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Abstract. Let � be a semidirect product of the form Zn Ì� Z=p where p is prime and
the Z=p-action � on Zn is free away from the origin. We will compute the topological K-
theory of the real and complex group C�-algebra of � and show that � satisfies the unstable
Gromov–Lawson–Rosenberg Conjecture. On the way we will analyze the (co-)homology and
the topological K-theory of the classifying spaces B� and B� . The latter is the quotient of the
induced Z=p-action on the torus T n.
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0. Introduction

Let p be a prime. Let � W Z=p ! Aut.Zn/ D GL.n; Z/ be a group homomorphism.
Throughout this paper we will assume:

Condition 0.1 (Free conjugation action). The induced action of Z=p on Zn is free
when restricted to Zn � 0.

Denote by
� D Zn Ì� Z=p (0.2)

the associated semidirect product. Since � has a finitely generated, free abelian
subgroup which is normal, maximal abelian, and has finite index, � is isomorphic
to a crystallographic group. An example of such group � is given by Zp�1 Ì� Z=p

where the action � is given by the regular representation ZŒZ=p� modulo the ideal
generated by the norm element. When n D 1 and p D 2, � is the infinite dihedral
group.

Let B� ´ �nE� be the classifying space of � . Denote by E� be the classifying
space for proper group actions of � . Let B� D �nE� . The space B� is the quotient
of the torus T n under the Z=p-action associated to �. It is not a manifold, but an
orbifold quotient.

To compute the K-theory of the C�-algebra, we will use the Baum–Connes Con-
jecture which predicts for a group G that the complex and real assembly maps

KG
n .EG/ ��!Š Kn.C �

r .G//;

KOG
n .EG/ ��!Š KOn.C �

r .GIR//

are bijective for n 2 Z. The point of the Baum–Connes Conjecture is that it identifies
the very hard to compute topological K-theory of the group C�-algebra of G to
the better accessible evaluation at EG of the equivariant homology theory given by
equivariant topological K-theory. The Baum–Connes Conjecture has been proved for
a large class of groups which includes crystallographic groups (and many more) in
[19]. We will later use the composite maps, where in each case the second map is
induction with the projection � ! f1g.

Km.C �
r .�// ��Š K�

n .E�/! Km.B�/;

KOm.C �
r .�IR// ��Š KO�

m.E�/! KOm.B�/:

Next we describe the main results of this paper. We will show in Lemma 1.9 (i)
that k D n=.p � 1/ is an integer. Let P be the set of conjugacy classes f.P /g of
finite non-trivial subgroups of � .

Theorem 0.3 (Topological K-theory of the complex group C�-algebra). Let � D
Zn Ì� Z=p be a group satisfying Condition 0.1.
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(i) If p D 2,

Km.C �
r .�// Š

´
Z3�2n�1

; m even;

0; m odd:

If p is odd,

Km.C �
r .�// Š

´
Zdev ; m even;

Zdodd ; m odd;

where

dev D 2.p�1/k C p � 1

2p
C .p � 1/ � pk�1

2
C .p � 1/ � pk;

dodd D 2.p�1/k C p � 1

2p
� .p � 1/ � pk�1

2
:

In particular Km.C �
r .�// is always a finitely generated free abelian group.

(ii) There is an exact sequence

0! L
.P /2P

zRC.P /! K0.C �
r .�//! K0.B�/! 0;

where zRC.P / is the kernel of the map RC.P /! Z sending the class ŒV � of a
complex P -representation V to dimC.C˝CP V /.

(iii) The map
K1.C �

r .�// ��!Š K1.B�/

is an isomorphism. Restricting to the subgroup Zn of � induces an isomorphism

K1.C �
r .�// ��!Š K1.C �

r .Zn
�//Z=p:

Remark 0.4 (Twisted group algebras). The computation of Theorem 0.3 has already
been carried out in the case p D 2 and in the case n D 2 and p D 3 in [17],
Theorem 0.4, Example 3.7. In view of [17], Theorem 0.3, the computation presented
in this paper yields also computations for the topological K-theory K�.C �

r .�; !// of
twisted group algebras for appropriate cocycles !. One may investigate whether the
whole program of [17] can be carried over to the more general situation considered
in this paper.

Remark 0.5 (Computations by Cuntz and Li). Cuntz and Li [13] compute the K-
theory of C�-algebras that are associated with rings of integers in number fields. They
have to make the assumption that the algebraic number field contains only f˙1g as
roots of unity. This is related to our computation in the case p D 2. Our results, in
particular, if we could handle instead of a prime p any natural number, may be useful
to extend their program to the arbitrary case. However, the complexity we already
encounter in the case of a prime p shows that this is a difficult task.
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We are also interested in the slightly more difficult real case because of applications
to the question whether a closed smooth spin manifold carries a Riemannian metric
with positive scalar curvature (see Theorem 0.7). The numbers rl appearing in the
next theorem will be defined in (1.4) and analyzed in Section 1.3.

Theorem 0.6 (Topological K-theory of the real group C�-algebra). Let p be an odd
prime. Let � D Zn Ì Z=p be a group satisfying Condition 0.1. Then for all m 2 Z:

(i)

KOm.C �
r .�IR// Š

´
Zpk.p�1/=2 ˚ .

Ln
lD0 KOm�l.�/rl /; m even;Ln

lD0 KOm�l.�/rl ; m odd:

(ii) There is an exact sequence

0! L
.P /2P

eKOZ=p
2m .�/! KO2m.C �

r .�IR//! KO2m.B�/! 0;

where eKOZ=p
m .�/ D ker.KOZ=p

m .�/ ! KOm.�// Š Z.p�1/=2. The exact
sequence is split after inverting p.

(iii) The map
KO2mC1.C �

r .�IR// ��!Š KO2mC1.B�/

is an isomorphism. Restricting to the subgroup Zn of � induces an isomorphism

KO2mC1.C �
r .�IR// ��!Š KO2mC1.C �

r .Zn
� IR//Z=p:

If M is a closed spin manifold of dimension m with fundamental group G, one
can define an invariant ˛.M/ 2 KOm.C �

r .GIR// as the index of a Dirac operator.
If M admits a metric of positive scalar curvature, then ˛.M/ D 0. This theory and
connections with the Gromov–Lawson–Rosenberg Conjecture will be reviewed in
Section 12.1.

Theorem 0.7 ((Unstable) Gromov–Lawson–Rosenberg Conjecture). Let p be an odd
prime. Let M be a closed spin manifold of dimension m � 5 and fundamental group
� as defined in (0.2). Then M admits a metric of positive scalar curvature if and
only if ˛.M/ is zero. Moreover if m is odd, then M admits a metric of positive
scalar curvature if and only if the p-sheeted covering associated to the projection
� ! Z=p does.

Example 0.8. Here is an example where the last sentence of Theorem 0.7 applies.
Choose an odd integer k > 1. Let M be a balanced product Sk �� Rn where � acts
on the sphere via the projection � ! Z=p and a free action of Z=p on the sphere and
� acts on Rn via its crystallographic action. Then its p-fold cover Sk � T n admits a
metric of positive scalar curvature since it is a spin boundary or since it is a product of
a closed manifold with a closed Riemannian manifold with positive scalar curvature,
and hence M admits a metric of positive scalar curvature.
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Remark 0.9. Notice that Theorem 0.7 is not true for Z4 � Z=3 (see Schick [39]),
whereas it is true for Z4 Ì� Z=3 for appropriate � by Theorem 0.7.

The computation of the topological K-theory of the reduced complex group C�-
algebra C �

r .�/ and of the reduced real group C�-algebra C �
r .�IR/ will be done in a

sequence of steps, passing in each step to a more difficult situation.
We will first compute the (co-)homology of B� and B� . A complete answer is

given in Theorem 1.7 and Theorem 2.1.
Then we will analyze the complex and real topological K-cohomology and K-

homology of B� and B� . A complete answer is given in Theorem 3.1, Theorem 4.1,
Theorem 5.1 and Theorem 6.1 except for the exact structure of the p-torsion in
K2mC1.B�/, KO2mC1.B�/, K2m.B�/, and KO2m.B�/.

In the third step we will compute the equivariant complex and real topological
K-theory of E� , and hence the K-theory of the complex and real C�-algebras of � .
A complete answer is given in Theorem 0.3 and Theorem 0.6. It is rather surprising
that we can give a complete answer although we do not know the full answer for B� .

Finally we use the Baum–Connes Conjecture to prove Theorem 0.3 and Theo-
rem 0.6 in Sections 11.

The proof of Theorem 0.7 will be presented in Section 12.
Although we are interested in the homological versions, it is important in each

step to deal first with the cohomological versions as well since we will make use of
the multiplicative structure and the Atiyah–Segal Completion Theorem.

This paper was financially supported by the Hausdorff Institute for Mathematics,
the Max-Planck-Institut für Mathematik, the Sonderforschungsbereich 478 – Ge-
ometrische Strukturen in der Mathematik –, the NSF-grant of the first author, and the
Max-Planck-Forschungspreis and the Leibniz-Preis of the second author. We thank
the referee for his detailed report.

1. Group cohomology

In this section we compute the cohomology of B� and E� for the group � defined
in (0.2). It fits into a split exact sequence

1! Zn ��! �
��! Z=p ! 1 (1.1)

We write the group operation in Z=p and � multiplicatively and in Zn additively.
We fix a generator t 2 Z=p and denote the value of �.t/ by � W Zn ! Zn. When
wish to emphasize that Zn is a ZŒZ=p�-module, we denote it by Zn

� .

1.1. Statement of the computation of the cohomology

Notation 1.2 (EG and BG). For a discrete group G we let EG denote the classifying
space for proper G-actions. Let BG be the quotient space GnEG.
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Recall that a model for the classifying space for proper G-actions is a G-CW-
complex EG such that EGH is contractible if H � G is finite and empty otherwise.
Two models are G-homotopy equivalent. There is a G-map EG ! EG which is
unique up to G-homotopy. Hence there is a map BG ! BG, unique up to homotopy.
If G is torsion-free, then EG D EG and BG D BG. For more information about
EG we refer for instance to the survey article [30].

We will write H m.G/ and Hm.G/ instead of H m.BG/ and Hm.BG/.

Example 1.3 (E� and B�). Since the group � is crystallographic and hence acts
properly on Rn by smooth isometries, a model for E� is given by Rn with this
�-action. In particular B� is a quotient of the n-torus T n by a Z=p-action.

The main result of this section is the computation of the group cohomology of B�

and B� . Most of the calculation for H �.B�/ has already been carried out byAdem [3]
and later, with different methods, by Adem–Ge–Pan–Petrosyan [5]. The computation
of H �.B�/ has recently and independently obtained by different methods by Adem–
Duman–Gomez [4]. We include a complete proof since the techniques will be needed
later when we compute topological K-theory.

Let
N D t0 C t C � � � C tp�1 2 ZŒZ=p�

be the norm element. Denote by I.Z=p/ the augmentation ideal, i.e., the kernel of
the augmentation homomorphism ZŒZ=p�! Z. Let � D e2�i=p 2 C be a primitive
p-th root of unity. We have isomorphisms of ZŒZ=p�-modules

ZŒZ=p�=N Š ZŒ�� Š I.Z=p/:

Define, for m; j; k 2 Z�0, natural numbers

rm ´ rkZ..
^m

.ZŒ��k/Z=p/; (1.4)

aj ´ jf.`1; : : : ; `k/ 2 Zk j `1 C � � � C `k D j; 0 � `i � p � 1gj; (1.5)

sm ´
m�1P
j D0

aj ; (1.6)

where here and in the sequel
^m means the m-th exterior power of a Z-module. Notice

that these numbers rm, aj and sm depend on k, but we omit this from the notation
since k will be determined by the equation n D k.p � 1/ (see Lemma 1.9 (i)) and
hence by � . Note that r0 D 1, r1 D 0, a0 D 1, a1 D k, s0 D 0, s1 D 1, and
s2 D k C 1. We will give more information about these numbers in Section 1.3.

Theorem 1.7 (Cohomology of B� and B�).

(i) For m � 0,

H m.�/ Š
´

Zrm ˚ .Z=p/sm ; m even;

Zrm ; m odd:
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(ii) For m � 0 the restriction map

H m.�/! H m.Zn
�/Z=p

is split surjective. The kernel is isomorphic to .Z=p/sm if m is even and 0 if m

is odd.

(iii) The map induced by the various inclusions

'm W H m.�/! L
.P /2P

H m.P /

is bijective for m > n.

(iv) For m � 0,

H m.B�/ Š

8̂<̂
:

Zrm ; m even;

Zrm ˚ .Z=p/pk�sm ; m odd; m � 3;

0; m D 1:

Remark 1.8 (Multiplicative structure). A transfer argument shows that the kernel of
the restriction map H m.�/! H m.Zn/ is p-torsion. Theorem 1.7 together with the
exact sequence (1.14) implies that the map induced by the restrictions to the various
subgroups

H m.�/! H m.Zn/˚ L
.P /2P

H m.P /

is injective. The multiplicative structure of the target is obvious. This allows in
principle to detect the multiplicative structure on H �.�/.

1.2. Proof of Theorem 1.7. The proof of Theorem 1.7 needs some preparation.

Lemma 1.9. (i) We have an isomorphism of ZŒZ=p�-modules,

Zn
� Š I1 ˚ � � � ˚ Ik;

where the Ij are non-zero ideals of ZŒ��.
We have

Zn
� ˝Q Š Q.�/k;

n D k.p � 1/:

(ii) Each non-trivial finite subgroup P of � is isomorphic to Z=p and itsWeyl group
W�P ´ N�P=P is trivial.

(iii) There are isomorphisms

H 1.Z=pIZn
�/ ��!Š cok.� � id W Zn ! Zn/ Š .Z=p/k
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and a bijection

cok.� � id W Zn ! Zn/ ��!Š P ´ f.P / j P � �; 1 < jP j <1g:
If we fix an element s 2 � of order p, the bijection sends the element Nu 2
Zn

�=.1 � �/Zn
� to the subgroup of order p generated by us.

(iv) We have jP j D pk .

(v) There is a bijection from the Z=p-fixed set of the Z=p-space T n
� ´ Rn

�=Zn
�

with H 1.Z=pIZn
�/. In particular .T n

� /Z=p consists of pk points.

(vi) Œ�; �� D im.� � id W Zn ! Zn/.

(vii) �=Œ�; �� Š cok.� � id W Zn ! Zn/˚Z=p D .Z=p/kC1.

Proof. (i): Let u 2 Zn
� . Then N �u is fixed by the action of t 2 Z=p and hence is zero

by assumption. Thus Zn
� is a finitely generated module over the Dedekind domain

ZŒZ=p�=N D ZŒ��. Any finitely generated torsion-free module over a Dedekind
domain is isomorphic to a direct sum of non-zero ideals (see [36], p. 11). Since
Ij ˝Q Š Q.�/, we see rkZ.Ij / D p � 1.

(ii): This is obvious.
(iii): Since the norm element N acts trivially on Zn

� , we get

cok.� � id W Zn ! Zn/ D H 1.Z=pIZn
�/:

We will show

H 1.Z=pIZn
�/ Š yH 0.Z=pIH 1.Zn

�// Š .Z=p/k

in Lemma 1.10 (i). One easily checks that the map cok.� � id W Zn ! Zn/! P is
bijective.

