A)
+ Y nnT/v. D). A)® (T/y. 4). G4

¥ planar, regular
or irregular
Here, in the first form, the sum runs over proper subsets of I" (2- or 4-point graphs)
which form disjoint unions of 1PI planar graphs, and over all distinct disjoint unions
of 1PI planar graphs (2- or 4-point ones) in the second form. The section coefficient
n(y,IT'/y, T') coincides with the one we had before.

In the case of a 4-point function, A is the area of the parallelogram formed by the
external points x1, ..., x4 (see Section 3.4). Moreover, note the appearance of the
same area A on the right-hand side, while the area A’ is simply determined by the
external leg structure of y. Let us also remark that this construction is similar to the
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one which takes into account external structures in a commutative field theory (see
[8]), thus also justifying the presence of the area A" on the left-hand side.

Let us now show how the renormalization conditions write as a function of this
area. Firstly, recall that in a commutative theory, when one uses the BPHZ scheme,
the renormalization condition in momentum space for the 4-point function writes

G*(0,0,0,0) = —1,, (3.5)

where by r we mean renormalized (see for example [27]).

Let us emphasize that in perturbation theory one defines the low scales as the
momentum range where the denominator of the propagator (p? +m? in acommutative
model) is small. Thus p = 0 is the value which minimizes this denominator. In
the noncommutative theories presented in the previous section, this denominator is
qualitatively changed and thus the notion of scale is also modified. We denote by
p the value of the momentum which minimizes this new type of denominator. An
important fact that has to remarked is that p is now non-vanishing.

The renormalization condition (3.5) thus becomes

G (pr, pa. p3, Pa) = —Aee™ 2 Ta<o P Ouv By (3.6)

where p1, ..., P4 are the external momenta of the graph, taken to have the same order
of magnitude as p. The oscillating phase on the right-hand side of the renormalization
condition (3.6) corresponds to the area associated to the respective graph. Indeed,
the quartic interaction with Moyal product is invariant under the Langmann—Szabo
duality [24], symmetry between momentum and direct space. Thus, in position space
the oscillation on the right-hand side is proportional to the area of the respective
parallelogram.

For the sake of completeness, let us also state that the 2-point function renormal-
ization conditions are identical to the commutative ones since, as already stated above,
we do not have to deal with the supplementary notion of area. The only difference
comes again from the replacing of the vanishing momentum with the non-vanishing
p value.

In the rest of the paper, in order to simplify the notations, we will not further keep
track explicitly of the areas A or A’.

The coproduct defined here allows for irregular subgraphs on the left. It is thus
possible to take account of the finite renormalizations which come with such sub-
graphs. For the renormalization of the proper divergent graphs in our theory it suffices
to divide by an (co)-ideal which eliminates irregular graphs as described below.

In the commutative case, the core Hopf algebra #¢;p; contains the renormalization
Hopf algebra # as a quotient algebra (see [5], [21]). This holds similarly here, before
and after division by that (co)-ideal.

Furthermore, let us remark that the renormalization coproduct (3.4) is conceptu-
ally different from the core coproduct (3.3), both in the commutative or the noncom-
mutative case. One can find (ribbon) graphs which have non-trivial coproducts in the
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core Hopf algebra and which are in the same time primitive elements in the renormal-
ization Hopf algebra. Indeed, the core Hopf algebra stores more information than the
renormalization one (for a more detailed analysis of this aspect in the commutative
setting, the interested reader is again referred to [5], [21]).

Now let the counit be

e: H > K, e(lg)=1, eI) =0,
for all I" # 1. Finally the antipode is given recursively by
S:H > H, Slxg)=lg, SC)=-T-=>Y Sy)'/y,
Y
with the sum taken from the definition of the coproduct.
Let us emphasize that the factorization phenomena appearing in the definition

(3.4) of the coproduct A corresponds to the renormalizability proved in [14].
We can thus state the main result of this section:

Theorem 3.2. The pair (#, A) is a Hopf algebra.

We call ker ¢ the augmentation ideal. Note that the quantum world, i.e., all graphs
containing loops, belong to the augmentation ideal.
Let the projection

P:J —kere, P =id— lge

and
aug®k =(PQP---® P)Ak_l.
We define
T g
to be the augmentation degree.
Let us also denote by
||

the number of independent loops of some graph T".
The 1PI graphs I provide the linear generators 6r. The Hopf algebra is an algebra,
the free commutative (but not co-commutative) algebra of these generators. We write

Hiin = span(dr).

