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The Picard group of a noncommutative algebraic torus
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Abstract. Let Aq ´ Chx˙1; y˙1i=.xy � qyx/. Assuming that q is not a root of unity,
we compute the Picard group Pic.Aq/ of the algebra Aq , describe its action on the space
R.Aq/ of isomorphism classes of rank 1 projective modules and classify the algebras Morita
equivalent to Aq . Our computations are based on a ‘quantum’ version of the Calogero–Moser
correspondence relating projective Aq-modules to irreducible representations of the double
affine Hecke algebras Ht;q�1=2.Sn/ at t D 1. We show that, under this correspondence, the
action of Pic.Aq/ on R.Aq/ agrees with the action of SL2.Z/ on Ht;q�1=2.Sn/ constructed
by Cherednik [C1], [C2]. We compare our results with the smooth and analytic cases. In
particular, when jqj ¤ 1, we find that Pic.Aq/ Š Auteq.Db.X//=Z, where Db.X/ is the
bounded derived category of coherent sheaves on the elliptic curve X D C�=Z.
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1. Introduction

Let Chx˙1; y˙1i be the group algebra of the free group on two generators x and
y, with coefficients in C. We define Aq ´ Chx˙1; y˙1i=.xy � qyx/ for a fixed
parameter q 2 C. Unless specified otherwise, we will assume in this paper that

qn ¤ 1 for all n 2 N: (1)

Under this condition, we will (a) classify finitely generated (right) projective modules
of Aq , (b) compute the Picard group Pic.Aq/ and describe its action on projective
modules, and (c) classify the algebras Morita equivalent to Aq .

There are several reasons to clarify these questions. First, Aq may be thought of as
a ring of functions on a noncommutative algebraic torus. Now, for a noncommutative
smooth torus Aq , the answers to (a), (b) and (c) are well known and well understood
(mostly thanks to the work of Rieffel, see [R1], [R2], [R3], [K1]). Geometrically, the
algebras fAqg arise as deformations of the ring C1.T / of smooth functions on the
two-dimensional torus T D S1 � S1, and as such, these are fundamental examples
of noncommutative differentiable manifolds in the sense of A. Connes [Co]. On the
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other hand, algebraically, Aq is just a certain completion of Aq , and it is natural to ask
how the projective modules, Picard groups, Morita equivalences, etc. behave under
this completion. One might expect that Aq is ‘too rigid’ compared to Aq , and the
answers to the above questions are trivial. We will demonstrate that this is not the
case, and although the properties of Aq and Aq are indeed very different, the answers
to (a), (b) and (c) in the algebraic case are at least as meaningful and interesting as in
the smooth case.

Second, Aq may be viewed as a ‘quantum’(or multiplicative) Weyl algebra. Under
the assumption (1), the ring-theoretic properties of Aq are indeed similar to those of
the usual Weyl algebra A1 D Chx; yi=.xy �yx �1/ (see [J]). From this perspective,
our answer to .a/ should not be very surprising. It is known that the rank one projective
modules of A1 are isomorphic to ideals and as such, can be parametrized by certain
smooth algebraic varieties Cn called the Calogero–Moser spaces (see [BW1], [BW2],
[BC]). Similarly, the ideals of Aq are described by a certain ‘quantum’ version of
the Calogero–Moser spaces C

q
n (see Theorem 1), and, in fact, a similar geometric

description exists for more general classes of noncommutative algebras (see, e.g.,
[KKO], [NB], [NS]). What is surprising is the fact that the classification of ideals of
Aq allows one to compute the Picard group Pic.Aq/ of the category of all Aq-modules.
By contrast, the Picard group Pic.A1/ of the Weyl algebra was computed by Stafford
who showed that Pic.A1/ D Aut.A1/, using reduction to fields of characteristic
p > 0 (see [St]). A different proof of Stafford’s result can be found in [CH]: it relies
on Dixmier’s classification [D] of maximal commutative subalgebras of A1. Both
proofs are fairly involved and indirect; in particular, they do not follow from the results
of [BW1], [BW2], [BC]. To the best of our knowledge, the group Pic.Aq/ has not
appeared in the literature: we therefore consider its computation (Theorem 3) together
with a related Morita classification (Theorem 5) as the main results of this paper.

Third, the quantum Calogero–Moser spaces C
q
n parametrizing the ideals of Aq

can be defined as the spectra of spherical subalgebras of Cherednik’s double affine
Hecke algebra (DAHA) H1; q�1=2.Sn/ (see [O]). Our results then imply that there is a
natural bijection between the set of equivalence classes of irreducible representations
of H1;q�1=2.Sn/ amalgamated for all n and the set R.Aq/ of isomorphism classes
of ideals of Aq . In the rational case, the analogous bijection was first discovered in
[EG], and its proof was given in [BCE]. In this paper, we will extend the construction
of [BCE] to the quantum case (see Section 5). A new interesting observation is
that, under the Calogero–Moser correspondence, the action of Pic.Aq/ on R.Aq/

corresponds to the action of SL2.Z/ on H1;q�1=2.Sn/ constructed (and exploited in
many applications) by Cherednik [C1], [C2].

Finally, Aq is a fundamental noncommutative algebra which plays a role in many
areas of mathematics and physics. As a specific motivation to clarify questions (a),
(b) and (c) for Aq , we mention a recent appearance of this algebra in knot theory: it
is shown in [FGL] (see also [G]) that the classical invariants of knots – the so-called
A-polynomials – can be naturally quantized, and the corresponding quantizations are
given by certain noncyclic ideals of Aq . Comparing these ideals for different knots
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is not an easy problem. Having a general classification and canonical forms for all
ideals of Aq should be helpful in this context.

As another application, we should mention the link to integrable systems. The
quantum Calogero–Moser spaces C

q
n first appeared in [FR] in connection with 2D

Toda hierarchy and the Ruijsenaars–Schneider system; since then they were discussed
in numerous papers on integrable systems. By analogy with the Weyl algebra (see
[W1], [BW1]), the ideals of Aq are related to algebraic solutions of these systems,
which in turn can be described in terms of q-version of the adelic Grassmannian of
G. Wilson [W1], [W2] (see [CH1], [CN] and [BC1] for more details).

