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Classification of traces and hypertraces on spaces of classical
pseudodifferential operators
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Abstract. Let M be a closed manifold and let CL�
.M/ be the algebra of classical pseudo-

differential operators. The aim of this note is to classify trace functionals on the subspaces
CLa.M/ � CL�

.M/ of operators of order a. CLa.M/ is a CL0.M/-module for any real a; it
is an algebra only if a is a non-positive integer. Therefore, it turns out to be useful to introduce
the notions of pretrace and hypertrace. Our main result gives a complete classification of pre-
and hypertraces on CLa.M/ for any a 2 R, as well as the traces on CLa.M/ for a 2 Z, a � 0.
We also extend these results to classical pseudodifferential operators acting on sections of a
vector bundle.

As a by-product we give a new proof of the well-known uniqueness results for the Guille-
min–Wodzicki residue trace and for the Kontsevich–Vishik canonical trace. The novelty of our
approach lies in the calculation of the cohomology groups of homogeneous and log-polyho-
mogeneous differential forms on a symplectic cone. This allows to give an extremely simple
proof of a generalization of a theorem of Guillemin about the representation of homogeneous
functions as sums of Poisson brackets.
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1. Introduction and formulation of the result

Let M be a smooth closed connected Riemannian manifold of dimension n > 1.1

We denote by CLa.M/ the space of classical pseudodifferential operators of order
a 2 R on M . There is a little subtlety here which we need to clarify to avoid
possible confusions: by definition (cf. eq. (2.12), (2.13) and Section 3.1) a classical
pseudodifferential operator of order a is also a classical pseudodifferential operator
of order a C k for any non-negative integer k; this convention ensures, e.g., that
CLa.M/ is a vector space and that CLa.M/ is a subspace of CLaC1.M/. However,
for non-integral r � 0 the space CLa.M/ is not contained in CLaCr.M/. In fact, it
is not hard to see that for such r one has CLa.M/ \ CLaCr.M/ D CL�1.M/, the
latter being the space of smoothing operators.

It is well known that the residue trace Res, which was discovered independently
by Guillemin [Gui85] and Wodzicki [Wod87b], is up to normalization the unique
trace on the algebra CLZ.M/ of integer order classical pseudodifferential opera-
tors ([Wod87b], Brylinski and Getzler [BrGe87], Fedosov, Golse, Leichtnam, and
Schrohe [FGLS96], Lesch [Les99], for a complete account of traces and determi-
nants of pseudodifferential operators see the recent monograph by Scott [Sco10]).
Res is non-trivial only on CLk.M/ for integers k � �n, and it is complemented by
the canonical trace, TR, of Kontsevich and Vishik [KoVi95]. The latter is defined
on operators of real order a ¤ �n, �n C 1, …, it extends the Hilbert space trace
on smoothing operators and it vanishes on commutators (for the precise statement
see eq. (3.11) below). By Maniccia, Schrohe, and Seiler [MSS08] it is the unique
functional which is linear on its domain, has the trace property and coincides with
the L2-operator trace on trace-class operators.

A natural problem which arises is to characterize the traces on the spaces CLa.M/.
First, one has to note that CLa.M/ is always a CL0.M/-module; it is an algebra if
and only if a 2 Z�0 D f0;�1;�2; : : : g. Let us call a functional � on CLa.M/

a hypertrace (resp. pretrace) if �.ŒA;B�/ D 0 for A 2 CL0.M/, B 2 CLa.M/

(resp. A;B 2 CLa=2.M/), see Definition 3.1.
The above mentioned uniqueness results for Res and TR cannot extend to CLa.M/

for a simple reason: let T be a distribution on the cosphere bundle S�M and denote
by �a W CLa.M/ ! C1.S�M/ the leading symbol. Due to the multiplicativity
of the leading symbol (eq. (3.3)) the map T B �a is a pretrace and a hypertrace on
CLa.M/, and for a 2 Z�0 it is a trace on CLa.M/. T B�a is called a leading symbol
trace by Paycha and Rosenberg [PaRo04].

For CL0.M/ it was already proved by Wodzicki [Wod87a] that any trace is a
linear combination of Res and a leading symbol trace, see also Lescure and Paycha
[LePa07], and Ponge [Pon10].

1The case n D 1 has some peculiarities due to the non-connectedness of the cosphere bundle of S1.
As a consequence many results need to be slightly modified in the case n D 1 (see Remark 2.11). These
modifications are more annoying than difficult and for the sake of a clean exposition they are left to the
reader.
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Before stating our generalization of this result we need to introduce some more
notation: Firstly, for a � 0 we will always consider CLa.M/ as a subspace of
B.L2.M//, the bounded linear operators acting on the Hilbert spaceL2.M/of square
integrable functions with respect to the volume measure induced by the Riemannian
metric. The symbol Tr will be reserved for the operator trace on the Schatten ideal
B1.L2.M// of trace class operators on L2.M/.

Secondly, for a linear functional � W CLb.M/ ! C and a � b with b � a 2 Z
we will use the abbreviation �a ´ � � CLa.M/.

Thirdly, we introduce a convenient notation which combines TR and Res. Namely,
fix a linear functional �Tr W CL0.M/ ! C such that�Tra D �Tr � CLa.M/ D Tr � CLa.M/ D Tra

for a 2 Z<�n D f�n � 1;�n � 2; : : : g and put

TRa ´

8̂<̂
:

TRa if a 2 R n Z��n;�Tra if a 2 Z; �n � a < �nC1
2
;

Resa if a 2 Z; �nC1
2

� a:

In this note we will prove:

Theorem 1.1. Let M be a closed connected Riemannian manifold of dimension
n > 1.

(1) Let a 2 R and let � be a hypertrace on CLa.M/. Then there are uniquely
determined � 2 C and a distribution T 2 .C1.S�M//� such that

� D T B �a C
´
�TRa if a … Z>�n;

�Resa if a 2 Z>�n:
(1.1)

(2) Let a 2 Z�0 and denote by

�a W CLa.M/ ! CLa.M/=CL2a�1.M/

the quotient map. Let � W CLa.M/ ! C be a trace. Then there are uniquely deter-
mined � 2 C and T 2 .CLa.M/=CL2a�1.M//� such that

� D �TRa C T B �a:

This theorem is a summary of Theorem 4.10, Theorem 4.12 and Corollary 4.13
in the text. It extends to the vector bundle case. This requires even more notation and
is therefore not reproduced here in the introduction. The interested reader is referred
to Theorem 5.7 in Section 5.

Let us briefly describe the main steps in the proof of Theorem 1.1:
In order to classify (pre-, hyper-)traces on CLa.M/ it is natural to ask for a

representation of an operator A 2 CLa.M/ as a sum of commutators. Indeed, the
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uniqueness of the residue trace Res as the unique trace on the algebra CLZ.M/ (see
the first paragraph of this section) essentially follows from the fact that there exist
P1; : : : ; PN 2 CL1.M/, Q 2 CL�n.M/ such that for any A 2 CLa.M/ there exist
Q1; : : : ;QN 2 CLa.M/ and R 2 CL�1.M/ such that

A D
NP

j D1

ŒPj ;Qj �C Res.A/QCR: (1.2)

This is due to Wodzicki [Wod84]; see also [Les99], Propositions 4.7 and 4.9.
Since the operators P1; : : : ; PN are of order 1, they do not belong to CLa.M/

except if a 2 Z�1. Hence to classify pre- and hypertraces on CLa.M/ we need to
generalize (1.2) such that the order of theP1; : : : ; PN can be chosen to be an arbitrary
real number m.

Indeed we will prove in Theorem 4.6 below that for real numbersm; a there exist
P1; : : : ; PN 2 CLm.M/, such that for any A 2 CLa.M/ there exist Q1; : : : ;QN 2
CLa�mC1.M/ and R 2 CL�1.M/ such that

A D
NP

j D1

ŒPj ;Qj �C Res.A/QCR: (1.3)

From this representation and the well-known fact that the Hilbert space trace is the
unique trace on CL�1.M/ (Guillemin [Gui93], Thm. A.1, see Theorem 4.1 below)
one now deduces the first line of (1.1) (Theorem 4.10).

For the second line of (1.1) (Theorem 4.12) one still applies (1.3) but then in
addition one needs to show that if a 2 Z>�n and if � is a hypertrace on CLa.M/

then � � CL�1.M/ D 0. This follows from a result of Ponge ([Pon10], Prop. 4.2,
see Proposition 4.2 below), for which we present an alternative proof (Lemma 4.3).

In Section 4.4 we present an alternative approach which is independent of Ponge’s
result. For this alternative approach we received considerable help from Sylvie Pay-
cha.

For proving Theorem 1.1 (2) as well as for showing that every pretrace is a hyper-
trace we use a nice algebraic lemma (Lemma 4.5) due to Sylvie Paycha. Section 4.4
as well as Lemma 4.5 are included here with her kind permission; her generosity is
greatly appreciated. We emphasize that Lemma 4.5 and Section 4.4 are not needed
to prove the classification results about hypertraces contained in Theorems 4.10, 4.12
and 5.7.

As expected, (1.3) is proved using the symbol calculus for pseudodifferential
operators. Recall that the leading symbol, �a.A/, of A 2 CLa.M/ is a smooth
function on T �M n M which is homogeneous of degree a. Now suppose that we
have P 2 CLm.M/, Q 2 CLa�mC1.M/. Then there is the well-known but crucial
identity

�a.ŒP;Q�/ D 1

i
f�m.P /; �a�mC1.Q/g:
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Here f � ; � g denotes the Poisson bracket of functions on T �M nM with respect to the
standard symplectic structure. So Poisson brackets are the symbolic counterpart of
commutators and therefore to solve the original problem one has to analyze the space
spanned by Poisson brackets of homogeneous functions. This leads naturally to the
symplectic residue which is the symbolic analogue of the residue trace. The theory of
the symplectic residue was developed independently by Wodzicki [Wod87b], Sec. 1,
and Guillemin [Gui85], Sec. 6.

As in loc. cit. we work in the language of symplectic cones: Y ´ T �M n M
carries a natural free R�C-action with quotient S�M , the cosphere bundle. For an
arbitrary connected symplectic cone Y denote by P a the space of smooth functions
which are homogeneous of degree a. If Y is of dimension 2n > 2 with compact
base, we prove in Theorem 2.9 below that

fP l ;P mg D ker.resY / \ P lCm�1

D
´

P lCm�1 if l Cm ¤ �nC 1;

ker.resY / \ P lCm�1 if l Cm D �nC 1:

(1.4)

Here resY denotes the symplectic residue (Definition 2.3, Section 2.3.1).
For m D 1 this is [Gui85], Thm. 6.2, cf. also [Wod87b], 1.20. The m here

corresponds to the m in (1.3). Hence, proving (1.4) for arbitrary m is crucial. One
could hope that the original method of [Gui85] can be adapted to all m. As shown
in Neira Jiménez [NJ10], Sec. 1.4, this indeed works for .l;m/ ¤ .0; 0/, but the
method fails for the case l D m D 0. This was pointed out to the second author by
Jean-Marie Lescure.

We therefore offer a completely new approach to the proof of (1.4), which is even
more elementary than the proof in [Gui85], Sec. 6; the latter uses the elliptic regularity
theorem.

Let us explain the basic idea of our approach. Denote by ! the symplectic form
onY . Then!n is a volume form. Furthermore, one has the formula (1.2 in [Wod87b])

ff; gg!n D d.g�Xf
!n/: (1.5)

Using this formula, an elementary calculation (see the proof of Theorem 2.9) shows
that f 2 P lCm�1 is in fP l ;P mg if and only if there is a homogeneous differential
form ˇ (of homogeneity nC l Cm � 1) such that f!n D dˇ.

Thus the problem of proving (1.4) is reduced to the calculation of the 2n-th de
Rham cohomology of homogeneous differential forms. It is no additional effort to
calculate the whole homogeneous de Rham cohomology of a cone: So let Z be a
smooth paracompact manifold and let � W Y ! Z be a R�C principal bundle overZ (a
cone). Denote by�pP a.Y / the smooth p-forms which are homogeneous of degree
a (see Section 2). Then it is easy to see that the exterior derivative preserves the
homogeneity and hence we can form the homogeneous de Rham cohomology groups
HpP a.Y /. In Theorem 2.1 we show thatHpP a.Y / vanishes for a ¤ 0 and that for
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a D 0 it is canonically isomorphic toHp�1.Z/˚Hp.Z/. In particular, for compact
oriented Z we find that H dim Y P 0.Y / is isomorphic to C. The choice of a homoge-
neous volume form for Y (e.g. !n if ! is the symplectic form of a symplectic cone Y
of dimension 2n) leads then to a concrete isomorphism resY W H dim Y P 0.Y / ! C.
This is called the residue of the cone.