Note that, as in the commutative case, one can also define a Hopf algebra #; of
decorated rooted trees (see for example [3] or [20]). Furthermore, as explained in
[33] the formal definition of the Bogolyubov subtraction operator remains the same
as in the commutative field theoretical setting.
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3.4. More on “Moyality” or non-local renormalization. We give now some ad-
ditional explanations on the coproduct rule of Section 3.3. The Moyal vertex is no
longer local but is parallelogram-shaped. Using the definition of the Moyal product,
the ¢** vertex writes

4
/ d*xg* () = [ TT d*xid(i)8r1 — x2 + x3 — xg)e 175N Ces )
i=1

(3.7)

4
= [ [1 d*xip(xi)8(x1 — x2 + x3 — x4)e' F1AX2HX3AX8)
i=1

where x A y = 2xO®7!y. As already stated in Section 3.3, the oscillation is propor-
tional to the area of the parallelogram.

The propagator of the Grosse—Wulkenhaar model (2.2) writes

1 o0 52 _Se—»?_ 2_,2
ey ZW/O do o€ 2 ma TRy (3

where © = 2071Q. Note that propagator has the same type of exponential decay in
(x — y) as the commutative propagator since in the short-distance regime sinh ¢ and
tanh « behaves like . Moreover, the term in (x 4 y) is the one responsible for the
Grosse—Wulkenhaar breaking of translation-invariance. One can further define the
short and long variables

Uu=y—x, v=y+x

such that the propagator (3.8) rewrites

Q S _u? @) 2

1 o0
C(u,v) = W/o do —° ¢ ama— 2 anhav?-m?a (3.9

Let us now consider into detail the behaviour of a planar 4-point function. We
focus on the example of the 1-loop graph of Fig. 11 (where we use a non-local vertex
representation instead of the ribbon graph representation used in the rest of the paper)
and we follow [15], where a demonstration at any order in perturbation theory has
been given.

Figure 11. A planar regular 4-point graph in the Moyal ¢* model.
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The Feynman amplitude to analyze writes

/dxl ce dX4dy1 .. .dy4¢(x1) .. .¢(X4)

8(x1 —x2+ y2 — y1)8(y3 — y4 + x3 — x4)

C(y1,y3)C(y2, y4)el(x1/\x2+y2/\y1)el(Y3/\J’4+X3/\x4)’

(3.10)

where we have used the second form of (3.7) to express the Moyal oscillating phase
of the two vertices. Note that, as in the commutative case, the integral above has to
be considered in the short-distance (high momenta) regime for the internal lines. As
above, we introduce the set of short and long variables associated to the graph:

Ur=y3—JYy1, V1 =Yy3+Y1, Uz=Y2—Y4, U2 =Y4+ )2. (3.11)

Conversely, this writes

yi=3i—u), ya=3W2a+uz). yz=30u1+v1). ys=32—u).

We perform the change of variables

1., y4) = (U1, v1,U2,02)

and integrate over v; thanks to the first of the §-functions in (3.10). After some
algebra, the Feynman amplitude becomes

/dxl coodxgdurdurdvad(xy) ... dp(x4)8(x1 — X2 + x3 — X4 + Uy + us)

C(u1,2(x1 — x2) 4 1 + U 4 v2)C (uy, vp)e' F1/A¥2FX3/x)

et(%(xz—xl)/\uz—%ul Auz—%ul /\vz+%u2/\v2))
9

where we have dropped the inessential constant coming from the change of variable
(3.11).
The amplitude rewrites as

/ dxy... dX4du1du2dv2¢(x1) . ¢(X4)8(X1 — X2+ x3— x4 +1(u; + uy))

C(uy,2t(xy —x2) +up + uz + v2)C(uz, Uz)el(xll\x2+x3/\x4)

1 1 1 1
1(5t(X2—x1)Au TUIAU FUTAV2+ 5 U2 AV
e(z (v2=x1)AU2—FUIAU2=gUIAV2+5 U2 2))|t—1- (3.12)

This formula is designed such that at # = 0 all dependence on the external variables
x factorizes out of the u, v integral, giving the desired vertex form. One has then to
perform a Taylor expansion with respect to the ¢ variable: f(1) = f(0)+ fol dtf’(t).
The first term, f(0), is of the desired parallelogram-like form; furthermore, the
remainder term is proved to be irrelevant (see [15] for details).
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This is thus a straightforward generalization of the commutative situation, where
one has replaced the notion of locality of the vertex with the more involved notion
of non-local but parallelogram-shaped vertex of a Moyal field theory. The same type
of arguments also holds for the model (2.3) and so justifies the choice of coproduct
made in Section 3.3.