(iv): This follows from assertion (iii).
(v): Consider the short exact sequence of ZŒZ=p�-modules

0! Zn
� ! Rn

� ! T n
� ! 0

Then the long exact cohomology sequence

.Zn
�/Z=p ! .Rn

�/Z=p ! .T n
� /Z=p ! H 1.Z=pIZn

�/! H 1.Z=pIRn
�/

is isomorphic to
0! 0! .T n

� /Z=p ! .Z=p/k ! 0 :

(vi): For .i; p/ D 1 we have .�i � 1/=.� � 1/ 2 ZŒ��� and hence we get
ker.� � id/ D ker.�i � id/ D 0 and im.� � id/ D im.�i � id/. This implies

Œ�; �� D im.� � id W Zn ! Zn/:
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(vii): The isomorphism

cok.� � id W Zn ! Zn/˚Z=p ��!Š �=Œ�; ��

sends . Nu; Ni/ 7! usi .

Next will analyze the Hochschild–Serre spectral sequence (see [12], p. 171)

E
i;j
2 D H i .Z=pIH j .Zn

�//) H iCj .�/

of the extension (1.1). We say that a spectral sequence collapses if all differentials d
i;j
r

are trivial for r � 2 and all extension problems are trivial. The basic properties of the
Tate cohomology yH i .GIM/ of a finite group G with coefficients in a ZŒG�-module
M are reviewed in Appendix 12.2.

Lemma 1.10. (i) We have

yH i .Z=pIH j .Zn
�// Š

M
`1C���C`kDj
0�`q�p�1

yH iCj .Z=pIZ/ D
´

.Z=p/aj ; i C j even;

0; i C j odd:

(ii) The Hochschild–Serre spectral sequence associated to the extension (1.1) col-
lapses.

Proof. (i): There is a sequence of ZŒZ=p�-isomorphisms

H 1.Zn
�/ Š HomZ.H1.Zn

�/; Z/ Š HomZ.Zn
� ; Z/ Š Zn

�� ;

where �.t/� W Zn ! Zn for t 2 Z=p is given by the transpose of the matrix describing
�.t/ W Zn ! Zn. The natural map given by the product in cohomology

^j
H 1.Zn/ ��!Š H j .Zn/

is bijective and hence is a ZŒZ=p�-isomorphism by naturality. Thus we obtain a
ZŒZ=p�-isomorphism

H j .Zn
�/ Š ^j Zn

�� :

Given a non-zero ideal I � ZŒ��, There exists an isomorphism of Z.p/Œ��-modules

I ˝Z.p/ ��!Š ZŒ��˝Z Z.p/ D Z.p/Œ��:

This is true since Z.p/Œ�� is a discrete valuation ring, hence all ideals are principal.
Since Zn

�� is isomorphic to a direct sum of ideals of ZŒ��, we obtain for an appropriate
natural number k isomorphisms of ZŒ��˝Z Z.p/ D Z.p/Œ��-modules

H j .Zn
�/˝Z Z.p/ Š ^j Zn

�� ˝Z Z.p/ Š ^j ZŒ��k ˝Z Z.p/:
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For every ZŒZ=p�-module M the obvious map

yH i .Z=pIM/! yH i .Z=pIM ˝Z Z.p//

is bijective. Hence we obtain an isomorphism

yH i .Z=pIH j .Zn
�// Š yH i .Z=pI^j ZŒ��k/:

Since ^�
.
L
k

ZŒ��// DN
k

^�
.ZŒ��/

and
^l

.ZŒ��/ D 0 for l � p, we get

^j
.ZŒ��k// D L

`1C���C`kDj
0�`q�p�1

^`1 ZŒ��˝ � � � ˝^`k ZŒ��:

Therefore we obtain an isomorphism

yH i .Z=pIH j .Zn
�// Š L

`1C���C`kDj
0�`q�p�1

yH i .Z=pI^`1 ZŒ��˝ � � � ˝^`k ZŒ��//:

Hence it suffices to show

yH i .Z=pI^`1 ZŒ��˝ � � � ˝^`k ZŒ��/ Š yH iCPk
aD1 la.Z=pIZ/

for l1; : : : ; lk in f0; 1; : : : ; p�1g. This will be done by induction over j DPk
aD1 la.

The induction beginning j D 0 is trivial, the induction step from j �1 to j � 1 done
as follows. We can assume without loss of generality that 1 � l1 � p � 1 otherwise
permute the factors. There is an exact sequence of ZŒZ=p�-modules

0! Z! ZŒZ=p�! ZŒ��! 0;

where 1 2 Z maps to the norm element N 2 ZŒZ=p�. Since this exact sequence splits
as an exact sequence of Z-modules, it induces an exact sequence of ZŒZ=p�-modules

1! ^l1�1 ZŒ��! ^l1 ZŒZ=p�! ^l1 ZŒ��! 1; (1.11)

where the second map is induced by the epimorphism ZŒZ=p�! ZŒ�� and the first
sends u1 ^ u2 ^ � � � ^ ul1�1 to u0

1 ^ u0
2 ^ � � � ^ u0

l1�1
^ N , where u0

b
2 ZŒZ=p�

is any element whose image under the projection ZŒZ=p� ! ZŒ�� is ub . This is
independent of the choice of the u0

b
’s since two such choices differ by a multiple of

the norm element N 2 ZŒZ=p�.
We next show that the middle term of (1.11) is a free ZŒZ=p�-module when

1 � l1 � p�1. Since Z=p D ft0; t1; : : : ; tp�1g is a Z-basis for ZŒZ=p�, we obtain
a Z-basis for

^l1 ZŒZ=p� by

ftI j I � Z=p; jI j D l1g;
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where tI D t i1 ^ t i2 ^ � � � ^ t il1 for I D fi1; i2; : : : ; il1
g with 1 � i1 < i2 < � � � <

il1
� p � 1. An element s 2 Z=p acts on

^l1 ZŒZ=p� by sending the basis element
tI to ˙t sCI . The Z=p action on fI � Z=p; jI j D l1g which sends I to s C I for
s 2 Z=p, is free. Indeed, for s 2 Z=p � f0g, the permutation of the p-element set
Z=p given by a 7! sCa cannot have any proper invariant sets since the permutation
has order p and p is prime. This implies that the ZŒZ=p�-module

^l1 ZŒZ=p� is
free.

We obtain from the exact sequence (1.11) an exact sequence of ZŒZ=p�-modules
with a free ZŒZ=p�-module in the middle

1! ^l1�1 ZŒ��˝^`2 ZŒ��˝ � � � ˝^`k ZŒ��

! ^l1 ZŒZ=p�˝^`2 ZŒ��˝ � � � ˝^`k ZŒ��

! ^l1 ZŒ��˝^`2 ZŒ��˝ � � � ˝^`k ZŒ��! 1:

Hence we obtain for i 2 Z an isomorphism

yH i .Z=pI^`1 ZŒ��˝� � �˝^`k ZŒ��/ Š yH iC1.Z=pI^`1�1 ZŒ��˝� � �˝^`k ZŒ��/:

Now apply the induction hypothesis. This finishes the proof of assertion (i).
(ii): Next we want to show that the differentials d

i;j
r are zero for all r � 2 and i ,

j . By the checkerboard pattern of the E2-term it suffices to show for r � 2 and that
the differentials d

0;j
r are trivial for r � 2 and all odd j � 1. This is equivalent to

show that for every odd j � 1 the edge homomorphism (see Proposition A.5)

�j W H j .�/! H j .Zn
�/Z=p D E

0;j
2

is surjective. But yH 0.Z=p; H j .Zn
�// D 0 by assertion (i), so the norm map N D

�j B trfj W H j .Zn
�/Z=p ! H j .Zn

�/Z=p is surjective (see Theorem A.3), so �j is
surjective.

It remains to show that all extensions are trivial. Since the composite

H iCj .�/
�iCj

���! H iCj .Zn
�/

trfiCj

����! H iCj .�/

is multiplication with p, the torsion in H iCj .�/ has exponent p. Since p � Ei;j1 D
p �Ei;j

2 D 0 for i > 0, all extensions are trivial and

H m� Š L
iCj Dm

E
i;j1 D L

iCj Dm

E
i;j
2 :

Proof of assertions (i) and (ii) of Theorem 1.7. These are direct consequences of
Lemma 1.10.
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Proof of assertion (iii) of Theorem 1.7. We obtain from [34], Corollary 2.11, to-
gether with Lemma 1.9 (ii) a cellular �-pushout`

.P /2P � �P EP
i0

��

`
.P /2P prP

��

E�

f

��`
.P /2P �=P

i1
�� E� ,

(1.12)

where i0 and i1 are inclusions of �-CW-complexes, prP is the obvious �-equivariant
projection and P is the set of conjugacy classes of subgroups of � of order p. Taking
the quotient with respect to the �-action we obtain from (1.12) the cellular pushout`

.P /2P BP
j0

��

`
.P /2P prP

��

B�

Nf

��`
.P /2P � j1

�� B�

(1.13)

where j0 and j1 are inclusions of CW-complexes, prP is the obvious projection. It
yields the following long exact sequence for m � 0

0! H 2m.B�/
Nf �

��! H 2m.�/
'2m

���! L
.P /2P

zH 2m.P /

ı2m

��! H 2mC1.B�/
Nf �

��! H 2mC1.�/! 0;

(1.14)

where '� is the map induced by the various inclusions P � � for .P / 2 P .
Now assertion (iii) follows from (1.14) since there is a n-dimensional model for

B� .

We still need to prove assertion (iv) of Theorem 1.7.
In order to compute H �.B�/, we need to compute the kernel and image of '2m.

Lemma 1.15. Let m � 1.

(i) Let K2m be the kernel of '2m. There is a short exact sequence

0! K2m ! H 2m.Zn
�/Z=p! yH 0.Z=pIH 2m.Zn

�//! 0;

where thefirst non-trivialmap is the restrictionof �� W H 2m.�/! H 2m.Zn
�/Z=p

to K2m and the second non-trivial map is given by the quotient map appearing
in the definition of Tate cohomology. It follows that K2m Š Zrm .

(ii) The image of '2m is isomorphic to

ker.H 2m.�/! H 2m.Zn
�/Z=p/˚ yH 0.Z=pIH 2m.Zn

�// Š .Z=p/s2mC1 :
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Proof. (i): Let ˇ 2 H 2.Z=p/ Š Z=p be a generator. Let L2m be the kernel of

� [��.ˇ/n W H 2m.�/! H 2mC2n.�/:

We first claim that K2m D L2m. Indeed, the following diagram commutes

H 2m.�/
'2m

��

�[��.ˇ/n

��

L
.P /2P H 2m.P /

�[ˇn

��

H 2mC2n.�/
'2mC2n

��
L

.P /2P H 2mC2n.P /

Since dim.B�/ � n, we have H iC2n.B�/ D 0 for i � 1. Hence the lower horizontal
arrow is bijective by (1.14). The right vertical arrow is bijective. Thus K2m D L2m.

Recall that we have a descending filtration

H 2m.�/ D F 0;2m 	 F 1;2m�1 	 � � � 	 F 2m;0 	 F 2mC1;�1 D 0

with F r;2m�1=F rC1;2m�r�1 Š Er;2m�r1 . Recall that E
2;0
2 D H 2.Z=pIH 0.Zn

�// D
H 2.Z=p/ so that we can think of ˇ as an element in E

2;0
2 . Recall that E

i;j
2 D E

i;j1
by Lemma 1.10 (ii). From the multiplicative structure of the spectral sequence we
see that the image of the map

� [ ��.ˇ/n W H 2m.�/! H 2mC2n.�/

lies in F 2n;2m and the diagram

0

��

0

��

F 1;2m�1
�[��.ˇ/n

Š
��

��

F 2nC1;2m�1

��

H 2m.�/ �[��.ˇ/n
��

��

F 2n;2m

��

E0;2m1 �[ˇn
��

��

E2n;2m1

��

0 0

(1.16)

commutes, where the columns are exact. The upper horizontal arrow is bijective.
Namely, one shows by induction over r D �1; 0; 1; : : : ; 2m � 1 that the map

� [ ��.ˇ/n W F 2m�r;r ! F 2m�rC2n;r



386 J. F. Davis and W. Lück

is bijective. The induction beginning r D �1 is trivial since then both the source
and the target are trivial, and the induction step from r � 1 to r follows from the five
lemma and the fact that the map

� [ ˇn W E2m�r;r1 D H 2m�r.Z=pIH r.Zn
�//

! E2m�rC2n;r1 D H 2m�rC2n.Z=pIH r.Zn
�//

is bijective.
The bottom horizontal map in diagram (1.16) can be identified with the composi-

tion of the canonical quotient map

H 0.Z=pIH 2m.Zn
�//! yH 0.Z=pIH 2m.Zn

�//:

with the isomorphism

� [ ˇn W yH 0.Z=pIH 2m.Zn
�// ��!Š yH 2n.Z=pIH 2m.Zn

�//:

So what do we know about diagram (1.16)? The top horizontal map is an isomor-
phism, the kernel of middle horizontal map is L2m, and the bottom horizontal map
is onto. We conclude from the snake lemma that the middle map is an epimorphism
and that we have a short exact sequence

0! L2m ! E0;2m1 ! E2n;2m1 ! 0:

The first non-trivial map is the composite of the inclusion K2m D L2m � H 2m.�/

with the epimorphism

H 2m.�/! E0;2m1 D H 2m.Zn
�/Z=p

induced by the inclusion � W Zn ! � . We have already identified the second non-
trivial map (up to isomorphism) with the quotient map as desired. Hence the sequence
in assertion (i) is exact. Since the middle term is isomorphic to Zrm and the right
term is finite, K2m is also isomorphic to Zrm .

(ii): The exact sequence

0! ker.H 2m.�/! H 2m.Zn
�/Z=p/! H 2m.�/

�2m

��! H 2m.Zn
�/Z=p ! 0

has the property that �2m restricted to K2m is injective. Thus we can quotient by K2m

and �2m.K2m/ in the middle and right-hand term respectively and maintain exactness.
Hence we have the exact sequence

0! ker.H 2m.�/! H 2m.Zn
�/Z=p/! H 2m.�/=K2m

! yH 0.Z=pIH 2m.Zn
�//! 0:

(1.17)
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where we used assertion (i) to compute the right-hand term. We conclude from
Lemma 1.10 that

yH 0.Z=pIH 2m.Zn
�// Š .Z=p/a2m ; (1.18)

ker.H 2m.�/! H 2m.Zn
�/Z=p/ Š

2mL
iD1

Ei;2m�i Š
2m�1L
j D0

.Z=p/aj : (1.19)

Since H 2m.�/=K2m is isomorphic to a subgroup of
L

.P /2P
zH 2m.P / by the long

exact cohomology sequence (1.14) it is annihilated by multiplication with p. Hence
the short exact sequence (1.17) splits and we conclude from (1.18) and (1.19) that

H 2m.�/=K2m Š
2mL

j D0

.Z=p/aj Š .Z=p/s2mC1 :

This finishes the proof of Lemma 1.15.

We conclude from the exact sequence (1.14), Theorem 1.7 (i), Lemma 1.9 (iv),
and Lemma 1.15

Corollary 1.20. For m � 1 the long exact sequence (1.14) can be identified with

0! Zr2m ! Zr2m ˚ .Z=p/s2m ! .Z=p/pk

! Zr2mC1 ˚ .Z=p/pk�s2mC1 ! Zr2mC1 ! 0:

Proof of assertion (iv) of Theorem 1.7. Obviously H 0.B�/ Š Z. Since .Zn/Z=p D
0 by assumption, we get H 1.�/ D 0 from assertion (ii) of Theorem 1.7. We conclude
H 1.B�/ Š 0 from the long exact sequence (1.14). The values of H m.B�/ for m � 2

have already been determined in Corollary 1.20. Hence assertion (iv) of Theorem 1.7
follows. This finishes the proof of Theorem 1.7.