To finish the outline of the proof of Theorem 1.1, let us explain the connection
between the residue of the coneT �M nM (aka the symplectic residue) and the residue
trace. So let M be compact connected of dimension n > 1 and let ! be the standard
symplectic form on T �M nM . For A 2 CLa.M/ the leading symbol �a.A/ is then
an element of P a.T �M nM/. Furthermore, if a ¤ �n then the symplectic residue
res!.�a.A// vanishes and if a D �n then res!.�a.A// is up to a normalization equal
to the residue trace Res.A/ (cf., e.g., [Les99], Prop. 4.5). This fact is used in the
proof of Theorem 4.6 where (1.3) is deduced inductively from (1.4) using the symbol
calculus.

There is another aspect which we would like to comment on. Namely, it is
interesting to note that Res and TR as well as the leading symbol traces have precise
analogues on the symbolic level. This analogy is not only formal but is used in
Section 4.4.

The basic idea is easy to explain, cf. also [Les10], Sec. 4: LetU � Rn be an open
subset and let A 2 CLa.U / with complete symbol � 2 CSa.U � Rn/ (CSa denotes
the space of classical symbols of order a, see Section 2.4.1). Then the Schwartz
kernel of A is given by the oscillatory integral (cf. eq. (3.1))

KA.x; y/ D
Z

Rn

eihx�y;�i�.x; 	/ μ 	; μ 	 ´ .2�/�nd	:

To obtain a trace on CLa.U / one hence has to regularize the integralZ
U

KA.x; x/ dx D
Z

U

Z
Rn

�.x; 	/ μ 	dx:

Only the inner integral is problematic and there are two natural regularizations of the
inner integral, the residue and the cut-off integral, which then lead to Res and TR (cf.
Section 2.4.2). Let us ignore the x-dependence and consider the Hörmander symbols
CSa.Rn/ (D CSa.f0g � Rn/). This is the space of smooth functions f on Rn such
that f � P1

j D0 fa�j with fa�j .	/ positively homogeneous of order a � j for 	
large enough.

In view of the fact that the symbolic analogue of commutators are Poisson brackets
and in view of the explanations after eq. (1.5) the analogue of a hypertrace is then a
linear functional � W CSa.Rn/ ! C such that �.f / D 0 if the n-form ˛ D fd	1 ^
� � � ^ d	n is exact within forms whose coefficients lie in CSaC1.Rn/. Now for ˛ to
be exact in this sense it is equivalent that f D Pn

j D1 @�j
�j with �j 2 CSaC1.Rn/.

This follows from an elementary calculation, cf. the proof of Corollary 2.4.
In sum the analogue of a hypertrace is a linear function � on CSa.Rn/ such that

�.@�j
f / D 0 for j D 1; : : : ; n. Such functionals have been investigated by Paycha



Classification of traces on classical pseudodifferential operators 463

[Pay07] and were partially classified (up to functionals on smoothing symbols). As
explained in e.g. [Sco10], Sec. 4.6.3, studying these functionals is one way to prove
the existence of the residue trace; there is another approach which makes more heavy
use of heat trace asymptotics, cf., e.g., [Les99], Sec. 4.

Functionals with the “Stokes property”, �.@�j
f / D 0, can most naturally be

classified by looking at a certain variant of de Rham cohomology. Namely, putting
T .fd	1^� � �^d	n/ ´ �.f / one obtains a linear function on the top degree de Rham
cohomology of forms in Rn whose coefficients lie in CSa.Rn/. While the calculation
of this cohomology is possible, it will be postponed to a subsequent paper. Rather
it turns out that the homogeneous cohomology developed in Section 2 plus a simple
lemma about Schwartz functions (Lemma 2.12) suffice to classify the functionals
with the Stokes property.

In Proposition 2.13 we completely characterize the functionals on CSa.Rn/ with
the Stokes property or equivalently when a function in CSa�1.Rn/ can be written as a
sum of partial derivatives of functions in CSa.Rn/. This generalizes [Pay07], Prop. 2,
Thm. 2.

The paper is organized as follows. In Section 2 we study homogeneous differential
forms on cones and calculate their de Rham cohomology. As applications we prove the
aforementioned generalization of Guillemin’s Theorem on homogeneous functions
and a characterization of functionals with the Stokes property.

In Section 3 we first review some basic facts about pseudodifferential operators
and trace functionals. We introduce pretraces and hypertraces and we give some
examples. In Section 4 we apply the results of Section 2 and provide a result about
the representation of a classical pseudodifferential operator as a sum of commutators.
We use this result to give the classification of hypertraces and traces on CLa.M/ for
different values of a. For the case of integral a we give two proofs, one relying on a
result due to Ponge [Pon10] and a completely self-contained one in Section 4.4.

Finally, in Section 5 we extend the results about tracial functionals to operators
acting on sections of vector bundles over the manifold. The main result then is
Theorem 5.7.

Acknowledgments. This paper exposes and extends some of the results of the
Ph.D. thesis [NJ10] of the second author. She would like to thank her adviser Matthias
Lesch and her co-adviser Sylvie Paycha for their guidance during this project, as well
as the Max-Planck Institut für Mathematik and the University of Bonn for their sup-
port and hospitality. We acknowledge with gratitude the substantial help received
from Sylvie Paycha, in particular with Lemma 4.5 and Section 4.4, which are in-
cluded in this paper with her kind permission. Furthermore, we would like to thank
Jean-Marie Lescure for pointing out an error in an earlier draft. In fact this led us to
develop the new approach via homogeneous cohomology. Finally we thank the two
anonymous referees for their detailed suggestions for improvements. We think the
paper has benefited considerably from those remarks.
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2. Cohomology of homogeneous differential forms

In this section we calculate the de Rham cohomology of homogeneous differential
forms on cones. The theory is stunningly simple. Nevertheless as corollaries we
obtain generalizations of the results of Guillemin [Gui85] on the representation of
homogeneous functions on symplectic cones as sums of Poisson brackets. Also our
approach generalizes the theory of homogeneous functions on Rn n f0g in a straight-
forward way. Therefore, we also obtain as a corollary the precise criterion when a
homogeneous function can be written as a sum of partial derivatives of homogeneous
functions, cf. [FGLS96], [Les99]. Finally, this criterion is generalized to classical
symbol functions, generalizing [Pay07], Prop. 2, Thm. 2.

2.1. Homogeneous differential forms on cones. A cone over a manifold B is a
principal bundle � W Y ! B with structure group R�C, the multiplicative group of
positive real numbers. Basic examples we have in mind are Rn n f0g (cf. Exam-
ples 2.1.1, 2.2.1 below) and the cotangent bundle with the zero section removed,
T �M nM , of a compact connected manifoldM ; the latter is even a symplectic cone
and such cones are discussed in detail in Section 2.3. In both cases the R�C action is
given by multiplication.

Denote by %� W Y ! Y , the action of � 2 R�C. Via ˆt ´ %et we obtain a one
parameter group of diffeomorphisms of Y . Let X 2 C1.T Y / be the infinitesimal
generator of this group, which is sometimes called the Liouville vector field.

A differential form! 2 �p.Y / is called homogeneous of degree a if %�
�
! D �a!

for all � 2 R�C. The space of differential forms of form degree p and homogeneity
a is denoted by �pP a.Y /. P a.Y / ´ �0P a.Y / are the smooth functions on Y
which are homogeneous of degree a.

We choose a function r 2 P 1.Y / which is everywhere positive and put Z ´
fy 2 Y j r.y/ D 1g. �jZ is a diffeomorphism from Z onto B and r induces a
trivialization of Y as follows:

ˆ W Y ! R�C �Z; y 7! .r.y/; %r.y/�1y/:

Note that

ˆ.%�.y// D .r.%�.y//; %r.%�.y//�1%�.y// D .�r.y/; %r.y/�1y/:

Hence ˆ intertwines the R�C action on Y and the natural R�C action on the product
R�C � Z. For convenience we will from now on work with the trivialized bundle
R�C � Z. The first coordinate will be called r , so the Liouville vector field is then
given by X D r @

@r
.

With the projection � W R�C � Z ! Z, a differential form ! 2 �pP a.R�C � Z/
can be written

! D ra�1dr ^ ��� C ra��
 (2.1)
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with


 D i�Z! 2 �p.Z/; � D i�Z.�X!/ 2 �p�1.Z/; (2.2)

where iZ W Z ,! Y is the inclusion map and �X denotes interior multiplication by
the Liouville vector field X. We have furthermore

d! D ra�1dr ^ .a��
 � ��dZ�/C ra��dZ
 2 �pC1P a.R�C �Z/; (2.3)

so exterior derivation preserves the homogeneity degree. Hence we can form the
homogeneous de Rham cohomology groups

HpP a.Y / ´ ker.d W �pP a.Y / ! �pC1P a.Y //

im.d W �p�1P a.Y / ! �pP a.Y //
: (2.4)

These cohomology groups can easily be calculated:

Theorem 2.1. Let Z be a smooth paracompact manifold, let � W Y ! Z be a R�C
principal bundle over Z.

(1) If a ¤ 0, thenHpP a.Y / D f0g.
(2) If a D 0, then the map

‰ W ��
P 0.Y / ! ���1.Z/˚�

�
.Z/; ! 7! .�; 
/ D .i�Z.�X!/; i�Z!/;

is an isomorphism of cochain complexes, hence it induces an isomorphism

HpP 0.Y / Š Hp�1.Z/˚Hp.Z/: (2.5)

In terms of the everywhere positive function r 2 P 1.Y / the inverse of ‰ is
given by .�; 
/ 7! r�1dr ^ ��� C ��
.

Proof. (1) As before we work with the trivialized bundle R�C � Z. If ! is closed,
then (2.3) implies that

dZ� D a
; dZ
 D 0;

and hence we obtain a form analogue of Euler’s identity (see eq. (2.8) below)

d.iX!/ D d.ra���/ D ara�1dr ^ ��� C ra��dZ� D a!: (2.6)

Thus ! is exact if a ¤ 0, explicitly

! D 1

a
d.iX!/:

(2) Now let a D 0 and consider ! 2 �pP 0.R�C �Z/. Since %�
et! D !, we see

that the Lie derivative LX! vanishes,

LX! D d

dt

ˇ̌̌̌
tD0
%�

et! D 0;
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and Cartan’s magic formula d�X C �Xd D LX implies that d�X! D ��Xd!. Thus

d.i�Z.�X!/; i�Z!/ D .�i�Z.�Xd!/; i�Zd!/;
and hence the exterior derivative on ���1.Z/ ˚ ��.Z/ can be modified by a sign
such that d‰ D ‰d . From (2.1) and (2.2) it follows that ‰ is bijective and that its
inverse is given by .�; 
/ 7! r�1dr ^ ��� C ��
.

Remark 2.2. We comment on a special case of Theorem 2.1 which combines the
constructions of the residue of a homogeneous function on Rn n f0g (see the next
section) and of Guillemin’s symplectic residue (Section 2.3).

Let dim Y D n and suppose that ! 2 �nP a.Y / is a homogeneous volume form.
Then i�Z.�X!/ is a volume form on Z. In particular Z is orientable and we choose
the orientation such that i�Z.�X!/ is positively oriented. If additionallyZ is compact,
then integration yields an isomorphism Hn�1.Z/ Š C.

For f 2 P �a.Y / the closed form f! 2 �nP 0.Y / defines a class Œf!� 2
HnP 0.Y / which under the isomorphism ‰ of Theorem 2.1 corresponds to the class
Œi�Z.f �X!/� 2 Hn�1.Z/.

Definition 2.3. For f 2 P �a.Y / we define the residue with respect to the fixed
volume form ! 2 �nP a.Y / to be the complex number corresponding to the class
Œf!� 2 HnP 0.Y / under the composition of the isomorphisms HnP 0.Y / Š
Hn�1.Z/ Š C:

res!.f / ´
Z

Z

i�Z.f �X!/:

For f 2 P b.Y /; b ¤ �a; we put res!.f / D 0.

We emphasize that the definition of res! depends on the choice of the homo-
geneous volume form !. The significance of Theorem 2.1 lies in the fact that
res!.f / D 0 if and only if there is a homogeneous differential form ˇ such that
dˇ D f!.