Let us now give some insights on the planar irregular case in order to better under-
stand why these graphs are finite and thus are not primitively divergent (and hence
do not have to be taken into consideration when defining the coproduct). As before,
we work in position space and we consider the example of an 1-loop graph, namely
the one in Fig. 12. With the conventions detailed above, the Feynman amplitude to

Ty Y1 Ty Ys

T2 Y2 T3 Ya

Figure 12. A planar irregular 4-point graph in the Moyal ¢# model.

analyze writes

/ dxy ... dxadyy ...dysp(xr)...p)8(r — X2+ y2 — y1)

8(xa — ya + y3 — x3)C(y1, y3)C(y2, ya)e F1AX2 2/ ot (XaAya+y3Ax3)
(3.13)

We perform the same change of variable (3.11) as in the planar regular case; as above,
we integrate over v (using the first of the §-functions in (3.13)). We then focus on
the variables x4 and v, which are the ones leading to an improved behaviour with
respect to the planar regular case (3.12). Thus, the factor involving these variables in
the oscillation in the final form of the amplitude is

e! (—va /\x4+%v2/\(x3 +x1—x2)) ]

This factor is different of the one found in (3.12) and when integrated against x4
and v, (taken into account the v, contribution of the propagators (3.9)) leads to an
improvement in the UV behaviour of the integral (see again [15] for details). Thus,
the Feynman integral (3.12), logarithmically divergent in the planar regular case,
becomes convergent, as announced above.

Note that this mechanism is much simpler in momentum space, where one just
has, in the planar irregular case, a supplementary oscillation factor which makes
convergent the (initially logarithmically divergent) integral.

To end this section, let us conclude that the “Moyality” principle relies on gluing
parallelograms together. The result is a new parallelogram whose area is the sum of
the two initial parallelograms if and only if the respective graph is planar regular (see
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Fig. 13 and 14, where we use again a non-local vertex representation). The remarkable
thing is that power counting requires renormalization only for these graphs!

Figure 13. A 4-point graph in the noncommutative ¢** model. The point-like vertices now
become parallelogram-shaped vertices (in position space). The Moyal vertex also has an
oscillation proportional to the parallelogram area.

-

Figure 14. When considering the short-distance (high energy) regime the two initial parallel-
ograms form a parallelogram whose area is the sum of the initial parallelograms. This is true
if and only if the graph is planar. This illustrates the principle of “Moyality”.

Let us also stress here that the proof of “Moyality” in the algebraic language
used in this paper is given in Section 5, where appropriate Hochschild 1-cocyles are
defined.

3.5. Planar irregular graphs; semi-direct structure. In this section we come back
on the issue of the 2-point planar irregular graphs, this time from the point of view
of the Hopf algebra defined in the previous section.

Proposition 3.3. The ideal #P" generated by the 1PI 2-point planar irregular Feyn-
man graphs is a Hopf ideal and coideal in J,

AN € I @ J+ H @ I, e(HPT) =0, S(HPT) © P (3.14)

Proof. Let us consider the non-trivial part of the coproduct A. We denote the interior
broken face by f. If one chooses some 2- or 4-point subgraph of I to contain the
face f, then the respective subgraph will be planar irregular and hence not primitive
divergent. Thus, all the primitive divergent subgraphs must not contain the respective
face f. This face will therefore be retrieved in the cograph, which leads to

A(HPY) € H @ HO
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Taking also the trivial part of the coproduct one obtains (3.14). Note that when
applying the coproduct on these ribbon graphs, the number of internal faces conserves
as a sum of the number of internal faces of the graph and of the cograph. O

A direct consequence of this proposition is that one can discard this planar irregular
sector (as we did in the previous section) by simply taking the respective quotient
by the (co)-ideal # /HP. This cannot however be done for the non-planar sector as
well because the non-planar sector does not form a Hopf coideal (one can easily find
some counterexamples). We can eliminate it though by working in a suitable quotient
Hopf algebra.

