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Abstract. Let M be a closed manifold and let CL*(M) be the algebra of classical pseudo-
differential operators. The aim of this note is to classify trace functionals on the subspaces
CL%(M) c CL*(M) of operators of order a. CL%(M) is a CL®(M )-module for any real a; it
is an algebra only if @ is a non-positive integer. Therefore, it turns out to be useful to introduce
the notions of pretrace and hypertrace. Our main result gives a complete classification of pre-
and hypertraces on CLY (M) for any a € R, as well as the traces on CL%(M ) fora € Z,a < 0.
We also extend these results to classical pseudodifferential operators acting on sections of a
vector bundle.

As a by-product we give a new proof of the well-known uniqueness results for the Guille-
min—Wodzicki residue trace and for the Kontsevich—Vishik canonical trace. The novelty of our
approach lies in the calculation of the cohomology groups of homogeneous and log-polyho-
mogeneous differential forms on a symplectic cone. This allows to give an extremely simple
proof of a generalization of a theorem of Guillemin about the representation of homogeneous
functions as sums of Poisson brackets.
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1. Introduction and formulation of the result

Let M be a smooth closed connected Riemannian manifold of dimension n > 1.!
We denote by CL4(M ) the space of classical pseudodifferential operators of order
a € Ron M. There is a little subtlety here which we need to clarify to avoid
possible confusions: by definition (cf. eq. (2.12), (2.13) and Section 3.1) a classical
pseudodifferential operator of order a is also a classical pseudodifferential operator
of order a + k for any non-negative integer k; this convention ensures, e.g., that
CL“(M) is a vector space and that CL*(M) is a subspace of CL*T1(M). However,
for non-integral r > 0 the space CL%(M) is not contained in CL4*" (M). In fact, it
is not hard to see that for such r one has CL*(M) N CL*t" (M) = CL™ (M), the
latter being the space of smoothing operators.

It is well known that the residue trace Res, which was discovered independently
by Guillemin [Gui85] and Wodzicki [Wod87b], is up to normalization the unique
trace on the algebra CLZ (M) of integer order classical pseudodifferential opera-
tors ([Wod87b], Brylinski and Getzler [BrGe87], Fedosov, Golse, Leichtnam, and
Schrohe [FGLS96], Lesch [Les99], for a complete account of traces and determi-
nants of pseudodifferential operators see the recent monograph by Scott [Sco10]).
Res is non-trivial only on CL¥ (M) for integers k > —n, and it is complemented by
the canonical trace, TR, of Kontsevich and Vishik [KoVi95]. The latter is defined
on operators of real order a # —n, —n + 1, ..., it extends the Hilbert space trace
on smoothing operators and it vanishes on commutators (for the precise statement
see eq. (3.11) below). By Maniccia, Schrohe, and Seiler [MSSO0S] it is the unique
functional which is linear on its domain, has the trace property and coincides with
the L2-operator trace on trace-class operators.

A natural problem which arises is to characterize the traces on the spaces CL*(M).
First, one has to note that CL*(M) is always a CL®(M )-module; it is an algebra if
and only if a € Z<9p = {0,—1,-2,...}. Let us call a functional t on CL*(M)
a hypertrace (resp. pretrace) if T([A, B]) = 0 for A € CL°(M), B € CL*(M)
(resp. A, B € CL“/z(M)), see Definition 3.1.

The above mentioned uniqueness results for Res and TR cannot extend to CL4 (M)
for a simple reason: let T be a distribution on the cosphere bundle S*M and denote
by g,: CL*(M) — C*®(S*M) the leading symbol. Due to the multiplicativity
of the leading symbol (eq. (3.3)) the map T o o, is a pretrace and a hypertrace on
CL%(M), and fora € Z <p itisatrace on CL?(M). T oo, is called a leading symbol
trace by Paycha and Rosenberg [PaRo04].

For CL°(M) it was already proved by Wodzicki [Wod87a] that any trace is a
linear combination of Res and a leading symbol trace, see also Lescure and Paycha
[LePa07], and Ponge [Pon10].

IThe case n = 1 has some peculiarities due to the non-connectedness of the cosphere bundle of S!.
As a consequence many results need to be slightly modified in the case n = 1 (see Remark 2.11). These
modifications are more annoying than difficult and for the sake of a clean exposition they are left to the
reader.
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Before stating our generalization of this result we need to introduce some more
notation: Firstly, for a < 0 we will always consider CL*(M) as a subspace of
B(L?*(M)), the bounded linear operators acting on the Hilbert space L2 (M) of square
integrable functions with respect to the volume measure induced by the Riemannian
metric. The symbol Tr will be reserved for the operator trace on the Schatten ideal
B'(L?(M)) of trace class operators on L2(M).

Secondly, for a linear functional 7: CL’(M) — C anda < b withb —a € Z
we will use the abbreviation 7, := t | CL*(M).

