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Does full imply faithful?
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Abstract. We study full exact functors between triangulated categories. With some hypotheses
on the source category we prove that it admits an orthogonal decomposition into two pieces
such that the functor restricted to one of them is zero while the restriction to the other is faithful.
In particular, if the source category is either the category of perfect complexes or the bounded
derived category of coherent sheaves on a noetherian scheme supported on a closed connected
subscheme, then any non-trivial exact full functor is faithful as well. Finally we show that
removing the noetherian hypothesis this result is not true.
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1. Introduction

For an exact functor F W T1 ! T2 between triangulated categories, there is a list of
properties that, from a purely categorical point of view, are completely unrelated or
not automatically satisfied. Among them we can mention: the existence of adjoints,
fullness, faithfulness and essential surjectivity. Nevertheless, as soon as Ti has a
geometric nature, these properties and their relations can be studied in a more efficient
and complete way.

For example, ifTi is the bounded derived category Db.Xi / of coherent sheaves on a
complex smooth projective variety Xi ; then any exact functor F W Db.X1/ ! Db.X2/

has always a left and a right adjoint, by a result of Bondal and Van den Bergh [3].
This combined with [9] says that if F is fully faithful, then it is of Fourier–Mukai
type, i.e., there is E 2 Db.X1 � X2/ and an isomorphism of functors F Š ˆE , where
ˆE W Db.X1/ ! Db.X2/ is the exact functor defined by

ˆE ´ R.p2/�.E ˝L p�
1 .�//;

and pi W X1 � X2 ! Xi is the natural projection.
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5139.2012.1, by AG Laboratory HSE, RF gov. grant, ag. 11.G34.31.0023. The third author was partially
supported by the MIUR of the Italian Government in the framework of the National Research Project
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Now [2] and [4] provide a very useful criterion to establish when a Fourier–Mukai
functor ˆE W Db.X1/ ! Db.X2/ is fully faithful. Namely ˆE is such if and only if

HomDb.X2/.ˆE.Ox1
/; ˆE.Ox2

/Œi �/ Š
´

C if x1 D x2 and i D 0;

0 if x1 ¤ x2 or i 62 Œ0; dim X1�,

for all closed points x1; x2 2 X1.
Of course, it is quite easy to construct examples of faithful functors which are not

full (e.g. the tensorization by a vector bundle of rank greater than 1). On the other
hand, using all the remarks above and a collection of standard results, it is not difficult
to see that a non-trivial full exact functor F W Db.X1/ ! Db.X2/ is also faithful. Here
we give a sketch of the proof, since a more general statement will be proved in the
paper. First, by the main result of [5] (that improves [9]), F is a Fourier–Mukai
functor. Thus, because of the above criterion and the fact that F is full, to show that
the functor is also faithful it is enough to prove that there are no closed points x 2 X1

such that Hom.F.Ox/; F.Ox// D 0 or, in other words, such that F.Ox/ Š 0. To see
this, take the left adjoint G W Db.X2/ ! Db.X1/ of F and consider the composition
G B F which is again a Fourier–Mukai functor, hence isomorphic to ˆE for some
E 2 Db.X1 � X1/. Assume that there are x1; x2 2 X1 such that F.Ox1

/ 6Š 0 while
F.Ox2

/ Š 0. By [2] (see, in particular, Proposition 1.5 there) the Chern character
ch.ˆE.Ox1

// is not zero. On the other hand, it is proved in [9] that the functor ˆE

induces a morphism ˆH
E

W H �.X1; Q/ ! H �.X1; Q/ such that

0 ¤ ch.ˆE.Ox1
// �

p
td.X2/ D ˆH

E .ch.Ox1
/ �

p
td.X1//

D ˆH
E .ch.Ox2

/ �
p

td.X1// D 0;

where td denotes the Todd class. This contradiction proves that if F were not faithful,
then F.Ox/ Š 0 for every closed point x 2 X . But this would easily imply that
F Š 0, against the assumption.

This paper is an attempt to understand to which extent the previous easy example
can be pushed. In particular, we want to study when the following question may have
a positive answer:

When is a full exact functor between ‘geometric triangulated categories’
faithful?