2.1.1. Example. Y D Rn n f0g Š R�C � Sn�1, B D Z D Sn�1. We elaborate on
this interesting special case. Denote by .	1; : : : ; 	n/ the coordinates on Rn n f0g and
put ! ´ d	1 ^ � � � ^ d	n 2 �nP n.Rn n f0g/. Then

X D
nX

iD1

	i

@

@	i

; �X! D
nX

iD1

.�1/i�1	i d	1 ^ � � � ^ �d	i ^ � � � ^ d	n: (2.7)

The form �X! is in�n�1P n.Rn n f0g/, and i�
Sn�1.�X!/ is the standard volume form

on Sn�1. Moreover, by (2.6) we have

d.f �X!/ D .aC n/f!;
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f 2 P a.Rn n f0g/. On the other hand by (2.7),

d.f �X!/ D
nP

iD1

@�i
.f 	i / d	1 ^ � � � ^ d	n D � nP

iD1

.@�i
f /	i C nf

�
!;

and thus we arrive at Euler’s identity for homogeneous functions:

nP
iD1

.@�i
f /	i D af: (2.8)

Corollary 2.4. Let res! be the residue associated to ! D d	1 ^ � � � ^ d	n 2
�nP n.Rn n f0g/ according to Definition 2.3. Then for a homogeneous function
f 2 P a.Rn n f0g/ the following holds:

(1) res!.@�j
f / D 0.

(2) There exist �j 2 P aC1.Rn n f0g/ such that f D Pn
j D1 @�j

�j if and only if
res!.f / D 0. Note that res!.f / ¤ 0 only if a D �n.

Proof. It follows from Theorem 2.1 (cf. the remarks before Definition 2.3) that for
a function g 2 P a.Rn n f0g/ the residue vanishes if and only if the class Œg!� 2
HnP aCn.Rn n f0g/ vanishes.

To prove (1) we note that .@�j
f /d	1 ^ � � � ^ 	n D d
 with the form


 D .�1/j �1fd	1 ^ � � � ^ �d	j ^ � � � ^ d	n 2 �n�1P aCn�1.Rn n f0g/
and hence res!.@�j

f / D 0.
(1) shows that for the �j in (2) to exist it is necessary that res!.f / D 0. To

prove sufficiency consider f 2 P a.Rn n f0g/ with res!.f / D 0. Then there is

 2 �n�1P aCn.Rn n f0g/ with d
 D f!. We write


 D
nP

j D1

.�1/j �1�j d	1 ^ � � � ^ �d	j ^ � � � ^ d	n (2.9)

with �j 2 P aC1.Rn n f0g/. Then f D Pn
j D1 @�j

�j .

2.2. Extension to log-polyhomogeneous forms. We generalize our previous con-
siderations to log-polyhomogeneous forms.

A p-form ! 2 �p.R�C �Z/ is called log-polyhomogeneous of degree .a; k/ if

! D
kP

j D0

!j logj r;

with !j 2 �pP a.R�C � Z/, cf. [Les99]. The set of all such forms is denoted by
�pP a;k.R�C �Z/.
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The exterior derivative preserves the .a; k/-degree. More explicitly,

d..ra�1dr ^ ��� C ra��
/ logj r/

D .ra�1dr ^ .a��
 � ��dZ�/C ra��dZ
/ logj r C jra�1dr ^ ��
 logj �1 r:

Hence analogously to eq. (2.4) we define the log-homogeneous de Rham coho-
mology groups

HpP a;k.Y / ´ ker.d W �pP a;k.Y / ! �pC1P a;k.Y //

im.d W �p�1P a;k.Y / ! �pP a;k.Y //
;

for which we can prove the following analogue of Theorem 2.1.

Theorem 2.5. Let Z be a smooth paracompact manifold, let � W Y ! Z be a R�C
principal bundle over Z. Let r 2 P 1.Y / be everywhere positive.

(1) If a ¤ 0 thenHpP a;k.Y / D f0g.
(2) If a D 0 then the map

ˆk W ���1.Z/˚�
�
.Z/ ! �

�
P 0;k.Y /;

.�; 
/ 7! r�1dr ^ .���/ logk r C ��
;

induces an isomorphism

Hp.ˆk/ W Hp�1.Z/˚Hp.Z/ Š HpP 0;k.Y /:

Let Ip;k W HpP 0;k.Y / ! Hp�1.Z/ ˚ Hp.Z/ be the inverse of Hp.ˆk/.
Then for a closed form ! D Pk

j D0 !j logj r 2 �pP 0;k.Y /, !j 2 �pP 0.Y /,

one has Ip;k.Œ!�/ D .Œi�Z.�X!k/�; Œi
�
Z!0�/.

Proof. We consider a closed form ! 2 �pP a;k.R�C �Z/ and write

! D !k logk r C �

with � 2 �pP a;k�1.R�C �Z/. Then

0 D d! D .d!k/ logk r C lower log degree;

thus !k is closed and Euler’s identity (2.6) gives

d.�X!/ D d.�X!k logk r/C lower log degree

D a!k logk r C lower log degree

D a! C lower log degree:

If a ¤ 0, then ! is cohomologous to ! � 1
a
d.iX!/ 2 �pP a;k�1.R�C � Z/. By

induction and Theorem 2.1 one then shows that ! is exact.
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Next let a D 0 and consider a form ! 2 �pP 0;k.R�C �Z/:

! D
kP

j D0

.r�1dr ^ ���j C ��
j / logj r;

d! D
kP

j D0

.�r�1dr ^ ��dZ�j C ��dZ
j / logj r C jr�1dr ^ ��
j logj �1 r

D .�r�1dr ^ ��dZ�k C ��dZ
k/ logk r

C Pk�1
j D0.r

�1dr ^ ..j C 1/��
j C1 � ��dZ�j /C ��dZ
j / logj r:

Thus d! D 0 if and only if

dZ�k D 0; dZ
k D 0;

dZ
j D 0; dZ�j D .j C 1/
j C1; j D 0; : : : ; k � 1:

This implies thatHp.ˆk/ and Ip;k are well defined and it is a routine matter to check
that they are inverses of each other.

2.2.1. Example. Y D Rn n f0g, B D Z D Sn�1. As in the homogeneous case we
put:

Definition 2.6. Let f 2 P �n;k.Rn n f0g/. We define the residue of f to be the
integral

res!;k.f / ´ res!.fk/ D
Z

Sn�1

i�
Sn�1.fk�X!/; ! D d	1 ^ � � � ^ d	n:

Note that by Theorem 2.5, HnP 0;k.Rn n f0g/ Š Hn�1.Sn�1/ Š C, and that
res!;k.f / is the image in C of the class Œf!� under this isomorphism. Therefore
exactly as Corollary 2.4 one now proves:

Corollary 2.7. For a log-polyhomogeneous function f 2 P a;k.Rn n f0g/ the fol-
lowing holds:

(1) res!;k.@�j
f / D 0.

(2) There exist �j 2 P aC1;k.Rn n f0g/ such that f D Pn
j D1 @�j

�j if and only if
res!;k.f / D 0. Note that res!;k.f / ¤ 0 only if a D �n.

2.3. Homogeneous functions on symplectic cones. In this section we give an ex-
plicit expression of a homogeneous function in terms of Poisson brackets. This
generalizes work of Guillemin [Gui85], Thm. 6.2.

To fix some notation and to fix some (sign) conventions let us briefly collect some
basic facts from symplectic geometry.
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Let Y be a symplectic manifold with symplectic form !. The Hamiltonian vector
field Xf associated to f 2 C1.Y / is characterized by �Xf

! D �df . The Poisson
bracket of two functions f; g 2 C1.Y / is defined by

ff; gg ´ !.Xf ; Xg/:

If X1 and X2 are Hamiltonian vector fields, then ŒX1; X2� is also a Hamiltonian
vector field with Hamiltonian function !.X1; X2/ (see Def. 18.5 in Cannas da Silva
[CdS01]),

�ŒX1;X2�! D �X!.X1;X2/
!;

hence
Xff;gg D X!.Xf ;Xg/ D ŒXf ; Xg �;

and .C1.Y /; f; g/ is a Poisson algebra.

Proposition 2.8 ([Wod87b], 1.2). ThePoisson bracket of two functionsf; g 2 C1.Y /
satisfies

ff; gg!n D ndf ^ dg ^ !n�1 D d.g�Xf
!n/: (2.10)

Let Y be a symplectic cone, i.e., a cone � W Y ! Z with a symplectic form
! 2 �2P 1.Y /. We assume furthermore thatZ is compact and connected; of course,
Y is then connected, too. The main example we have in mind is the cotangent bundle
with the zero section removed, T �M nM , of a compact connected manifold M of
dimension dimM > 1, with its standard symplectic structure. The base manifold Z
is then the cosphere bundle S�M . In the caseM D S1 (the only compact connected
one-dimensional manifold!), each of the two connected components of T �S1 nS1 is
a symplectic cone over S1.

2.3.1. The symplectic residue. Let dim Y μ 2n, so !n 2 �2nP n.Y / is a homo-
geneous volume form on Y . We can apply Definition 2.3 and define the symplectic
residue of a function f 2 P a.Y / to be the residue with respect to the volume form
!n. That is

resY .f / ´ res!n.f / D
´R

Z
i�Z.f �X!n/ if a D �n;

0 if a ¤ �n:

Recall that the definition of resY depends on the choice of the homogeneous volume
form !n. Furthermore, recall that, by Theorem 2.1, resY .f / D 0 if and only if there
is a form ˇ 2 �2n�1P aCn.Y / such that dˇ D f!n.

We note in passing that the form ˛ ´ �X! is in�1P 1.Y / and by Euler’s identity
for forms, eq. (2.6), it satisfies ! D d˛. Our definition of the symplectic residue
differs from the original one by Guillemin [Gui85] by a factor.



Classification of traces on classical pseudodifferential operators 471

2.3.2. Homogeneous functions in terms of Poisson brackets. Now we prove the
following generalization of [Gui85], Thm. 6.2.

In the following we will for brevity write P a instead of P a.Y /:

Theorem 2.9. Let Y be a connected symplectic cone of dimension 2n > 2 with
compact base. Then for any real numbers l , m the following holds:

fP l ;P mg D ker.resY /\ P lCm�1 D
´

P lCm�1 if l Cm ¤ �nC 1;

ker.resY / \ P lCm�1 if l Cm D �nC 1:

Remark 2.10. The proof we present is based on the homogeneous cohomology
developed in Section 2.1, in particular Theorem 2.1. While [Gui85] uses the elliptic
regularity theorem, our Theorem 2.1 is completely elementary. More importantly
our result is more general than loc. cit. where m D 1 is assumed. The technique of
[Gui85], Sec. 6, can be applied to prove Theorem 2.9 for .l;m/ ¤ .0; 0/, but the
method fails2 for the case l D m D 0; for details see [NJ10], Sec. 1.4.

Proof. We first note that Proposition 2.8 implies that fP l ;P mg � P lCm�1. Fur-
thermore, by loc. cit. we have ff; gg!n D d.g�Xf

!n/, and if f 2 P l , g 2 P m, then
g�Xf

!n 2 �2n�1P lCmCn�1. Thus the homogeneous cohomology class of ff; gg!n

vanishes and hence resY .ff; gg/ D 0. So fP l ;P mg � ker.resY /.
Conversely, let f 2 P lCm�1 be given with resY .f / D 0. Then by Theo-

rem 2.1 (see also Definition 2.3), the homogeneous cohomology class of f!n 2
�2nP nClCm�1 vanishes and hence there is a ˇ 2 �2n�1P nClCm�1 such that

f!n D dˇ:

1. l ¤ 0 or m ¤ 0. Since the claim is symmetric in l and m, we may, without loss
of generality, assume that l ¤ 0.

Choose functions g1; : : : ; gN 2 P l such that at every point y of Y their dif-
ferentials dg1jy ; : : : ; dgN jy span the cotangent space T �

y Y . Let X1; : : : ; XN be
the Hamiltonian vector fields of g1; : : : ; gN . Since !n is a volume form, also
�X1
!njy ; : : : ; �XN

!njy span ƒ2n�1T �
y Y .