1.3. On the numbers rm. In this section we collect some basic information about
the numbers rm, aj and sm introduced in (1.4),(1.5), and (1.6).

Since Zn acts freely on E� D Rn, we conclude from Lemma 1.9 (i) and Propo-
sition A.4

rm D rkQ..
^m

Q.Q.�/k/Z=p// D rkQ.H m.BZn
� IQ/Z=p/

D rkQ.H m.B�IQ// D rkQ.H m.�IQ//:

Since Tate cohomology is rationally trivial, the norm map is a rational isomorphism,
hence also

rm D rkQ.
^m

Q.QŒ��k/˝QŒZ=p� Q/: (1.21)

Lemma 1.22. (i) We have r0 D 1, r1 D 0, a0 D 1, a1 D k, s0 D 0, s1 D 1, and
s2 D k C 1. We get rm D 0 for m � nC 1 and sm D pk for m � n.
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(ii) If p is odd, we getX
m�0

m even

rm D 2.p�1/k C p � 1

2p
C .p � 1/ � pk�1

2
;

X
m�0
m odd

rm D 2.p�1/k C p � 1

2p
� .p � 1/ � pk�1

2
:

If p D 2, we get X
m�0

m even

rm D 2n�1;
X
m�0
m odd

rm D 0:

(iii) Suppose that k D 1. Then

rm D 1
p
� ��p�1

m

�C .�1/m � .p � 1/
�

for 0 � m � .p � 1/;

rm D 0 for m � p;

am D 1 for 0 � m � p � 1;

am D 0 for p � m;

sm D m for 0 � m � p � 1;

sm D p for m � p:

Proof. In the proof below we write
^l

V instead of
^l

Q V for a Q-vector space V .
(i): This follows directly from the definitions.
(ii): Suppose that 1 � l � p � 1. By rationalizing the exact sequence (1.11) we

have the short exact sequence of QŒZ=p�-modules

0! ^l�1 QŒ��! ^l QŒZ=p�! ^l QŒ��! 0:

Since
^l ZŒZ=p� is finitely generated free as ZŒZ=p�-module (see proof of Lem-

ma 1.10 (i)), the following equation holds in the rational representation ring RQ.Z=p/:

Œ
^l QŒ���C Œ

^l�1 QŒ��� D 1

p
�
�

p

l

�
� ŒQŒZ=p��:

One shows by induction over l for 0 � l � p � 1,

Œ
^l

.QŒ��/� D .�1/l � ŒQ�C 1

p

��
p � 1

l

�
� .�1/l

�
� ŒQŒZ=p��: (1.23)

Since
Pp�1

lD0

�
p�1

l

� D 2p�1, we get

p�1X
lD0

Œ
^l QŒ��� D

´
ŒQ�C 2p�1�1

p
� ŒQŒZ=p�� if p is odd;

ŒQŒZ=2�� if p D 2:
(1.24)
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Since ^�
.
L
k

QŒ��/ DN
k

^�
.QŒ��/

and
^l

.QŒ��/ D 0 for l � p, we get

Œ
^j

.QŒ��k/� D P
`1C���C`kDj
0�`i �p�1

kQ
iD1

Œ
^`i .QŒ��/�: (1.25)

We conclude from (1.24) and (1.25) that

P
j �0

�^j
.QŒ��k/� D P

j �0

� P
`1C���C`kDj
0�`i �p�1

kQ
iD1

�^`i .QŒ��/�
�

D P
l1;l2;:::;lk

0�`q�p�1

kQ
iD1

�^`i .QŒ��/
�

D
kQ

iD1

P
0�`i �p�1

Œ
^`i .QŒ��/�

D
´

.ŒQ�C 2p�1�1
p
� ŒQŒZ=p��/k if p is odd;

ŒQŒZ=2��k if p D 2:

Since ŒQ� is the multiplicative unit in RQ.Z=p/, and ŒQŒZ=p��i D pi�1 � ŒQŒZ=p��,
we obtain the following equality in RQ.Z=p/ if p is odd:

X
j �0

Œ
^j

.QŒ��k/� D
kX

iD0

�
k

i

�
� .2

p�1 � 1/i

pi
� ŒQŒZ=p��i � ŒQ�k�i

D ŒQ�C 1

p
� .�1C

kX
iD0

�
k

i

�
.2p�1 � 1/i / � ŒQŒZ=p��

D ŒQ�C 1

p
� .�1C 2.p�1/k/ � ŒQŒZ=p��

D ŒQ�C 2.p�1/k � 1

p
� ŒQŒZ=p��:

(1.26)

If p D 2, we obtain P
j �0

Œ
^j

.QŒ��k/� D 2k�1 � ŒQŒZ=2��:

There is a homomorphism of abelian groups

ˆ W RQ.Z=p/! Z; ŒV � 7! rkQ.V ˝QŒZ=p� Q/:
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By (1.21) it sends Q, QŒZ=p�, and Œ
^m

.QŒ��k/� to 1, 1, and rm respectively. Hence
we conclude from (1.26)

X
m�0

rm D 2.p�1/k � 1

p
C 1 for p odd; (1.27)

X
m�0

rm D 2k�1 for p D 2: (1.28)

If X is a finite Z=p-CW-complex with orbit space xX , then the Riemann–Hurwitz
formula states that

�. xX/ D 1

p
�.X/C p � 1

p
�.XZ=p/:

One derives this formula by verifying it for both fixed and freely permuted cells.
Applying Proposition A.4, the Riemann–Hurwitz formula, and Lemma 1.9 (v) to the
Z=p-action on the torus T n, one seesP

m�0

.�1/mrm D �..Z=p/nT m/ D 0C .p � 1/pk�1: (1.29)

We conclude from (1.27) and (1.29) if p is odd

X
m�0

m even

rm D 2.p�1/k C p � 1

2p
C .p � 1/ � pk�1

2
;

X
m�0

m odd

rm D 2.p�1/k C p � 1

2p
� .p � 1/ � pk�1

2
:

If p D 2, we obtain from (1.28) and (1.29)P
m�0

m even

rm D 2n�1;
P

m�0
m odd

rm D 0

since n D k � .p � 1/.
(iii): The first formula follows from (1.21) and applying the homomorphism ˆ to

(1.23). The rest of (iii) is clear from the definitions.

2. Group homology

Next we determine the group homology of the group � . Recall that, for a ZŒG�-
module M , the coinvariants are MG DM ˝ZŒG� Z.
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Theorem 2.1 (Homology of B� and B�).

(i) For m � 0,

Hm.�/ Š
´

Zrm ˚ .Z=p/smC1 ; m odd;

Zrm ; m even:

(ii) For m � 0, the inclusion map Zn ! � induces an isomorphism

H2m.Zn
�/Z=p ��!Š H2m.�/:

(iii) The map induced by the various inclusions

'm W L
.P /2P

Hm.P /! Hm.�/

is bijective for m > n.

(iv) For m � 0,

Hm.B�/ Š

8̂<̂
:

Zrm ; m odd;

Zrm ˚ .Z=p/pk�smC1 ; m even; m � 2;

Z; m D 0:

(v) For m � 1 the long exact homology sequence associated to the pushout (1.13)

0! H2m.�/! H2m.B�/! L
.P /2P

H2m�1.P /

! H2m�1.�/! H2m�1.B�/! 0

can be identified with

0! Zr2m ! Zr2m ˚ .Z=p/pk�s2mC1

! .Z=p/pk ! Zr2m�1 ˚ .Z=p/s2m ! Zr2m�1 ! 0:

Proof. (i), (iii), (iv) and (v): Recall there is a exact sequence

0! Ext1
Z.H nC1.X/; Z/! Hn.X/! HomZ.H n.X/; Z/! 0

for every CW-complex X with finite skeleta, natural in X . This, Theorem 1.7 and
Corollary 1.20 imply (i) (iv), and (v).

(ii): Here again we use the Hochschild–Serre spectral sequence

E2
i;j D Hi .Z=pIHj .Zn

�//) HiCj .�/:

Then the Universal Coefficient Theorem, Lemma A.1, and Lemma 1.10 (i) imply that

yH iC1.Z=pIHj .Zn
�// Š yH iC1.Z=pIH j .Zn

�/�/ Š yH �i�1.Z=pIH j .Zn
�// D 0
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for i C j even. Therefore, E2
i;j D 0 when i C j is even and i > 0. Because

yH �1.Z=pIH2m.Zn
�// D 0, the norm map

H2m.Zn
�/Z=p ! H2m.Zn

�/Z=p

is injective. Thus E2
0;2m D H2m.Zn

�/Z=p is torsion-free. Since, for i > 0, E2
i;j is

torsion,
H2m.Zn

�/Z=p D E2
0;2m D E1

0;2m ��!Š H2m.�/:

3. K -cohomology

Next we analyze the values of complex K-theory K� on B� and B� . Recall that by
Bott periodicity K� is 2-periodic, K0.�/ D Z, and K1.�/ D 0.

A rational computation of K�.BG/ ˝ Q has been given for groups G with a
cocompact G-CW-model for EG in [31], Theorem 0.1, namely

Km.BG/˝Q

��!Š � Q
l2Z

H 2lCm.BGIQ/
� � � Q

q prime

Q
.g/2conq.G/

Q
l2Z

H 2lCm.BCGhgiIcQq/
�
;

where conq.G/ is the set of conjugacy classes (g) of elements g 2 G of order qd for
some integer d � 1 and CGhgi is the centralizer of the cyclic subgroup hgi.

It gives in particular for G D � because of Theorem 1.7 (ii) and (i) and Lemma 1.9:

K0.B�/˝Q Š Q
P

l2Z r2l ˚ . cQp/.p�1/pk

;

K1.B�/˝Q Š Q
P

l2Z r2lC1 :

Recall that we have computed
P

l2Z r2l and
P

l2Z r2lC1 in Lemma 1.22 (ii).
We are interested in determining the integral structure, namely, we want to show

Theorem 3.1 (K-cohomology of B� and B�).

(i) For m 2 Z,

Km.B�/ Š
´

Z
P

l2Z r2l ˚ .cZp/.p�1/pk
; m even;

Z
P

l2Z r2lC1 ; m odd:

Here cZp is the p-adic integers.

(ii) There is a split exact sequence of abelian groups

0! .cZp/.p�1/pk ! K0.B�/! K0.BZn
�/Z=p ! 0

and K0.BZn
�/Z=p Š Z

P
l2Z r2l .
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(iii) Restricting to the subgroup Zn of � induces an isomorphism

K1.B�/ ��!Š K1.BZn
�/Z=p

and K1.BZn
�/Z=p Š Z

P
l2Z r2lC1 .

(iv) We have
K0.B�/ Š Z

P
l2Z r2l :

(v) We have
K1.B�/ Š Z

P
l2Z r2lC1 ˚ T 1

for a finite abelian p-group T 1 for which there exists a filtration

T 1 D T 1
1 	 T 1

2 	 � � � 	 T 1
Œ.n=2/C1� D 0

such that

T 1
i =T 1

iC1 D .Z=p/ti for i D 1; 2; : : : ; Œ.n=2/C 1�

for integers ti which satisfy 0 � ti � pk � s2iC1.

(vi) The map K1.B�/! K1.B�/ induces an isomorphism

K1.B�/=p-torsion ��!Š K1.B�/:

Its kernel is isomorphic to T 1 and is isomorphic to the cokernel of the map

K0.B�/
'0

�! L
.P /2P

zK0.BP /:

The proof of Theorem 3.1 needs some preparation. We will use two spectral
sequences. The Atiyah–Hirzebruch spectral sequence (see [43], Chapter 15) for
topological K-theory

E
i;j
2 D H i .B�IKj .�//) KiCj .B�/

converges since B� has a model which is a finite dimensional CW-complex. We
also use the Leray–Serre spectral sequence (see [43, Chapter 15]) of the fibration
BZn ! B� ! BZ=p. Recall that its E2-term is E

i;j
2 D H i .Z=pIKj .BZn

�// and
it converges to KiCj .B�/. The Leray–Serre spectral sequence converges (with no
lim1-term) by [32], Theorem 6.5.

Lemma 3.2. In the Atiyah–Hirzebruch spectral sequence converging to K�.B�/,

Ei;j1 Š

8̂̂̂<̂
ˆ̂:

Zri ; i even; j even;

Zri ˚ .Z=p/t 0
i ; i odd; i � 3; j even;

0; i D 1; j even;

0; j odd;

where 0 � t 0
i � pk � si .
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Proof. Since B� has a finite CW-model, all differentials in the Atiyah–Hirzebruch
spectral sequence converging to K�.B�/ are rationally trivial and there exists an N

so that for all i; j , E
i;j
N D E

i;j1 . The E2-term of the Atiyah–Hirzebruch spectral
sequence converging to K�.B�/ is given by Theorem 1.7 (i):

E
i;j
2 D H i .B�IKj .�// Š

8̂̂̂<̂
ˆ̂:

Zri ; i even; j even;

Zri ˚ .Z=p/pk�si ; i odd; i � 3; j even;

0; i D 1; j even;

0; j odd:

A map with a torsion-free abelian group as target is already trivial, if it vanishes
rationally. Now consider .i; j / such that it is not true that i is odd and j is even.
Then one shows by induction over r � 2 that E

i;j
r is zero for odd j and Zri for

even j , the differential ending at .i; j / in the Er -term is trivial and the image of
the differential starting at .i; j / is finite, and E

i;j
r is an abelian subgroup of E

i;j
rC1 of

finite index. Next consider .i; j / such that i is odd and j is even. Then one shows by
induction over r � 2 that the image of the differential ending at .i; j / in the Er -term
lies in the torsion subgroup of E

i;j
rC1, the differential starting at .i; j / is trivial, the

rank of E
i;j
rC1 is ri and its torsion subgroup is isomorphic to Z=pt for some t with

t � pk � si .
This finishes the proof of Lemma 3.2.

Lemma 3.3. (i) For every m 2 Z, there is an isomorphism of ZŒZ=p�-modules

Km.BZn
�/ ŠL

l

H mC2l.Zn
�/I

in particular we get
Km.BZn

�/Z=p Š Z
P

l rmC2l :

(ii)

yH i .Z=pIKj .BZn
�// Š L

l2Z

yH i .Z=pIH j C2l.Zn
�//

Š
´

.Z=p/
P

l2Z aj C2l ; i C j even;

0; i+j odd:

(iii) All differentials in the Leray–Serre spectral sequence are trivial.