It is rather obvious that one can produce examples of full non-trivial exact functors
which are not faithful if one does not require the source triangulated category to
be indecomposable. However, something interesting can be said even without this
hypothesis. In fact, after proving a very general statement in Section 2, our first
important (and still rather general) result, whose proof is in Section 3, is the following.

Theorem 1.1. Let T1 be a triangulated category with arbitrary direct sums which is
compactly generated and let T c

1 be the subcategory of compact objects. Let S � T c
1
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be a subset of compact objects and let S � T c
1 be the thick subcategory generated by

S . Let
F W S ! T2

be a full exact functor to a triangulated category T2. Assume that for any object
A 2 S the ring of endomorphisms EndT1

.A/ is idempotent noetherian. Then there
is an orthogonal decomposition

S D .ker F/? ˚ ker F

and Fj.ker F/? is faithful.

See Definition 3.1 for the notion of idempotent noetherian ring. As it will turn out,
the ring of endomorphisms of an object in the bounded derived category of coherent
sheaves on a noetherian scheme has this property (see Proposition 4.3).

Notice that if in Theorem 1.1 we assume S to be indecomposable and F to be
non-trivial, then we can conclude that F is actually faithful. So in the geometric case
we consider a noetherian scheme X containing a closed connected subscheme Z and
we assume that S is either the bounded derived category Db

Z.X/ of coherent sheaves
on X supported on Z or the subcategory PerfZ.X/ � Db

Z.X/ consisting of perfect
complexes. Recall that a complex in Db

Z.X/ is perfect if it is locally quasi-isomorphic
to a complex of locally free sheaves of finite type on X . Due to Corollary 4.6, these
categories are indecomposable, and we get the following result which we prove in
Section 4.

Theorem 1.2. Let X be a noetherian scheme containing a closed subscheme Z and
let S be either PerfZ.X/ or Db

Z.X/. Let T be a triangulated category and let

F W S ! T

be a full exact functor which is not isomorphic to the zero functor. If Z is connected,
then F is also faithful.

In Section 5 we show that if we do not assume X to be noetherian, then the above
result does not necessarily hold true. Indeed, we give an example of a non-noetherian
(affine) scheme X over a field k such that Perf.X/ is indecomposable and of a full
non-trivial exact functor F W Perf.X/ ! D.k/ to the (unbounded) derived category
of k-vector spaces which is not faithful.

2. A general result

If F W A ! B is an additive functor between additive categories, we will denote by
ker F the (strictly) full subcategory of A having as objects the A such that F.A/ Š 0,
and by im F the (strictly) full subcategory of B having as objects the B such that
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B Š F.A/ for some A 2 A. Notice that ker F is a (thick) triangulated subcategory
of A if A and B are triangulated and F is exact.

For the convenience of the reader we recall the proof of the following lemma which
is known to experts and, for example, is contained in the proof of [10], Thm. 3.9.

Lemma 2.1. Let T1 and T2 be triangulated categories and let F W T1 ! T2 be a
full exact functor such that ker F Š 0. Then F is faithful.

Proof. Assume that there are A; B 2 T1 and f W A ! B a morphism such that
F.f / D 0. Complete the morphism to a distinguished triangle

A
f��! B

g��! C.f /

so that, applying the functor F, we get the distinguished triangle

F.A/
F.f /D0������! F.B/

F.g/����! F.C.f //:

Then id W F.B/ ! F.B/ factors through F.g/ W F.B/ ! F.C.f //.
As F is full, there exists a morphism h W B ! B factoring through g and such that

F.h/ D id. Then F.C.h// Š C.F.h// Š 0. Since ker F Š 0, we get C.h/ Š 0 and
h is an isomorphism. This implies that g is a (split) monomorphism. In particular
f D 0, and so F is faithful.

Definition2.2. Anorthogonal decompositionT D T1˚T2 of a triangulated category
T is given by two full triangulated subcategories T1 and T2 satisfying the following
conditions:

(1) T1 and T2 are completely orthogonal, meaning that

Hom.A1; A2/ D Hom.A2; A1/ D 0

for every objects Ai of Ti ;

(2) for every object A of T there exist objects Ai of Ti such that A Š A1 ˚ A2.

