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The Bost–Connes phase transition and unitary representations

Tyrone Crisp�

Abstract. We construct a family of unitary representations of the ax C b group Q Ì Q�
C

.
We show that this family of representations exhibits a “phase transition” analogous to that
observed by Bost and Connes [2] and then explain how these representations are related to the
equilibrium states of Bost and Connes.
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1. Introduction

In their paper [2], Bost and Connes constructed a C�-dynamical system from number-
theoretic data, and showed that this system possesses a unique equilibrium state at high
temperatures but many distinct equilibria at low temperatures. Since the publication
of [2], a number of other systems have been constructed, exhibiting a similar “phase
transition”: see the recent book of Connes and Marcolli [4] for a discussion of some
of the developments and references to others.

The purpose of this note is to describe a manifestation of the Bost–Connes phase
transition in the context of unitary representations. We construct a natural family of
unitary representations of the rational ax C b group, parametrised by the half-plane
Re z � 0. We show that this family of representations exhibits a phase transition, in
the following sense:

� The representations corresponding to Re z D 0 are one-dimensional and mutu-
ally inequivalent.

� The representations corresponding to 0 < Re z � 1 are mutually inequivalent,
irreducible and infinite-dimensional.

� The representations corresponding to Re z > 1 are all mutually equivalent
and reducible, with irreducible constituents parametrised by the Galois group
Gal.Qab;Q/.

�Partially supported by NSF DMS 0607879.
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The real part of our parameter z thus corresponds to the inverse temperature ˇ
of Bost and Connes. The imaginary part Im z is related to the time evolution on the
Bost–Connes algebra, as will be explained later in the paper.

The ax C b group that we consider is isomorphic to the semidirect product,
Q Ì Q�C, for the action of the positive rationals on Q by multiplication. Recall
the following standard procedure for producing irreducible representations of such a
group: one takes a character ' 2 bQ and a character � of the stabiliser .Q�C/' , and
induces the representation 'Ì� from QÌ .Q�C/' to QÌQ�C [9], §14. There are two
extreme cases of this construction: if ' is the trivial character, the representations
obtained in this way are one-dimensional; at the other extreme, where the stabiliser

of ' is trivial, we get Ind
QÌQ�

C

Q '. The representations constructed in this paper are,
for Re z D 0, of the former type, while the irreducible constituents for Re z > 1 are
of the latter type. The semidirect product Q Ì Q�C is not regular (in the sense of
[9]), so it also possesses irreducible representations not accessible through the above
construction; the representations we construct for 0 < Re z � 1 are of this more
exotic type.

After establishing some notation, we define in Section 2 the representations in
question, and give a precise statement of our main result. Our construction is related,
in the case z D 1, to papers of Blackadar [1] and Matthews [10]. Section 3 contains
the proof of our result, part of which relies on an argument due to Neshveyev [11].
In Section 4 we show how our construction connects, via results of Laca [7], [8], to
the equilibrium states of Bost and Connes.

This research was carried out as part of the author’s doctoral studies at the Penn-
sylvania State University, under the direction of Nigel Higson. I thank Prof. Higson
for his support and encouragement.

Notation. Our notation agrees, for the most part, with that of [2]. We refer to [5],
[13] and [3] for more details about adeles and ideles. A and A� denote, respectively,
the locally compact ring of finite adeles of Q, and the locally compact group of finite
ideles. Recall the definition of A and A� as restricted direct products over the primes,

A D Q0
p

.Qp;Zp/; A� D Q0
p

.Q�
p ;Z

�
p /:

We normalise additive Haar measure on each Qp so that Zp has measure one; the
product of these measures is a Haar measure on the additive group A, giving measure
one to the compact open subring R D Q

p Zp . Similarly, we normalise Haar measure
on Q�

p so that Z�
p has measure one; the product measure on A� is a Haar measure,

giving measure one to the compact open subgroup W D Q
p Z�

p .
Q embeds diagonally into A as a dense subring, and Q�C embeds diagonally into