The paper is organized as follows. In Section 2, we define the Calogero–Moser
spaces C

q
n and give our classification of ideals of Aq . In Section 3, we compute the

Picard group Pic.Aq/ and discuss some implications. In Section 4, we describe the
action of Pic.Aq/ on the Calogero–Moser spaces and classify the algebras Morita
equivalent to Aq in terms of this action. In Section 5, we explain the relation between
the DAHA and Aq and outline proofs of our main results. Finally, in Section 6, we
compare the properties of Aq with the properties of noncommutative smooth tori Aq .
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2. The Calogero–Moser correspondence for Aq

Under the assumption (1), the algebra Aq is a simple Noetherian domain of homo-
logical dimension 1 (see [J], Theorem 2.1). In that case, it is known that every right
projective module of rank � 2 is free, while every rank one projective module is
isomorphic to a right ideal of Aq (see [We], Theorem 1). Thus the problem of clas-
sifying projectives over Aq reduces to classifying the right ideals of Aq . Below, we
will give an explicit classification of such ideals similar to the classification of ideals
in the Weyl algebra A1.

For an integer n � 1, let zCq
n denote the space of matrices

f.X; Y; i; j / j X; Y 2 GLn.C/; i 2 Cn; j 2 Hom.Cn; C/g;
satisfying the equation

qXY � YX C ij D 0:
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The group GLn.C/ acts on zCq
n in the natural way:

.X; Y; i; j / 7! .gXg�1; gYg�1; gi; jg�1/; g 2 GLn.C/; (2)

and this action is free for all n. We define the n-th Calogero–Moser space C
q
n to

be the quotient variety zCq
n =GLn.C/ modulo (2). C

q
n are smooth irreducible affine

symplectic varieties of (complex) dimension 2n (see [O]). We set Cq ´ F
n�0 C

q
n ,

assuming that C
q
0 is a point.

In a slightly more invariant way, we may think of Cq as the space of (isomorphism
classes of) triples .V; X; Y /, where V is a finite-dimensional complex vector space,
and X , Y are automorphisms of V satisfying the condition

rk.qXYX�1Y �1 � 1V / D 1: (3)

Now, for each n � 0, there is a natural action on C
q
n by the lattice Z2:

.V; X; Y / 7! .V; qkX; qmY /; .k; m/ 2 Z2:

We write xCq
n ´ C

q
n =Z2 for the corresponding quotient spaces, and set xCq ´F

n�0
xCq

n .
Let Rq ´ R.Aq/ be the set of isomorphism classes of right ideals of Aq . Our

first main result is the following

Theorem 1. There is a natural bijection ! W xCq ��!� Rq .

As in the Weyl algebra case, the bijection ! can be described quite explicitly; it is
induced by the map Cq ! Rq , assigning to .V; X; Y / 2 Cq the class of (isomorphic)
fractional ideals

Mx D det.X � x1V / � Aq C ��1 det.Y � y1V / � Aq; (4)

My D det.Y � y1V / � Aq C � det.X � x1V / � Aq; (5)

where � and ��1 are given by the following elements in the quotient field of Aq:

� D 1 C j.qY � y1V /�1.X � x1V /�1i; (6)

��1 D 1 � j.X � qx1V /�1.Y � y1V /�1i:

Theorem 1 thus implies that the right ideals of Aq (and hence rank one projective
Aq-modules) are classified by the conjugacy classes of pairs of matrices .X; Y / 2
GL.V / � GL.V / satisfying (3). Furthermore, every ideal of Aq is isomorphic to
one of the form (4)–(5), with pairs .X; Y / and .X 0; Y 0/ corresponding to isomorphic
ideals if and only if .X 0; Y 0/ � .qkX; qmY / for some k, m 2 Z. As mentioned in the
Introduction, this result is similar to that for the Weyl algebra A1, and in the existing
literature there are several different proofs (see [BW1], [BW2], [BC], [BCE]). Each
of these proofs can be extended to the quantum case. In Section 5, we will outline a
proof generalizing the arguments of [BC], [BCE]: the advantage of this approach is
that it exhibits an interesting connection between Aq and the representation theory of
double affine Hecke algebras H1;q�1=2.Sn/, which may be of independent interest.

We now discuss some interesting implications of Theorem 1.
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3. The Picard group of Aq

We begin by introducing notation. Being a Noetherian domain, the algebra Aq can
be embedded into a quotient skew-field, which we denote by Q. The spaces of
nonzero (Laurent) polynomials in x and y form two Ore subsets in Aq: we write
C.x/Œy˙1� � Q, resp. C.y/Œx˙1� � Q, for the corresponding localizations. Every
element a 2 C.x/Œy˙1� can be uniquely written in the form a D P

m�i�n ai .x/yi ,
with ai 2 C.x/ and am, an ¤ 0. We call an.x/ the leading coefficient of a, and the
difference n � m the degree of a.

Lemma 1. Every ideal M in Aq is isomorphic to a fractional ideal Mx satisfying

(1) Mx � C.x/Œy˙1� and Mx \ CŒx˙1� ¤ f0g;

(2) the leading coefficients of all elements in Mx belong to CŒx˙1�;

(3) Mx contains an element with a constant leading coefficient.

If Mx and M 0
x are two fractional ideals of Aq , both isomorphic to M , and satis-

fying (1)–(3), then there is a unit u 2 Aq such that M 0
x D u Mx .

Proof. The proof is essentially the same as in the Weyl algebra case (see [BW2],
Lemma 5.1). First, by [St], Lemma 4.2, every ideal class of Aq contains a representa-
tive M such that M \ CŒx˙1� ¤ f0g. The leading coefficients of all the elements of
M form an ideal in CŒx˙1�; taking a generator p.x/ 2 CŒx˙1� of this ideal, we set
Mx ´ p�1M . It is easy to see that Mx thus defined satisfies the properties (1)–(3).

Now, if M 0
x is another (fractional) ideal isomorphic to M , we have M 0

x D �Mx

for some � 2 Q. If both Mx and M 0
x satisfy .1/, then � must be a unit in C.x/Œy˙1�

and hence has the form � D f .x/yk , with f .x/ 2 C.x/ n f0g and k 2 Z. Property
.2/ forces f .x/ to be polynomial, i. e. f .x/ 2 CŒx˙1�, and then .3/ implies that
f .x/ D ˛ xm for some ˛ 2 C� and m 2 Z. Thus � D ˛xmyk is a unit in Aq .

Given any (fractional) ideal M � Q of Aq , its endomorphism ring is naturally
identified with a subring of Q:

EndA.M/ D f� 2 Q j �M � M g:

This yields a group embedding AutA.M/ ,! Q�, whose image we denote by U.M/.
Thus U.M / D f� 2 Q� j �M D M g. In particular, if M D Aq , we get the group
of units U.Aq/ of Aq canonically embedded in Q�.