A triangulated category is indecomposable if it admits only trivial orthogonal decom-
positions.

We begin with the following general result.

Proposition 2.3. Let T1 and T2 be triangulated categories and let F W T1 ! T2

be a full exact functor. Assume moreover that the projection functor � W T1 !
T1=ker F has an adjoint � W T1=ker F ! T1. Then the category T1 has an orthogo-
nal decomposition of the form

T1 D im � ˚ ker F

and Fjim � is faithful. In particular, if T1 is indecomposable and F is not isomorphic
to 0, then F is faithful.



Does full imply faithful? 361

Proof. Passing, if necessary, to the opposed functor of F (defined as F, but between
the opposed categories), we can assume that � is a right adjoint of � .

Now, given A 2 T1 and using the adjunction between � and � , we get the
distinguished triangle

A
mA���! � B �.A/

nA���! NA:

The functor F induces in a natural way a functor F0 W T1=ker F ! T2 which is fully
faithful due to Lemma 2.1. Hence, for all A; B 2 T1,

Hom.B; � B �.A// Š Hom.�.B/; �.A//

Š Hom.F0 B �.B/; F0 B �.A//

D Hom.F.B/; F.A//:

As F D F0 B � is full, this implies that the morphism

Hom.B; A/ ! Hom.B; � B �.A//

given by the composition with mA is surjective for all A; B 2 T1. In particular, the
map

'A;B W Hom.B; � B �.A// ! Hom.B; NA/;

obtained composing with nA, is zero. Taking B D �B�.A/ in the above argument, we
get 'A;B.id/ D nA D 0. This means that, for any A 2 T1, there is a decomposition

A Š � B �.A/ ˚ NAŒ�1�:

By [8], Lemma 9.1.7, the functor � as adjoint to a projection functor is fully
faithful, i.e. � B � Š id. Therefore, the functor � induces an equivalence between
im � and the quotient T1=ker F. Since F0 is faithful, the functor Fjim � is faithful too.

Moreover, since � is fully faithful the map �.mA/ is an isomorphism. This
implies that �.NA/ Š C.�.mA// Š 0. In order to get the orthogonal decomposition,
it remains to show that ker F and im � D im.� B �/ are orthogonal. By adjunction, it
is obvious that Hom.A; B/ D 0 if A 2 ker F and B 2 im �. For the other direction,
assume that there is a morphism f W �B�.A/ ! B , for some A 2 T1 and B 2 ker F.
Consider the distinguished triangle

� B �.A/
f��! B ! C.f /

and apply the functor � getting

� B � B �.A/
�.f /����! �.B/ ! �.C.f //:

Thus �.C.f /Œ�1�/ Š � B � B �.A/ Š �.A/ and � B �.C.f /Œ�1�/ Š � B �.A/.
Moreover the map C.f /Œ�1� ! � B �.A/ can be identified with the canonical map
C.f /Œ�1� ! � B �.C.f /Œ�1�/.

Because C.f / 2 T1, the calculations above imply that the map C.f /Œ�1� !
� B �.C.f /Œ�1�/ Š � B �.A/ is an epimorphism, and so f D 0. This is what we
need to prove.
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Remark 2.4. It is well known that every exact functor from T1 has a right (respec-
tively left) adjoint if T1 is right (respectively left) saturated (see [3]).

Remark 2.5. Assume that T1 and T2 are triangulated categories and let F W T1 ! T2

be a full exact functor admitting a pseudo-adjoint G W T2 ! zT1 such that im.GBF/ �
T1. Then � has an adjoint which is simply G B F0 (where F0 W T1=ker F ! T2 is as
in the above proof). Hence Proposition 2.3 applies.

With a left (respectively right) pseudo-adjoint of a functor F W C ! C0 we mean
a functor G W C0 ! zC, where zC is some category containing C as a full subcat-
egory, together with a natural isomorphism HomC0.A0; F.A// Š HomzC.G.A0/; A/

(respectively HomC0.F.A/; A0/ Š HomzC.A; G.A0//) for every object A of C and A0
of C0.