Proof. (i): Since K�.�/ is torsion-free, Lemma 3.4 below shows that the Chern
character gives an isomorphism

chm W Km.T n/ ��!Š L
iCj Dm

H i .T nIKj .�// DL
l

H mC2l.T n/:
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Since T n is a model for the Z=p-space BZn
� and chm is natural with respect to

self-maps of the torus, chm is an isomorphism of ZŒZ=p�-modules.
Since H mC2l.Zn

�/Z=p Š ZrmC2l by Theorem 1.7 (ii) and (i), assertion (i) follows.
(ii): This follows from Lemma 1.10 (i) and assertion (i).
(iii): Next we want to show that the differentials d

i;j
r are zero for all r � 2 and

i , j . By the checkerboard pattern of the E2-term it suffices to show for r � 2 that
the differentials d

0;j
r are trivial for r � 2 and all odd j � 1. This is equivalent to

showing that for every odd j � 1 the edge homomorphism (see Proposition A.5)

�j W Kj .B�/! Kj .BZn
�/Z=p D E

0;j
2

is surjective. To show this we use the transfer, whose properties are reviewed in
Appendix 12.2. For j odd, yH 0.Z=p; Kj .Zn

�// D 0 by assertion (ii). Thus the norm
map N D �j B trfj is surjective, and so �j is surjective as desired.

Let H� be a generalized homology theory and H � a generalized cohomology
theory. Dold defined (see [16] and [27, Example 4.1]) Chern characters

chm W L
iCj Dm

Hi .X; Y IHj .�//! Hm.X; Y /˝Q;

chm W H m.X; Y /! L
iCj Dm

H i .X; Y IH j .�//˝Q:

The homological Chern character is a natural transformations of homology theories
defined on the category of CW-pairs. When X D �, then chm D iQ W Hm.�/ D
Hm.�/˝ Z ! Hm.�/˝Q, after the obvious identification of the targets. Hence
these Chern characters are rational isomorphisms for any CW-pair. In cohomology
there are parallel statements after restricting oneself to the category of finite CW-pairs.
(If the disjoint union axiom is fulfilled, finite dimensional suffices.)

A CW-pair .X; Y / is H�-Chern integral if for all m,

iQ W Hm.X; Y /! Hm.X; Y /˝Q

is a monomorphism, and chm gives an isomorphism onto the image of iQ. There is
a similar definition of H �-Chern integral for finite CW-pairs.

Lemma 3.4 (Chern character).

(i) A point is H�-Chern integral if and only if H�.�/ is torsion-free.

(ii) If X is H�-Chern integral, then so is X � S1.

Similar statements hold in cohomology.

Proof. (i): If a point is H�-Chern integral, then H�.�/! H�.�/˝Q is injective,
hence H�.�/ is torsion-free. If H�.�/ is torsion-free, then iQ is injective. Since
chm D iQ, a point is H�-Chern integral.
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(ii): Consider the following commutative diagram with split exact columns.

0

��

0

��

0

��L
iCj Dm

Hi .X �D1IHj .�//

��

chm
�� Hm.X �D1/˝Q

��

Hm.X �D1/

��

iQ
��

L
iCj Dm

Hi .X � S1IHj .�//

���
�
�

��

chm
�� Hm.X � S1/˝Q

��

���
�
�
�

Hm.X � S1/

��

iQ
��

���
�
�
�

L
iCj Dm

Hi .X � .S1; D1/IHj .�//

��

chm
�� Hm.X � .S1; D1//˝Q

��

Hm.X � .S1; D1//

��

iQ
��

0 0 0

The columns come from the long exact sequence of a pair where D1 is included in
S1 as the upper semicircle. The splitting maps are given by a constant map S1 ! D1.
It is elementary to see that the bottom row is isomorphic toL

iCj Dm�1

Hi .X IHj .�// chm�1����! Hm�1.X/˝Q
iQ � Hm�1.X/:

Since X is H�-Chern integral, so are X � .D1; S1/ and X � D1. It follows that
X � S1 is H�-Chern integral as desired.

One may also argue by using the fact that stably X�S1 agrees with X_S1_†X

and the property H�-Chern integral is inherited by suspensions and wedges.

Proof of Theorem 3.1. (iv), (v): These assertions follow from theAtiyah–Hirzebruch
spectral sequence converging to K�.B�/ using Lemma 3.2.

(ii), (iii), (vi): We first claim that for all m 2 Z, the inclusion � W Zn ! � induces
an epimorphism

�m W Km.B�/! Km.BZn
�/Z=p

and Km.BZn
�/Z=p Š Z

P
l2Z rmC2l . We will also show that for m odd, the map �m is

an isomorphism. By Lemma 3.3 (iii), the Leray–Serre spectral sequence collapses,
so E

0;m
2 D E0;m1 . Hence the edge homomorphism �m is onto (see Proposition A.5).

The computation of Km.BZn
�/ is given in Lemma 3.3 (i). Now assume m is odd. For

any i > 0, E
i;m�i
2 D 0 by Lemma 3.3 (ii). Hence H m.B�/ D E0;m1 , so the edge

homomorphism is injective. We have now proved assertion (iii) of our theorem.
We next note that for all m 2 Z, the kernel and cokernel of the composite

Km.B�/! Km.B�/! Km.BZn
�/Z=p
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are finitely generated abelian p-groups. This follows from Proposition A.4 and the
commutative diagram

BZn
� D T n � S1 '

��

�

��

T n D Rn=Zn

�

��

B� D T n �Z=p S1 �� B� D Rn=� .

By Lemma 1.9 (iv), the number of conjugacy classes of order p subgroups of �

is pk . By the Atiyah–Segal Completion Theorem (see [8]),

zKm.BZ=p/ Š
´

IC.Z=p/˝cZp Š .cZp/p�1; if m even;

0; if m odd;

where IC.Z=p/ � RC.Z=p/ is the augmentation ideal. HenceL
.P /2P

zK0.BP / Š .cZp/.p�1/pk
:

We are now in a position to analyze the long exact sequence

0! K0.B�/
Nf 0

��! K0.B�/
'0

�! L
.P /2P

zK0.BP /
ı0

�! K1.B�/
Nf 1

��! K1.B�/! 0

(3.5)
associated to the cellular pushout (1.13). We will work from right to left.

Since K1.B�/ Š K1.BZn
�/Z=p is torsion-free, it follows that the kernel of Nf 1

equals T 1, the p-torsion subgroup of K1.B�/. By exactness of (3.5), T 1 also equals
the cokernel of '0. This completes the proof of assertion (vi).

We showed above that ker Nf 1 D im ı0 is a finite abelian p-group. It follows
that ker ı0 D im '0 is also isomorphic to .cZp/.p�1/pk

since any finite abelian p-
group A is p-adically complete, and hence a cZp-module, a Z-homomorphism from

.cZp/.p�1/pk ! A is automatically a cZp-homomorphism and cZp is a principal ideal
domain.

Consider the commutative diagram with exact rows

0 �� K0.B�/ ��

�0

��

K0.B�/ ��

�0

��

im '0 ��

��

0

0 �� K0.BZn
�/Z=p �� K0.BZn

�/Z=p �� 0 �� 0.

We have already seen that the middle vertical map is surjective with free abelian
target, hence split surjective. Let K be the kernel of �0. Then by the snake lemma,
there is a short exact sequence

0! K ! im '0 ! coker.�0/! 0:
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As we noted above, im '0 Š .cZp/.p�1/pk
and coker.�0/ is a finite abelian p-group.

Thus K is also isomorphic to .cZp/.p�1/pk
. This completes the proof of assertion (ii).

(i): This follows from assertions (ii) and (iii).
This finishes the proof of Theorem 3.1.

4. K -homology

In this section we compute complex K-homology of B� and B� . Rationally this can
be done using the Chern character of Dold [16] which gives for every CW-complex
a natural isomorphismL

l2Z

HmC2l.X/˝Q ��!Š KOm.X/˝Q:

In particular we get from Theorem 2.1 (i) and (iv)

Km.B�/˝Q Š Q
P

l2Z rmC2l ; Km.B�/˝Q Š Q
P

l2Z rmC2l :

We are interested in determining the integral structure, namely, we want to show

Theorem 4.1 (K-homology of B� and B�).

(i) For m 2 Z,

Km.B�/ Š
´

Z
P

l2Z r2l ; m even;

Z
P

l2Z r2lC1 ˚ .Z=p1/.p�1/pk
; m odd:

Here Z=p1 D colimn!1 Z=pn Š ZŒ1=p�=Z.

(ii) The inclusion map Zn ! � induces an isomorphism

K0.BZn
�/Z=p ��!Š K0.B�/

and K0.BZn
�/Z=p Š Z

P
l2Z r2l .

(iii) There is a split short exact sequence of abelian groups

0! .Z=p1/.p�1/pk ! K1.B�/! K1.B�/! 0:

(iv) We have
K0.B�/ Š Z

P
l2Z r2l ˚ T 1;

where T 1 is the finite abelian p-group appearing in Theorem 3.1 (v).

(v) We have
K1.B�/ Š Z

P
l2Z r2lC1 :
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(vi) The group T 1 is isomorphic to a subgroup of the kernel ofL
.P /2P

K1.BP /! K1.B�/:

Its proof needs some preparation.

Theorem 4.2 (Universal Coefficient Theorem for K-theory). For any CW-complex
X there is a short exact sequence

0! ExtZ.K��1.X/; Z/! K�.X/! HomZ.K�.X/; Z/! 0:

If X is a finite CW-complex, there is also the K-homological version

0! ExtZ.K�C1.X/; Z/! K�.X/! HomZ.K�.X/; Z/! 0:

Proof. A proof for the first short exact sequence can be found in [6] and [46], (3.1),
the second sequence follows then from [1], Note 9 and 15.

Proof of Theorem 4.1. (iv), (v): These assertions follow from Theorem 3.1 (iv) and
(v) and Theorem 4.2 since there is a finite CW-model for B� , namely �nRn.

(iii): We will use Pontryagin duality for locally compact abelian groups. For such
a group G, the Pontryagin dual yG is Hom.G; S1/, given the compact-open topology.
A reference for the basic properties is [18]. These include: yG is also a locally compact
abelian group. The natural map from G to its double dual is a isomorphism. G is
discrete if and only if yG is compact. If 0! A! B ! C ! 0 is exact, then so is
0! yC ! yB ! yA! 0. Our primary example of duality is

2Z=p1 Š cZp:

Here Z=p1 is given the discrete topology and the p-adic integers cZp are given the
p-adic topology. This statement is included in [18], paragraph 25.2, but also follows
from the following assertion proved in [25], 20.8, if H1 ! H2 ! H3 ! � � � is a
sequence of maps of locally compact abelian groups, then

3colim
n!1 Hn Š lim

n!1
yHn

We will now give the computation of K�.BZ=p/. The Atiyah–Hirzebruch Spec-
tral Sequence shows that zK0.BZ=p/ D 0. Vick [44] shows that K1.BG/ is the Pon-
tryagin dual of zK0.BG/ for any finite group G. Applying these facts to G D Z=p

we get (see also Knapp [22], Proposition 2.11)

Km.BZ=p/ Š
´

.Z=p1/p�1; if m is odd;

Z; if m is even:
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Thus the long exact K-homology sequence associated to the cellular pushout (1.13)
reduces to the exact sequence

0! K0.B�/
Nf0�! K0.B�/

@0�! L
.P /2P

K1.BP /
'0�! K1.B�/

Nf1�! K1.B�/! 0:

(4.3)
Note that im @0 is a finite abelian p-group since it is a finitely generated subgroup of
the p-torsion group L

.P /2P

K1.BP / Š .Z=p1/.p�1/pk
:

Dualizing the exact sequence

0! im @0 ! .Z=p1/.p�1/pk ! im '0 ! 0;

we see that 1im '0 has finite p-power index in .cZp/.p�1/pk
, hence is itself isomorphic

to .cZp/.p�1/pk
(compare the proof of Theorem 3.1 (iv) and (v)). Dualizing again,

we see im '0 Š .Z=p1/.p�1/pk
.

The map Nf1 is split surjective since its target is free abelian by assertion (v).
(ii): The Universal Coefficient Theorem in K-theory shows that K0.BZn

�/ Š
K0.BZn

�/�. In Lemma 3.3 we showed there is an isomorphism of ZŒZ=p�-modules
K0.BZn

�/ Š L
` H 2`.Zn

�/. Now we proceed exactly as in the proof of Theo-
rem 2.1 (ii), using the Leray–Serre spectral sequence

E2
i;j D Hi .Z=pIKj .BZn

�//) KiCj .B�/:

One shows that E2
0;2m D K2m.BZn

�/Z=p is torsion-free, and for i > 0, E2
i;j has

exponent p and vanishes if i C j is even. Thus

K2m.BZn
�/Z=p D E2

0;2m D E1
0;2m ��!Š K2m.B�/:

By Remark A.2 and the Universal Coefficient Theorem, .K2m.BZn
�/Z=p/� Š

K2m.BZn
�/Z=p , which is isomorphic to Z

P
l2Z r2l by Lemma 3.3 (i).

(i): This follows from assertions (ii), (iii) and (v).
(vi): This follows from assertion (iv) and the exact sequence (4.3). This finishes

the proof of Theorem 4.1.

5. KO-cohomology

In this section we compute real K-cohomology KO� of B� .
Recall that by Bott periodicity KO� is 8-periodic, i.e., there is a natural isomor-

phism KOm.X/ Š KOmC8.X/ for every m 2 Z and CW-complex X , and KO�m.�/
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is given for m D 0; 1; 2; : : : ; 7 by Z, Z=2, Z=2, 0, Z, 0, 0, 0. We will assume from
now on that p is odd in order to avoid the extra difficulties arising from the fact that
KOm.�/ Š Z=2 for m D 1; 2.

Theorem 5.1 (KO-cohomology of B� and B�). Let p be an odd prime and let m

be any integer.

(i)

KOm.B�/ Š
´

.
L

l2Z KOm�l.�/rl /˚ .cZp/pk.p�1/=2; m even;L
l2Z KOm�l.�/rl ; m odd:

(ii) There is a split exact sequence of abelian groups

0! .cZp/pk.p�1/=2 ! KO2m.B�/! KO2m.BZn
�/Z=p ! 0;

and KO2m.BZn
�/Z=p ŠL

l2Z KO2m�l.�/rl .

(iii) Restricting to the subgroup Zn of � induces an isomorphism

KO2mC1.B�/ ��!Š KO2mC1.BZn
�/Z=p:

and KO2mC1.BZn
�/Z=p ŠL

l2Z KO2mC1�l.�/rl .

(iv) We have

KO2m.B�/ Š ˚l2Z KO2m�l.�/rl :

(v) We have

KO2mC1.B�/ Š .
L
l2Z

KO2mC1�l.�/rl /˚ TO2mC1;

where TO2mC1 is a finite abelian p-group for which there exists a filtration

TO2mC1 D TO2mC1
1 	 TO2mC1

2 	 � � � 	 TO2mC1
Œ.nC4�.�1/m/=4�

D 0

such that TO2mC1
i =TO2mC1

iC1 D .Z=p/toi holds for integers toi which satisfy
0 � toi � pk � s4iC.�1/m .

(vi) The map KO2mC1.B�/! KO2mC1.B�/ induces an isomorphism

KO2mC1.B�/=p-torsion ��!Š KO2mC1.B�/:

Its kernel is isomorphic to TO2mC1 and is isomorphic to the cokernel of the map

KO2m.B�/! L
.P /2P

eKO2m.BP /:
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Lemma 5.2. Let p be an odd prime. In the Atiyah–Hirzebruch spectral sequence
converging to K�.B�/ after localizing at p

.Ei;j1 /.p/ Š

8̂̂̂<̂
ˆ̂:

Zri

.p/
; i even; j 
 0 mod 4;

Zri

.p/
˚ .Z=p/t 0

i ; i odd; i � 3; j 
 0 mod 4;

0; i D 1; j 
 0 mod 4;

0; j 6
 0 mod 4;

where 0 � t 0
i � pk � si .