Lemma 2. Let Mx be a fractional ideal of Aq satisfying the properties (1)–(3) of
Lemma 1. Then U.Mx/ � U.Aq/. Moreover, if M 0

x Š Mx is another represen-
tative satisfying (1)–(3), we have U.M 0

x/ D U.Mx/ in U.Aq/. Thus the subgroup
U.Mx/ � U.Aq/ depends only on the class of Mx in Rq .
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Proof. The fact that U.Mx/ � U.Aq/ is immediate from (the last statement of)
Lemma 1. It implies that every element in U.Mx/ has the form � D ˇxkym, where
ˇ 2 C�, k; m 2 Z. Using the commutation relations of Aq , it is easy to see that
u�u�1 D Q̌xkym for any u 2 U.Aq/. Hence uU.Mx/u�1 D U.Mx/, which proves
the second claim of the lemma.

Remark. Reversing the roles of x and y in the above lemmas, we obtain another set
of distinguished representatives My � C.y/Œx˙1� for any given class in Rq . The
ideals (4) and (5) appearing in Theorem 1 are examples of such representatives.

The next result is an important consequence of Theorem 1.

Theorem 2. Let M be a noncyclic right ideal of Aq . Then AutA.M/ Š C�.

Proof. First of all, note that C� � U.M/ � Q for any ideal M . Now suppose
that AutA.M/ © C�. Choose a representative Mx in the isomorphism class of M

satisfying the conditions (1)–(3) of Lemma 1. Since AutA.Mx/ Š AutA.M/ © C�,
we have C� ¨ U.Mx/.

By Theorem 1, we may assume that Mx has the form (4) and take My to be the
second representative (5). The ideals Mx and My are related by My D �Mx , where
� D �.x; y/ 2 Q is defined in (6). It follows that

� 2 U.Mx/ () ����1 2 U.My/:

Now choose � 2 U.Mx/nC�. Without loss of generality, we can write � D xkyl for
some .k; l/ ¤ .0; 0/. Then ����1 D ˛xcyd for some .c; d/ ¤ .0; 0/ and ˛ 2 C�.
Whence ��m��1 D .˛xcyd /

m
for every m 2 Z. It follows that, for any m 2 Z,

there exists ˛m 2 C� such that

��m��m��1 D ˛mxm.c�k/ym.d�l/: (7)

If .k; l/ ¤ .c; d/, we may choose m so that maxfm.c � k/; m.d � l/g > 0. For
such m, the equation (7) clearly does not hold. Therefore we have .c; d/ D .k; l/.
Further, by comparing the constant terms of the Laurent series expansions on both
sides of (7) (for m D 1), we find that ˛1 D 1. Using the commutation relations in
Q, we may therefore rewrite the equation (7) for m D 1 in the form

�.x; y/ D �.qlx; q�ky/: (8)

Expanding now � into the Laurent series

�.x; y/ D 1 C P
s;r�0

asry�s�1x�r�1; asr D qsjY sX r i;

and substituting it into (8), we get

asr.1 � qk.sC1/�l.rC1// D 0 for all r; s 2 ZC:
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It follows that ars D 0 for all r , s such that k.s C 1/ ¤ l.r C 1/. Now, since
X 2 GLn.C/, the characteristic polynomial of X has a nonzero constant term. Hence
1 D Pn

pD1 cpXp for some cp 2 C. Suppose that s; r 2 ZC satisfy k.s C 1/ D
l.r C 1/. Then k and l are both nonzero. Since k.s C 1/ ¤ l.r C p C 1/ for any
p > 0, we have

asr D qsjY sX r i D
nP

pD1

cpqsjY sX rCpi D
nP

pD1

cpasrCp D 0:

This shows that asr D 0 for all s; r 2 ZC. Thus � D 1 and Mx D My D Aq . It
follows that M Š Mx is a cyclic ideal.

Now, using Theorem 1, we compute the Picard group of the algebra Aq . Re-
call that the elements of Pic.Aq/ are the isomorphism classes of invertible bimod-
ules of Aq , which are symmetric over C. There is a natural group homomorphism
� W Aut.Aq/ ! Pic.Aq/, taking � 2 Aut.Aq/ to the class of the bimodule .Aq/� ,
which is isomorphic to Aq as a right module, with left action of Aq twisted by ��1. By
[F], Theorem 1, the kernel of this homomorphism is precisely the group Inn.Aq/ of
inner automorphisms of Aq , while Im.�/ consists of those invertible Aq-bimodules
that are cyclic as right modules. Since Aq is a domain, an invertible bimodule over
Aq is just a right ideal M of Aq such that EndAq

.M/ Š Aq as C-algebras. This last
condition implies that AutAq

.M/ Š U.Aq/, so by Theorem 2, M is indeed cyclic.
Thus � is surjective, and we have

Proposition 1. The canonical sequence of groups

1 ! Inn.Aq/ ! Aut.Aq/
���! Pic.Aq/ ! 1

is exact.

With Proposition 1, the problem of computing Pic.Aq/ reduces to describing the
automorphisms of Aq . Let .C�/2 denote the direct product of multiplicative groups
of C. We define an action of SL2.Z/ on .C�/2 by

g W .˛; ˇ/ 7! .˛aˇb; ˛cˇd /; g D
�

a b

c d

�
2 SL2.Z/; (9)

and form the semidirect product .C�/2ÌSL2.Z/ relative to this action. The following
result is probably well known (see, e.g., [AD1], [AD2]).

Lemma 3. Aut.Aq/ Š .C�/2 Ì SL2.Z/.

Proof. We first recall the well-known presentation of SL2.Z/ as a quotient of the
braid group B2:

SL2.Z/ D hg1; g2 j g1g2g1 D g2g1g2; .g1g2/6 D 1i: (10)
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The braid generators of g1 and g2 correspond under (10) to the matrices

g1 D
�

1 1

0 1

�
; g2 D

�
1 0

�1 1

�
:

Now, using this presentation, it is easy to check that

g1 W .x; y/ 7! .yx; y/; g2 W .x; y/ 7! .x; yx�1/:

extends to a well-defined group homomorphism SL2.Z/ ! Aut.Aq/ of the form

g W .x; y/ 7! .˛gybxa; ˇgyd xc/;

where g 2 SL2.Z/ as in (9) and ˛g ; ˇg 2 C� are some constants depending on g.
On the other hand, there is an obvious homomorphism .C�/2 ! Aut.Aq/, mapping
.x; y/ 7! .˛x; ˇy/ for .˛; ˇ/ 2 .C�/2. These two homomorphisms fit together
giving

.C�/2 Ì SL2.Z/ ! Aut.Aq/; (11)

which is easily seen to be injective.
On the other hand, any element � 2 Aut.Aq/ takes units to units: in particular, it

maps the generators .x; y/ to elements of the form .˛ybxa; ˇyd xc/, with ˛; ˇ 2 c�
and a; b; c; d 2 Z. The invertibility of � means that ad � bc D ˙1 and the relation
�.xyx�1y�1/ D q ensures that ad � bc D 1. This proves that (11) is surjective.