3. The categorical case

In this section we prove Theorem 1.1 and show how to apply it to subcategories of
noetherian objects. For this purpose we introduce the notion of idempotent noetherian
ring.

3.1. General setting. We will be interested in the following special class of rings
appearing naturally in geometric situations.

Definition 3.1. A ring R is (right) idempotent noetherian if for every sequence
faigi2N of elements in R satisfying

aj ai D ai for all i < j (3.1)

there exists a positive integer n such that aiR D anR for all i � n.

Analogously, one can define left idempotent noetherian rings. As this notion will
not be needed in the rest of the paper, right idempotent noetherian rings will simply
be called idempotent noetherian.

Remark 3.2. If faigi2N is a sequence in a ring R satisfying (3.1) and such that
aiR D anR for i � n, then ai is idempotent for i > n. Indeed, there exists r 2 R

such that ai D ai�1r , hence

aiai D aiai�1r D ai�1r D ai :

We begin with the following easy result.

Lemma 3.3. If A is an additive category and A 2 A is such that EndA.A/ is
idempotent noetherian, then A is isomorphic to a finite direct sum of indecomposable
objects.
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Proof. Assume on the contrary that A is not isomorphic to a finite direct sum of
indecomposable objects. Then there exists a sequence fAigi2N of non-trivial objects
of A such that, for all n 2 N, the object Bn ´ Ln

j D0 Aj is a direct summand of A.
Thus, for all j 2 N, let aj 2 End.A/ be the projection onto Bj . Clearly the sequence
faigi2N satisfies (3.1), but the ascending chain of right ideals generated by the ai ’s
does not stabilize.

As a matter of notation, recall that if T is a triangulated category with arbitrary
direct sums and S is a set of objects of T , the localizing subcategory generated by
S is the smallest strictly full triangulated subcategory of T containing S and closed
under arbitrary direct sums.

An object A in a triangulated category T admitting arbitrary direct sums is called
compact if, for each family of objects fXigi2I � T , the canonical mapL

i

Hom.A; Xi / ! Hom.A; ˚iXi /

is an isomorphism. The triangulated category T is compactly generated if there is
a set S of compact objects such that E 2 T vanishes if Hom.A; EŒi �/ D 0 for all
A 2 S and all i 2 Z. For more details, the reader may consult [12], Sect. 3.1.

Proof of Theorem 1.1. Denote by hSi � T1 the localizing subcategory generated
by the set S . This category admits arbitrary direct sums and is compactly generated
too. Moreover, it is known that the subcategory of its compact objects hSic coincides
with S (see [7], Lemma 2.2). Hence, replacing T1 with hSi we can assume that T1

is compactly generated by the set S and S D T c
1.

Denote by hker Fi � T1 the localizing subcategory that is generated by the set
of compact objects from ker F. By [7], Thm. 2.1, the canonical functor T c

1=ker F !
T1=hker Fi is fully faithful and its essential image is the subcategory .T1=hker Fi/c.
As T1 is compactly generated the projection � W T1 ! T1=hker Fi has a fully faithful
right adjoint � W T1=hker Fi ! T1 (see Theorem 8.4.4 and Lemma 9.1.7 in [8]).

By Proposition 2.3, the result is proved if � B �.A/ is compact for any compact
A 2 T c

1. Since T c
1 is the smallest thick subcategory containing S , it is enough to

prove that � B �.A/ 2 T c
1 for any A 2 S . In view of Lemma 3.3, we can assume that

A is indecomposable.
Consider the adjunction morphism mA W A ! � B �.A/ and complete it to a

distinguished triangle

NAŒ�1�
lA��! A

mA���! � B �.A/
nA���! NA:

Of course, the result is proved if we show that nA is the zero map, whence we can
assume that NA © 0.