A� as a discrete and co-compact subgroup. There is an “absolute value” j � j W A� !
Q�C, which may be defined as the Radon–Nikodym derivative

jaj D d.ax/

d.x/
;
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where dx is the additive Haar measure on A. Alternatively, j � j may be defined as the
product of the p-adic absolute values. One has jaj D a�1 for all a 2 Q�C, and W
is the kernel of the absolute value. In this way, we can decompose A� as the direct
product Q�C �W . Note that W Š Gal.Qab;Q/ (by the Kronecker–Weber theorem,
[3], VII, §5.7).

The Schwartz–Bruhat space �.A/ can be defined as the space of locally constant,
compactly supported, complex-valued functions on A. It is a �-algebra, under con-
volution (with respect to additive Haar measure) and the involution f �.x/ D f .�x/.
�.A/ is a direct limit of finite-dimensional spaces, so it is nuclear in the direct-limit
topology, and every linear functional is continuous.

The additive group A is (non-canonically) self-dual. We fix an identification
A Š yA as follows. For each prime p, let  p be a character on Qp that is trivial on
Zp but non-trivial onp�1Zp . Then ´ N

p  p is a character of A, and we associate
to each a 2 A the character  a W x 7!  .ax/. The Fourier transform arising from
this identification, Of .x/ D R

A
f .y/ .xy/ dy, is a linear automorphism of �.A/,

and our character  was chosen so that this automorphism fixes the characteristic
function fR of R.

2. The phase transition

We will construct representations of the “ax C b group”

PC
Q D

² �
1 b

0 a

�
j a 2 Q�C; b 2 Q

³
:

This group embeds into the adelic ax C b group,

PA D
² �
1 b

0 a

�
j a 2 A�; b 2 A

³
:

PA has a natural action on A, by affine transformations, giving rise to a linear
representation on �.A/, �

1 b

0 a

�
f .x/ D f .ax C b/:

The group PA is not unimodular: its modular function is
�

1 b
0 a

� 7! jaj. Twisting the
above representation by the complex powers of this function, we obtain a family of
representations ˛z parametrised by z 2 C. In order to make our parametrisation
agree with that of [2], we define

˛z

�
1 b

0 a

�
f .x/ D jaj1� z

2f .ax C b/:
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This is a standard construction in representation theory: whenever a groupG acts on a
spaceX admitting a quasi-invariant measure, one obtains a family of (not necessarily
unitary) representations of G on an appropriate space of functions on X , by twisting
the usual representation by the complex powers of the Radon–Nikodym derivative.
See, for example, the construction of the principal and complementary series for SL2

in [5], Chapter 2, §3.
We first describe which of the representations ˛z are unitarisable, in the sense that

�.A/ admits a non-trivial (but possibly degenerate), positive, ˛z-invariant hermitian
form.

Lemma 2.1. If Re z < 0, ˛z is not unitarisable.
If Re z � 0, then ˛z is unitarisable, and any two unitarisations of ˛z are equiv-

alent. If Re z D 0, the corresponding unitary representation is one-dimensional. If
Re z > 0, the representation is infinite-dimensional.

The proof is given in the next section.
We will focus on the unitary case, Re z � 0, and for the rest of this section ˛z

denotes the unitary representation of PA given by Lemma 2.1. We consider the
unitary representations

Res˛z D ResPA

P
C

Q

˛z

of PC
Q , obtained by restricting ˛z to this subgroup.

Theorem 2.2. If Re z D 0, then Res˛z is equivalent to the one-dimensional repre-
sentation

�
1 b
0 a

� 7! ai Im z=2.
If 0 < Re z � 1, then Res˛z is irreducible and infinite-dimensional, and is not

induced by any character of Q (as described in Section 1). If z ¤ z0 in this strip,
then Res˛z and Res˛z0 are inequivalent.