Under the identification of Lemma 3, the inner automorphisms of Aq correspond
to the elements .qnx; qmyI 1/ 2 .C�/2 Ì SL2.Z/, with n; m 2 Z. Indeed, one can
compute easily that the canonical projection U.Aq/ � Inn.Aq/, u 7! Ad.u/, is
given on generators by Ad.u/ W .x; y/ 7! .q�bx; qay/, where u D ˛xayb 2 U.Aq/.
Thus, we arrive at the following theorem, which is the main result of this paper.

Theorem 3. With identification of Lemma 3, the canonical map � induces an iso-
morphism of groups

Pic.Aq/ Š .C�=Z/2 Ì SL2.Z/;

where Z is identified with the cyclic subgroup of C� generated by q.

We end this section with a side observation. Assume that jqj ¤ 1. Regarding C�
as complex analytic space, we can then identify the quotient C�=Z with a (smooth)
elliptic curve X . Let Db.X/ denote the bounded derived category of coherent sheaves
on X , and let Auteq Db.X/ be the group of (exact) auto-equivalences of this category.
Comparing our Theorem 3 with results of [Or], [ST], we get

Corollary 1. There is a natural group isomorphism

� W Pic.Aq/ ��!� Auteq.Db.X//=Z; (12)

where Z � Auteq.Db.X// corresponds to the subgroup of translation functors on
Db.X/.
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We will briefly explain how to construct the isomorphism � . Let x0 2 X be the
point corresponding to the image of 1 2 C� under the canonical projection C� � X .
By [Or] (see also [ST]), the group Auteq Db.X/ is then generated by the functors

TO; TOx0
and Rx; Lx .x 2 X/; (13)

where Lx is induced by tensoring with the line bundle O.x � x0/, Rx is the pull-
back via the automorphism X ! X , z 7! x � z, and TE denotes the Fourier–Mukai
transform with kernel

Cone.E_ � E ! ��OX /; E 2 Db.X/:

Now notice that there is the obvious homomorphism

�1 W X � X ! Auteq.Db.X//=Z; .x; y/ 7! LxRy : (14)

More interestingly, using the known relations between the functors (13) (see [ST],
Section 3d), one can easily check that g1 7! TOx0

and g2 7! TO extend to a well-
defined homomorphism

�2 W SL2.Z/ ! Auteq.Db.X//=Z : (15)

Another direct calculation shows that the maps (14) and (15) agree with each other
extending to the semidirect product .X � X/ Ì SL2.Z/. By Theorem 3, this defines
the desired isomorphism (12). It would be very interesting to find a conceptual
explanation for this isomorphism (cf. [ST], Remark 1.5). The results of [BaEG] as
well as recent papers [SV] and [Po] suggest that the existence of � may not be a mere
coincidence.

4. Morita classification

We begin by classifying the algebras Aq up to Morita equivalence within the family
fAqg and then consider the general case.

Theorem4. Under the assumption (1), the algebrasAq andAq0 areMorita equivalent
if and only if they are isomorphic, i. e., if and only if q0 D q or q0 D q�1.

Proof. The fact that Aq Š Aq0 () q0 D q˙1 follows easily from the defining
relations of Aq and Aq0 (see [J], Theorem 1.3). Now assume that Aq0 and Aq are
Morita equivalent. Then Aq0 Š EndAq

.M/ for some f. g. projective right module
M . Since Aq0 is a domain, M is isomorphic to a right ideal in Aq (see, e.g., [BEG],
Lemma 3). Since EndAq

.M/ Š Aq0 , AutA.M/ © C�. By Theorem 2, M Š Aq .
Therefore, Aq0 Š Aq , which implies that q0 D q˙1.
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Remark. Theorem 4 was first proven in [RS] by a different method. If q D e2�i� and
q0 D e2�i� 0

, with �; � 0 2 RnQ, then Theorem 4 says that A� and A� 0 are equivalent
if and only if � 0 ˙ � 2 Z. This result should be compared with a well-known Morita
classification of smooth noncommutative tori A� (see [R1]): in that case, A� and
A� 0 are (strongly) Morita equivalent if and only if � and � 0 are in the same orbit
of GL2.Z/ acting on RnQ by fractional linear transformations. Thus, unlike in the
smooth case, there are no interesting Morita equivalences between the algebras Aq

for different values of q. However, in the Morita class of each Aq there are many
non-isomorphic algebras corresponding to different orbits of Pic.Aq/ in R. We will
classify these algebras below, using Theorem 1.

We now describe an action of Pic.Aq/ on the (reduced) Calogero–Moser spaces
xCq

n . In Section 5, we will show that this action comes from a natural action of the braid
group B2 on the double affine Hecke algebra H1;� .Sn/ constructed by Cherednik in
[C2]. We begin by defining an action of Aut.Aq/ on C

q
n . With the identification of

Lemma 3, it suffices to construct two compatible group homomorphisms

f1 W .C�/2 ! Aut.Cq
n / and f2 W SL2.Z/ ! Aut.Cq

n /;

where Aut.Cq
n / denotes the group of regular (algebraic) automorphisms of C

q
n . First,

we let
f1.˛; ˇ/ W .X; Y / 7! .˛�1X; ˇ�1Y /; .˛; ˇ/ 2 .C�/2:

Next, to define the second homomorphism we will use the presentation (10): on the
braid generators, we define f2 by

g1 W .X; Y / 7! .Y �1X; Y /; g2 W .X; Y / 7! .X; YX/:

A direct calculation then shows that f2.g1g2g1/ D f2.g2g1g2/ and f2.g1g2/6 D
1 in Aut.Cq

n /. Hence, this assignment extends to a well-defined homomorphism
f2 W SL2.Z/ ! Aut.Cq

n /. It is also easy to check that f1 and f2 are compatible in
the sense that

f ´ .f1; f2/ W .C�/2 Ì SL2.Z/ ! Aut.Cq
n /:

is a group homomorphism. Now, with the identification of Theorem 3, we see that f

induces
Nf W Pic.Aq/ ! Aut. xCq

n /; (16)

which defines an action of Pic.Aq/ on each of the spaces xCq
n and hence on their

disjoint union xCq . On the other hand, Pic.Aq/ acts naturally on the space of ideal
classes Rq D R.Aq/. With these actions, we have

Proposition 2. The map ! W xCq ! Rq of Theorem 1 is equivariant under Pic.Aq/.