The functor F is full and so, by the same argument as in the proof of Proposition 2.3,

the map HomT1
.B; A/

mAB.�/������! HomT1
.B; � B �.A// is surjective for any compact
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object B 2 T c
1. This implies that the map

HomT1
.B; � B �.A//

nAB.�/�����! HomT1
.B; NA/ (3.2)

is zero.
Since T1 is compactly generated, there exists Z 2 T c

1 and a non-trivial morphism
�0 W Z ! NAŒ�1�. Denote by CZ the cone in T c

1 of the morphism lA B �0 W Z ! A

and consider the commutative diagram whose rows are distinguished triangles:

CZ Œ�1�

��

�� Z

�0

��

lAB�0 �� A

id

��

�� CZ

��
� B �.A/Œ�1�

�nAŒ�1� �� NAŒ�1�
lA �� A

mA �� � B �.A/.

Being CZ a compact object, the composition map CZ Œ�1� ! � B �.A/Œ�1� !
NAŒ�1� is the zero morphism (use that the morphism in (3.2) is trivial). Hence
there is a non-trivial map �1 W A ! NAŒ�1� such that �1 B lA B �0 D �0. Now
consider A and �1 instead of the pair Z and �0. Repeating the same argument as
above we obtain another map �2 W A ! NAŒ�1� such that �2 B lA B �1 D �1. In
conclusion, this procedure yields a sequence of morphisms �i W A ! NAŒ�1� such
that �iC1 B lA B �i D �i , for i > 0.

Set ai ´ lAB�i , for any i > 0. This defines a sequence satisfying (3.1) in End.A/.
But by assumption this ring is idempotent noetherian. Hence there exists n 2 N such
that ai B End.A/ D an B End.A/, for all i � n. Given N > n, by Remark 3.2 aN is
idempotent. Since aN D lA B �N is not zero and A is indecomposable, aN must be
the identity and so A is a direct summand of NAŒ�1�. This implies mA D 0. Since
mA corresponds to id�.A/ by adjunction, this means �.A/ Š 0 and so � B �.A/ Š 0

as well. This concludes the proof of Theorem 1.1.

Remark 3.4. It is important to note that the theorem above can be applied to a large
class of triangulated categories. Assume that our triangulated category S is algebraic,
i.e., it can be realized as a homotopy category of some differential graded category. If
S is idempotent complete and equals to the closure of a set of objects S under shifts,
extensions and passage to direct factors (i.e., classically generated by this set), then
by part b) of [6], Thm. 3.8, the category S is equivalent to a category of compact
objects in the derived category of a dg-category, which is compactly generated and
admits arbitrary direct sums. Thus it follows that if the rings of endomorphisms of all
objects from S are idempotent noetherian, then the statement of Theorem 1.1 holds
for such S.

3.2. Derived categories of abelian categories. Recall that an object E in an abelian
category is called noetherian if any ascending chain G1 � G2 � � � � � Gn � � � � � E

of subobjects of E stabilizes, i.e., there is n 2 N such that Gn D Gi for all i � n. An
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abelian category is called noetherian if it is equivalent to a small category and every
object is noetherian. An abelian category is called locally noetherian if it satisfies
axiom (AB5) and has a set of noetherian generators (see, for example, [11]).

Remark 3.5. It can be proved that the full subcategory of noetherian objects in any
locally noetherian abelian category is itself a noetherian abelian category.

The following statement says that the endomorphism algebra of a ‘noetherian’
object is idempotent noetherian.

Proposition 3.6. Let A be an abelian category with countable direct sums. Let
C 2 Db.A/ be an object such that the cohomolgy H k.C / 2 A is noetherian for
every k 2 Z. Then the algebra EndDb.A/.C / is idempotent noetherian.