Consequently, there are functions f1; : : : ; fN 2 C1.Y / such that

ˇ D
NP

j D1

fj �Xj
!n:

Since ˇ, Xj , !n are homogeneous, it is clear that also fj can be chosen to be
homogeneous. Counting degrees then shows fj 2 P m. Thus by Proposition 2.8,

f!n D dˇ D
NP

j D1

d.fj �Xj
!n/ D n

NP
j D1

dgj ^ dfj ^ !n�1 D
NP

j D1

fgj ; fj g!n;

2The second author would like to thank Jean-Marie Lescure for pointing this out to her.
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and hence f D PN
j D1fgj ; fj g 2 fP l ;P mg.

2. l D m D 0. In this case f 2 P �1. By assumption, n > 1 and thus by eq. (2.6),

f!n D 1

n � 1d.f �X!
n/ D n

n � 1d.f ˛ ^ !n�1/; ˛ D �X!: (2.11)

The 1-form f ˛ is homogeneous of degree 0 and since ˛ D �X!, it is the pullback of
a 1-form on Z.

We now chooseg1; : : : ; gN 2 P 0 such that at every point z ofZ, their differentials
span the cotangent space T �

z Z. Of course it is impossible to find homogeneous
functions of degree 0 such that their differentials span T �

y Y at every y 2 Y .
Therefore there are functions f1; : : : ; fN 2 C1.Y / such that

f ˛ D
NP

iD1

fidgi :

As before, we see that fi can be chosen such that fi 2 P 0. Moreover, continuing
eq. (2.11) and again using Proposition 2.8,

f!n D n

n � 1d.f ˛/ ^ !n�1 D n

n � 1d
� NX

iD1

fidgi

�
^ !n�1

D 1

n � 1
NX

iD1

ffi ; gig!n;

and we reach the conclusion f D 1
n�1

PN
iD1ffi ; gig 2 fP 0;P 0g.

Remark 2.11. If n D 1, then fP 0;P 0g D 0. Indeed, by eq. (2.10) with n D 1,
ff; gg! D df ^ dg, so if f; g 2 P 0 we have ff; gg D 0. In this one-dimensional
case, there are two different symplectic residues (resC, res�), corresponding to each
connected component of T �S1 nS1; then, when l ¤ 0 orm ¤ 0, we can argue as in
the corresponding part of the proof of Theorem 2.9 to conclude that

fP l ;P mg D
´

P lCm�1 if l Cm ¤ 0;

ker.resC/ \ ker.res�/ \ P lCm�1 if l Cm D 0:

2.4. The residue of a classical symbol function. As an application of homogeneous
cohomology we give a precise criterion when a classical symbol function is a sum
of partial derivatives. A more thorough discussion of de Rham cohomology of forms
whose coefficients are symbol functions will be given in a subsequent publication.

2.4.1. Classes of symbols. Suppose that U � Rn is an open subset. We denote
by Sm.U � RN /, m 2 R, the space of symbols of Hörmander type .1; 0/ ([Hör71],
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[Shu01]) and order at most m. More precisely, Sm.U � RN / consists of those a 2
C1.U � RN / such that for multi-indices ˛ 2 ZnC; � 2 ZNC and compact subsets
K � U we have an estimate

j@˛
x@

�

�
a.x; 	/j � C˛;�;K.1C j	j/m�j� j; x 2 K; 	 2 RN : (2.12)

The best constants in (2.12) provide a set of semi-norms which endow S1.U �
RN / ´ S

m2R Sm.U � RN / with the structure of a Fréchet algebra. A symbol
a 2 Sm.U � RN / is called classical if there are am�j 2 C1.U � RN / with

am�j .x; r	/ D rm�jam�j .x; 	/; r � 1; j	j � 1; (2.13)

such that

a �
N �1P
j D0

am�j 2 Sm�N .U � RN / (2.14)

for N 2 ZC. The latter property is usually abbreviated to a � P1
j D0 am�j .

Homogeneity and smoothness at 0 contradict each other except for homogeneous
polynomials. Our convention is that symbols should always be smooth functions,
thus the am�j are smooth everywhere but homogeneous only in the restricted sense
of eq. (2.13). The homogeneous extension of am�j to U � Rn n f0g will also be
needed: we put

ah
m�j .x; 	/ ´ am�j .x; 	=j	j/j	jm�j ; .x; 	/ 2 U � Rn n f0g: (2.15)

Furthermore, we denote by S�1.U �Rn/ ´ T
a2R Sa.U �Rn/ the space of smooth-

ing symbols.
CSm.U � RN / � Sm.U � RN / denotes the space of classical symbols of order

m. Let us repeat the warning from the first paragraph of the introduction: in view of
(2.12) and (2.13) one has CSm.U �RN / � CSmCr.U �RN / if and only if r is a non-
negative integer. For non-integral r � 0 one has CSm.U �RN /\CSmCr.U �RN / D
S�1.U � RN /.

Note that S�1.U � RN / D CS�1.U � RN / D T
a2R CSa.U � Rn/.

For brevity we write CSa.Rn/ (Sa.Rn/) instead of CSa.fptg�Rn/ (Sa.fptg�Rn/).
Note that S�1.Rn/ D S.Rn/ is nothing but the Schwartz space of rapidly decaying
functions.

We will now discuss the analogue of Corollary 2.4 for the space CSa.Rn/. We
start with smoothing symbols.

Lemma 2.12. Let f 2 S.Rn/ be a Schwartz function. Then there are functions
�j 2 CS�nC1.Rn/ such that f D Pn

j D1 @�j
�j .

One can choose the �j to be Schwartz functions if and only if
R

Rn f D 0.

Proof. We start with the first claim and note that if n D 1 then the function �.	/ DR �

�1 f .t/ dt is in CS0.R/ and @�� D f .
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For general n we infer from the standard proof of the Poincaré Lemma in Rn

applied to the closed form f d	1 ^ � � � ^ d	n, that we can put

�j .	/ D
Z 1

0

f .t	/	j t
n�1dt:

Indeed,

@�j
�j .	/ D

Z 1

0

f .t	/tn�1dt C
Z 1

0

@�j
.f /.t	/	j t

ndt;

thus

nX
j D1

@�j
�j .	/ D

Z 1

0

f .t	/ntn�1dt C
Z 1

0

nX
j D1

@�j
.f /.t	/	j t

ndt

D
Z 1

0

@t .f .t	/t
n/ dt D f .	/:

It remains to show that �j 2 CS�nC1.Rn/. The function �j is certainly smooth. For
j	j � 1 we have by change of variables r D t j	j:

�j .	/ D
Z j�j

0

f

�
r
	

j	j
	
rn�1dr j	j�n	j

D
Z 1

0

f

�
r
	

j	j
	
rn�1dr j	j�n	j �

Z 1

j�j
f

�
r
	

j	j
	
rn�1dr j	j�n	j :

The first summand is homogeneous of degree �n C 1 while the second summand
satisfies the estimates of a Schwartz function at 1 (it is not a Schwartz function
since it is not smooth at 0). Thus �j 2 CS�nC1.Rn/ and its homogeneous expansion
consists only of one term of homogeneity �nC 1,

�j .	/ �
Z 1

0

f

�
r
	

j	j
	
rn�1dr j	j�n	j ;

proving the first claim.
For the second claim the necessity of

R
Rn f D 0 is clear. In fact the proof of

the Poincaré Lemma with compact supports (Bott and Tu [BoTu82], Sec. I.4) works
verbatim for the forms ��S.Rn/ with coefficients in S.Rn/. Thus the closed n-form
fd	1 ^ � � � ^ d	n is exact in ��S.Rn/ if and only if

R
Rn f D 0. If this is the case

then fd	1 ^ � � � ^ d	n D d
 with an .n� 1/-form 
 2 �n�1S.Rn/. Expanding 
 as
in (2.9) we see that f D Pn

j D1 @�j
�j with Schwartz functions �j .

2.4.2. The residue and the regularized (cut-off) integral. We now extend the
residue (Definition 2.3) from homogeneous functions to CSa.Rn/.
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Let � 2 CSa.Rn/ have asymptotic expansion � � P1
j D0 �a�j , cf. eq. (2.13) and

(2.15). Then �h
a�j 2 P a�j .Rn n f0g/. Put

res.�/ ´ res!.�
h�n/ D

Z
Sn�1

i�
Sn�1.�

h�n/d volSn�1 D
Z

Sn�1

i�
Sn�1.�

h�n�X!/;

where ! D d	1 ^ � � � ^ d	n. In other words the residue of � equals the residue of its
homogeneous component of homogeneity degree �n. Thus res.�/ ¤ 0 only if a is
an integer � �n. The functional res was studied in [Pay07].

We also recall the regularized integral or cut-off integral
ª W CSa.Rn/ ! C

(cf., e.g., [Les10], Sec. 4.2): If f 2 CSa.Rn/ then the asymptotic expansion f �P1
j D0 fa�j implies that as R ! 1 one has an asymptotic expansionZ

j�j�R

f .	/ d	 �
R!1

1X
j D0

a�j Cn¤0

ca�jR
a�j Cn C QcR0 C res.f / logR:

The regularized integral
ª

Rn f .	/ d	 is, by definition, the constant term Qc in this
asymptotic expansion. It has the property that

ª
Rn @�j

f ¤ 0 only if a is an integer
� �nC 1.

The following result generalizes [Pay07], Prop. 2 and Thm. 2, where it was proved
modulo smoothing symbols.

Proposition 2.13. (1) Let a 2 Z. For a symbol f 2 CSa.Rn/ there exist symbols
�j 2 CSr.a/.Rn/, r.a/ ´ max.a;�n/C 1, such that f D Pn

j D1 @�j
�j if and only

if res.f / D 0.
(2)Leta 2 RnZ. For a symbolf 2 CSa.Rn/ there exist symbols�j 2 CSaC1.Rn/

such that f D Pn
j D1 @�j

�j if and only if
ª

Rn f D 0.

Proof. (1) We will repeatedly use that, by construction, the asymptotic relation
eq. (2.14) may be differentiated, i.e., if g 2 CSa.Rn/ with g � P1

lD0 ga�l , then

@�j
g �

1P
lD0

@�j
ga�l :

Now let a 2 Z and f 2 CSa.Rn/ with f � P1
lD0 fa�l . If f D Pn

j D1 @�j
�j

with �j 2 CSr.a/.Rn/, then certainly f h�n D Pn
j D1 @�j

�h
j;�nC1 and hence res.f / D

res.f h�n/ D 0 by Corollary 2.4.
Conversely, if res.f / D 0 then again by Corollary 2.4 there are �h

j;a�lC1
2

P a�lC1.Rn n f0g/ such that f h
a�l

D Pn
j D1 @�j

�h
j;a�lC1

:

We fix a cut-off function � 2 C1.RN / such that

�.	/ D
´
1 if j	j � 1=2;

0 if j	j � 1=4:
(2.16)
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Now asymptotic summation [Shu01], Prop. 3.5, guarantees the existence of �j 2
CSaC1.Rn/ such that �j � P1

lD0 ��
h
j;a�lC1

and hence

nP
j D1

@�j
�j �

1P
lD0

nP
j D1

�@�j
�h
j;a�lC1

�
1P

lD0

fa�l � f;

thus

f �
nP

j D1

@�j
�j μ g 2 S�1.Rn/ D S.Rn/: (2.17)

Applying Lemma 2.12 to g the case a 2 Z is settled.
(2) Leta 62 Z. It was remarked before Proposition 2.13 that the condition

ª
Rn f D

0 is necessary. To prove sufficiency consider f 2 CSa.Rn/ with
ª

Rn f D 0. Since
a 62 Z, we have res.f / D 0 trivially. Therefore, as before we arrive at (2.17) (this is
the content of [Pay07], Prop. 2). Still we have

R
Rn g D ª

Rn f �Pn
j D1

ª
Rn @�j

�j D 0:

Now apply the second part of Lemma 2.12 to g, and the proof is complete.

3. Pseudodifferential operators and tracial functionals

Standing assumptions. Unless otherwise said, in the rest of the paperM will denote
a smooth closed connected Riemannian manifold of dimension n. The Riemannian
metric is chosen for convenience only to have an L2-structure at our disposal. One
could avoid choosing a metric by working with densities.

Given b 2 R, we use the notation Z�b ´ Z \ .�1; b�, Z>b ´ Z \ .b;C1/.