Proof. Because of Theorem 1.7 (i) the E2-term of the spectral sequence converging
to K�.B�/.p/ is given after localization at p by

.E
i;j
2 /.p/ D H i .B�IKOj .�//.p/

Š

8̂̂̂̂
<̂
ˆ̂̂:

Zri

.p/
; i even; j 
 0 mod 4;

Zri

.p/
˚ .Z=p/pk�si ; i odd; i � 3; j 
 0 mod 4;

0; i D 1; j 
 0 mod 4;

0; j 6
 0 mod 4:

The rest of the proof is analogous to the proof of Lemma 3.2.

Lemma 5.3. Let p be an odd prime. For every m 2 Z, there are isomorphisms of
ZŒZ=p�-modules

KOm.BZn
�/˝ZŒ1=2� Š L

i2Z

H i .BZn
�/˝ KOm�i .�/˝ZŒ1=2�;

KOm.BZn
�/˝ZŒ1=p� Š L

i2Z

H i .BZn
�/˝ KOm�i .�/˝ZŒ1=p�:

Proof. Since KO�.X/˝ZŒ1=2� is a generalized cohomology theory with torsion-free
coefficients, the Chern character and Lemma 3.4 give the first isomorphism.

One proves that there are isomorphisms of abelian groups

KOm.BZn
�/ Š L

i2Z

H i .BZn
�/˝ KOm�i .�/

by induction on n using excision and the fact that BZn D S1 � BZn�1. It follows
that the Atiyah–Hirzebruch spectral sequence E

i;j
2 D H i .BZnIKj .�/Œ1=p�/ )

KOiCj .BZn/Œ1=p� collapses. This spectral sequence is natural with respect to auto-
morphisms of Zn. Hence we obtain a descending filtration by ZŒ1=p�ŒZ=p�-modules

KOm.BZn
�/Œ1=p� D F 0;m 	 F 1;m�1 	 F 2;m�2 	 � � � 	 F m;0 	 F mC1;�1 D 0

and exact sequences

0! F iC1;m�i�1 ! F i;m�i ��! H i .Zn
�/˝Km�i .�/˝ZŒ1=p�! 0:
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It thus suffices to show that these exact sequences split over ZŒ1=p�ŒZ=p� for all
i . If m � i 
 3; 5; 6; 7 mod 8, this follows from the fact that KOm�i .�/ D 0.
If m � i 
 0; 4 mod 8, then Km�i .�/ Š Z and H i .Zn

�/ ˝ Km�i .�/ ˝ ZŒ1=p� is
a finitely generated ZŒ1=p�-torsion-free module over the ring ZŒ1=p�ŒZ=p�

��!Š ZŒ1=p� �ZŒ1=p�Œ��, hence is projective. Finally, suppose m� i 
 1; 2 mod 8.
Since the Atiyah–Hirzebruch spectral sequence collapses, there is a homomorphism
of abelian groups s W H i .Zn

�/˝ Km�i .�/˝ ZŒ1=p� ! F i;m�i so that � B s D id.
Define

Qs W H i .Zn
�/˝Km�i .�/˝ZŒ1=p�! F i;m�i ; x 7! P

g2Z=p

g � s.g�1x/:

Then Qs is a homomorphism of ZŒZ=p�-modules and � B Qs is multiplication by p and
hence is the identity since Km�i .�/ Š Z=2.

Lemma 5.4. Let p be an odd prime.

(i) For every m 2 Z, there is an isomorphism of abelian groups

KOm.BZn
�/Z=p Š L

l2Z

KOm�l.�/rl :

(ii)

yH i .Z=pIKOj .BZn
�// Š L

l2Z

yH i .Z=pIH j C4l.Zn
�//

Š
´

.Z=p/
P

l2Z aj C4l ; i C j even;

0; i+j odd:

(iii) All differentials in the Leray–Serre spectral sequence associated to the exten-
sion (1.1) converging to KO�.B�/ vanish.

Proof. (i): It suffices to show the isomorphism exists after inverting 2 and after
localizing at 2. Furthermore, if M is a ZŒZ=p�-module, then M Z=p ˝ ZŒ1=2� Š
.M ˝ ZŒ1=2�/Z=p and M Z=p ˝ Z.2/ Š .M ˝ Z.2//

Z=p since localization is an
exact functor. The assertion then follows from Lemma 5.3 and the definition of the
numbers rl .

(ii): Since ZŒ1=2� � Z.p/, Lemma 5.3 implies that

KOj .BZn
�/˝Z.p/ Š

L
l2Z

H j C4l.BZn
�/˝Z.p/:

The first isomorphism in assertion (ii) then follows since localization is an exact
functor and the Tate cohomology groups are p-torsion. The second isomorphism
follows from Lemma 1.10 (i).

(iii): First note that the Leray–Serre spectral sequence converges with no lim1-
term, see [32], Theorem 6.5.



404 J. F. Davis and W. Lück

It suffices to prove the differentials vanish after inverting p and after localizing at
p. If we invert p, the claim follows from

E
i;j
2 Œ1=p� D H i .Z=pIKOj .BZn

�//Œ1=p� D 0 for i � 1:

If we localize at p, the proof that the differentials vanish is identical to the proof of
Lemma 3.3 (iii).

Proof of Theorem 5.1. (iv): We first note that Proposition A.4 and Lemma 5.4 (i)
imply that, for all m 2 Z, the kernel and cokernel of the composite

KOm.B�/! KOm.B�/! KOm.BZn
�/Z=p Š ˚l2Z KOm�l.�/rl (5.5)

are finitely generated p-groups. This implies that the desired isomorphism holds after
inverting p. It holds at p by Lemma 5.2.

(iii): As in the proof of Theorem 3.1, one shows that the map

�m W KOm.B�/! KOm.BZn
�/Z=p

is an isomorphism for m odd and an epimorphism for m even.
(v), (vi): Since p is odd, every non-trivial irreducible Z=p-representation is of

complex type. Hence we get from [40], Remark on p. 133 after Proposition 2.2,
that KOm

Z=p.�/ Š KOm.�/ ˚ Km.�/ ˝ IR.Z=p/. The Atiyah–Segal Completion
Theorem for KO� (see [8]) implies

eKOm.BZ=p/ Š
´

IR.Z=p/˝cZp Š .cZp/.p�1/=2; m even;

0; otherwise:

The cellular pushout (1.13) yields for m 2 Z a long exact sequence

0! KO2m.B�/
Nf 2m

���! KO2m.B�/
'2m

���! L
.P /2P

eKO2m.BP /

ı2m

��! KO2mC1.B�/
Nf 2mC1

�����! KO2mC1.B�/! 0:

Define TO2mC1 to be the kernel of the surjection Nf 2mC1. Since Nf 2mC1 is an isomor-
phism after inverting p by (5.5) and assertion (iii), TO2mC1 is p-torsion. We next
claim Nf 2mC1 is split. We only need verify this after localizing at p in which case it fol-
lows since K2mC1.B�/˝Z.p/ is free over Z.p/ by assertion (iii) and Lemma 5.4 (i).
Finally, the stated filtration of TO2mC1 is a consequence of Lemma 5.2. The com-
pletes the proof of assertion (v). Assertion (vi) is a consequence.

(ii): The proof of this is identical to that of Theorem 3.1 (ii); the only missing part
is to show the epimorphism

�2m W KO2m.B�/! KO2m.BZn
�/Z=p

is split. At p, this follows since KO2m.BZn
�/Z=p ˝ Z.p/ is free over Z.p/. After

inverting p, the splitting is provided by composing the inverse of the composite (5.5)
with the map KO2m.B�/Œ1=p�! KO2m.B�/Œ1=p�.
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6. KO-homology

In this section we want to compute the real K-homology KO� of B� and B� . Ratio-
nally this can be done using the Chern character of Dold [16]: for every CW-complex
there is a natural isomorphismL

l2Z

HmC4l.X/˝Q ��!Š KOm.X/˝Q:

In particular we get from Theorem 2.1 (i) and (iv):

KOm.B�/˝Q Š Q
P

l2Z rmC4l ;

KOm.B�/˝Q Š Q
P

l2Z rmC4l :

We are interested in determining the integral structure.

Theorem 6.1 (KO-homology of B� and B�). Let p be an odd prime and m be any
integer.

(i)

KOm.B�/ Š
´

Z
P

l2Z r2l ; m even;

Z
P

l2Z r2lC1 ˚ .Z=p1/pk.p�1/=2; m odd:

(ii) The inclusion map Zn ! � induces an isomorphism

KO2m.BZn
�/Z=p ��!Š KO2m.B�/

and KO2m.BZn
�/Z=p Š

L
l2Z KO2m�l.�/rl .

(iii) There is a split short exact sequence of abelian groups

0! .Z=p1/pk.p�1/=2 ! KO2mC1.B�/! KO2mC1.B�/! 0:

(iv) We have
KO2m.B�/ Š .

L
l2Z

KO2m�l.�/rl /˚ TO2mC5;

where TO2mC5 is the finite abelian p-group appearing in Theorem 5.1 (v).

(v) We have
KO2mC1.B�/ Š L

l2Z

KO2mC1�l.�/rl :

(vi) The group TO2mC5 is isomorphic to a subgroup of the kernel ofL
.P /2P

KO2mC1.BP /! KO2mC1.B�/:
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Theorem 6.2 (Universal Coefficient Theorem for KO-theory). For any CW-complex
X there is a short exact sequence

0! ExtZ.KOnC3.X/; Z/! KOn.X/! Hom.KOnC4.X/; Z/! 0:

If X is a finite CW-complex, there is a short exact sequence

0! ExtZ.KOnC5.X/; Z/! KOn.X/! HomZ.KOnC4.X/; Z/! 0:

Proof. A proof for the first short exact sequence can be found in [6] and [46], (3.1),
the second sequence follows then from [1], Note 9 and 15.

Proof of Theorem 6.1. (iv), (v): These assertions follow from Theorem 5.1 (iv) and
(v), and Theorem 6.2.

(ii): There are natural transformations of cohomology theories i� W KO� ! K�
and r� W K� ! KO�, induced by sending a real representation V to its complexifica-
tion C˝R V and a complex representation to its restriction as a real representation.
The composite r� B i� W KO� ! KO� is multiplication by two. Since the map

K0.BZn
�/Z=p ��!Š K0.B�/:

is bijective by Theorem 4.1 (ii), the map

KO2m.BZn
�/Z=p ��!Š KO2m.B�/

is bijective after inverting 2. In order to show that it is itself bijective, it remains to
show that it is bijective after inverting p. This follows from Proposition A.4.

Since we are dealing with KO-homology, the Atiyah–Hirzebruch spectral se-
quence converges also for the infinite-dimensional CW-complex B� . Because of the
existence of Dold’s Chern character, all its differentials vanish rationally. For m 2 Z
we have H2m.B�/ Š Zr2m by Theorem 2.1. Hence we get for an odd prime p since
KOm.�/.p/ is Z.p/ for m 
 0 mod 4 and 0 otherwise

KO2m.B�/.p/ Š .Z.p//
P

l2Z r2mC4l :

We conclude that
KO2m.B�/ Š L

l2Z

KO2m�l.�/rl

holds after localizing at p. It remains to show that it holds after inverting p. This
follows from Proposition A.4 and assertion (iv).

(iii) The Atiyah–Hirzebruch spectral sequence shows that eKO2m.BZ=p/ D 0 for
all m 2 Z. The methods of [44] together with the Universal Coefficient Theorem
for KO-theory show that eKO2mC3.BG/ is the Pontryagin dual of eKO2m.BG/ for any
finite group G. Applying these facts to G D Z=p for an odd prime p, we see that

eKOm.BZ=p/ D
´

.Z=p1/.p�1/=2; m odd;

0; m even:
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Thus the long exact KO-homology sequence associated to the cellular pushout (1.13)
reduces to the exact sequence

0! KO2m.B�/
Nf2m���! KO2m.B�/

@2m��! L
.P /2P

KO2m�1.BP /

'2m�1����! KO2m�1.B�/
Nf2m�1����! KO2m�1.B�/! 0:

(6.3)

Note im @2m is a finite abelian p-group, since it is a finitely generated subgroup of
the p-torsion group L

.P /2P

KO2m�1.BP / Š .Z=p1/.p�1/pk=2:

Thus im '2m�1 Š .Z=p1/.p�1/pk=2 (compare with the proof of Theorem 3.1 (iii)).
It remains to see that Nf2m�1 splits, which we verify at p and away from p. The target
of Nf2m�1 is free after localizing at p by assertion (v), so it splits. After inverting p,
the exact sequence 6.3 shows that Nf2m�1Œ1=p� is an isomorphism.

(i): This follows from assertions (ii), (iii) and (v).
(vi): This follows from assertions (ii) and (iv) and the long exact sequence (6.3).

This finishes the proof of Theorem 6.1.

7. Equivariant K -cohomology

In the sequel an equivariant cohomology theory is to be understood in the sense of [29],
Section 1. Equivariant topological complex K-theory K�

‹
is an example as shown

in [29], Example 1.6, based on [32]. This applies also to equivariant topological real
K-theory KO�

‹ .
Rationally one obtains

K0
�.E�/˝Q Š Q.p�1/pkCP

l2Z r2l ; K1
�.E�/˝Q Š Q

P
l2Z r2lC1

from [32], Theorem 5.5 and Lemma 5.6, using Theorem 1.7 (iv) and Lemma 1.9. We
want to get an integral computation. Recall that we have computed

P
l2Z r2l andP

l2Z r2lC1 in Lemma 1.22 (ii).

Theorem 7.1 (Equivariant K-cohomology of E�).

(i) We have

Km
� .E�/ Š

´
Z.p�1/pkCP

l2Z r2l ; m even;

Z
P

l2Z r2lC1 ; m odd:
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(ii) There is an exact sequence

0! K0.B�/! K0
�.E�/! L

.P /2P

IC.P /! T 1 ! 0;

where T 1 is the finite abelian p-group appearing in Theorem 3.1 (v).

(iii) The canonical maps

K1
�.E�/ ��!Š K1.B�/; K1.B�/ ��!Š K1.BZn

�/Z=p

are isomorphisms.

In the sequel we will often use the following lemma.

Lemma 7.2. (i) Let H �
‹

be an equivariant cohomology theory in the sense of [29],
Section 1. Then there is a long exact sequence

� � � ! H m.B�/
ind�!1�����! H m

� .E�/
'm

��! L
.P /2P

xH m
P .�/

! H mC1.B�/
ind�!1�����! H mC1

� .E�/! � � � ;
where xH m

P .�/ is the cokernel of the induction map indP !1 W H m.�/! H m
P .�/

and the map 'm is induced by the various inclusions P ! � .
The map

ind�!1Œ1=p� W H m.B�/Œ1=p�! H m
� .E�/Œ1=p�

is split injective.

(ii) Let H ‹� be an equivariant homology theory in the sense of [27], Section 1. Then
there is a long exact sequence

� � � ! H �
mC1.E�/

ind�!1�����! HmC1.B�/! L
.P /2P

zH P
m .�/

'm��! H �
m.E�/

ind�!1�����! Hm.B�/! � � � ;
where zH P

m .�/ is the kernel of the induction map indP !1 W H P
m .�/ ! Hm.�/

and the map 'm is induced by the various inclusions P ! � .
The map

ind�!1Œ1=p� W H �
m.E�/Œ1=p�! Hm.B�/Œ1=p�

is split surjective.