We will prove Proposition 2 in Section 5. Its meaning becomes clear from the fol-
lowing theorem, which gives a geometric classification of algebras Morita equivalent
to Aq .
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Theorem 5. There is a natural bijection between the orbits of Pic.Aq/ in xCq and
the isomorphism classes of domains Morita equivalent to Aq .

Proof. The map ! W xCq ! Rq assigns to a point in xCq an isomorphism class ŒM � of
ideals in Aq . Choosing a representative M in such a class and taking its endomorphism
ring EndAq

.M/ yields a domain Morita equivalent to Aq . Now a well-known result in
ring theory (see, e.g, [F], Theorem 1) says that the rings EndAq

.M/ and EndAq
.M 0/

are isomorphic iff the corresponding classes ŒM � and ŒM 0� are in the same orbit of
Pic.Aq/ in Rq . Since, by the Morita Theorem, every domain equivalent to Aq is of the
form EndAq

.M/, Theorem 5 follows immediately from Theorem 1 and Proposition 2.

Remark. If D is an algebra Morita equivalent to Aq , which is not a domain, then
D Š Mr.Aq/ for some r � 2. This follows from the fact that all projective modules
over Aq of rank r � 2 are free.

In general, the domains Morita equivalent to Aq seem to have a complicated
structure: they are not easy to describe in terms of generators and relations, like Aq .
However, their automorphism groups can be described geometrically, in terms of the
action of Pic.Aq/ on xCq . Precisely, we have the following consequence of Theorem 1
and Theorem 2.

Proposition 3. Let M be a noncyclic right ideal of Aq , and let E D EndAq
.M/

denote its endomorphism algebra. Then AutC.E/ is naturally isomorphic to the
isotropy group of the point !�1ŒM �, corresponding to the class of M under the
Calogero–Moser bijection, for the action of Pic.Aq/ on xCq defined by (16).

Proof. Put A ´ Aq . Then M is naturally a E-A-bimodule. Let M � ´ HomA.M; A/

be its dual which is an A-E-bimodule. By the Morita Theorem, we have M �˝E M Š
A as A-bimodules and M ˝A M � Š E as E-bimodules. Now consider the canonical
sequence of groups

1 ! Inn.E/ ! Aut.E/
���! Pic.E/

‰��! Pic.A/;

where the last map is an isomorphism of groups given by P 7! M � ˝E P ˝E M .
The image of � consists of those invertible E-bimodules that are cyclic as right
E-modules. Given such an E-bimodule L, we have

M ˝A M � ˝E L ˝E M Š E ˝E L ˝E M Š L ˝E M Š M

as right A-modules. Hence, ‰.L/ D M � ˝E L ˝E M is in the stabilizer of ŒM �

under the action of Pic.A/ on Rq . Conversely, if P is an invertible A-bimodule such
that M ˝A P Š M , then

M ˝A P ˝A M � Š M ˝A M � Š E
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as right E-modules. Thus, ‰�1.P / Š M ˝A P ˝A M � is in the image of �. It
follows now from Theorem 1 that Im.�/ is isomorphic to the stabilizer of !�1ŒM �

under the Pic.A/-action on xCq . On the other hand, by Theorem 2, Inn.E/ is trivial.
Hence Aut.E/ Š Im.�/. This finishes the proof of the proposition.

5. Double affine Hecke algebras and the Calogero–Moser correspondence

In this section, we describe a relation between Aq and the double affine Hecke algebras
Hq;n ´ H1; q�1=2.Sn/. Our construction generalizes (and simplifies) the results of
[BCE], where a similar relation between A1 and the rational Cherednik algebra has
been studied. A key role in this construction is played by a multiplicative version
of the deformed preprojective algebra of a quiver introduced in [CBS]. We draw the
reader’s attention to the fact that we use a more general form of these algebras in which
weights are assigned not only to the vertices but also to the edges of the quiver. To
simplify exposition we omit most routine calculations, especially those ones parallel
to [BCE]. However, we will give some details in the proof of Proposition 2, since the
idea of this proof has not been used in the case of the Weyl algebra.

5.1. DAHA and Calogero–Moser spaces. We recall the presentation of the double
affine Hecke algebra Hq;n (see [C2]).

Generators:

X˙1
1 ; X˙1

2 ; : : : ; X˙1
n I T1; T2; : : : ; Tn�1I 	:

Relations:

XiXj D Xj Xi ; TiXiTi D XiC1; 	Xi D XiC1	 .1 	 i 	 n � 1/;

TiTiC1Ti D TiC1TiTiC1; 	Ti D TiC1	 .1 	 i 	 n � 2/;

TiXj D Xj Ti .j � i ¤ 0; 1/; ŒTi ; Tj � D 0 .ji � j j > 1/;

	Xn D X1	; 	nTi D Ti	
n .1 	 i 	 n � 1/;

.Ti � 
/.Ti C 
�1/ D 0; 
 ´ q�1=2:

Further, following [C2], we introduce n pairwise commuting elements in Hq;n:

Yi ´ TiTiC1 : : : Tn�1	�1T �1
1 : : : T �1

i�1 ; i D 1; 2; : : : ; n;

satisfying the relations

TiYiC1Ti D Yi and TiYj D Yj Ti ; j � i ¤ 0; 1:

The algebra Hq;n contains a copy of the finite Hecke algebra H� .Sn/ of the group
Sn, which, in turn, contains the idempotents

" ´
P

w2Sn

 l.w/TwP

w2Sn

2l.w/

and "0 ´
P

w2Sn�1

 l.w/TwP

w2Sn�1

2l.w/

: (17)
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In formula (17), Sn�1 is regarded as the subgroup of Sn consisting of permutations
that fix the first element in f1; 2; : : : ; ng; for w 2 Sn, the element Tw denotes the
product Ti1 : : : Til.w/

, where w D si1 : : : sil.w/
is a reduced expression of w with

si ´ .i; i C 1/ 2 Sn.
The following proposition is analogous to [EG], Theorem 1.23 and Theorem 1.24,

in the case of the rational Cherednik algebra.