3.1. Classical pseudodifferential operators. We denote by L�
.M/ the algebra

of pseudodifferential operators with complete symbols of Hörmander type .1; 0/
([Hör71], [Shu01]), see Section 2.4.1. The subalgebra of classical pseudodifferential
operators is denoted by CL�

.M/.
Let U � Rn be an open subset. Recall that for a symbol � 2 Sm.U � Rn/, the

canonical pseudodifferential operator associated to � is defined by

Op.�/u.x/ ´
Z

Rn

eihx;�i�.x; 	/ Ou.	/ μ 	 D
Z

Rn

Z
U

eihx�y;�i�.x; 	/u.y/ dyμ 	;
(3.1)

where μ 	 ´ .2�/�nd	. For a manifoldM , elements of L�
.M/ (resp. CL�

.M/) can
locally be written as Op.�/ with � 2 S�

.U � Rn/ (resp. CS�
.U � Rn/).

Recall that there is an exact sequence

0 ! CLm�1.M/ ,! CLm.M/
�m��! P m.T �M nM/ ! 0; (3.2)

where �m.A/ is the homogeneous leading symbol of A 2 CLm.M/. It has a (non-
canonical) global right inverse Op which is obtained by patching together the locally
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defined maps in eq. (3.1). �m.A/ is a homogeneous function on the symplectic cone
T �M nM (cf. Section 2.3). We will tacitly identify P m.T �M nM/ by restriction
with C1.S�M/. Here S�M is the cosphere bundle, i.e., the unit sphere bundle
� T �M .

Recall that the leading symbol map is multiplicative in the sense that

�aCb.A B B/ D �a.A/ �b.B/ (3.3)

for A 2 CLa.M/;B 2 CLb.M/. Furthermore, we record the important formula

�aCb�1.ŒA;B�/ D 1

i
f�a.A/; �b.B/g; (3.4)

which is a consequence of the asymptotic formula for the complete symbol of a
product, cf., e.g., [Shu01], Thm. 3.4.

3.2. Tracial functionals on subspaces of CL�

.M/. Let a 2 R. CLa.M/ is an
algebra if and only if a 2 Z�0: In this case a linear functional � W CLa.M/ ! C is
a trace if and only if

�.ŒA;B�/ D 0 for all A;B 2 CLa.M/: (3.5)

Therefore, in order to characterize traces on CLa.M/, one has to understand the
space of commutators ŒCLa.M/;CLa.M/�. Note that the commutator ŒA; B� 2
CL2a.M/. Here, in the situation of operators with scalar coefficients, one even
has ŒA; B� 2 CL2a�1.M/. However, AB and BA are only in CL2a.M/ and that
ŒA; B� 2 CL2a�1.M/ is only due to the fact that the leading symbols of A and B
commute. If A, B are pseudodifferential operators acting on sections of a vector
bundle (see Section 5) then one can only conclude that ŒA; B� is of order 2a.

Conversely, if � W CL2a.M/ �! C is a linear functional satisfying eq. (3.5) then
any linear extension Q� of � to CLa.M/ is a trace on CLa.M/.

CL2a.M/ is a subspace of CLa.M/ if and only if a 2 Z�0. However, for any
a 2 R it makes sense to consider linear functionals on CL2a.M/ satisfying (3.5):

Definition 3.1. Let b 2 R and let � W CLb.M/ ! C be a linear functional.

(1) � is called a pretrace if �.ŒA;B�/ D 0 for all A;B 2 CLb=2.M/.

(2) � is called a hypertrace if �.ŒA;B�/ D 0 for all A 2 CL0.M/, B 2 CLb.M/.

If CLa.M/ � CLb.M/ we sometimes use the abbreviation �a ´ � � CLa.M/.

Remark 3.2. If b 2 Z�0, then any hypertrace on CLb.M/ is a trace on CLb.M/

since CLb.M/ � CL0.M/. The restriction of a trace on CLb.M/ to CL2b.M/ is
obviously a pretrace.

Next we discuss the canonical (pre-, hyper-)traces which exist on CLa.M/ for
various a.
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3.2.1. The L2-trace. A pseudodifferential operator A of order ord.A/ < �n D
� dimM is a trace-class operator. The standard Hilbert space trace on operators
acting on L2.M/ is denoted by Tr. Note that

Tr.A/ D
Z

M

KA.x; x/ d vol.x/;

whereKA is the Schwartz kernel of the operatorA. IfKA is supported in a coordinate
chart U , where A is given by Op.�/ with � 2 CSa.U � Rn/, then by, eq. (3.1),

Tr.A/ D
Z

U

Z
Rn

�.x; 	/ μ 	dx: (3.6)

Since for any trace-class operatorK in the Hilbert spaceL2.M/ and any bounded
operator T in L2.M/ one has Tr.KT / D Tr.TK/, it follows that Tr is a hypertrace
on CLa.M/ for any real a < �n. Furthermore, if p; q � 1 are real numbers
such that 1=p C 1=q D 1 and if A 2 Lp.L2.M//, the p-th Schatten ideal of
operators in L2.M/, and B 2 Lq.L2.M//, then also Tr.AB/ D Tr.BA/. From
CLa.M/ � Lp.L2.M// for a < �n=p it then follows that

Tr.ŒA;B�/ D 0 for A 2 CLa.M/; B 2 CLb.M/ if aC b < �n: (3.7)

In particular, Tra D Tr � CLa.M/ is a pretrace for any a < �n. In fact, eq. (3.7)
can be improved slightly:

Lemma 3.3. Let A 2 CLa.M/, B 2 CLb.M/ with a C b < �nC 1. Then ŒA; B�
is of trace-class and Tr.ŒA;B�/ D 0.

Proof. We follow Section 4 of [Les99]. LetP 2 CL1.M/ be an elliptic pseudodiffer-
ential operator whose leading symbol is positive and letA 2 CLa.M/,B 2 CLb.M/.
We put

r0
P .B/ ´ B; rj C1

P B ´ ŒP;rj
PB�;

and by induction, for all j 2 N we have

rj
PB 2 CLb.M/:

Then for N large enough one has

e�tPB D
N �1X
j D0

.�t /j
j Š

.rj
PB/e

�tP CRN .t/;

whereRN .t/ is a smoothing operator such that Tr.ARN .t// D Tr.RN .t/A/ D O.t/

as t ! 0C; therefore

Tr.ŒA;B�e�tP / D �
N �1X
j D1

.�t /j
j Š

Tr.A.rj
PB/e

�tP /CO.t/; t ! 0C: (3.8)
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Invoking the short time heat kernel asymptotics, cf., e.g., Grubb and Seeley [GrSe95],

Tr.A.rj
PB/e

�tP / �t!0C

1P
kD0

.ck C dk log t /tk�a�b�n C
1P

kD0

ekt
k (3.9)

we see that for j � 1, thanks to j � a � b � n > 0,

lim
t!0C

tj Tr.A.rj
PB/e

�tP / D 0: (3.10)

Since ŒA; B� 2 CLaCb�1.M/ and aCb�1 < �n, the operator ŒA; B� is of trace-class
and from (3.8), (3.9), and (3.10) we thus infer

Tr.ŒA;B�/ D lim
t!0C

Tr.ŒA;B�e�tP / D 0:

3.2.2. TheKontsevich–Vishik canonical trace. For non-integera there is a regular-
ization procedure which allows to extend theL2-trace in a canonical way to CLa.M/

(see [KoVi95], [Les99], [Les10], Sec. 4.3). In brief for a 2 RnZ��n there is a canon-
ical linear functional, the Kontsevich–Vishik canonical trace, TR W CLa.M/ ! C
such that

TRa D TR � CLa.M/ D Tr � CLa.M/ D Tra if a < �n;
TR.ŒA;B�/ D 0 if A 2 CLa.M/; B 2 CLb.M/; aC b 62 Z��nC1:

(3.11)

Usually the second property is stated only for a C b 62 Z. However, if a C b < �n
then AB is of trace-class and TR.AB/ D Tr.AB/ D Tr.BA/ D TR.BA/ follows
from the theory of the trace in Schatten ideals (see an analogous discussion in the
previous section). If only a C b � 1 < �n then ŒA; B� is still of trace-class and
TR.ŒA;B�/ D Tr.ŒA;B�/ D 0 follows from Lemma 3.3.

The properties (3.11) immediately imply that the canonical trace TR is a hypertrace
and a pretrace on CLa.M/ for a 2 R n Z��n.

3.2.3. The residue trace. The residue trace, called by some authors the noncommu-
tative residue, somehow complements the canonical trace. In terms of the complete
symbol, the residue trace of an operator A 2 CL�

.M/ is given by (see [Wod87b])

Res.A/ D 1

.2�/n
res.�.A// D 1

.2�/n

Z
M

Z
S�

x M

��n.A/.x; 	/ .	/ ^ dx;

where .	/ is a volume form on S�
xM and res is the symplectic residue on T �M nM

(cf. Section 2.3.1 and Section 2.4.2). Res is the unique trace on the whole algebra
CL�

.M/ whenever n > 1 ([Wod87b], [BrGe87], [FGLS96], [Les99]). By definition,
this trace vanishes on trace-class pseudodifferential operators and non-integer order
pseudodifferential operators.

The residue trace Res is a pretrace and a hypertrace on CLa.M/ for all a 2 R. It
is non-trivial, however, only if a 2 Z��n.
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4. Operators as sums of commutators

In order to classify traces and (pre-, hyper-)traces on CLa.M/ we first study the
representation of an operator as a sum of commutators.

4.1. Smoothing operators. The closure of the algebra CL�1.M/ of smoothing
operators in B.L2.M// is the algebra of compact operators. The latter is known
to be simple. Indeed one has the following, which is in a sense an analogue of the
second part of Lemma 2.12:

Theorem 4.1 ([Gui93], Thm. A.1). Let M be a closed manifold. Then for any
J 2 CL�1.M/ with Tr.J / D 1 the following holds: for R 2 CL�1.M/ there exist
smoothing operators S1; : : : ; SN ; T1; : : : ; TN 2 CL�1.M/ such that

R D Tr.R/J C
NP

j D1

ŒSj ; Tj �:

Briefly, we have an exact sequence

0 ! ŒCL�1.M/;CL�1.M/� ! CL�1.M/
Tr�! C ! 0:

Can we write J as a sum of commutators of general pseudodifferential operators?
Since Res is up to constants the only trace on CL�

.M/ (forM compact and connected
of dimension > 1), the answer is yes. A more precise answer is the following.

Proposition 4.2 ([Pon10], Prop. 4.2 ). LetM be a compact Riemannian manifold of
dimension n > 1. Then CL�1.M/ � ŒCL0.M/;CL�nC1.M/�.

We present here a brief variant of the proof of Ponge; our proof is based on

Lemma 4.3. Let n � 2.
(1) The operatorQj of convolution by the function

fj .y/ ´ yj

jyj2 D @yj
.log jyj/

is a classical pseudodifferential operator of order �nC 1 on Rn.
(2) For any smoothing operator R 2 CL�1.Rn/ there exist Bj 2 CL�nC1.Rn/,

j D 1; : : : ; n, such that R D Pn
j D1ŒOp.xj /; Bj �.

Remark 4.4. Op.xj / is the pseudodifferential operator associated to the symbol
function .x; 	/ 7! xj . Of course, this is nothing but the operator of multiplication by
the coordinate xj . Therefore, Op.xj / commutes with multiplication operators, a fact
that will often be used below.
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Proof. (1) We have fj � Rn n f0g 2 P �1.Rn n f0g/. Since fj is locally integrable
on Rn, it defines a distribution in D0.Rn/ which is homogeneous of degree �1. Then
by [Hör03], Thm. 7.1.18 and 7.1.16, fj 2 S0.Rn/ and its Fourier transform �fj is
a homogeneous distribution of degree �n C 1 in Rn which is smooth in Rn n f0g.
With the cut-off function � of eq. (2.16) we therefore have ��fj 2 CS�nC1.Rn/.
Furthermore, .1��/ is compactly supported and thus .1��/ D O with  2 S.Rn/.
For u 2 C1

c .R
n/, the space of compactly supported smooth functions on Rn, we now

have
Qju D fj 	 u D Op.��fj /uC . 	 fj / 	 u:

Convolution by the Schwartz function 	fj is smoothing and thusQj 2CL�nC1.Rn/.
(2)A smoothing operatorR has a smooth kernelKR.x; y/, and therefore, .x; y/ 7!