Proof. (i): From the cellular �-pushout (1.12) we obtain a long exact sequence

� � � ! H m
� .E�/! H m

� .E�/˚ L
.P /2P

H m
� .�=P /! L

.P /2P

H m
� .� �P EP /

! H mC1
� .E�/! H mC1

� .E�/˚ L
.P /2P

H mC1
� .�=P /! � � � : (7.3)
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From the cellular pushout (1.13) we obtain the long exact sequence

� � � ! H m.B�/! H m.B�/˚ L
.P /2P

H m.�/! L
.P /2P

H m.BP /

! H mC1.B�/! H mC1.B�/˚ L
.P /2P

H mC1.�/! � � � : (7.4)

Induction with the group homomorphism � ! 1 yields a map from the long exact
sequence (7.4) to the long exact sequence (7.3). Recall that the induction homo-
morphism H m.�nX/ ! H m

� .X/ is an isomorphism if � acts freely on the proper
�-CW-complex X . Therefore the mapsL

.P /2P

H m.BP / ��!Š L
.P /2P

H m
� .� �P EP /;

H m.B�/ ��!Š H m
� .E�/

are bijective. Hence one can splice the long exact sequences (7.3) and (7.4) together
to obtain the desired long exact sequence, after noting the commutative diagram

H m
� .�=P / H m.�/ind�!1

��

H m
P .�/

indP !� Š
��

H m.�/.
D

��

indP !1
��

We have the following commutative diagram, where the vertical arrow are given
by induction with the group homomorphism � ! 1:

H m.B�/ �� ��

��

H m.BZn/

Š
��

H m
� .E�/ �� H m

� .� �Zn EZn/.

The upper horizontal arrow is split injective after inverting p by Proposition A.4.
The right vertical arrow is bijective since � acts freely on � �Zn EZn. Hence
H m.B�/! H m

� .E�/ is injective after inverting p.
(ii) The proof is analogous to the one of assertion (i). This finishes the proof of

Lemma 7.2.

Proof of Theorem 7.1. Recall that K0
�.�=P / Š RC.P / and K1

�.�=P / Š 0. Hence
we obtain from Lemma 7.2 (i) the long exact sequence

0! K0.B�/! K0
�.E�/! L

.P /2P

xRC.P /! K1.B�/! K1
�.E�/! 0; (7.5)

where xRC.P / is the cokernel of the homomorphism RC.1/ ! RC.P / given by
restriction with P ! 1. Notice that the composite of the augmentation ideal
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IC.P / ! RC.P / with the projection RC.P / ! xRC.P / is an isomorphism of
finitely generated free abelian groups

IC.P / ��!Š xRC.P / (7.6)

and that IC.P / is isomorphic to Zp�1.
(iii): It was already shown in Theorem 3.1 (iii) that the map K1.B�/ ��!Š

K1.BZn
�/Z=p is bijective and that K1.B�/ Š Z

P
l2Z r2lC1 . Hence it remains to

prove that the composite

K1
�.E�/! K1

�.E�/ ��!Š K1.B�/

is bijective. We obtain from (3.5) and (7.5) the following commutative diagram with
exact rows L

.P /2P
xRC.P / ��

��

K1.B�/ ��

id

��

K1
�.E�/ ��

��

0

L
.P /2P

zK0.BP / �� K1.B�/ �� K1.B�/ �� 0.

By the five lemma it suffices to show that the map

ker.K1.B�/! K1
�.E�//! ker.K1.B�/! K1.B�//

is surjective. We conclude from Theorem 3.1 (vi) that the kernel of K1.B�/ !
K1.B�/ is the finite abelian p-group T 1 appearing in Theorem 3.1 (v). Hence it
remains to show for every integer l > 0 that the obvious compositeL

.P /2P

RC.P /! L
.P /2P

K0.BP /! .
L

.P /2P

K0.BP //=pl � . L
.P /2P

K0.BP //

is surjective. By theAtiyah–Segal Completion Theorem the map RC.P /! K0.BP /

can be identified with the map

id˚ i W Z˚ I.Z=p/! Z˚ �
I.Z=p/˝cZp

�
Hence it suffices to show that the composite

Z! cZp ! cZp=pl cZp

is surjective. This is true since the latter map can be identified with the canonical
epimorphism Z! Z=pl .

(ii): This follows from Theorem 3.1 (vi), the long exact sequence (7.5), the iso-
morphism (7.6) and assertion (iii).

(i): We have shown that K0.B�/ Š Z
P

l2Z r2l in Theorem 3.1 (iv). We have
I.Z=p/ Š Z.p�1/=2. The order of P is pk by Lemma 1.9 (iv). Hence we conclude
from assertion (ii) that

K0
�.E�/ Š Z.p�1/pkCP

l2Z r2l :

The computation of K1
�.E�/ follows from Theorem 3.1 (iii) and assertion (iii).
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Remark 7.7 (Geometric interpretation of T 1). The exact sequence appearing in The-
orem 7.1 (ii) has the following interpretation in terms of equivariant vector bundles.
Since � is a crystallographic group, � acts properly on Rn such that this action re-
duced to Zn is the free standard action and Rn is a model for E� . Hence the quotient
of ZnnRn is the standard n-torus T n together with a Z=p-action. There is a bijection

P ��!Š .T n/Z=p

coming from the fact that .Rn/P consists of exactly one point for .P / 2 P . In
particular .T n/Z=p consists of pk points (see Lemma 1.9 (v).) Hence for any complex
Z=p-vector bundle 	 we obtain a collection of complex Z=p-representations f	x j
x 2 .T n/Z=pg satisfying dimC.	x/ D dimC.	y/ D dim.	/ for x; y 2 .T n/Z=p .
This yields a map

ˇ W K0
Z=p.T n/! L

P 2.P /

IC.P /

sending the class of a Z=p-vector bundle 	 to the collection fŒ	x� � dim.	/ � ŒC� j
x 2 .T n/Z=pg. Let

˛ W K0
�
.Z=p/nT n

�! K0
Z=p.T n/

be the homomorphism coming from the pullback construction associated to the pro-
jection T n ! .Z=p/nT n. We obtain the exact sequence

0! K0..Z=p/nT n/
˛�! K0

Z=p.T n/
ˇ�! L

.P /2P

IC.P /! T 1 ! 0;

which can be identified with exact sequence of Theorem 7.1 (ii).
Thus the group T 1 is related to (stable version of) the question when a collection

of Z=p-representations fVx j x 2 .T n/Z=pgwith dimC.Vx/ D dimC.Vy/ for x; y 2
.T n/Z=p can be realized as the fibers of a Z=p-vector bundle 	 over T n at the points
in .T n/Z=p .

Moreover, a Z=p-vector bundle over T n is stably isomorphic to the pullback of
a vector bundle over .Z=p/nT n if and only if for every x 2 .T n/Z=p the Z=p-
representation 	x has trivial Z=p-action.

8. Equivariant K -homology

In the sequel equivariant homology theory is to be understood in the sense of [27],
Section 1. Equivariant topological complex K-homology K‹� is an example (see [14],
[33], Section 6). The construction there yields the same for proper G-CW-complexes
as the construction due to Kasparov [21]. It is two-periodic. For finite groups G the
group KG

m .�/ is RC.G/ for even m and trivial for odd m.
We obtain from [28], Theorem 0.7, using Lemma 1.9 an isomorphism

Km.B�/
�

1
p

�˚ L
.P /2P

Km.�/˝ IC.P /
�

1
p

� Š K�
m.E�/

�
1
p

�
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and hence from Theorem 4.1

K�
0 .E�/

�
1
p

� Š .ZŒ1=p�/.p�1/pkCP
l r2l ; K�

1 .E�/
�

1
p

� Š .ZŒ1=p�/
P

l r2lC1 :

We want to get an integral computation.

Theorem 8.1 (Equivariant K-homology of E�).

(i) We have

K�
m.E�/ Š

´
Z.p�1/pkCP

l2Z r2l ; m even;

Z
P

l2Z r2lC1 ; m odd:

(ii) There is a natural isomorphism

K�
m.E�/ ��!Š HomZ.Km

� .E�/; Z/:

(iii) The map K�
1 .E�/! K1.B�/ is an isomorphism. There is an exact sequence

0! L
.P /2P

zRC.P /! K�
0 .E�/! K0.B�/! 0;

where zRC.P / is the kernel of the map RC.P / ! RC.1/ which sends ŒV � to
ŒC˝CP V �. It splits after inverting p.

Its proof needs some preparation.

Lemma 8.2. Let G be a finite group. Then there is an isomorphism of RC.G/-
modules

RC.G/ ��!Š HomZ.RC.G/; Z/

which sends ŒV � to the homomorphism RC.G/! Z, ŒW � 7! dimC.HomCG.V; W //.
Here RC.G/ acts on HomZ.RC.G/IZ/ by .ŒV � � 
/.ŒW �/´ 
.ŒV �� � ŒW �/.

In particular we get for any RC.G/-module M a natural isomorphism of RC.G/-
modules

Exti
RC.G/.M; RC.G// ��!Š Ext1

Z.M; Z/ for i � 0:

Proof. See [35], 2.5 and 2.10.

Theorem 8.3 (Universal coefficient theorem for equivariant K-theory). Let G be a
finite group and X be a finite G-CW-complex. Then there are for n 2 Z natural exact
sequences of RC.G/-modules

0!ExtRC.G/.K
G
n�1.X/; RC.G//!Kn

G.X/!HomRC.G/.K
G
n .X/; RC.G//!0

and

0!ExtRC.G/.K
nC1
G .X/; RC.G//!KG

n .X/!HomRC.G/.K
n
G.X/; RC.G//! 0:
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Proof. The first sequence is proved in [10]. The second sequence follows from the
first by equivariant S-duality (see [35], [45]).

Proof of Theorem 8.1. (ii): Since Zn acts freely on E� , induction with � ! Z=p

induces isomorphisms

K�
n .E�/ ��!Š KZ=p

n .ZnnE�/; Kn
Z=p.ZnnE�/ ��!Š Kn

�.E�/:

Since ZnnE� is a finite Z=p-CW-complex, we obtain from Lemma 8.2 and Theo-
rem 8.3 the exact sequence of RC.Z=p/-modules

0! Ext1
Z.KnC1

Z=p
.ZnnE�/; Z/! KZ=p

n .ZnnE�/

! HomZ.Kn
Z=p.ZnnE�/; Z/! 0:

(Another construction of the sequence above is given in [20].) Hence we get an exact
sequence of RC.Z=p/-modules (see also [35], Proposition 2.8)

0! Ext1
Z

�
KnC1

� .E�/; Z
�! K�

n .E�/! HomZ

�
Kn

�.E�/; Z/! 0:

Since KnC1
� .E�/ is a finitely generated free abelian group for all n 2 Z by Theo-

rem 7.1, we obtain for n 2 Z an isomorphism of RC.Z=p/-modules

K�
n .E�/ ��!Š HomZ

�
Kn

�.E�/; Z/:

(i): Apply Theorem 7.1 (i) and assertion (ii) to get the concrete identification of
K�

n .E�/.
(iii): From Lemma 7.2 (ii) we obtain a long exact sequence

0! K�
1 .E�/! K1.B�/! L

.P /2P

zKZ=p
0 .�/! K�

0 .E�/! K0.B�/! 0:

where zKZ=p
0 .�/ is the kernel of the map K

Z=p
0 .�/! K0.�/ coming from induction

with Z=p ! 1. Since K�
1 .E�/ and K1.B�/ are finitely generated free abelian

groups of the same rank by assertion (i) and Theorem 4.1 (v) and
L

.P /2P
zKZ=p

0 .�/
is torsion-free, the map K�

1 .E�/ ! K1.B�/ is bijective and we get a short exact
sequence

0! L
.P /2P

zKZ=p
0 .�/! K�

0 .E�/! K0.B�/! 0:

9. Equivariant KO-cohomology

Recall that equivariant topological real KO-theory KO�
‹ is an equivariant cohomology

theory in the sense of [29], Section 1. It is 8-periodic. Recall also that equivariant
topological real K-homology KO‹� is an equivariant homology theory in the sense of
[27], Section 1. It is 8-periodic.
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We first give some information about KOG
m.�/ and KOm

G.�/ for finite G. We have
KOG

m.�/ D KO�m
G .�/ If G is a finite group, then we get

KO�m
G .�/ Š KOG

m.�/ Š Km.RG/

for m 2 Z, where Km.RG/ is the topological K-theory of the real group C�-algebra
RG. Let fVi j i D 0; 1; 2; : : : ; rg be a complete set of representatives for the RG-
isomorphism classes of irreducible real G-representations. By Schur’s Lemma the
endomorphism ring Di D EndRG.Vi / is a skew-field over R and hence isomorphic
to R, C or H. There are positive integers ki for i 2 f0; 1; : : : ; rg such that we obtain
a splitting

RG Š
rQ

iD0

Mki
.Di /:

Since topological K-theory is compatible with products, by Morita equivalence we
obtain for m 2 Z an isomorphism

Km.RG/ Š
rQ

iD1

Km.Di /:

The real K-theory of the building blocks are given by KOm.R/D KOm.�/, KOm.C/D
Km.�/, and KOm.H/ D KOmC4.�/. If G D Z=p for an odd prime p and we take
for V0 the trivial real Z=p-representation R, then r D .p � 1/=2, D0 D R and
Di D C for i 2 f1; 2; : : : .p � 1/=2g. This implies that

KOZ=p
m .�/ Š KOm.�/˚Km.�/.p�1/=2; (9.1)

KOm
Z=p.�/ Š KO�m.�/˚K�m.�/.p�1/=2: (9.2)

Let eKOZ=p
m .�/ be the kernel of the map KOZ=p

m .�/ ! KOm.�/ given by induc-
tion with Z=p ! 1. This corresponds under the isomorphism (9.1) to the obvious
projection of KOm.�/ ˚ Km.�/.p�1/=2 onto KOm.�/. Let KOm

Z=p.�/ be the cok-
ernel of the map KOm.�/ ! KOm

Z=p.�/ given by induction with Z=p ! 1. This
corresponds under the isomorphism (9.2) to the obvious inclusion of KO�m.�/ into
KO�m.�/˚ KO�m.�/.p�1/=2. Hence we get

eKOZ=p
m .�/ Š Km.�/.p�1/=2; KOm

Z=p.�/ Š K�m.�/.p�1/=2:

This implies that

eKOZ=p
m .�/ Š KOm

Z=p.�/ Š
´

Z.p�1/=2; m even;

0; m odd:
(9.3)

We conclude from [29], Theorem 5.2, using Lemma 1.9 (i) for m 2 Z that

KO2m
� .E�/˝Q Š Qpk.p�1/=2CP

l2Z r2mC4l ;

KO2mC1
� .E�/˝Q Š Q

P
l2Z r2mC1C4l :

Again we seek an integral computation.
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Theorem 9.4 (Equivariant KO-cohomology). Let p be an odd prime and let m be
any integer.

(i)

KOm
� .E�/ Š

´
Zpk.p�1/=2 ˚L

i2Z KOm�i .�/ri ; m even;L
i2Z KOm�i .�/ri ; m odd:

(ii) If TO2mC1 is the finite abelian p-group appearing in Theorem 5.1 (v), then
there is an exact sequence

0! KO2m.B�/! KO2m
� .E�/! L

.P /2P

KO2m
Z=p.�/! TO2mC1 ! 0:

(iii) The canonical maps

KO2mC1
� .E�/ ��!Š KO2mC1.B�/;

KO2mC1.B�/ ��!Š KO2mC1.BZn
�/Z=p

are isomorphisms.