Furthermore, let us emphasize the fact that in Proposition 3.3 above we have dealt
with both the notion of Hopf coideal (implying the use of the coproduct A) and the
(here trivial) notion of ideal (implying the use of the product m).

We have thus established in this section three distinct Hopf algebra structures:
(1) the core Hopf algebra #;p given by (3.3),
(2) the Hopf algebra J# given by (3.4),

(3) the Hopf algebra obtained from # by diving with the (co)-ideal eliminating the
planar irregular graphs (as described above).

Let us end this section by giving the semi-direct structures of the Lie algebras
associated with the three cases above.

Proposition 3.4. The Lie algebra L is the semi-direct product of the abelian Lie
algebra Lo by L., where with respect to the three cases enumerated above one has:

(1) L. is Hypy and Lg is the empty set.

(2) L. is generated by the planar regular 2- and 4-point graphs, planar irregu-
lar 4-point graphs with two or three broken faces and Ly is generated by the
6,8, ...-point graphs (planar regular and irregular) as well as the 2-point pla-
nar irregular graphs and 4-point planar irregular graphs with four broken faces.

(3) L. is generated by the planar regular 2- and 4-point graphs, and L is generated
by the 6,8, . .. -point graphs (planar regular).

Proof. Inthe first case, there is no difference to the commutative case; the result stated
above is a straightforward consequence of the fact that vertices of any valence are
allowed to appear, as opposed to usual Feynman graphs in renormalizable perturbative
quantum field theories (see [22] for more details). The second case is the most
involved one. One expects to have the L. part generated simply by the planar regular
and irregular 2- and 4-point graphs. Nevertheless, we have seen in Section 3.2 that
the planar irregular 2-point graphs and the planar irregular 4-point graphs with four
broken faces cannot be inserted without increasing the genus (thus leading to non-
planarity). Finally, the last case is treated along the same lines as the renormalization
Hopf algebra of commutative theories (see [8]) since we deal here only with planar
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regular graphs (and with insertions respecting the cyclic ordering, as explained in
Section 3.2). ]

4. More on ribbon graphs

4.1. Symmetry factor of graphs. The symmetry factor of a graph I" is defined as
the rank of automorphism group of I". The use of ribbon graph changes the picture
with respect to the ¢* theory. One has, for example a symmetry factor of 1 for the
down (resp. up) tadpoles of Fig. 15 (resp. Fig. 16).

3

Figure 15. The down tadpole. This graph is planar regular and hence primitive. Its symmetry
factor is equal to 1.

1

!

Figure 16. The up tadpole. This graph is planar regular and hence primitive.

Proposition 4.1. The symmetry factor of a ribbon graph in NCQFT is equal to 1.
Proof. We proceed by induction on the number of loops b. We thus consider the case

b = 1. To start with, take the planar regular 4-point graph of Fig. 17, where we have
denoted, at the first vertex, the external momenta by p, and pj and the internal ones

Figure 17. An example of an 1-loop ribbon graph.

by p1 and p, (note the cyclic ordering at the vertex). In a commutative theory, this
graph’s symmetry factor is 2 since it is equivalent to the one of Fig. 18, where the
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internal momenta p; and p, have been interchanged. Nevertheless, this is no longer
true in the noncommutative setting described here because the cyclic ordering at the
vertex is not respected. Thus, the symmetry factor of the ribbon graphs of Fig. 17
and 18 are each equal to 1. This results generalize in a straightforward manner for

any 1-loop graph.
\/_\/d

1

Figure 18. Another example of an 1-loop ribbon graph.

To obtain graphs with higher number of loops, we can insert 2- and resp. 4-point
graphs in propagators and resp. Moyal vertices. Thus, if the statement is true for
some b € N it will be true for b 4 1 loops. This completes the proof. O

Let us remark that this proposition is a direct consequence of the fact that the
Moyal vertex is symmetric only under cyclic permutation of the incoming/outgoing
fields (see above). In the case of commutative field theory it is the symmetry under
the total group of permutations of the vertex that is responsible for non-unit symmetry
factors.

4.2. Permutation of external edges

Definition 4.2. Let
IT[y

be the number of distinct ribbon graphs I' which are equal upon removal of external
edges.