Proposition 4 ([O], Theorem 5.1 and Theorem 6.1). (1) The algebra "Hq;n" is Morita
equivalent toHq;n, the equivalence Mod.Hq;n/ ! Mod."Hq;n"/ being the canonical
functor " W M 7! "M .

(2) "Hq;n" is a commutative algebra isomorphic to the coordinate ring of C
q
n .

Next we introduce a multiplicative version of the deformed preprojective algebra
of a quiver Q, due to Crawley-Boevey and Shaw [CBS] (see also [vdB]). Our
definition is slightly more general than that of [CBS] as we assign weights to both
the vertices and the arrows of Q (see Remark below).

5.2. The (generalized) multiplicative preprojective algebra. Let Q be a quiver
with vertex set I . Let xQ be the double of Q obtained by adjoining a reverse arrow
a� to each arrow a 2 Q. As in [CBS], we extend a 7! a� to an involution on xQ by
letting .a�/� D a, and define the function � W xQ ! f˙1g by �.a/ D 1 if a 2 Q and
�.a/ D �1 if a� 2 Q. Next we choose two sets of parameters (weights): fqvgv2I

and f„aga2 xQ with the assumption that „a� D „a for all a 2 Q. The multiplicative

preprojective algebra ƒq;„.Q/ is now defined by the algebra homomorphism C xQ !
ƒq;„.Q/, which is universal among all algebra homomorphisms C xQ ! R satisfying
the properties

aa� C „a is a unit in R for all a 2 xQ;Q
a2 xQ

.aa� C „a/�.a/ D P
v2I

qvev in R:

Remark. The original definition of multiplicative preprojective algebras (see [CBS],
Definition 1.2) corresponds to the choice „a D 1 for all a 2 xQ. To see why we
need an extension of this definition consider a quiver Q which consists of a single
vertex v and a single loop a. Choosing then qv D q and „a D 0, we get the
algebra ƒq;„.Q/ isomorphic to Aq (with a $ x and a� $ y ). On the other
hand, Example 1.3 in [CBS] shows that if qv D q and „a D 1, then ƒq;„.Q/ Š
Chx; y; .1 C xy/�1i=.xy � qyx � 1/, which is a different quantized version of the
first Weyl algebra, not isomorphic to Aq (see, e.g., [AD2]).

Now, as in [BCE], Sect. 2.2, we consider the framed one-loop quiver Q D Q1
with two vertices, I D f0; 1g, and two arrows i W 0 ! 1 and X W 0 ! 0. Write
j ´ i� and Y ´ X� for the reverse arrows in xQ. For the vertex and arrow
weights, we take .q0; q1/ D .q; q�n/ and .„X ; „i / D .0; 1/, respectively. The
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corresponding algebra ƒ ´ ƒq;„.Q/ can then be identified with the quotient of
C xQhU; V i ´ C xQ 
 ChU; V i modulo the relations

U D eUe; V D eVe; XU D UX D e; Y V D V Y D e;

XY � qYX � qYXij D 0; j i D .q�n � 1/e1;

where e and e1 are the idempotents corresponding to the vertices 0 and 1, respec-
tively. The following lemma clarifies the relation between this algebra and Aq: it is
a “multiplicative” analogue of [BCE], Lemma 3.

Lemma 4. Aq is isomorphic to the quotient of ƒ by the ideal generated by e1.

In fact, the required isomorphism is induced by Chx˙1; y˙1i ! ƒ=he1i, x 7!
X , y 7! Y .

Next, we explain the relation between ƒ and the Cherednik algebra H ´ Hq;n.
To this end, we consider the left projective H -module P ´ H"0 ˚ H", where " and
"0 are the idempotents defined in (17). The endomorphism ring of P can be identified
with a matrix algebra:

EndH .P / D
�

"0H"0 "0H"

"H"0 "H"

�
:

Using this identification, we can define an algebra map ‚ W C xQhU; V i ! EndH .P /ı
by

X 7!
�

X1"0 0

0 0

�
; Y 7!

�
Y1"0 0

0 0

�
; i 7!

�
0 0

" 0

�
; j 7!

�
0 "

0 0

�
.q�n�1/:

The following proposition shows that ‚ is a multiplicative analogue of the map ‚quiver

constructed in [EGGO] (see loc. cit., (1.6.3)).

Proposition 5. The map ‚ induces an algebra homomorphism ƒ ! EndH .P /ı.

Proof. The key relation to verify is ‚.U VXY � qe � qvw/ D 0; all the other
relations are immediate. First, using the fact that " "0 D "0" D ", we find

‚.U VXY � qe � qvw/ D
�

Y1X1Y �1
1 X�1

1 "0 � q"0 C q.1 � q�n/" 0

0 0

�
:

By [O], Lemma 4.1, X1Y1X�1
1 Y �1

1 D T �1
1 T �1

2 : : : T �2
n�1T �1

n�2 : : : T �1
1 in H . Hence

X1Y1X�1
1 Y �1

1 is an element of the finite Hecke algebra H� .Sn/ � H . Now consider
H� .Sn/ as a right H� .Sn�1/-module. Its subspace of invariants V ´ H� .Sn/ "0 �
H� .Sn/ is then a left H� .Sn/-module. As shown in [O], Section 4.2, this last module
admits a direct decomposition V D H� .Sn/" ˚ W , where W has dimension n � 1.
Moreover, the left multiplication by Y1X1Y �1

1 X�1
1 acts on H� .Sn/" as a scalar oper-

ator with eigenvalue q1�n and on W with eigenvalue q. The operator q Cq.q�n �1/"

obviously acts on V in the same way, so Y1X1Y �1
1 X�1

1 "0 � q"0 C q.1 � q�n/" D 0,
which proves the desired identity.
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5.3. The Calogero–Moser functor. One way to interpret Proposition 5 is to say that
P is an H -ƒ-bimodule, with right ƒ-module structure defined by ‚. In combination
with Lemma 4, this allows us to define the functor

CMn W Db.Mod H/ ! Db.Mod ƒ/ ! Db.Mod Aq/; V 7! .V ˝H P / ˝L
ƒ Aq:

Note that P is a projective module on the left, so tensoring with P over H is an exact
functor.

In view of Proposition 4, Theorem 1 of Section 2 is a consequence of the following
result.