KR.x; y/ �KR.x; x/ is smooth and vanishes on the diagonal. It follows that there
are smooth functions K1; : : : ; Kn such that

KR.x; y/ D KR.x; x/C
nP

j D1

.xj � yj /Kj .x; y/:

Let Q be the operator defined by the kernel KQ.x; y/ D KR.x; x/; and let Rj be
the smoothing operators defined by the kernels Kj .x; y/, then

R D QC
nP

j D1

ŒOp.xj /; Rj �:

LetHj be the operator with kernel .x; y/ 7! fj .x�y/KR.x; x/: Hj isQj followed
by multiplication by the smooth function x 7! KR.x; x/ and is therefore, by the
proved part 1., a classical pseudodifferential operator of order �nC 1. Since

nX
j D1

.xj � yj /fj .x � y/KR.x; x/ D
nX

j D1

.xj � yj /
2

jx � yj2 KR.x; x/

D KR.x; x/ D KQ.x; y/;

it follows thatQ D Pn
j D1ŒOp.xj /;Hj �: The result of the lemma follows with Bj ´

Rj CHj 2 CL�nC1.Rn/.

Proof of Proposition 4.2. Let U 
 Rn be an open set and let R 2 CL�1
comp.U / be a

smoothing operator with compactly supported Schwartz kernel KR 2 C1
c .U � U/.

Let  2 C1
c .U / be such that  .x/ .y/ D 1 in a neighborhood of the support of the

kernel of R, then  R D R.
By Lemma 4.3 there exist Pi 2 CL�nC1.U / such that R D Pn

iD1ŒOp.xi /; Pi �.
Let � 2 C1

c .U / be such that � D 1 in a neighborhood of supp. /. Then we have

 ŒOp.xi /; Pi � D Op.xi /� Pi �  Pi Op.xi /� D ŒOp.xi /�;  Pi �;
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thus

R D
nP

iD1

ŒOp.xi�/;  Pi �: (4.1)

Note that xi� 2 C1
c .U / and  Pi 2 CL�nC1

comp .U /.
Now let f'j g � C1.M/ be a partition of unity subordinate to a finite open

covering fUj g of M by coordinate charts. Furthermore, choose  j 2 C1
c .Uj / such

that  j D 1 in a neighborhood of supp.'j /. Then for any R 2 CL�1.M/ we have

R D
NP

j D1

'jR j C
NP

j D1

'jR.1 �  j /:

For each index j the operator 'jR j belongs to CL�1
comp.Uj /, so by the previous

argument it can be written as a sum of commutators of the form (4.1). Moreover, the
operator S ´ PN

j D1 'jR.1 �  j / is smoothing and its Schwartz kernel vanishes
on the diagonal, so its trace vanishes and by Theorem 4.1 it can be written as a
sum of commutators in ŒCL�1.M/;CL�1.M/�. Hence R belongs to the space
ŒCL0.M/;CL�nC1.M/�, as claimed.

The degrees 0 and �nC 1 in the commutator ŒCL0.M/;CL�nC1.M/� in Propo-
sition 4.2 can be traded against each other as the following simple but very useful
lemma due to Sylvie Paycha shows. This lemma is included with her kind permission.

Lemma 4.5. For any ˛; ˇ 2 R,

ŒCL0.M/;CL˛Cˇ .M/� � ŒCL˛.M/;CLˇ .M/�;

meaning that any commutator in ŒCL0.M/;CL˛Cˇ .M/� can be written as a sum of
commutators in ŒCL˛.M/;CLˇ .M/�.

Proof. Let A 2 CL0.M/, B 2 CL˛Cˇ .M/. Fix a first order positive definite el-
liptic operator ƒ 2 CL1.M/. Then Aƒ˛; ƒ˛A;ƒ˛ 2 CL˛.M/, Bƒ�˛; ƒ�˛B ,
ABƒ�˛; ƒ�˛BA 2 CLˇ .M/. Moreover,

ŒAƒ˛; ƒ�˛B� D AB �ƒ�˛BAƒ˛; (4.2)

Œƒ˛A;Bƒ�˛� D ƒ˛ABƒ�˛ � BA; (4.3)

ŒABƒ�˛; ƒ˛� D AB �ƒ˛ABƒ�˛; (4.4)

Œƒ�˛BA;ƒ˛� D ƒ�˛BAƒ˛ � BA: (4.5)

Adding up (4.2)–(4.5) yields twice the commutator ŒA; B�, therefore we obtain
ŒA; B� 2 ŒCL˛.M/;CLˇ .M/�.
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4.2. General classical pseudodifferential operators. We now combine the main
result of Section 2.3, Theorem 2.9, and the results of the previous Section to obtain
statements about general pseudodifferential operators as sums of commutators. This
improves, for classical pseudodifferential operators, [Les99], Propositions 4.7 and
4.9; for such operators these results in fact go back to [Wod84]. In [Les99] the
more general class of pseudodifferential operators with log-polyhomogeneous symbol
expansions was considered.

Theorem 4.6. Let M be a compact connected Riemannian manifold of dimension
n > 1. Fix Q 2 CL�n.M/ with Res.Q/ D 1. Then for any real numbers m,
a there exist P1; : : : ; PN 2 CLm.M/ such that for any A 2 CLa.M/ there exist
Q1; : : : ;QN 2 CLa�mC1.M/ and R 2 CL�1.M/ with

A D
NP

j D1

ŒPj ;Qj �C Res.A/QCR:

Proof. We follow the proof of [Les99], Prop. 4.7, where the casem D 1 is discussed,
with a few modifications and improvements.

First, replacingA byA�Res.A/Q if necessary, we may without loss of generality
assume that Res.A/ D 0.

We choose p1; : : : ; pN 2 P m.T �M n M/ such that their differentials span the
cotangent bundle of T �M n M at every point if m ¤ 0; if m D 0 we choose the
pj such that their differentials restricted to S�M span the cotangent bundle of S�M
(cf. the proof of Theorem 2.9). Choose Pj 2 CLm.M/ with leading symbols pj .
Consider the leading symbol �a.A/ 2 P a.T �M nM/ of A. Its symplectic residue
is 0 if a ¤ �n, and if a D �n it is up to a normalization equal to Res.A/ (cf., e.g.,
[Les99], Prop. 4.5), hence it is also 0 in that case.

Then by Theorem 2.9 and its proof there are q.1/
j 2 P a�mC1.T �M n M/ such

that �a.A/ D 1
i

PN
j D1fpj ; q

.1/
j g. Thus choosingQ.1/

j 2 CLa�mC1.M/ with leading

symbol q.1/
j we find, see eq. (3.4),

A.1/ D A �
NP

j D1

ŒPj ;Q
.1/
j � 2 CLa�1.M/:

We iterate the procedure inductively and assume that we have operators Q.l/
j 2

CLa�mC1.M/, 1 � l � l0, such that

A.l/ D A �
NP

j D1

ŒPj ;Q
.l/
j � 2 CLa�l.M/

and

Q
.l/
j �Q.lC1/

j 2 CLa�mC1�l.M/; 1 � l � l0 � 1: (4.6)
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As for A we then choose Bj 2 CLa�m�l0C1.M/ such that

A.l0C1/ D A.l0/ �
NP

j D1

ŒPj ; Bj � 2 CLa�l0�1.M/:

Now put Q.l0C1/
j D Q

.l0/
j C Bj . Then (4.6) holds for all l and we can invoke the

asymptotic summation principle [Shu01], Prop. 3.5, and chooseQj 2 CLa�mC1.M/

such that for all l 2 N, Qj �Q.l/
j 2 CLs�mC1�l.M/. Then

A �
NP

j D1

ŒPj ;Qj � 2 CL�1.M/:

Combining Theorem 4.6 and Lemma 4.5 we find

Theorem 4.7. Under the assumptions of Theorem 4.6 let a 2 Z, �n � a < 0. Then

CLa.M/ D ŒCL.aC1/=2.M/;CL.aC1/=2.M/�˚ C �Q; (4.7)

CLa.M/ D ŒCL0.M/;CLaC1.M/�˚ C �Q: (4.8)

In other words for A 2 CLa.M/ there exist operators P1; : : : ; PN ;Q1; : : : ;QN 2
CL.aC1/=2.M/ resp. P1; : : : ; PN 2 CL0.M/,Q1; : : : ;QN 2 CLaC1.M/ such that

A D
NP

j D1

ŒPj ;Qj �C Res.A/Q:

Proof. Apply Theorem 4.6 with m D .a C 1/=2 (resp. m D 0). This yields
P1; : : : ; PN 0 in CL.aC1/=2.M/ (resp. CL0.M/), Q1; : : : ;QN 0 2 CL.aC1/=2.M/

(resp. CLaC1.M/) and R 2 CL�1.M/ such that

A D
N 0P

j D1

ŒPj ;Qj �C Res.A/QCR:

By Proposition 4.2 we have

CL�1.M/ � ŒCL0.M/;CL�nC1.M/� � ŒCL0.M/;CLaC1.M/�

and hence there are PN 0C1; : : : ; PN 2 CL0.M/ andQN 0C1; : : : ;QN 2 CLaC1.M/

such that R D PN
j DN 0C1ŒPj ;Qj � proving eq. (4.8).

To prove eq. (4.7), we apply Lemma 4.5 with ˛ D .aC 1/=2, ˇ D �nC 1 � ˛.
Then ˛ � ˇ D aC n 2 Z�0, hence CLˇ .M/ � CL˛.M/ and we find

R 2 CL�1.M/ � ŒCL0.M/;CL�nC1.M/�

� ŒCL˛.M/;CLˇ .M/� � ŒCL.aC1/=2.M/;CL.aC1/=2.M/�:
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4.3. Classification of traces on CLa.M/. We are now going to classify the pre-
traces and the hypertraces on CLa.M/ for all a 2 R, as well as the traces on CLa.M/

for a 2 Z�0. The following definition will be convenient.

Definition 4.8. Recall that for a linear functional � W CLb.M/ ! C and CLa.M/ �
CLb.M/ we abbreviate �a ´ � � CLa.M/.

We fix once and for all a linear functional �Tr W CL0.M/ ! C such that for
a 2 Z<�n �Tr � CLa.M/ D Tr � CLa.M/;

cf. Definition 3.1. Furthermore put

TRa ´

8̂<̂
:

TRa if a 2 R n Z��n;�Tra if a 2 Z; �n � a < �nC1
2
;

Resa if a 2 Z; �nC1
2

� a:

(4.9)

TRa conveniently combines the Kontsevich–Vishik trace and the residue trace.
The notation is slightly abusive since for a; b 2 Z, a < .�n C 1/=2 � b, one has
TRb � CL2a�1.M/ D Res � CL2a�1.M/ D 0 ¤ Tr � CL2a�1.M/ D TR2a�1.
The disadvantages of this notational conflict are outweighed by the convenience of
having a common notation for the Kontsevich–Vishik trace and the residue trace.
This will free us from repetitively having to make a distinction between the cases
a 2 R n Z>�n and a 2 Z>�n.

We also emphasize that the choice of �Tr is not canonical but certainly possible.

Proposition 4.9. Let a 2 R.
(1) Any pretrace on CLa.M/ is a hypertrace on CLa.M/.
(2) If � is a hypertrace on CLa.M/ then there is a unique constant � 2 C such

that � � CL�1.M/ D � Tr.
(3) If a 2 Z�0 and � is a trace on CLa.M/ then � � CL2a.M/ is a pretrace (and

hence a hypertrace). Conversely, given a pretrace on CL2a.M/, any linear extension
Q� of � to CLa.M/ is a trace.

(4) For a 2 Z�0, TRa is a trace on CLa.M/. For a 2 R n .Z \ Œ�nC 1;�n=2�/
it is a pretrace (and hence a hypertrace).

Proof. (1) follows from Lemma 4.5. (2) follows from Theorem 4.1. (3) is obvious.
(4) For �nC1

2
� a the claim follows from the properties of the residue trace.

Except for a D �n the fact that TRa is a pretrace follows since Resa and TRa

are pretraces.
Next consider a 2 R, a < �nC1

2
. Then for A;B 2 CLa.M/ it follows from

Lemma 3.3 that ŒA; B� 2 CL2a�1.M/ is of trace-class and that

TR2a�1.ŒA;B�/ D Tr.ŒA;B�/ D 0:

This proves the remaining claims under (4).
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Thus to classify traces on CLa.M/ (for a 2 Z�0), it suffices to classify pretraces
on CL2a.M/. And to classify pretraces on CLb.M/ (for any b 2 R!) it suffices to
classify hypertraces on CLb.M/.

The following considerably improves a uniqueness result by Maniccia, Schrohe,
and Seiler [MSS08].