Proof. (iii): Lemma 7.2 (i) together with (9.3) implies that there is a long exact
sequence

0! KO2m.B�/! KO2m
� .E�/! L

.P /2P

KO2m
Z=p.�/

! KO2mC1.B�/! KO2mC1
� .E�/! 0;

(9.5)

and that the kernel of the epimorphism KO2mC1.B�/ ! KO2mC1
� .E�/ is a finite

abelian p-group.
For m 2 Z the composite

KO2mC1.B�/
˛�! KO2mC1

� .E�/
ˇ�! KO2mC1.B�/

is surjective and has a finite abelian p-group as kernel by Theorem 5.1 (vi). Hence
the map ˇ is surjective for all m 2 Z. Since ˛ is surjective by (9.5), the map
ker.ˇ B ˛/ ! ker.ˇ/ is surjective and hence the kernel of ˇ is a finite abelian p-
group.

The following diagram commutes:

KO2mC1
� .E�/ ��

��

2�id
��

K2mC1
� .E�/ ��

Š
��

KO2mC1
� .E�/

��

KO2mC1.B�/ ��

2�id
��

K2mC1.B�/ �� KO2mC1.B�/ .
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Here the left horizontal maps are given by induction with R! C, the right horizontal
maps by restriction with R! C and the middle vertical arrow is an isomorphism by
Theorem 7.1. Hence the kernel of the epimorphism KO2mC1

� .E�/! KO2mC1.B�/

is an abelian group of exponent 2. We have already shown that its kernel is a finite
abelian p-group. Since p is odd, we conclude that

KO2mC1
� .E�/ ��!Š KO2mC1.B�/

is an isomorphism.
The bijectivity of KO2mC1.B�/ ��!Š KO2mC1.BZn

�/Z=p has already been proved
in Theorem 5.1 (iii).

(i): Since kernel of the epimorphism KO2mC1.B�/ ! KO2mC1
� .E�/ is a fi-

nite abelian p-group and
L

.P /2P KO2m
Z=p.�/ is isomorphic to Zpk.p�1/=2 by Lem-

ma 1.9 (iv) and by (9.3), we conclude from the exact sequence (9.5) that

KO2m
� .E�/ Š KO2m.B�/˚Zpk.p�1/=2:

Since we have already computed KO2m.B�/ and KO2mC1.B�/ in Theorem 5.1,
assertion (i) follows using assertion (iii).

(ii): The kernel of the epimorphism KO2mC1.B�/ ! KO2mC1.B�/ is isomor-
phic to TO2mC1 by Theorem 5.1 (v) and (vi). Since KO2mC1

� .E�/ ��!Š KO2mC1.B�/

is bijective by assertion (iii), the claim follows from the long exact sequence (9.5).

10. Equivariant KO-homology

We obtain from [28], Theorem 0.7, using Lemma 1.9 isomorphisms

KO�
2m.E�/˝Q Š Qpk.p�1/=2CP

l2Z r4lC2m ;

KO�
2mC1.E�/˝Q Š Q

P
l2Z r4lC2mC1 :

We want to get an integral computation.

Theorem 10.1 (Equivariant KO-homology). Let p be an odd prime and m be any
integer.

(i)

KO�
m.E�/ Š

´
Zpk.p�1/=2 ˚ .

Ln
iD0 KOm�i .�/ri /; m even;Ln

iD0 KOm�i .�/ri ; m odd:

(ii) For m 2 Z the map KO�
2mC1.E�/ ��!Š KO2mC1.B�/ is an isomorphism.
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(iii) There is a short exact sequence

0! L
.P /2P

eKOZ=p
2m .�/! KO�

2m.E�/! KO2m.B�/! 0;

whereeKOZ=p
2m .�/ is the kernel of the map KO

Z=p
2m .�/! KO2m.�/ coming from

induction with Z=p ! 1. It splits after inverting p.

Proof. Lemma 7.2 (ii) implies that there is an long exact sequence

0! KO�
2mC1.E�/! KO2mC1.B�/! L

.P /2P

eKOZ=p
2m .�/

! KO�
2m.E�/! KO2m.B�/! 0:

(10.2)

and that the map
KO�

i .E�/Œ1=p�! KOi .B�/Œ1=p�

is split surjective for i 2 Z. The cokernel of KO�
2mC1.E�/ ! KO2mC1.B�/ is a

finite abelian p-group. Since eKOZ=p
2m .�/ is a finitely generated free abelian group by

(9.3), the long exact sequence (10.2) reduces to an isomorphism

KO�
2mC1.E�/ ��!Š KO2mC1.B�/

and a short exact sequence

0! L
.P /2P

eKOZ=p
2m .�/! KO�

2m.E�/! KO2m.B�/! 0; (10.3)

which splits after inverting p. We have proven assertions (ii) and (iii).
Since the composite

KO�
i .E�/! K�

i .E�/! KO�
i .E�/

is multiplication with 2 and K�
i .E�/ is a finitely generated free abelian group by

Theorem 8.1, the torsion subgroup of the finitely generated abelian group KO�
i .E�/

is annihilated by 2 for i 2 Z. Since, by Theorem 6.1 (iv),L
.P /2P

eKOZ=p
2m .�/ Š Zpk.p�1/=2;

KO2m.B�/ Š .
nL

iD0

KO2m�i .�/ri /˚ TO2mC5

for a finite abelian p-group TO2mC5 and the torsion in
Ln

iD0 KOm�i .�/ri is an-
nihilated by multiplication with 2, we get from (10.3) an isomorphism of abelian
groups

KO�
2m.E�/ Š Zpk.p�1/=2 ˚ .

nL
iD0

KO2m�i .�/ri /:

This is the even case of assertion (i). The odd case of assertion (i) follows from
assertion (ii) and Theorem 6.1 (v).
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11. Topological K -theory of the group C �-algebra

In this section we compute the topological K-theory Kn.C �
r .�// of the complex

reduced group C�-algebra C �
r .�/ and the topological K-theory KOn.C �

r .�IR//´
Kn.C �

r .�IR// of the real reduced group C�-algebra C �
r .�IR/.

The Baum–Connes Conjecture (see [9], Conjecture 3.15 on p. 254) predicts for a
group G that the complex and the real assembly maps

KG
n .EG/ ��!Š Kn.C �

r .G//; (11.1)

KOG
n .EG/ ��!Š KOn.C �

r .GIR// (11.2)

are bijective for n 2 Z. It has been proved for G D � (and many more groups) in
[19].

11.1. The complex case. We begin with the complex case.

Proof of Theorem 0.3. Because of the isomorphism (11.1) all claims follow from
Lemma 1.9 (i), Lemma 1.22 (ii) and Theorem 8.1 except the statement that

K1.C �
r .�// ��!Š K1.C �

r .Zn
�//Z=p

is bijective. Induction with � W Zn ! � yields a homomorphism

K1.C �
r .Zn//! K1.C �

r .�//

and restriction with � yields a homomorphism

K1.C �
r .�//! K1.C �

r .Zn//:

Since an inner automorphism of � induces the identity on K1.C �
r .�//, these homo-

morphisms induce homomorphisms

�� W K1.C �
r .Zn

�/Z=p ! K1.C �
r .�//; �� W K1.C �

r .�//! K1.C �
r .Zn

�//Z=p:

By the double coset formula the composite �� B �� is the norm map

N W K1.C �
r .Zn

�//Z=p ! K1.C �
r .Zn

�//Z=p:

The cokernel of the norm map is yH 0.Z=pIK1.C �
r .Zn

�//. Note that

yH 0.Z=pIK1.C �
r .Zn

�// Š yH 0.Z=pIK1.BZn
�// (the BC Conjecture for Zn)

Š yH 0.Z=pIK1.BZn
�/�/ (the UCT for K-theory 4.2)

Š yH �1.Z=pIK1.BZn
�// (Lemma A.1 proven below)

D 0 (Lemma 3.3 (ii)).

This implies that the norm map N and hence �� W K1.C �
r .�// ��!Š K1.C �

r .Zn
�//Z=p

are surjective. Since source and target of �� are finitely generated free abelian groups
of the same rank by assertion (i) and Lemma 3.3 (i), �� is an isomorphism.
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11.2. The real case. Next we treat the real case.

Proof of Theorem 0.6. Because of the isomorphisms (9.3) and (11.2) all claims fol-
low from Theorem 10.1 except the claim that

KO2mC1.C �
r .�IR// ��!Š KO2mC1.C �

r .Zn
� IR//Z=p

is bijective. As we have natural transformations of cohomology theories i� W KO� !
K� and r� W K� ! KO� with r� B i� D 2 � id, Theorem 0.3 (iii) implies that the map
is bijective after inverting 2. Since p is odd, it remains to show that it is bijective after
inverting p. Because of the bijectivity of KO2mC1.C �

r .�IR// ��!Š KO2mC1.B�/,
the fact that KO2mC1.BZn

�/Z=p ! KO2mC1.B�/ is bijective after inverting p (use
Proposition A.4), the fact that norm map is always bijective after inverting p, and the
isomorphism (11.2) for Zn, the claim holds.

12. The group �satisfies the (unstable) Gromov–Lawson–Rosenberg
Conjecture

In this section we give the proof of Theorem 0.7, after first providing some back-
ground.

12.1. The Gromov–Lawson–Rosenberg Conjecture. For a closed, spin manifold
M of dimension m with fundamental group G, one can define an invariant

˛.M/ 2 KOm.C �
r .G/IR/;

which vanishes if M admits a metric of positive scalar curvature (see [37]). The (un-
stable)Gromov–Lawson–RosenbergConjecture for a group G states that if ˛.M/ D 0

and dim M � 5, then M admits a metric of positive scalar curvature. The (unstable)
Gromov–Lawson–Rosenberg Conjecture is known to be valid for some fundamental
groups, for example, the trivial group (see [41]), for finite groups with periodic coho-
mology (see [11] and [23]), some torsion-free infinite groups, for example, when G

is a fundamental group of a complete Riemannian manifold of non-positive sectional
curvature (see [37]), and some infinite groups with torsion, for example, cocompact
Fuchsian groups (see [15]), but not in general – there is a counterexample when
G D Z4 �Z=3 due to Schick [39].

There is a weaker version of the conjecture which may be valid for all groups.
Suppose that B8 is a “Bott manifold”, that is, a simply-connected spin 8-manifold
with yA-genus equal to one. We say that a manifold M stably admits a metric of
positive scalar curvature if M � .B8/j admits a metric of positive scalar curva-
ture for some j � 0. The stable Gromov–Lawson–Rosenberg Conjecture formu-
lated by Rosenberg–Stolz [38] states that, for a closed spin manifold M with funda-
mental group G, M stably admits a metric of positive scalar curvature if and only
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if ˛.M/ D 0. Since the Baum–Connes Conjecture implies the stable Gromov–
Lawson–Rosenberg Conjecture (see [42], Theorem 3.10, for an outline of the proof)
and � satisfies the Baum–Connes Conjecture, we know already that � satisfies the
stable Gromov–Lawson–Rosenberg Conjecture.

There are two definitions of the invariant ˛, one topological and one analytic.
Let KO be the periodic spectrum underlying real K-theory, and let p W ko ! KO
be the 0-connective cover, that is, it induces an isomorphism on �i for i � 0 and
�i .ko/ D 0 for i negative. Then the topological definition of ˛.M/ is the image of
the class ŒfM W M ! BG� where fM induces the identity on the fundamental group
under the composite

�Spin
m .BG/

D�! kom.BG/
pBG���! KOm.BG/

A�! KOm.C �
r .G//;

where D is the ko-orientation of spin bordism, pBG is the canonical map from con-
nective to the periodic K-theory, and A is the assembly map. The analytic definition
of ˛.M/ is the index of the Dirac operator. These two definitions agree (see [37]).
Furthermore if M has positive scalar curvature, then the Bochner–Lichnerowicz–
Weitzenböck formula shows that the index is zero so that ˛.M/ D 0.

Finally, we mention one more result in our quick review, and that is the gen-
eralization of the Gromov–Lawson surgery theorem of due to Jung and Stolz [38],
3.7.

Proposition 12.1. Let M be a connected closed spin manifold with fundamental
group G and dimension m � 5. Let Œf W N ! BG� 2 �

Spin
m .BG/. (Note that N

need not have fundamental group G.) If DŒfM W M ! BG� D DŒf W N ! BG� 2
kom.BG/ and N admits a metric of positive scalar curvature, then so does M .

12.2. Theproof ofTheorem0.7. The proof of Theorem 0.7 needs some preparation.

Lemma 12.2. Let p be an odd prime. Then the map

zD W z�Spin
m .BZ=p/! �kom.BZ=p/

is surjective for all m � 0.

Proof. If M is a ZŒZ=p�-module, then Hi .Z=pIM/Œ1=p� D 0 for i � 1 and hence
the canonical maps

Hi .BZ=pIM/ ��!Š Hi .BZ=pIM/.p/ ��!Š Hi .BZ=pIM.p//

are bijective for i � 1. We conclude from the Atiyah–Hirzebruch spectral sequences
that the vertical maps in the commutative diagram

z�Spin
m .BZ=p/

zD
��

Š
��

�kom.BZ=p/

Š
��

z�Spin
m .BZ=p/.p/

zD.p/
�� �kom.BZ=p/.p/
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are bijective for m � 0. Hence it suffices to prove the surjectivity of the lower
horizontal map. Since p is odd, �

Spin
j .�/.p/ is zero for j 6
 0 mod 4 and �

Spin
j .�/.p/

is a finitely generated free Z.p/-module for j 
 0 mod 4 (see [7]). The same is
true for koj .�/.p/ by Bott periodicity. Hence there are no differentials in Atiyah–
Hirzebruch spectral sequences converging to z�Spin

iCj .BZ=p/.p/ and �koiCj .BZ=p/.p/

and we get for the E1-terms

E1
i;j . z�Spin

iCj .BZ=p/.p// Š zHi .Z=p/˝�
Spin
j .�/.p/;

E1
i;j .�koiCj .BZ=p/.p// Š zHi .Z=p/˝ koj .�/.p/:

It suffices to show that the map on the E1-terms is surjective for all i , j . Hence it
is enough to show that the map

D.p/ W �Spin
j .�/.p/ ! koj .�/.p/

is surjective for all j . Since ko�.�/.p/ is a polynomial algebra on a single generator
in dimension 4, it suffices to prove D.p/ is onto when j D 4. In this case both
�

Spin
4 .�/ and ko4.�/ are infinite cyclic with the former generated by a spin manifold

of signature 16, for example the Kummer surface K. The yA-genus of K is 2 and
the index of the real Dirac operator is yA.K/=2 (see [24], Theorem II.7.10). Hence
D W �Spin

4 .�/! ko4.�/ is an isomorphism.

Theorem 12.3 (ko-homology). Let p be an odd prime and let m be any integer.

(i)

kom.B�/ Š
´Ln

iD0 kom�i .�/ri ; m even;

tom.B�/˚ .
Ln

iD0 kom�i .�/ri /; m odd;

where tom.B�/ is a finite abelian p-group defined for m odd.