If Re z > 1, then there is a direct-integral decomposition

Res˛z Š
Z ˚

W

Ind
P

C

Q

Q  w dw;

and the representations Ind w are mutually inequivalent and irreducible. In partic-
ular, Res˛z and Res˛z0 are unitarily equivalent whenever Re z, Re z0 > 1.

Remarks 2.3. (1) In the course of proving Theorem 2.2, we will see that the repre-
sentations ˛z themselves undergo a “phase transition” of a similar (albeit less drastic)
kind: ˛z is irreducible whenever Re z � 0; for Re z D 0, ˛z is one-dimensional;
for 0 < Re z � 1, ˛z is irreducible, and is not induced by any character of A; for
Re z > 1, ˛z Š IndPA

A
 .

(2) PC
Q is not closed in PA; its closure is the subgroup

A Ì Q�C D
² �
1 b

0 a

�
j a 2 Q�C; b 2 A

³
;
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and the decomposition A� Š Q�C �W gives

PA Š .A Ì Q�C/ ÌW:

From a representation-theoretic point of view, it might appear more natural to consider
the restriction of ˛z to the closed subgroup A Ì Q�C. The statement of Theorem 2.2
would remain the same – the representations ˛z are continuous, so questions about
their reducibility and equivalence have the same answers for A Ì Q�C as for its dense
subgroup PC

Q .

3. Proofs

Proof of Lemma 2.1. Fix z. Every translation-invariant hermitian form on �.A/ has
the form

hf1; f2i D D.f1 � f �
2 /

for some tempered distribution D 2 �.A/� (this follows from the kernel theorem,
as in [6], II, §3.5). If such a form is to be invariant also under the group ˛z

�
1 0
0 A�

�
,

then D must satisfy the homogeneity equation

D.f .ax// D jajRe z�1D.f .x// for all a 2 A�; f 2 �.A/: (3.1)

Weil showed in [15] that the space of distributions satisfying this equation is one-
dimensional. Moreover, the assertions about positivity and degeneracy follow from
the explicit construction of these distributions described in [15]. In particular, for
Re z D 0 the distribution in question is additive Haar measure, or in other words the
Fourier transform of the Dirac distribution at 0, and so the resulting inner product is
degenerate on a subspace of codimension 1.

The assertion of Theorem 2.2 in the case Re z D 0 is now easily dealt with: the
map �.A/ ! C given by integration with respect to Haar measure establishes a
unitary equivalence between Res˛z and the given one-dimensional representation.

For each z with Re z > 0, let us fix a choice of ˛z-invariant inner product on
�.A/ by requiring that the characteristic function fR of R be a unit vector. From
now on, ˛z will denote the corresponding unitary representation.

We turn to the proof of Theorem 2.2. Rather than work with the representa-
tions ˛z directly, it will be convenient to consider a family of unitarily equivalent
representations, which we now define.

For each ˇ > 0, let �ˇ be the regular Borel measure on A characterised by the
properties

(1) d�ˇ .ax/ D jajˇ d�ˇ .x/ for every a 2 A�,

(2) �ˇ .R/ D 1.
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(Note that each �ˇ is the Fourier transform of a distribution satisfying (3.1) with
ˇ D Re z. The existence and uniqueness of such a measure thus follows from [15].)

For each z 2 C with Re z > 0, define a unitary representation Ǫz of PA on
L2.A; �Re z/ by

Ǫz

�
1 b

0 a

�
f .x/ D jaj�z=2 x .a�1xb/f .a�1x/:

A routine calculation shows that, under our choice of normalisations, the Fourier
transform �.A/ ! �.A/ implements a unitary equivalence between ˛z and Ǫz .

Theorem 2.2 will be proved as a consequence of the following lemma, which is a
generalisation of [11], Proposition, with a similar proof (cf. also [2], §7).

Lemma 3.2. Suppose that 0 < ˇ � 1. For each w 2 C with Rew � 0, let Hˇ;w

denote the subspace ofL2.R; �ˇ / consisting of functions f with f .ax/ D a�wf .x/

for all positive integers a. Then

dimHˇ;w D
´
1 if w D 0;

0 otherwise.