Proof. Let faigi2N be a sequence in End.C / satisfying (3.1). We set M ´ ˚i2NC

and N ´ hocolim�����!faig, so that there is a distinguished triangle in Db.A/

M
f��! M

a0

��! N (3.3)

where, denoting by �i W C ! M (for i 2 N) the inclusion of the i -th component, the
morphism f is defined by f B �i ´ �i � �iC1 Bai . By (3.1) the morphism a W M ! C

defined by a B �i ´ ai clearly satisfies a B f D 0, hence there exists a morphism
b W N ! C such that b B a0 D a. Then, setting also a0

i ´ a0 B �i W C ! N , we have

b B a0
i D ai for all i 2 N: (3.4)

Observe that if i 2 N is such that a0
i B b W N ! N is an isomorphism, then ai B

End.C / D b B Hom.C; N /. Indeed, by (3.4) we have ai B c D b B a0
i B c for every

c 2 End.C /. Conversely, again (3.4) implies that

b B d D b B .a0
i B b/ B .a0

i B b/�1 B d D ai B b B .a0
i B b/�1 B d

for every d 2 Hom.C; N /.
Thus, in order to conclude that End.C / is idempotent noetherian, it is enough to

prove that for i � 0 the morphism a0
i B b is an isomorphism in Db.A/, which is the

case if and only if H k.a0
i B b/ is an isomorphism in A for every k 2 Z. Since C has

only a finite number of non-zero cohomologies, we can fix k, and for simplicity of
notation we will denote with an overline the functor H k . Now, it is easy to see that
the sequence

0 ! xM
Nf��! xM Na�! xC

is exact in A. On the other hand, the distinguished triangle (3.3) also yields an exact
sequence

0 ! xM
Nf��! xM xa0��! xN ! 0:
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Since Nb B xa0 D Na, this implies that Nb W xN ! I ´ im Na � xC is an isomorphism.
Denoting moreover im xai � xC by Ii , (3.1) clearly implies that Ii � Ij for i < j .
As xC is noetherian, there exists n 2 N such that Ii D In for i � n, and obviously
In D I . Then we claim that a0

i B b is an isomorphism for i > n. Indeed, this is
equivalent to saying that b B a0

i B b W xN ! I is an isomorphism. Since b B a0
i D xai by

(3.4), this is true if and only if xai jI W I ! I is an isomorphism, which follows easily
from the fact that xai B ai�1 D ai�1 and Ii D Ii�1 D I .

As a consequence we get the following.

Corollary 3.7. Let A be an abelian category with arbitrary direct sums and let
S � Db.A/ be a thick full triangulated subcategory whose objects have noetherian
cohomology. Let F W S ! T be a full exact functor to a triangulated category T .
Then there is an orthogonal decomposition

S D .ker F/? ˚ ker F

and Fj.ker F/? is faithful.

Proof. As in Remark 3.4, by part b) of [6], Thm. 3.8, the category S (which is
idempotent complete being a thick subcategory of an idempotent complete category)
is equivalent to a category of compact objects in the derived category of a dg-category.
Thus Theorem 1.1 and Proposition 3.6 give the desired conclusion.

Remark3.8. If A is a locally noetherian abelian category and S is the full subcategory
of Db.A/ consisting of all objects with noetherian cohomology, then, in view of
Remark 3.5, S is automatically a thick triangulated subcategory and Corollary 3.7
applies.

4. The geometric case

Let X be a noetherian scheme. We denote by D.X/ the full subcategory of the de-
rived category of sheaves of OX -modules consisting of (unbounded) complexes with
quasi-coherent cohomology. Let Db.X/ be the full subcategory of D.X/ consisting
of bounded complexes with coherent cohomology. Being X noetherian, Db.X/ is
equivalent to Db.coh.X//, where coh.X/ is the abelian category of coherent sheaves
on X (see [1], Cor. 2.2.2.2). Moreover, Perf.X/ will be the full subcategory of D.X/

consisting of perfect complexes. Notice that Perf.X/ � Db.X/.
Now assume that Z is a closed subscheme of X . We denote by DZ.X/ the full

subcategory of D.X/ consisting of complexes with cohomology supported on Z. We
will also need the following full subcategories of DZ.X/:

Db
Z.X/ ´ DZ.X/ \ Db.X/; PerfZ.X/ ´ DZ.X/ \ Perf.X/:
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Proposition 4.1 ([12], Theorem 6.8). The category DZ.X/ is compactly generated,
and the category of compact objects DZ.X/c coincides with PerfZ.X/.