Theorem 4.10. Let M be a closed connected Riemannian manifold of dimension
n > 1, a 2 R n Z>�n, and let � be a hypertrace on CLa.M/. Then there are
uniquely determined � 2 C and a distribution T 2 .C1.S�M//� such that � D
�TRa C T B �a.

Consequently, a linear functional on CLa.M/ is a hypertrace if and only if it is a
pretrace.

Remark 4.11. Recall from eq. (3.2) that �a denotes the leading symbol map. Since
the leading symbol is multiplicative (see eq. (3.3)), it follows that for any T 2
.C1.S�M//� the functional T B �a is a pretrace and a hypertrace on CLa.M/.
Some authors (see [PaRo04]) call such traces leading symbol traces.

Proof. We note that if � is a hypertrace on CLa.M/ then by Proposition 4.9 (2), there
is a unique � 2 C such that � � CL�1.M/ D �Tr :

We apply Theorem 4.6 with m D 0. Then for A 2 CLa�1.M/ we find

A D
NP

j D1

ŒPj ;Qj �CR; (4.10)

with Pj 2 CL0, Qj 2 CLa.M/. Note that Res.A/ D 0 since a � 1 2 R n Z��n.
From eq. (4.10) we infer �.A/ D �.R/ D �Tr.R/ D �TR.R/ D �TR.A/:

Thus we have � � CLa�1.M/ D �TR � CLa�1.M/ D �TRa�1 D �TRa�1.
Put Q� ´ � � �TRa. Then Q� vanishes on CLa�1.M/ and thus in view of the exact
sequence eq. (3.2) there is indeed a unique linear functional T 2 .C1.S�M//� such
that Q� D T B �a.

For the last statement we note that by Proposition 4.9 (1) every pretrace is a
hypertrace. For the converse note that � D �TRa CT B�a, a 2 RnZ>�n, is indeed a
pretrace. For TRa this follows from Proposition 4.9 (4). For T B�a it is a consequence
of (3.3).

The remaining cases of integral values are dealt with in the following.

Theorem 4.12. Let M be a closed connected Riemannian manifold of dimension
n > 1, a 2 Z>�n, and let � be a hypertrace on CLa.M/. Then there are uniquely de-
termined� 2 C and a distributionT 2 �

C1.S�M/
��

such that � D �Resa CT B�a.
Consequently, a linear functional on CLa.M/ is a hypertrace if and only if it is a

pretrace.
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Proof. We apply Theorem 4.7 and find for A 2 CLa�1.M/,

A D
NP

j D1

ŒPj ;Qj �C Res.A/Q; (4.11)

with Pj 2 CL0.M/, Qj 2 CLa.M/. Thus �.A/ D �.Q/Res.A/:As in the proof of
Theorem 4.10 one now concludes that � D �.Q/Resa CT B �a.

The last statement follows from Proposition 4.9 and the fact that Resa and T B �a

are pretraces on CLa.M/.

Combining Theorem 4.10, Theorem 4.12 and Proposition 4.9 we now obtain a
complete classification of traces on the algebras CLa.M/, a 2 Z�0.

Corollary 4.13. Let a 2 Z�0; and denote by

�a W CLa.M/ ! CLa.M/=CL2a�1.M/

the quotient map. Let � W CLa.M/ ! C be a trace. Then there are uniquely deter-
mined � 2 C and T 2 .CLa.M/=CL2a�1.M//� such that

� D �TRa C T B �a:

Remark 4.14. Note that for a D 1, the space CL1.M/ is not an algebra but it is a
Lie algebra and it makes sense to talk about traces; in this case, the quotient map �1

is trivial and the proof below shows that Res is up to normalization the unique trace
on CL1.M/.

In the case a D 0 this result was known, see [LePa07] (and also [Wod87a]).
If 2a � �n � a, Resa is a non-trivial trace on CLa.M/. However, since

Res � CL2a�1.M/ D 0 (since 2a�1 < �n), there is � 2 .CLa.M/=CL2a�1.M//�
such that Resa D � B �a.

By choosing right inverses �a W C1.S�M/ ! CLa.M/ to the symbol map one
iteratively obtains an isomorphism

CLa.M/=CL2a�1.M/ Š
jajL

kD0

CLa�k.M/=CLa�k�1.M/ Š
jajL

kD0

C1.S�M/:

Under this (non-canonical) isomorphism T 2 .CLa.M/=CL2a�1.M//� corresponds
to a .jaj C 1/-tuple .Tj /

jaj
j D0 of distributions Tj 2 .C1.S�M//�.

Proof. By Proposition 4.9, �2a D � � CL2a.M/ is a hypertrace on CL2a.M/. By
Theorem 4.10 (if 2a < �nC 1) resp. Theorem 4.12 (if �nC 1 � 2a � 0) there is a
unique � 2 C such that

�2a�1 D
´
�Tr2a�1 if 2a < �nC 1;

�Res2a�1 if � nC 1 � 2a � 0:
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Putting
Q� D � � �TRa

it follows that Q� vanishes on CL2a�1.M/ and hence is of the form T B�a for a unique
T 2 .CLa.M/=CL2a�1.M//�.

4.4. Alternative approach to Theorem 4.12. For this subsection we received con-
siderable help from Sylvie Paycha which is acknowledged with gratitude.

The proof of the uniqueness of the canonical trace TR (Theorem 4.10) relied
solely on the results of Section 2 and Theorem 4.1. The proof of the uniqueness of
the residue trace (Theorem 4.12), however, relied additionally on Theorem 4.7 and
thus on Proposition 4.2 due to Ponge. We will give here an alternative completely
self-contained proof of Theorem 4.12 which does not make use of Proposition 4.2.

Given a hypertrace � on CLa.M/, a 2 Z, �n < a � 0, apply Theorem 4.6 with
m D 0. Then for A 2 CLa�1.M/,

A D
NP

j D1

ŒPj ;Qj �C Res.A/QCR;

with Pj 2 CL0.M/, Qj 2 CLa.M/ and R 2 CL�1.M/. If one can conclude that
�.R/ D 0, then one can proceed as after (4.11). So we have to prove

Proposition 4.15. LetM be a closed Riemannian manifold and for a 2 Z, �nC1 �
a � 0, let � be a hypertrace on CLa.M/. Then � � CL�1.M/ D 0.

Proof. Let .U; x1; : : : ; xn/ be a local coordinate chart of M . Recall that we denote
by CSa

comp.U � Rn/ the set of classical symbols of order a on U with U -compact
support, and CLa

comp.U / denotes the space of classical pseudodifferential operators
of order a onU whose Schwartz kernel has compact support inU �U . Any operator
in CLa

comp.U / can be extended by zero to an operator in CLa.M/, and we have the
natural inclusion CLa

comp.U / � CLa.M/.
Note, however, that although for � 2 CSa

comp.U � Rn/ the operator Op.�/ maps
C1

c .U / ! C1
c .U /, it does not necessarily lie in CLa

comp.U /. Below we will take
care of this fact by multiplying by some cut-off function from the right.

Let � 2 S.Rn/ be a Schwartz function with
R

Rn �.	/d	 D 1. By Lemma 2.12
there exist �1; : : : ; �n 2 CSa.Rn/ such that

� D
nP

kD1

@�k
�k :

We note in passing that since the function � has non-vanishing integral, at least one
of the functions �k does not lie in S.Rn/.

Next we choose f 2 C1
c .U /with

R
U
f .x/dx D 1. Then � ´ f ˝� , defined by

�.x; 	/ ´ f .x/�.	/, is a smoothing symbol withU -compact support. Furthermore,

� D f ˝ � D f ˝
nP

kD1

@�k
�k D

nP
kD1

@�k
.f ˝ �k/;

Z
U �Rn

�.x; 	/ d	 dx D 1:
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Integration by parts shows that (cf. [Hör03], Thm. 18.1.6, (3.4))

Op.�/ D
nP

kD1

Op.@�k
.f ˝ �k// D �i

nP
kD1

ŒOp.xk/;Op.f ˝ �k/�: (4.12)

Let  2 C1
c .U / be a function with  D 1 in a neighborhood of supp.f /; then

 f D f . Moreover, for all k D 1; : : : ; n,

ŒOp.xk/;Op.f ˝ �k/�Op. / D ŒOp.xk/;Op.f ˝ �k/Op. /�

D ŒOp. xk/;Op.f ˝ �k/Op. /�C Ak;
(4.13)

with

Ak ´ Op.f ˝ �k/Op. /Op.xk/Op. / � Op. /Op.f ˝ �k/Op. /Op.xk/

D Op.f ˝ �k/Op. /Op.xk/.Op. / � 1/:
(4.14)

Here we used that the operator Op.xk/ commutes with the operator of multiplication
by  , Op. /, cf. Remark 4.4, and that  f D f .

Since f ˝ �k 2 CSa
comp.U � Rn/, the operator Op.f ˝ �k/Op. / lies in

CLa
comp.U /; similarly,  xk 2 CS0

comp.U � Rn/ and the operator of multiplication
by  xk , Op. xk/, lies in CL0

comp.U /.
Let � be a hypertrace on CLa.M/. Then � vanishes on ŒCL0

comp.U /;CLa
comp.U /�.

In particular, for all k D 1; : : : ; n,

�.ŒOp. xk/;Op.f ˝ �k/Op. /�/ D 0:

By Proposition 4.9 (2), we have � � CL�1.M/ D �Tr for some � 2 C. Now,
since  D 1 near the support of f , by (4.14) the operator Ak is smoothing and its
Schwartz kernel vanishes on the diagonal. Hence, itsL2-trace vanishes and thus also
�.Ak/ D �Tr.Ak/ D 0.

Thus, for Op.�/Op. / 2 CL�1
comp.U /, from (4.12) and (4.13) we conclude that

�.Op.�/Op. // D �i
nP

kD1

�.ŒOp.xk/;Op.f ˝ �k/�Op. //

D �i
nP

kD1

.�.ŒOp. xk/;Op.f ˝ �k/Op. /�/C �.Ak//

D 0:

(4.15)

On the other hand, by (3.6) and Proposition 4.9 (2),

�.Op.�/Op. // D �Tr.Op.�/Op. // D �

Z
U �Rn

�.x; 	/ d	 dx D �:

Therefore, by (4.15) we obtain � D 0.
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5. Extension to vector bundles

In this final section we extend the classification of traces and hypertraces to the spaces
CLa.M;E/ of pseudodifferential operators acting on sections of the vector bundle
E over M .

5.1. Preliminaries. Unless otherwise said, in the whole sectionM denotes a smooth
closed connected Riemannian manifold of dimensionn. LetE ! M be a smooth her-
mitian vector bundle overM . We denote by CLa.M;E/ the space of classical pseu-
dodifferential operators of order a acting on the sections of E. CLa.M;E/ acts nat-
urally as (unbounded) operators on the Hilbert space L2.M;E/ of square integrable
sections ofE. The elementary discussion of traces, pretraces and hypertraces in Sec-
tion 3.2 extends verbatim to CLa.M;E/. However, as noted there, we now only have
ŒCLa.M;E/;CLb.M;E/� � CLaCb.M;E/ as opposed to ŒCLa.M/;CLb.M/� �
CLaCb�1.M/ in the scalar caseE D M � C. Lemma 4.5 holds with the same proof
for CL�

.M;E/ instead of CL�
.M/. Finally, Theorem 4.1 holds for CL�1.M;E/

too; this follows directly from Thm. A.1 of [Gui93], which is stated in a Hilbert space
context and is therefore flexible enough.

In sum, also Proposition 4.9 (1)–(3) holds accordingly:

Proposition 5.1. Let a 2 R.
(1) Any pretrace on CLa.M;E/ is a hypertrace on CLa.M;E/.
(2) If � is a hypertrace on CLa.M;E/ then there is a unique constant � 2 C such

that � � CL�1.M;E/ D �Tr.
(3) If a 2 Z�0 and � is a trace on CLa.M;E/ then � � CL2a.M;E/ is a

pretrace (and hence a hypertrace). Conversely, given a pretrace on CL2a.M;E/

then any linear extension Q� of � to CLa.M;E/ is a trace.

For the analogue of Proposition 4.9 (4) see Proposition 5.5.
The main task now is to classify the hypertraces on CLa.M;E/.