(ii) The inclusion map Zn ! � induces an isomorphism

ko2m.BZn
�/Z=p ��!Š ko2m.B�/

and ko2m.BZn
�/Z=p Š

Ln
iD0 ko2m�i .�/ri .

(iii) There is a long exact sequence

0! ko2m.B�/
Nf2m���! ko2m.B�/

@2m��! L
.P /2P

�ko2m�1.BP /

'2m�1����! ko2m�1.B�/
Nf2m�1����! ko2m�1.B�/! 0:

Hence kom.B�/Œ1=p�! kom.B�/Œ1=p� is an isomorphism for m 2 Z.

(iv) We have

ko2mC1.B�/ Š
2mC1L
iD0

ko2mC1�i .�/ri :
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(v) Let to2m.B�/ D im @2m and to2m�1.B�/ D im '2m�1. These are finite
abelian p-groups. There is an exact sequence

0! ko2m.B�/! ko2m.B�/! to2m.B�/! 0

and an isomorphism

ko2mC1.B�/ Š to2mC1.B�/˚
nL

iD0

ko2mC1�i .�/ri :

Proof. (iii): The Atiyah–Hirzebruch spectral sequence implies that �ko2m.BZ=p/

vanishes and that �ko2mC1.BZ=p/ is a finite abelian p-group. Now the claim follows
from the long exact sequence associated to the cellular pushout (1.13).

(ii): The proof is similar to that of Theorem 2.1 (ii). We analyze the Leray–Serre
spectral sequence associated to the extension (1.1)

E2
i;j D Hi .Z=pI koj .BZn

�//) koiCj .B�/:

One can show analogously to the proof of Lemma 5.3 that there are isomorphisms of
ZŒZ=p�-modules

koj .BZn
�/˝ZŒ1=2� Š

nL
lD0

Hl.Z
n
�/˝ koj �l.�/˝ZŒ1=2�; (12.4)

koj .BZn
�/˝Z.2/ Š

nL
lD0

Hl.Z
n
�/˝ koj �l.�/˝Z.2/: (12.5)

Since kom.�/.p/ is Z.p/ when m is divisible by 4 and vanishes otherwise,

yH iC1.Z=pI koj .BZn
�// Š L̀ yH iC1.Z=pIHj �4`.Zn

�//:

This fact, the Universal Coefficient Theorem, Lemma A.1, and Lemma 1.10 (i) imply
that yH iC1.Z=pI koj .BZn

�// D 0 when i C j is even.
Thus E2

0;2m D ko2m.BZn
�/Z=p maps injectively to ko2m.BZn

�/Z=p and hence is
p-torsion-free, and for i > 0, E2

i;j has exponent p and vanishes if i C j is even.
Thus

ko2m.BZn
�/Z=p Š E2

0;2m D E1
0;2m ��!Š ko2m.B�/:

By(12.4), (12.5) and Theorem 2.1 (i), (ii),

ko2m.BZn
�/Z=p Š

nL
lD0

Hl.Z
n
�/Z=p ˝ ko2m�l.�/ Š

Ln
lD0 ko2m�l.�/rl :

(iv): We will compute the group ko2mC1.B�/ after localizing at p and after
inverting p. We will begin with localizing at p. We use the Atiyah–Hirzebruch
spectral sequence

E2
i;j D Hi .B�I koj .�/.p//) koiCj .B�/.p/
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for the generalized homology theory kom.�/.p/. Note also that when i is odd, The-
orem 2.1 (iv) states that Hi .B�/ Š Zri . In particular, when i C j is odd, E2

i;j is
finitely generated free over Z.p/. Since the differentials in the Atiyah–Hirzebruch
spectral sequence are rationally trivial, E1

i;j � E2
i;j and has finite p-power index

whenever i C j is odd. Hence

ko2mC1.B�/.p/ Š
L

i

E1
i;2mC1�i Š

L
i

.ko2mC1�i .�/ri /.p/:

Now we invert p. For any integer j � 0,

koj .B�/Œ1=p� ��Š koj .BZn
�/Z=pŒ1=p� .Proposition A.4/

ŠL
i

Hi .BZn
�/Z=p ˝ koj �i .�/Œ1=p� .isomorphisms (12.4), (12.5)/

ŠL
i

.koj �i .�/ri /Œ1=p�: .Theorem 2.1 (i), (ii)/

(v): The group to2m.B�/ is a subgroup and the group to2m�1.B�/ is a quotient
group of the finite abelian p-group �ko2m.BZ=p/, hence are finite abelian p-groups
themselves. To complete the proof of assertion (v), by assertions (iii) and (iv) we
only need prove that Nf2mC1 is a split surjection. This follows since ko2mC1.B�/.p/

is free over Z.p/ and Nf2mC1 ˝ idZŒ1=p� is an isomorphism.
(i) This follows from assertions (ii) and (v).

Now we are ready to prove Theorem 0.7.

Proof of Theorem 0.7. Let M be a closed m-dimensional manifold with m � 5 and
fundamental group �1.M/ Š � . Suppose that ˛.M/ D 0. We have to show that M

carries a metric with positive scalar curvature.
The following commutative diagram with exact rows is key to the proof.L

.P /2P
�kom.BP / �� kom.B�/

ABpB�

��

ˇ
�� kom.B�/

p
B�

��

KOm.C �
r .�IR// �� KOm.B�/

Here the bottom map is the composite of the inverse of the Baum–Connes map
KO�

m.E�/ ! KO�
m.C �

r .�IR// (which is an isomorphism by [19]) and the map
KO�

m.E�/ ! KOm.B�/ coming from induction with � ! 1. The top row is
exact by Theorem 12.3 (iii). The square commutes since the map pB� B ˇ equals the
composite

kom.B�/! KOm.B�/ D KO�
m.E�/! KO�

m.E�/! KOm.B�/:

Since by assumption ˛.M/ D 0, the image of DŒfM W M ! B�� 2 kom.B�/

under the composite pB� B ˇ is zero, where fM W M ! B� is the classifying map
of M associated to �1.M/ Š � .
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Next we show that the map pB� Œ1=p� is injective. Because of Proposition A.4,
it suffices to show kom.BZn

�/Z=pŒ1=p� ! KOm.BZn
�/Z=pŒ1=p� is injective. Since

p divides the order of Z=p it suffices to show that kom.BZn/ ! KOm.BZn/ is
injective. This follows from the commutative squareLn

lD0.kom�l.�//.n
l /

Š
��

Ln
lD0.p�/.

n
l /

��

kom.BZn/

pBZn

��Ln
lD0.KOm�l.�//.n

l /
Š

�� KOm.BZn/

since p� W kom.�/! KOm.�/ is injective for all m 2 Z. This finishes the proof that
the kernel of the map pB� consists of p-torsion. Hence ˇ.DŒfM W M ! B��/ 2
kom.B�/ is p-torsion.

Now we can finish the proof in the case that m is even. Then the map ˇ is
injective and its domain is a finitely generated abelian group without p-torsion by
Theorem 12.3 (ii) and (iii). Hence DŒfM W M ! B�� 2 kom.B�/ is trivial and we
conclude from Proposition 12.1 that M carries a metric with positive scalar curvature.

Hence we will now assume that m is odd. Then the target of ˇ is a finitely
generated abelian group without p-torsion by Theorem 12.3 (iv). Hence the image of
DŒfM W M ! B�� 2 kom.B�/ under ˇ is zero. We conclude fromTheorem 12.3 (iii)
that there is an element

.xP /.P /2P 2
L

.P /2P

�kom.BP /

which is mapped under
L

.P /2P
�kom.BP / ! kom.B�/ to DŒfM W M ! B��.

Combining this with Lemma 12.2 yields elements ŒNP ! BP � 2 z�Spin
m .BZ=p/

such that the image of ŒNP ! BP �.P /2P under the compositeL
.P /2P

z�Spin
m .BP /! �

Spin
m .B�/

D�! kom.B�/

agrees with DŒfM W M ! B��. By surgery we can arrange that the map NP !
BP is 2-connected and in particular a classifying map for NP . Since m is odd,
eKOm.C �

r .P IR// D 0 (see the beginning of Section 9). Hence since the Gromov–
Lawson–Rosenberg conjecture holds for manifolds whose fundamental group is odd-
order cyclic [23], each NP admits a metric of positive scalar curvature. Recall that

DŒfM W M ! B�� D DŒ.qP 2.P /NP /! .qP 2.P /BP /! B�� 2 kom.B�/:

Hence, by Proposition 12.1, M admits a metric of positive scalar curvature.
Now we just need to show that the last sentence of Theorem 0.7 is valid.
Let M be a closed spin manifold with odd dimension m � 5 and fundamental

group � . Suppose that its p-cover yM associated with the subgroup � W Zn ! �
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admits a metric of positive scalar curvature. Then 0 D ˛. yM/ D ��˛.M/ 2
KOm.C �

r .ZnIR//. Hence by Theorem 0.6 (iii), ˛.M/ D 0. Hence by our argu-
ment above, M admits a metric of positive scalar curvature.

Appendix

Tate cohomology, duality, and transfers

Here we collect facts concerning duality in Tate cohomology, transfers in general-
ized (co)-homology theories, and edge homomorphisms in the Leray–Serre spectral
sequence.

Recall that yH �.GIM/ denotes the Tate cohomology (see [12], VI.4) of a finite
group G with coefficients in a ZŒG�-module M , that yH i .GIM/ D H i .GIM/ for
i � 1, that yH i .GIM/ D H�i�1.GIM/ for i � �2, and that there is an exact
sequence

0! yH �1.GIM/!MG
N�!M G ! yH 0.GIM/! 0:

Here M G are the invariants of M , MG D M ˝ZG Z D M=hgm � mig2G;m2M

are the coinvariants of M , and N Œm� D P
g2G gm is the norm map. Note M G D

H 0.GIM / and MG D H0.GIM/.
For a abelian group M , define the dual M � D HomZ.M; Z/ and the torsion

dual M ^ D HomZ.M; Q=Z/. Note that if M is a finitely generated free abelian
group (respectively a finite abelian group) then there is a non-canonical isomorphism
M Š M � (respectively M Š M ^). If M is a left ZG-module, give M � and M ^
the structure of left ZG-modules by defining .g'/.m/´ '.g�1m/ for g 2 G and
m 2M .

Lemma A.1 (Tate duality). Let G be a finite group and M be a finitely generated
ZG-module which contains no p-torsion for all primes p dividing the order of G.
Then for all integers i there is an isomorphism of abelian groups

yH i .GIM/ Š yH �i .GIM �/:

Hence for all integers i > 0,

H iC1.GIM/ Š Hi .GIM �/:

Proof. The Tate cohomology group yH i .GIM/ is a finitely generated group of expo-
nent jGj, hence is a finite abelian group. Thus there is a non-canonical isomorphism
of abelian groups yH i .GIM/ Š yH i .GIM/^. Duality in Tate cohomology shows
that

yH i .GIM/^ Š yH �i�1.GIM ^/
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(see [12], VI.7.3; duality holds for any ZG-module). Let FM be M modulo its
torsion subgroup. Then .FM/� ! M � and .FM/^ ˝ Z.jGj/ ! M ^ ˝ Z.jGj/ are
isomorphisms and

0! HomZ.FM; Z/! HomZ.FM; Q/! HomZ.FM; Q=Z/! 0

is a short exact sequence. Thus

yH �i�1.GIM ^/ Š yH �i�1.GI .FM/^/ Š yH �i .GI .FM/�/ Š yH �i .GIM �/;

as desired.

Remark A.2. Here is a related remark. Let G D hgi be a finite cyclic group and M

be a ZG-module. Then by dualizing the exact sequence

M
g�1���!M !MG ! 0

one obtains the exact sequence

0! .MG/� !M � g�1�1����!M �:

Hence .MG/� Š .M �/G .

Let � W E ! B be a regular G-cover of CW-complexes. Let H� a generalized
homology theory and H � a generalized cohomology theory. There are transfer maps
trf� and trf� switching the domain and range of �� and ��. Their definition is given
in [2], Chapter 4, when B is finite and in [26], Chapter IV, §3, in general. All four
maps are G-equivariant with respect to the induced G-action on H�.E/ and the trivial
G-action on H�.B/ and H �.B/. Hence we have maps

�� W H�.E/G ! H�.B/;

trf� W H�.B/! H�.E/G ;

�� W H �.B/! H �.E/G ;

trf� W H �.E/G ! H �.B/:

The basic theorem connecting the two is this special case of the double coset formula
[26], Corollary 6.4, p. 206.

Theorem A.3. Both trf� B�� and �� B trf� are given by the norm map, i.e., multipli-
cation by

P
g2G g.

For ordinary (co)homology theory, �� B trf� and trf� B�� are both multiplication
by q D jGj. This has the consequence that �� and �� are isomorphisms after invert-
ing q. These last composite formulae are no longer true for generalized (co)homology
theories, but one can say something.
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A generalized homology theory is 1=q-local if H�.X/˝Z! H�.X/˝ZŒ1=q�

is an isomorphism for all X and m. For example, for any generalized homology
theory, H�.X/ ˝ ZŒ1=q� is a 1=q-local generalized homology theory. There is an
analogous definition and remark for generalized cohomology theories.

Proposition A.4. Let G be a finite group of order q. Let H� and H � be 1=q-local
(co)homology theories. Let X be a G-CW-complex and � W X ! xX the quotient
map.

(i) �m W Hm.X/G ��!Š Hm. xX/ is an isomorphism for all m 2 Z.

(ii) If X is afiniteCW-complex, then�m W H m. xX/ ��!Š H m.X/G is an isomorphism
for all m 2 Z.

Proof. We give the argument only for homology, the one for cohomology is analo-
gous.

Given a G-CW-complex X , we obtain a natural map

j� W H�.X/G ! H�.GnX/:

Since the functor sending a ZŒ1=q�ŒG�-module M to MG is an exact functor, the as-
signment sending a G-CW-complex X to H�.X/G and to H�.GnX/ are G-homology
theories and j� is a natural transformation of G-homology theories. One easily checks
that j� is a bijection when X is G=H for any subgroup H � G. A Mayer–Vietoris
argument implies that j� is a bijection for any finite G-CW-complex, and, since
homology commutes with colimits, j� is a bijection for any G-CW-complex.

Atiyah’s computation of K0.BZ=p/ shows that a finiteness hypothesis is neces-
sary for a generalized cohomology theory.

At several places in this paper we use a property of edge homomorphisms in
spectral sequences and we review this now. Let H� and H � be (co)homology theories.
Let F ! E ! B be a fibration. Assume that B is path-connected with fundamental
group G. There are Leray–Serre spectral sequences

E2
i;j D Hi .BIHj .F //) HiCj .E/;

E
i;j
2 D H i .BIH j .F //) H iCj .E/:

These spectral sequences have coefficients twisted by the action of G on the (co)ho-
mology of the fiber, in particular

E2
0;j Š H0.GIHj .F // D Hj .F /G ;

E
0;j
2 Š H 0.GIH j .F // D H j .F /G :

The spectral sequences give maps

Hj .F /G Š E2
0;j �E1

0;j � Hj .E/;

H j .E/ �E0;j1 � E
0;j
2 Š H j .F /G I
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the composites are called the edge homomorphisms.
The proof of the proposition below follows the proof in the untwisted case [43],

p. 354.

Proposition A.5 (Edge homomorphisms). The edge homomorphisms

Hj .F /G ! Hj .E/;

H j .E/! H j .F /G

equal the maps on (co)homology induced by the inclusion of the fiber F ! E.
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