Proof. The case w D 0 was shown by Neshveyev in [11]. The same proof applies,
with mostly cosmetic changes, to the casew ¤ 0. Instead of reproducing Neshveyev’s
argument here, let us point out only that part which is responsible for the difference
between the two cases.

Following Neshveyev, one finds that Hˇ;w D 0 if and only if

lim
t!1C

L.�; t C xw/
�.t/

D 0

for all Dirichlet characters �, where L is the corresponding Dirichlet L-function and
� is Riemann’s function. Elementary properties of Dirichlet series (as explained in
[12], VI, §3, for instance) imply that if w ¤ 0, the numerator in the limit remains
bounded, while the denominator diverges. So the limit is equal to zero for all �when
w ¤ 0.

(Note that the same conclusion is not valid when w D 0 and � is a principal
character: in this case both the numerator and the denominator have a simple pole at
t D 1.)

Proof of Theorem 2.2. We already took care of the case of Re z D 0 above.
Suppose 0 < Re z � 1. Any bounded operator on L2.A; �Re z/ commuting with

Ǫz

�
1 Q
0 1

�
is given by pointwise multiplication by some function f 2 L1.A; �Re z/

(because Q is dense in A). If such an operator is to commute with Ǫz

�
1 0
0 Q�

C

�
, we

must have f .ax/ D f .x/ for all a 2 Q�C. Any such function is determined by its
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restriction to R, and Lemma 3.2 then implies that f is a constant, and so Res˛z is
irreducible.

Similarly, if t 2 R, then any intertwining operator from Res˛z to Res˛zCit is
given by an element of HRe z;�it=2, so Lemma 3.2 implies that these two representa-
tions are inequivalent unless t D 0.

Lemma 3.2 also implies that for 0 < ˇ < ˇ0 � 1, the measures �ˇ and �ˇ 0 are
inequivalent. Indeed, if they were equivalent then we would have

d�ˇ 0

d�ˇ

ˇ̌̌̌
R

2 Hˇ;ˇ 0�ˇ D 0:

If z, z0 have 0 < Re z < Re z0 � 1, it follows that Res˛z and Res˛z0 are inequiv-
alent (they are even inequivalent as representations of Q). To finish with the case
0 < Re z � 1, we note that the representation Res˛z cannot be obtained by the
“standard procedure” described in Section 1 because its restriction to Q corresponds
to a properly ergodic measure class on yQ.

Now suppose that Re z > 1. In this case the measure �Re z is concentrated on the
subset A� � A [11], and the operator

Iz W L2.A; �Re z/ ! L2.A�/; Izf .x/ D jxjz=2f .x/;

is a positive multiple of a unitary. Iz intertwines Ǫz with the unitary representation
IndPA

A
 . Transitivity of induction, coupled with the decomposition

PA Š PC
Q ÌW;

now implies that

Res˛z Š
Z ˚

W

Ind
P

C

Q

Q  w dw:

Each of the representations appearing in this direct integral is irreducible, because
no element of Q�C fixes any  w . They are all mutually inequivalent, because the
characters  w and  w0 lie in distinct Q�C-orbits whenever w ¤ w0.

4. KMS states on the Bost–Connes C�-algebra

We now briefly explain how the representations appearing in Theorem 2.2 are related,
via work of Laca [7], [8], to the results of [2]. The arguments become most trans-
parent when considered from the adelic point of view, and we begin by recalling this
perspective on the Bost–Connes algebra and its representations.

Bost and Connes consider the Hecke C�-algebra C �.PC
Q ; P

C
Z / associated to the

almost normal subgroup PC
Z D �

1 Z
0 1

� � PC
Q . A general result of Tzanev [14],

which was observed in this particular case by Laca [8], implies that the Bost–Connes
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C�-algebra is isomorphic to the full corner of the group C�-algebra C �.AÌQ�C/ de-
termined by the projection e1 ˝fR 2 Cc.Q�C �A/ (here e1 denotes the characteristic
function of 1 2 Q�C, and fR the characteristic function of R � A).