Theorem 6. (1) The functor CMn transforms the simple H -modules (viewed as 0-
complexes in Db.Mod H/) to rank 1 projective Aq-modules (located in homological
degree �1).

(2) Two simple H -modules V D .V I Xi ; Tj ; 	/ and V 0 D .V 0I X 0
i ; T 0

j ; 	 0/ corre-
spond to isomorphic Aq-modules if and only if there is .k; m/ 2 Z2 such that

X 0
i D qkXi ; T 0

j D Tj ; 	 0 D qm	:

(We call such H -modules equivalent.)
(3) For every rank 1 projective Aq-module, there is a unique n 2 N and a simple

module V over Hq;n such that CMn.V / Š MŒ1� in Db.Mod Aq/.

Thus the Calogero–Moser map ! of Theorem 1 is induced by the functors CMn

‘amalgamated’over all n. The proof of Theorem 6 is analogous to [BCE], Theorem 3:
it is based on [BC], Theorem 3, and the following key lemma.

To simplify the notation we set R ´ Chx˙1; y˙1i and denote by ˛ the (surjective)
algebra homomorphism R ! eƒe taking x, x�1, y, y�1 to X , U , Y , V , respectively.
Using this homomorphism, we define the linear map

� W R ! "H"; r 7! ‚.i˛.r/j /:

Lemma 5. Regarding P as a right ƒ-module, we have:

(1) Torƒ
k .P; Aq/ D 0 for all k ¤ 1.

(2) For k D 1, there is an isomorphism of right Aq-modules

Torƒ
1 .P; Aq/ Š Ker

�
H" ˝ R

H." ˝ rw � �.r/ ˝ 1/R

���! H"0
�

; (18)

where w D q�1.x�1y�1xy/ � 1.

The notation of Lemma 5 needs some explanation. The multiplication-action map
 in (18) is induced by .a"˝ r/ D a"	.r/, where a" is viewed as an element in the
direct summand of P (note that a" D a""0). The Aq-module structure on the right
hand side of (18) descends then from the natural right R-module structure on Ker .
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Proof. (1) By Proposition 4 (2), "H" Š O.C
q
n /. Write O ´ O.C

q
n /. Then, for

every maximal ideal m � O, .O=m/ ˝O ."P / is a right ƒ-module of dimension
n over C. It follows that .O=m/ ˝O ."P / ˝ƒ Aq is a finite dimensional right
Aq-module and hence zero. Since "P ˝ƒ Aq is a coherent O-module, this implies
that "P ˝ƒ Aq D 0 by Nakayama’s Lemma. But then, by Morita equivalence of
Proposition 4 (1), P ˝ƒ Aq D 0. To see that the second and higher Tor’s vanish
we observe that the natural map ƒe1ƒ ! ƒ provides a left (and right) projective
resolution of Aq , so Aq has projective dimension 1 as a left ƒ-module.

The proof of part (2) is similar to the proof of Theorem 1 in [BCE]. We leave it
to the reader.

5.4. Equivariance. We now turn to the proof of Proposition 2. Recall that SL2.Z/

is a quotient of the braid group B2. Let � W B2 ! SL2.Z/ denote the corresponding
projection

g1 7!
�

1 1

0 1

�
; g2 7!

�
1 0

�1 1

�
:

The SL2.Z/-action on .C�/2 defined by (9) induces (via �) a B2-action on .C�/2.
We write G ´ .C�/2 Ì B2 for the corresponding semidirect product of groups.

Lemma 6 ([C2]). The following assignment extends to a well-defined group homo-
morphism ˆH W G ! AutC.Hq;n/:

.˛; ˇI id/ 7! �˛;ˇ ´ .Xi 7! ˛Xi ; Yi 7! ˇYi ; Ti 7! Ti /;

.1; 1I g1/ 7! 
 ´ .Xi 7! YiXi ; Yi 7! Yi ; Ti 7! Ti /;

.1; 1I g2/ 7! � ´ .Xi 7! Xi ; Yi 7! X�1
i Yi ; Ti 7! Ti /:

Proof. It is obvious that �˛;ˇ 2 AutC.Hq;n/. The fact that � and 
 are also automor-
phisms, satisfying the braid relation �
� D 
�
 , is part of [C2], Theorem 4.3. (In
[C2], ��1 and 
 are denoted by 
C and 
�, respectively). The following calculation
now completes the proof:

.1; 1I g1/.˛; ˇI id/.Xi ; Yi ; Ti / D .˛ˇYiXi ; ˇYi ; Ti /

D .˛ˇ; ˇI id/.1; 1I g1/.Xi ; Yi ; Ti /

D .g1.˛; ˇ/I g1/.Xi ; Yi ; Ti /;

.1; 1I g2/.˛; ˇI id/.Xi ; Yi ; Ti / D .˛Xi ; ˛�1ˇX�1
i Yi ; Ti /

D .˛; ˛�1ˇI id/.1; 1I g2/.Xi ; Yi ; Ti /

D .g2.˛; ˇ/I g2/.Xi ; Yi ; Ti /:

Note that any automorphism of H in the image of ˆH fixes the generators T1, …,
Tn�1. It follows that the G-action on H defined by ‰H induces a G-action on the
spherical algebra "H" and the left "H"-module "P D "H"0 ˚ "H". In other words,
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we have group homomorphisms ˆ"H" W G ! AutC."H"/ and ˆP W G ! AutC."P /.
In addition, we have

Lemma 7. The following assignment extends to a well-defined group homomorphism
ˆƒ W G ! AutC.ƒ/:

.1; 1I g1/ 7! .X 7! XY; Y 7! Y; j 7! Y �1j; i 7! i Y /;

.1; 1I g2/ 7! .X 7! X; Y 7! YX�1; j 7! X j; i 7! i X�1/;

.˛; ˇI id/ 7! .X 7! ˛X; Y 7! ˇY; j 7! j; i 7! i/:

Proof. A direct calculation similar to that of Lemma 6. We leave details to the reader.

Note that the above action of G on ƒ preserves the idempotents e and e1 and hence
restricts to the subalgebra eƒe � ƒ. By Proposition 5, "P is an "H"-ƒ-bimodule.
The subspace "Pe ´ "P ˝ƒ ƒe � "P is preserved by any automorphism in
AutC."P /, which is in the image of ˆP . As a result, we have an action of G on "P e.
Now form the semidirect product Œ"H" ˝ .eƒe/ı� Ì G, with G acting diagonally on
"H" and eƒe as in Lemma 6 and Lemma 7.