Let us consider the example of Fig. 19. Note that in the case of commutative ¢*
theory one has ||y = 3 for the example above (see [19]). The missing third graph
disappears because we consider only the planar regular sector of the theory.

N/
(|| %

Figure 19. An example for I'y .

14
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4.3. Number of maximal forests

Definition 4.3. The number of maximal forests maxf of a graph I' is the number of
ways to shrink subdivergencies to Moyal points such that the resulting cograph is
primitive.

Let us now give an example which illustrates the difference in calculating maxmf
with respect to the commutative ¢* graphs. The graph of Fig. 20 has a maximal
number of forests equal to two. Indeed, when the subdivergence is represented by

Figure 20. The sunshine graph, with three internal lines. Its maximal number of forests is
equal to 2.

the bubble graph formed of the internal lines 1 and 2 then the resulting cograph is the
down tadpole of Fig. 15. If the subdivergence is taken to be the bubble graph formed
of the internal lines 2 and 3 then the resulting cograph is up tadpole of Fig. 16. Finally,
if one takes the divergence to be given by the internal lines 1 and 3, then the result-
ing cograph is the “non-planar” tadpole of Fig. 21 which is not primitive. Hence, maxf

o

Figure 21. The “non-planar” tadpole obtained from shrinking the bubble graph formed by lines
1 and 3 in the sunshine graph of Fig. 20.

is equal to 2. In the case of the commutative ¢* theory, the three tadpoles above are
equivalent and thus the number of maximal forests will be equal to 3.

4.4. Number of bijections when gluing graphs; number of insertion places. We
denote by bij(y1, y2, ) the number of bijections between the external edges of y»
and adjacent edges of places pres(y,) in y; such that y is obtained.

We call (subsets of) edges and vertices of a graph places of the respective graph.
We also use the notation [y| X] for the number of insertion places of the graph X in y.

The values taken by this parameter do not change if one deals with ribbon graphs.
Let us end this section by recalling that in [19] other parameters on Feynman graphs
have been defined. All these generalize to ribbon graphs (one just needs to take care
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of the differences like the one we saw already here). We do not need in this paper
these other notions, so we do not deal with them here.

5. Hochschild cohomology in NCQFT: Moyality and Dyson—Schwinger
equations

We prove in this section that every divergent graph y without subdivergencies deter-
mines a Hochschild 1-cocyle B_{ (see below). Furthermore, any relevant graph in the
perturbative expansion is in the range of such a 1-cocyle.

We also study the Dyson—Schwinger equation as formal construction based on
the Hochschild cohomology of these Hopf algebras. Thus one can state that the
Hochschild cohomology leads the way from perturbative to non-perturbative physics.
This construction extends the one of commutative field theories (see for example [3],
[19]). Throughout this section we generally follow closely the results in [3], [20],
[19].

Before going further, let us state here that these results hold for the algebraic
structures associated to both types of renormalizable NCQFT models introduced in
Section 2.

Let us firstly recall (following [20]) some useful definitions regarding the Hoch-
schild cohomology. Let A be a bialgebra and A its coproduct. We regard linear
maps

L:A— A®"

as n-cochains. We define a coboundary map b,
b> =0,
by

n
L :=(G{d®L)o A+ Y (—1))A; o L + (=1)""'L ®1,

i=1

where A; denotes the coproduct applied to the i-th factor in A®". This defines the
cohomology of A.

Now let (B_‘i")nem be a set of Hochschild 1-cocyles on such a Hopf algebra. The
Dyson—Schwinger equation writes

o0
X =1+ ) w,A"BI(x"+1) (5.1
n=1
in #[A]. The parameters w, are scalars. One decomposes the solution as

X = > Mc, withe, € K. (5.2)

n=0
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One has to sum up on the contribution corresponding to the planar regular as well to
the planar irregular ribbon graphs since the latter sector can lead to (planar regular)
contributions when the operator B interferes (see Section 3.2). This is a major
difference with respect to the commutative case because in a commutative framework
this distinction is irrelevant and one does not has to deal with this type of phenomena.
We can illustrate this by explicitly splitting

Cn = Cy® + Cp,
where by ¢, we refer to the regular sector and by ¢, we refer to the irregular sector.