Suppose that � is a unitary representation of PC
Q on a Hilbert space H . If this

representation extends to a unitary representation of AÌQ�C, then it can be integrated
to a �-representation of C �.A Ì Q�C/, and then compressed by �.e1 ˝fR/ to obtain
a �-representation of the Hecke algebra C �.PC

Q ; P
C
Z / on the space �.e1 ˝fR/H D

H R of R-fixed vectors. We use the same symbol to denote both the original unitary
representation of PC

Q , and the resulting representation of C �.PC
Q ; P

C
Z /.

Let � denote the right-regular representation of Q�C, which we view as a repre-
sentation of PC

Q via the quotient map PC
Q ! Q�C. For each z 2 C with Re z > 0,

consider the unitary representation � ˝ Res˛z of PC
Q . These representations all

extend to A Ì Q�C and so induce �-representations of the Bost–Connes C�-algebra.
The function e1 ˝fR may be viewed as a vector fz in the representation �˝ Res˛z ,
and our choices of normalisation ensure that fz is a unit vector, fixed by the subgroup
R � A Ì Q�C.

Proposition 4.1. For each z with Re z > 0, let 'z denote the unique W -invariant
KMSRe z state on C �.PC

Q ; P
C
Z /. The GNS representation of 'z is equivalent to the

representation �˝ Res˛z , with fz corresponding to the distinguished cyclic vector.
In particular,

'z.a/ D h�˝ Res˛z.a/fz; fzi:

Proof. Let Ofz denote the vector e1 ˝ fR in `2.Q�C/˝L2.A; �Re z/; the notation is
justified by the fact that the equivalence ˛z ! Ǫz fixes fR.

Let�z denote the unitary representation of A associated with the measure�Re z on
A D yA (in other words, �z is the restriction from PA to A of the representation Ǫz).
Results of Laca ([7], Theorem 34, [8], Proposition 3.1) imply that the W -invariant
KMSRe z state on C �.PC

Q ; P
C
Z / is the vector state in the representation

Ind
AÌQ�

C

A
�z W C �.PC

Q ; P
C
Z / ! B.`2.Q�C/˝ L2.A; �Re z//

R

corresponding to the R-fixed cyclic unit vector Ofz .
We therefore seek a unitary operatorU on `2.Q�C/˝L2.A; �Re z/ that intertwines

the representations Ind
P

C

Q

Q �z and �˝ Res Ǫz , and fixes the vector Ofz . The formula

Uf .q; x/ D q�z=2f .q; qx/;

for q 2 Q�C, x 2 A and f 2 Cc.Q�C � A/, defines such an operator.

We conclude with some remarks on the interpretation of our parameters Re z and
Im z in the thermodynamical setting of Bost and Connes. Proposition 4.1 shows how
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our parameter Re z may be identified with the inverse temperature ˇ of [2]. The
parameter Im z corresponds to the time evolution on the Bost–Connes algebra, in the
following sense. Denoting by f�t j t 2 Rg the one-parameter automorphism group
of C �.PC

Q ; P
C
Q / defined in [2], and viewing each Res˛z as a representation of this

C�-algebra, we have
Res˛z B �t D Res˛zC2it :

The assertions in Theorem 2.2 regarding (in)equivalence of the representations Res˛z

and Res˛zCit thus admit the following “dynamical” formulation:

Proposition 4.2. If Re z > 1, then the representation Res˛z can be incorporated into
a covariant representation .Res˛z; U/of theC�-dynamical system .C �.PC

Q ;P
C
Z /; �/.

If 0 < Re z � 1, then Res˛z does not admit such a covariant extension.

(By contrast, the representation � ˝ Res˛z can always be incorporated into a
covariant representation since it is the GNS representation for the � -invariant state
'z .)
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