Proposition 6. The action of G on "Pe defined above makes it a Œ"H"˝.eƒe/ı�ÌG-
module (equivalently, "Pe is a G-equivariant "H"-eƒe-bimodule).

Proof. We need to verify that, for all h 2 "H", m 2 "P e, x 2 eƒe and � 2 G,

.� � h/.�:m/.‚.� � x// D � � .hm‚.x//: (19)

Note that "P e may be identified with the direct summand "H"0 of "P . The G-action
on "H"0 as well as that on "H" are obtained by restricting ˆH . It follows that
�.h �m/ D .� �h/.� �m/ for all � 2 G, h 2 "H" and m 2 "P e. Therefore, it suffices
to verify (19) with h D 1. For this, it suffices to show that ‚ W .eƒe/ı ! "0H"0 is
a G-module homomorphism. The following computation completes this verification
(remember that we are working in the opposite algebra .eƒe/ı).

‚..1; 1I g1/.X// D ‚.YX/ D Y1X1"0 D .1; 1I g1/ ‚.X/;

‚..1; 1I g1/.Y // D ‚.Y / D Y1"0 D .1; 1I g1/ ‚.Y /;

‚..1; 1I g2/.X// D ‚.X/ D X1"0 D .1; 1I g2/ ‚.X/;

‚..1; 1I g2/.Y // D ‚.YX�1/ D Y1X�1
1 "0 D .1; 1I g2/ ‚.Y /;

‚..˛; ˇI id/.X// D ‚.˛X/ D ˛X1"0 D .˛; ˇI id/ ‚.X/;

‚..˛; ˇI id/.Y // D ‚.ˇY / D ˇY1"0 D .˛; ˇI id/ ‚.Y /:
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Proof of Proposition 2. To simplify the notation, we set � ´ "H" ˝ .eƒe/ı and
�A ´ "H" ˝ Aı

q . Note that G acts naturally on Aq . Further, the algebra homo-
morphism eƒe ! Aq given by Lemma 4 is G-equivariant. Hence, the induced
homomorphism � ! �A is G-equivariant. Now, for any G-equivariant �-module
M , we have an isomorphism �A-modules

M ˝eƒe Aq Š �A ˝	 M Š .�A Ì G/ ˝	ÌG M:

It follows that M ˝L
eƒe Aq Š .�A Ì G/ ˝L

	ÌG M in the derived category of
"H"-Aq-bimodules. Hence M ˝L

eƒe Aq is a G-equivariant "H"-Aq-bimodule. By
Proposition 6, the "H"-Aq-bimodule QP ´ "P e ˝L Aq is G-equivariant. Identify
"H" Š O.C

q
n / as in Proposition 4, and let  W O ˝ QP ˝Aq ! QP denote the structure

map of the bimodule QP with this identification. Now, for any � 2 G and for any
maximal ideal m � O, the commutative diagram

O ˝ zP ˝ Aq

�˝�˝�

��

� �� zP
�

��
O ˝ zP ˝ Aq

� �� zP
induces

.O=m/ ˝ Œ.O=m/ ˝O
zP � ˝ Aq

�˝�˝�

��

� �� .O=m/ ˝O
QP

�

��
.O=m/� ˝ Œ.O=m/� ˝O

zP � ˝ Aq

� �� .O=m/� ˝O
zP ,

where .O=m/� denotes the twisting by � of the O-module O=m Š C. It follows
that the map !n W C

q
n ! R.Aq/ is G-equivariant. Proposition 2 follows once we

note that, by Theorem 3, Pic.Aq/ Š G=Z2, and the G-action on C
q
n descends to the

Pic.Aq/-action on xCq
n .

6. Appendix: Comparison with noncommutative tori in the smooth case

In the following table, we compare the properties of algebraic and smooth noncom-
mutative tori. In the algebraic case, most ring-theoretic and homological properties
follow from the fact that Aq is a simple hereditary domain (see [J]); the classification
of projectives and Morita classification are results of this paper, and the computation
of Hochschild and cyclic homology can be found in [Wa]. In the smooth case, the
description of projective modules and Morita classification can be found in [R2], the
Picard group of Aq is computed in [K1], and results on Hochschild, cyclic homology,
and homological dimension follow from [Co].
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Algebraic vs smooth noncommutative tori

Properties
Algebraic torus
Aq (qn ¤ 1, n 2 Z)

Smooth torus
A� (q D e2�i� , � 2 R n Q)

Cancelation
Any f.g. projective module of rank
� 2 is free.

Stably isomorphic f.g. projective
modules are isomorphic.

Projective
modules

Any f.g. projective module is
either free or isomorphic to a right
ideal.

Any f.g. projective module is
isomorphic to a standard module
introduced by Connes.

Grothendieck
group

Z Z2

Isomorphism
classes

Aq is isomorphic to Aq0 if and
only if q0 D q˙1.

A� is isomorphic to A� 0 if and
only if � ˙ � 0 2 Z.

Morita classes

Aq is Morita equivalent to Aq0 if
and only if q0 D q˙1. A unital
algebra is Morita equivalent to Aq

if and only if A is isomorphic to
Mn.Aq/ for some n � 2 or
EndAq

.M/ for some right ideal
M of Aq .

A unital C �-algebra is Morita
equivalent to A� if and only if it
is isomorphic Mn.A� 0/ for
some n � 2, and � 0 D a �Cb

c �Cd
,

where
�

a b
c d

� 2 GL.2; Z/.

Outer
automorphism
group

.C�=Z/2 Ì SL.2; Z/ .C�=Z/2 Ì SL.2; Z/

Picard group .C�=Z/2 Ì SL.2; Z/

If � is not quadratic, Pic.A� / is
isomorphic to Out.A� /; if � is
quadratic, Pic.A� / is
isomorphic to .Out A� / Ì Z.

Hochschild
homology

HHn.Aq/ D

8̂̂
<̂
ˆ̂̂:

C; n D 0; 2;

C2; n D 1;

0; n > 2:

If � satisfies a Diophantine
condition,

HHn.A� / D

8̂̂
<̂
ˆ̂̂:

C; n D 0; 2;

C2; n D 1;

0; n > 2:

If � does not satisfy a
Diophantine condition,
HH0.A� / and HH1.A� / are
infinite-dimensional.

Cyclic
homology

HPodd.Aq/ D HPev.Aq/ D C2 HPodd.A� / D HPev.A� / D C2

Homological
dimension

1 2
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