Lemma 5.1 ([3], Lemma 2.1, p. 150). The Dyson—Schwinger equation (5.1) has a
solution given by c, = 1 and

n
d
=Y onB"( > Chy - Chpyr)-
m=1 k1+tkpyp1=n—m
k;=0

Proof. Asin the commutative case (see [3]), one needs to insert the ansatz (5.2) in the
Dyson—Schwinger equation (5.1). Sorting then by powers in the coupling constant
A yields the result. Furthermore, uniqueness is obvious. The use of ribbon graphs
does not change the validity of these arguments. The only thing that is changed is
the fact that one has to sum up also on the planar irregular sector, which leads via the
operator B to planar regular contributions. (|

Let us now switch for the moment to a description in terms of decorated trees.
We denote by dec(v) the decoration and by fert(v) the fertility (i.e., the number of
outgoing edges) of the vertex v. Furthermore, the decoration weight of such a tree is
defined as the sum of the decorations of the vertices. We then define the coefficients

Dldec(v)| aec(v)[+1—fert(v))!

_ (dec(v)|+ 1)! if fert(v) < |dec(v)| + 1,
o else.

For such a decorated tree, the coefficient
[Ty (5.3)
v

can be interpreted by considering every decorated tree as an operadic object with
|dec(v)| + 1 — fert(v) inputs at each vertex v. The total number of inputs is n + 1,
where n is the decoration weight of the respective tree. The coefficient (5.3) is
the number of planar (i.e., noncommutative) embeddings of this operadic tree when
keeping the trunk (i.e., the original tree) fixed. Note that the sense of “planar” and
resp. “noncommutative” here refers to the decorated trees and not to the Feynman
graphs or resp. spacetime (as used in the rest of the paper). For an explicit example
of the interpretation above, we refer to [3].
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This type of reasoning is not dependent on the fact that the respective decorated
tree was obtained from a ribbon or an “usual” commutative Feynman graph.

Before going further let us remark that the operation of inserting graphs into
graphs can be mathematically written down in an operadic language.

Theorem 5.2 ([3], Theorem 2.2, p. 150). The elements c¢,, € K generate a Hopf
subalgebra in ¥,

n
Alen) = Y. P ®cn,
m=1

where P,f are polynomials of degree n — k in the elements cy, £ < n, given by

Py = > cI
I +"'+lk+l =n—k

Lo Clgy (5.4)

Proof. We give here an operadic proof which follows the one of [3]. Let u, some
maps in
O 4

for some space V and G(A) a formal series in A with coefficients in OU1. We denote
the identity map on V as Ty . As a variation of the Dyson—Schwinger equation (5.1)
we write down the operadic fix point equation

G) = Ty + X A" n 1 (GHEHD),

One writes G(A) = Ty + Y_; a¥vi. By induction it then follows that v; € OK+11,
Furthermore, G(A4) is a sum (with unit weights) over all maps which one obtain by
composition of some undecomposable maps jt;,.

Let us now consider the coproduct of decorated rooted trees and some monomial

ri vr]

| i

Note that this monomial lives in the PROP V®1ii+=+ri+r) _, y®r where r =
Zle ri. The number of ways such a monomial can be composed with any element
in O is
r!
_— (5.5)
ri!...r!
This is the contribution to the term in the coproduct which has v; on the right-hand
side and the given monomial on the left-hand side (because the v; sum over all maps
with unit weight). The same argument (5.5) also determines the coproduct on the cx

on the initial Dyson—Schwinger equation (5.1):

k+1)! .
P = > K+ DLn o (5.6)
rl.oogt Yt U
i1r1+~~-+i1rl=n7k - :
05i5<i5+15k
Zr[ =k—+1



278 A. Tanasi and D. Kreimer

This comes from the fact that the trees in c; are weighted by the noncommutative
(planar) product (5.3) over the vertices; the coproduct respects this planar structure.

Equation (5.6) is in agreement with (5.4). As above, these arguments apply also
in the case of NCQFT when replacing the Feynman graphs with ribbon Feynman
graphs. O

Remark 5.3. The coefficient (5.3) corresponds to the noncommutative (planar) case
while the coefficient (5.6) corresponds to the commutative (non-planar) case. Note
that, as in the proof of Theorem 5.2, the terminology “commutative” (resp. “planar’)
is related to the decorated rooted trees and not to spacetime (resp. Feynman graphs).