Remark 4.2. The category Qcoh.X/ of quasi-coherent sheaves of OX -modules over
a noetherian scheme X is a locally noetherian abelian category and the full subcate-
gory of noetherian objects in Qcoh.X/ is precisely coh.X/. The same is true in the
supported case as well.

The following result is then a straightforward consequence of Proposition 3.6.

Proposition 4.3. If X is a noetherian scheme containing a closed subscheme Z and
E 2 Db

Z.X/, then the endomorphism ring EndDb
Z

.X/.E/ is idempotent noetherian.

Corollary 3.7 (applied to the case A D QcohZ.X/) and Remark 4.2 immediately
give the following.

Corollary 4.4. Let X be a noetherian scheme containing a closed subscheme Z. If S
is either PerfZ.X/ or Db

Z.X/ and F W S ! T is a full exact functor to a triangulated
category T , then there is an orthogonal decomposition S D .ker F/? ˚ ker F and
Fj.ker F/? is faithful.

Consider now the following rather general result.

Lemma 4.5. Let T be a compactly generated triangulated category with arbitrary
direct sums such that T c has an orthogonal decomposition T c D S1 ˚ S2. Then
T has an orthogonal decomposition T D zS1 ˚ zS2, where zSi , for i D 1, 2, is the
localizing subcategory generated by Si .

Proof. We first show that zS1 and zS2 are orthogonal. Indeed, if A 2 S1, then A? ´
fB 2 T j Hom.A; B/ D 0g 	 zS2 because A? is localizing, being A compact. On
the other hand, if B 2 zS2, then ?B ´ fA 2 T j Hom.A; B/ D 0g 	 S1 by what we
have just proved. Since ?B is a localizing subcategory of T , this implies that ?B 	
zS1. Hence Hom.zS1; zS2/ D 0 and a similar argument yields Hom.zS2; zS1/ D 0.

For i D 1; 2, the canonical full embedding ji W zSi ! T has a right adjoint
si W T ! zSi (see, for example, Theorem 8.3.3 and Proposition 8.4.2 in [8]). This
provides a canonical map j1 B s1.X/ ˚ j2 B s2.X/ ! X , for any X 2 T , which sits
in a distinguished triangle

CX Œ�1� ! j1 B s1.X/ ˚ j2 B s2.X/ ! X ! CX :

For any compact object S 2 S1, applying the functor Hom.j1.S/; �/ to this triangle,
we obtain isomorphisms

Hom.j1.S/; j1 B s1.X/ ˚ j2 B s2.X// ��!� Hom.S; s1.X// ��!� Hom.j1.S/; X/:
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This implies that Hom.ji .S/; CX / D 0 for any compact object S 2 Si and i D 1; 2.
Since T is compactly generated and, by assumption, any compact object of T is a
direct sum of objects from S1 and S2, we deduce that CX D 0. Hence the map
j1 B s1.X/ ˚ j2 B s2.X/ ! X is an isomorphism.

We can now apply the previous result to a concrete geometric question.

Corollary 4.6. Let Z be a connected closed subscheme of a quasi-compact quasi-
separated scheme X . Then the triangulated categories PerfZ.X/, Db

Z.X/, and
DZ.X/ are indecomposable.

Proof. By Lemma 4.5 and Proposition 4.1, a non-trivial orthogonal decomposition
of PerfZ.X/ induces a non-trivial orthogonal decomposition of DZ.X/. So it is
enough to show that the latter category and Db

Z.X/ are indecomposable. As the proof
for these two categories is the same, we will deal only with DZ.X/.

Hence assume that there exists an orthogonal decomposition DZ.X/ D S1 ˚ S2.
Following the strategy in [4], Example 3.2, consider the structure sheaf OZ of the
subscheme Z � X . Since Z is connected, the object OZ is indecomposable in
DZ.X/ and thus it belongs to one of the categories Si , for i D 1, 2. Without loss of
generality, let it belong to S1.