5.2. Trivial vector bundles. Let MN .C/ be the space of .N � N/-matrices with
coefficients in C. For all i; j D 1; : : : ; N , we denote byEij the elementary matrix in
MN .C/ with 1 in the .i; j /-position and 0 everywhere else. The matrices Eij form
a basis of MN .C/ and we have

EijEkl D ıjkEil :

Let us denote by trN the unique trace on the algebraMN .C/ such that trN .Ei i / D 1

for all i D 1; : : : ; N .
For a complex vector space V we will tacitly identifyMN .V / with V ˝MN .C/

via

x ´ .xij /i;j 7!
NP

i;j D1

xij ˝Eij :
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Obviously, we have CLa.M;CN / D MN

�
CLa.M/

� Š CLa.M/˝MN .C/. Here,
by slight abuse of notation CLa.M;CN / denotes the space of classical pseudodiffer-
ential operators acting on the trivial vector bundle M � CN .

Definition 5.2. Let a 2 R and let � be a linear functional on CLa.M/. Then we put

� ˝ trN W CLa.M;CN / ! C;

A ´ .Aij /i;j 7!
NP

i;j D1

.� ˝ trN /.Aij ˝Eij / D
NP

iD1

�.Ai i /:

It is straightforward to check that if � is a hypertrace (pretrace, trace) on CLa.M/

then � ˝ trN is a hypertrace (pretrace, trace) on CLa.M;CN /.

Proposition 5.3. Let a 2 R. Then every hypertrace on CLa.M;CN / is of the form
� ˝ trN with a unique hypertrace � on CLa.M/.

Proof. Let T be a hypertrace on CLa.M;CN /. For i; j D 1; : : : ; N we put

Tij W CLa.M/ ! C; Tij .A/ ´ T .A˝Eij /:

Since Id 2 CL0.M;CN /, we infer from the hypertrace property

Tij .A/ D T .A˝Eij /

D T ..A˝Ei1/.id ˝E1j //

D T ..id ˝E1j / .A˝Ei1//

D ıij T11.A/;

thus Tij D 0 for i ¤ j and T11 D T22 D � � � D TNN μ � .
� is a hypertrace on CLa.M/. Namely, for A 2 CLa.M/;B 2 CL0.M/ we have

�.AB/ D T ..AB/˝E11/

D T ..A˝E11/.B ˝E11//

D T ..B ˝E11/.A˝E11//

D �.BA/:

Certainly, we have T D � ˝ trN .
For the uniqueness we only have to note that if T D � ˝ trN , then �.A/ D

T .A˝E11/.

5.3. General vector bundles. Let E be a vector bundle over M . By Swan’s Theo-
rem there is a positive integer N , such that E is a direct summand of M � CN ; let
e 2 MN .C1.M// D C1.M;MN .C// be a smooth projection onto E. Then the
C1.M/-module of smooth sections of E is given by

�1.M;E/ Š e.C1.M/N /: (5.1)
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Note that since we assumed M to be connected (cf. Section 5.1), the idempotent
valued function e has constant rank.

The following lemma is well known. Since we could not find a place where it is
stated as needed we provide, for convenience, a quick proof:

Lemma 5.4. Let A ´ C1.M;MN .C//. Then A eA D A. Equivalently there
exist pj ; qj 2 C1.M;MN .C//, j D 1; : : : ; r , such that

rP
j D1

pj e qj D 1M ˝ IN ; (5.2)

where 1M denotes the function which is constant 1 onM and IN is theN �N identity
matrix.

Proof. It obviously suffices to prove eq. (5.2). Choose a finite partition of unity
 j ; j D 1; : : : ; s, smooth functions�j 2 C1.M/ such that�j D 1 in a neighborhood
of supp. j / and such that in a neighborhood Uj of supp.�j / there is a smooth map
v W Uj ! MN .C/ such that

v e v�1 D ek ´
�
Ik 0

0 0

	
:

Choose .N �N/-matrices al , bl , l D 1; : : : ; t , with

tP
lD1

al ek bl D IN :

We tacitly view al , bl also as constant matrix valued functions onM . Slightly abusing
notation we now find the decomposition

1M ˝ IN D
sP

j D1

 j�j ˝ IN

D
sP

j D1

tP
lD1

 j v
�1al ek blv�j

D
sP

j D1

tP
lD1

. j v
�1alv/ e .v

�1blv�j /:

For a linear functional � on CLa.M;CN / we now put

�E .A/ ´ �.eAe/: (5.3)

This definition depends on the choice of the idempotent e and is therefore not canon-
ical. As in the scalar case if CLa.M;E/ � CLb.M;E/ we write �E;a ´ �E �
CLa.M;E/.
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Both the canonical trace TR and the residue trace Res are naturally defined on
CL�

.M;E/ for any vector bundle E (cf. [Les99]). To distinguish them let us for the
moment denote by TR.N /, Res.N / the corresponding functionals on CL�

.M;CN /

and by TR.E/, Res.E/ the corresponding functionals on CL�
.M;E/.

Then one immediately checks that

TR.N / D TR ˝ trN ; TR.E/ D .TR ˝ trN /E ;

Res.N / D Res ˝ trN ; Res.E/ D .Res ˝ trN /E ;

hence TR and Res are compatible with the operations � 7! � ˝ trN and � 7! �E in
the most natural way.

From now on we will write TRE for TR.E/, and ResE for Res.E/. A confusion
with the notation introduced in Definition 3.1 should not arise.

We also extend the linear functional �Tr of Definition 4.8 to CL0.M;E/ by defining

�TrE ´ .�Tr ˝ trN /E :

Since �Tr is not a trace, this definition may depend on the choice of the idempotent e,
hence is not canonical; but �Tr already depended on a choice.

Finally we put TRE;a ´ .TRa ˝ trN /E on CLa.M;E/. From Section 4.3 we
see

TRE;a ´

8̂<̂
:

TRE;a if a 2 R n Z��n;�TrE;a if a 2 Z; �n � a < �nC1
2
;

ResE;a if a 2 Z; �nC1
2

� a:

(5.4)

Proposition 5.5. (1) Let a 2 R and let � be a hypertrace (resp. pretrace, trace)
on CLa.M;CN /. Then �E W CLa.M;E/ ! C, A 7! �.eAe/, is a hypertrace
(resp. pretrace, trace) on CLa.M;E/.

(2) Any hypertrace on CLa.M;E/ is of the form .� ˝ trN /E for a unique hyper-
trace � on CLa.M/.

3. Fora 2 Z�0, TRE;a is a trace onCLa.M;E/. Fora 2 Rn.Z\Œ�nC1;�n=2�/
it is a pretrace (and hence a hypertrace).

Proof. (1) To prove that the linear functional �E is a hypertrace consider A 2
CLa.M;E/; B 2 CL0.M;E/. Then

�E .AB/ D �.eABe/ D �..eAe/.eBe// D �..eBe/.eAe/
� D �.eBAe/ D �E .BA/:

Note that eAe 2 CLa.M;CN /; eBe 2 CL0.M;CN /. Repeating the argument with
A;B 2 CLa=2.M;E/ shows that if � is a pretrace then so is �E . Similarly if a 2 Z�0

and � is a trace, then �E is a trace.
(2) Conversely, let T be a hypertrace on CLa.M;E/. We choose pj , qj , j D

1; : : : ; r , according to Lemma 5.4. We will repeatedly use that multiplication by pj ,
qj is in CL0.M;CN / resp. that multiplication by epj e, eqj e is in CL0.M;E/.
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Suppose we had a hypertrace zT on CLa.M;CN / such that zTE D T . Then, for
A 2 CLa.M;CN /,

zT .A/ D zT ..1M ˝ IN /A/

D
rP

j D1

zT .pj eqjA/

D
rP

j D1

zT .pj e
2qjA/

D
rP

j D1

zT .eqjApj e/

D
rP

j D1

zT .e2qjApj e
2/

D
rP

j D1

T .eqjApj e/:

(5.5)

Thus there is at most such a zT . We now define zT by the right-hand side of eq. (5.5).
We have zTE D T . Indeed, for A 2 CLa.M;E/,

zTE .A/ D zT .eAe/
D

rP
j D1

T ..eqj eAe/.epj e//

D
rP

j D1

T .epj eqj eAe/ D T .eAe/ D T .A/:

In the last line we used eq. (5.2).
Next we show that zT is a hypertrace on CLa.M;CN /. For A 2 CLa.M;CN /,

B 2 CL0.M;CN / we find using eq. (5.2),

zT .AB/ D
rP

j D1

T .eqjA.1M ˝ IN /Bpj e/

D
rP

j;kD1

T .eqjApkeqkBpj e/

D
rP

j;kD1

T .eqkBpj eqjApk e/

D
rP

kD1

T .eqkBApke/ D zT .BA/:

By Proposition 5.3 there is now a unique hypertrace � on CLa.M/ such that zT D
� ˝ trN . Then we conclude that T D zTE D .� ˝ trN /E . Recall that zT is uniquely
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determined byT and � is uniquely determined by zT , whence � is uniquely determined
by T .

(3) follows from (1), eq. (5.4) and Proposition 4.9.

Before stating the final result, we have to clarify what leading symbol traces
on CLa.M;E/ look like. For the moment consider a closed manifold X with a
vector bundle E ! X . We can construct traces on the noncommutative algebra
�1.X;EndE/ as follows: first the fiberwise trace induces a linear map

trE W �1.X;EndE/ ! C1.X/; trE .s/.x/ D trEx
.s.x//:

The trace trE vanishes on commutators. Thus for anyT 2 .C1.X//� the composition
T B trE is a trace on �1.X;EndE/.

It is straightforward to see that indeed all traces on �1.X;EndE/ are of this
form. Since we will not use this fact, we leave the details of proof to the reader:

Proposition 5.6. Let X be a closed manifold and let E be a vector bundle over X .
Then for any trace � on �1.X;EndE/ there is a unique distribution T 2 .C1.X//�
such that � D T B trE .

The final result is now a consequence of Theorems 4.10, 4.12, Corollary 4.13, and
Propositions 5.1, 5.5.

Theorem 5.7. Let M be a closed connected Riemannian manifold of dimension
n > 1 and let E be a complex vector bundle over M . Denote by … W E ! M the
projection map, by �a W CLa.M;E/ ! �1.S�M;…� EndE/ the leading symbol
map, and by trE the fiberwise trace �1.S�M;…� EndE/ ! C1.S�M/. Fix N
and an idempotent e as in eq. (5.1) and let TRE;a be as defined in eq. (5.4).

(1) Let a 2 R and let � be a hypertrace on CLa.M;E/. Then there are uniquely
determined � 2 C and a distribution T 2 �

C1.S�M//� such that

� D T B trE B �a C
´
�TRE;a if a … Z>�n;

�ResE;a if a 2 Z>�n:
(5.6)

(2) Let a 2 Z�0 and denote by

�a W CLa.M;E/ ! CLa.M;E/=CL2a.M;E/

the quotient map. Furthermore, let

�a W CLa.M;E/=CL2a.M;E/ ! CLa.M;E/

be a right inverse to �a.
Let � W CLa.M;E/ ! C be a trace. Then there are uniquely determined � 2 C,

T 2 .C1.S�M//� and ˆ 2 .CLa.M;E/=CL2a.M;E//� such that

� D �TRE;a C T B trE B �2a.id ��a B �a/Cˆ B �a:
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In the first line of eq. (5.6) the case a D �n is included, thus we write TRE;a

instead of TRE;a there.

Proof. The right inverse �a can be constructed successively from the map Op, cf. Re-
mark 4.14.

(1) By Proposition 5.5 there is a unique hypertrace Q� on CLa.M/ such that � D
. Q� ˝ trN /E . The claim now follows from Theorem 4.10 and Theorem 4.12 applied
to Q� . Note that T B trE B �a D ..T B �a/˝ trN /E , cf. eq. (5.3) and Definition 5.2.

(2) Let a 2 Z�0. By Proposition 5.1, � � CL2a.M;E/ is a hypertrace. Thus, by
(1) we have

� � CL2a.M;E/ D T B trE B �2a C
´
�TRE;2a if 2a � �n;
�ResE;2a if 2a > �n: (5.7)

We emphasize that by eq. (5.4)

TRE;a � CL2a.M;E/ D
´
�TRE;2a if 2a � �n;
�ResE;2a if 2a > �n: (5.8)

Consider, for A 2 CLa.M;E/,

Q�.A/ ´ �.A/ � �TRE;a.A/ � T B trE B �2a.A � �a B �a.A//:

Then due to eq. (5.8) and eq. (5.7) the functional Q� vanishes on CL2a.M;E/ and thus
is of the form ˆ B �a with ˆ 2 .CLa.M;E/=CL2a.M;E//�. Then � D ˆ B �a C Q�
and the theorem is proved.
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