Let us come back to the case of the renormalization Hopf algebra of Feynman
graphs. As in [19] we define the maps from # to Hj,,

r v pY bij(y. X.T) 1 1
BY = 3 BL BL(X)= ) EoG)
+ ¥

I1/|T|=£1 redin 1XIv maxf(I") [y|X]

aug=

res(y)=r

for all graphs X in the augmentation ideal. Furthermore, we let
B (130) = . (5.8)

This definition ensures that B_]fr;r is a Hochschild closed map. This is achieved
thanks to the counting of the number of maximal forests. Thus the map B_’; is a
generalization of the pre-Lie insertion into y (see [19] for further details).

Let

g= ¥ T (5.9)
IT|=k
res(I")=r

be the sum of graphs of a given loop number and residue, and let M, be the set of
graphs such that res(I") = r for all r € R.
Following again [19], one has the following result:

o0
Theorem 5.4 ([19], Theorem 5). (i) I" =1+ Y T =1+ Y g*BY (X ),
T'eM, k=1

(i) ABY (Xp,)) = BE (Xi,) ® 1+ (d ® BX)A(Xy ),

k
(iii) A(cp) = Zo Pol’(c) ® ¢;_ j» where Pol’(c) is a polynomial in the variables
j=
c), of total degree j.

Let us also mention the important fact that the Hochschild 1-cocyle B+ above
mixes the planar irregular sector with the planar regular sector of the theory by the
mechanism showed in Section 3.2. Thus, in the result (i) above, this planar irregular
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sector has to be included in the set of graphs X , of loop number k and residue r.
This is a major difference with the case of commutative field theory.

The result (iii) ensures that the elements ¢; form a Hopf subalgebra. As it was
showed for a commutative field theory in [6], this is of particular importance in the
road towards some exact solution of the Dyson—Schwinger equation.

6. A two-loop example

To illustrate the theorems of the previous section, we completely work out here a
non-trivial two-loop example.

6.1. One loop. For the noncommutative propagator and vertex, one has

By — = B# + B+Q ;
y (6.1)
N\ NN
X _ XX Q
BY” " =B] + B .
Applying this map on the unit of the Hopf algebra of graphs 1 leads to
¢ =By (lw).
Y% N\
c1>A< = BL>A<(1,%) :
Applying (5.8) and (6.1) leads trivially to
Cli = & + <>V ’
(6.2)

X ()
Let us now go further to the more involved case of the two-loop computations.

6.2. Two loops. We first work out the easier two-loop two-point function and then
proceed with the four-point one. Using the definition (5.9), one gets

cz—%+8l+® +g+_ ©
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Applying the coproduct A on each of these ribbon graphs, one has (for the non-trivial
part):

= o I Y @),

vl Ko @ . @ 4 0
(.0 o0
8%, 0,.0,0
0,0

Putting all this together leads to

A(es) = (cl>A< +cT )T . (6.4)

Let us now focus on the more involved case of the four-point function. Using the
definition (5.9), one gets

zo K

Applying the coproduct A on each of these ribbon graphs, one has (for the non-trivial
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part):

aPO0K| _ 3 g K

)
\%w):&@m

3
Q) _ Rl
A/(><):X/<>%®§<§.

The remaining ten ribbon graphs on the right-hand side of (6.5) are treated analo-
gously, finally leading to

8 = e

(where we have used (6.2)). The results (6.4) and (6.6) are thus illustrations of
Theorem 5.4 (iii); these equations further give the expressions of the polynomials

Y4
P~ and Pl>A< .
Let us now show that each such two-loop graph lies in the image of our Hochschild

one-cocycles Bi’i. Using the definition (5.7) and computing the combinatorial
factors as indicated in Section 4, one has

=

X

+2e; )@ (6.6)

B 4 ;Oé)__(v+ ﬁ

+

BJF@(>©< + é) —(ﬂﬁ + EO;

— (6.7)
B_%OL(—@— + @7) = %(l% + ®),
Oca , 0,00,

The % coefficients above come from the computation of the permutation of external

legs, number of bijections and number of maximal forests for each of the resulting
ribbon graphs, as explained in Section 4. When adding up all this, one does not obtain
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¢, (as given by (6.3)). This comes from the fact that we have not yet included the
planar irregular sector, which gives birth through these insertions to planar regular
graphs (as explained in the Section 3.2). One has

Bé@L(Q - ;Q,

The two new graphs above belong to

(6.8)

N/
51A< (6.9)

(which corresponds to the planar irregular sector). Note that the rest of the planar
irregular graphs belonging to (6.9) does not lead to planar regular graphs when acting
upon with B_lk’i. Furthermore, one can analogously define

& = %%): (6.10)

Acting on this graph with Bi’i does not lead to a planar regular graph. Thus, adding
up (6.7) and (6.8), one obtains indeed c5—, as expected. We have thus proved that

X X

(T +cf "+ +¢1 ).