For any closed point z 2 Z, there is a non-trivial morphism OZ ! Oz . Thus
Oz 2 S1, for all closed point z 2 Z. Finally, consider a perfect complex A 2
PerfZ.X/. Take an affine open subset U Š Spec.A/ � X such that the restriction of
A to U is a non-trivial object. By definition, AjU is isomorphic in D.U / to an object
P corresponding to a bounded complex of finitely generated projective A-modules
P . Set i such that H i .P / is the greatest non-trivial cohomology of P . Then H i .P / is
a finitely generated A-module and, by Nakayama’s lemma, there is a non-trivial map
H i .P / ! Oz , for a closed point z 2 Z. This induces a non-trivial map P ! Oz

and therefore all perfect complexes belong to S1. This implies that S1 coincides with
DZ.X/.

This result, combined with Corollary 4.4, gives Theorem 1.2.

5. A counterexample

In this section we provide an example of a full exact and non-trivial functor F W T1 !
T2 between triangulated categories such that T1 is indecomposable and F is not
faithful.

To this end, let A be a commutative algebra over a field k with generators
x1; x2; : : : and with relations xj xi D xi for i < j . Let Mod-A be the category
of right A-modules and set D.A/ ´ D.Mod-A/. Denote by Perf.A/ the full sub-
category of D.A/ of perfect complexes, i.e., the smallest thick subcategory of D.A/

containing A.



Does full imply faithful? 369

Lemma 5.1. The triangulated category Perf.A/ is indecomposable.

Proof. Obviously Perf.A/ Š Perf.Spec.A//. By Corollary 4.6, the result follows
once we know that Spec.A/ is connected. This, in turn, is equivalent to showing that
A does not contain non-trivial idempotents. But this is an easy exercise using the
definition of the algebra A.

Denote by I the ideal generated by all xi so that A=I Š k. Consider the functor

G W D.A/ ! D.k/; X 7! X ˝L
A k;

and set F ´ GjPerf.A/ W Perf.A/ ! D.k/.

Lemma 5.2. The functor F is full.

Proof. It is easy to see that the result follows if we prove that the morphisms

HomA.A; P / ! Homk.F.A/; F.P // D Homk.k; P ˝L
A k/;

HomA.P; A/ ! Homk.F.P /; F.A// D Homk.P ˝L
A k; k/

(5.1)

are surjective for any P 2 Perf.A/. Any perfect complex P is a direct summand
in Perf.A/ of a bounded complex of finitely generated free A-modules. Hence, it
is sufficient to consider the case when P itself is quasi-isomorphic to a bounded
complex

Q� D fQt d t

�! � � � �! Q�1 d�1

���! Q0 d0

�! Q1 d1

�! � � � ds�1

���! Qsg
of finitely generated free A-modules.

Take a morphism f1 W k ! Q0 ˝A k such that the composition .d 0 ˝ k/ B f1 is
trivial. Composing with A ! k, the morphism f1 induces a map g1 W A ! Q0 ˝A k
which, in turn, lifts to h1 W A ! Q0. Now the element .d 0 B h1/.1/ 2 Q1 Š Am

is in I m and xn.d 0 B h1/.1/ D .d 0 B h1/.1/ for a sufficiently large n. So setting
h0

1 ´ .1 � xn/ B h1, we get d 0 B h0
1.1/ D 0 and F.h0

1/ D f1. In particular, the first
morphism in (5.1) is surjective.

Similarly, to deal with the second morphism in (5.1), let f2 W Q0 ˝A k ! k be a
morphism such that the composition f2 B .d �1 ˝k/ is trivial. Again, composing with
the natural morphism Q0 D Q0 ˝A A ! Q0 ˝A k, we get a morphism g2 W Q0 ! k
which lifts to a morphism h2 W Q0 ! A. For very large n, define h0

2 ´ .1 � xn/ B h2

so that, again, h0
2 B d �1.aj / D 0, for all aj in the set of generators a1; : : : ar of Q�1.

Then F.h0
2/ D f2, and this concludes the proof.

To prove that F is not faithful, consider the non-trivial morphism xi W A ! A for
i any positive integer. On the other hand, the morphism F.xi / W k ! k is the trivial
morphism.
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