— _ pl,
¢ =B}

Let us now explicitly show the necessity of adding the irregular sector also when
writing down Theorem 5.4 (ii) at this two-loop level. In order to do this we first
consider the four planar regular graphs:

. X
QO ¢ 5% (61

Using (6.7) and the definition (3.4) of the coproduct one can write down the left-hand
side and the right-hand side of Theorem 5.4 (ii). Let us right down the contribution of
the graphs of (6.11) to the left-hand side of Theorem 5.4 (ii). One has the following
relations:
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)]

a0
= A <>7 0y

8.0

N P W®§ﬂ o 0 20 o 0

NIV Q<i§

2
(6.12)

l\.)l'—* m~

[am—

aet— Oy - aqes 2+ v)(@»)
1,0, 8,
®®IJ€+ 1,%@@ ?7 O
§;®W+ W@ég 1%e O
+;<>®?5.

l\)l'—‘ \S]

3)

A(BI*(><><)) A((Bi @)(><><)))

ﬂ
=AC )
N\ 4@
=  Qlyx+ lx® N

o O 413 e O

1 1
2 2
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)(iéé)))

284
“4)
\/
3

A(Bi’(%) = A((B;,

F
3

1
=-A
2

) \/
=%8Z®m+%m®&+<ﬂ>®ﬁ
§¢®1%§M+ Wg

'
Ke 0,100

-

+ )

S

\8)

+

(6.13)

Adding together the contributions of equations (6.12) to (6.13) one has for the
left-hand side of Theorem 5.4 (ii) the following results (corresponding to the planar

regular graphs listed in equation (6.11)):

1B orestivotls B @ o1 0 o @
A0 onitne@,1 0 o O 10,

et 00418 gl
AT UTT =S

- 2X>X<®$+EX>X®@

o9

+ 1l X 4+ -
(6.14)
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\/
3
—i—%&@lgg—}—%lgg@&-Fg%@jL‘f‘

+1¢®?@7+;gm+;wg
K. 10,0,

The right-hand side of Theorem 5.4 (ii) corresponding to the total contribution of
the planar regular sector listed in (6.11) is worked out analogously, leading to

1B orrliwol Mo @ 41 0 4 0
W onitne @210 o U 10,
e 000 118 i line O
8, 0,10, 0, =6-,,,

Y\
e == XX 0 15K O

\/
<
+%&®1x+%1x®&+%®&+&®@

Ly
B S hoo0

(6.15)
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Comparing equations (6.14) and (6.15) above one is left on the right-hand side with

%(&®@+@®¢Q). (6.16)

\/
As above, the planar irregular sector 51>A< saves the day. Indeed, when computing
the left-hand side contribution associated to this new sector one has (using (6.8))

=@ = tae VN 6.17)

1
AB}

Using again the definition (3.4) of the coproduct, (6.17) leads to

0.0
l(44447®1gg+1®4444f+ y Rlp+1® y

+§2®<$>+<$>®§l)

Let us now explicitly calculate the contribution of the new planar irregular sector

N/
51>A< to the right-hand side of Theorem 5.4 (ii). Using again (6.8) and discarding the
planar irregular graphs from the final list, one gets

0.0
I gipt10-02 4 y Rlp+1® y .

This cancels out with the left-hand side contribution of (6.18). One can thus see that
the planar irregular sector has finally led to a total contribution

\ 0 ,T.T. 0,

on the left-hand side of Theorem 5.4 (ii). This cancels out with the rest (6.16) of the
planar regular sector. Let us remark that taking into consideration the planar irregular
tadpole (6.10) does not change the situation since the insertion of this graph leads

(6.18)



Combinatorial Dyson—Schwinger equations in noncommutative field theory 287

directly to non-planar graphs which are to be discarded. We have thus completely
checked out Theorem 5.4 (ii) at the two-loop level, as announced.
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