Thirdly, we introduce a convenient notation which combines TR and Res. Namely,
fix a linear functional Tr: CL%(M) — C such that

Try = Tr } CLY(M) = Tr } CLY(M) = Tr,
forae Z, ={—n—1,—n—2,...}and put

TR, ifa€R\Zs_,,

TR, = {Tr, ifaeZ, —n<a<==H,
Res, ifan,_2+1§a.

In this note we will prove:

Theorem 1.1. Let M be a closed connected Riemannian manifold of dimension
n>1.

(1) Let a € R and let T be a hypertrace on CL*(M). Then there are uniquely
determined A € C and a distribution T € (C*°(S*M))* such that

AT—Ra l:fa ¢ Z>—n’

i (1.1)
ARes, ifae€eZ-_,.

t=To 0a+{

(2) Let a € Z <y and denote by
7q: CL4(M) — CLY(M)/ CL2*" (M)

the quotient map. Let t: CL*(M) — C be a trace. Then there are uniquely deter-
mined A € C and T € (CL(M)/ CL2*~Y(M))* such that

T =ATR, + T o 7,.

This theorem is a summary of Theorem 4.10, Theorem 4.12 and Corollary 4.13
in the text. It extends to the vector bundle case. This requires even more notation and
is therefore not reproduced here in the introduction. The interested reader is referred
to Theorem 5.7 in Section 5.

Let us briefly describe the main steps in the proof of Theorem 1.1:

In order to classify (pre-, hyper-)traces on CL?(M) it is natural to ask for a
representation of an operator A € CL?(M) as a sum of commutators. Indeed, the
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uniqueness of the residue trace Res as the unique trace on the algebra CcL? (M) (see
the first paragraph of this section) essentially follows from the fact that there exist
Pi,....,Py € CLY(M), Q € CL™"(M) such that for any A € CL%(M) there exist
Q1,...,0n € CL*(M) and R € CL™®°(M) such that

=z

A= ) [P;j,0Q;] +Res(4)0 + R. (1.2)
j=1

This is due to Wodzicki [Wod84]; see also [Les99], Propositions 4.7 and 4.9.

Since the operators Pq,..., Py are of order 1, they do not belong to CL*(M)
except if @ € Z>;. Hence to classify pre- and hypertraces on CL? (M) we need to
generalize (1.2) such that the order of the P, ..., Py can be chosen to be an arbitrary
real number m.

Indeed we will prove in Theorem 4.6 below that for real numbers m2, a there exist
Pi1,..., Py € CL"™(M), such that for any A € CL*(M) there exist Q1,...,0On €
CL™+1 (M) and R € CL™®°(M) such that

A= % [P;. 0] + Res(A)Q + R. (1.3)
j=1

From this representation and the well-known fact that the Hilbert space trace is the
unique trace on CL™*° (M) (Guillemin [Gui93], Thm. A.1, see Theorem 4.1 below)
one now deduces the first line of (1.1) (Theorem 4.10).

For the second line of (1.1) (Theorem 4.12) one still applies (1.3) but then in
addition one needs to show that if a € Z._, and if 7 is a hypertrace on CL%(M)
then ¢ | CL™*°(M) = 0. This follows from a result of Ponge ([Pon10], Prop. 4.2,
see Proposition 4.2 below), for which we present an alternative proof (Lemma 4.3).

In Section 4.4 we present an alternative approach which is independent of Ponge’s
result. For this alternative approach we received considerable help from Sylvie Pay-
cha.

For proving Theorem 1.1 (2) as well as for showing that every pretrace is a hyper-
trace we use a nice algebraic lemma (Lemma 4.5) due to Sylvie Paycha. Section 4.4
as well as Lemma 4.5 are included here with her kind permission; her generosity is
greatly appreciated. We emphasize that Lemma 4.5 and Section 4.4 are not needed
to prove the classification results about hypertraces contained in Theorems 4.10, 4.12
and 5.7.

As expected, (1.3) is proved using the symbol calculus for pseudodifferential
operators. Recall that the leading symbol, o,(A4), of A € CL*(M) is a smooth
function on T*M \ M which is homogeneous of degree a. Now suppose that we
have P € CL™(M), Q € CL*™*1(M). Then there is the well-known but crucial
identity

0a([P. O1) = +1om(P). 0am+1(Q)}
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Here {-, -} denotes the Poisson bracket of functions on 7*M \ M with respect to the
standard symplectic structure. So Poisson brackets are the symbolic counterpart of
commutators and therefore to solve the original problem one has to analyze the space
spanned by Poisson brackets of homogeneous functions. This leads naturally to the
symplectic residue which is the symbolic analogue of the residue trace. The theory of
the symplectic residue was developed independently by Wodzicki [Wod87b], Sec. 1,
and Guillemin [Gui85], Sec. 6.

As in loc. cit. we work in the language of symplectic cones: Y = T*M \ M
carries a natural free RY -action with quotient S* M, the cosphere bundle. For an
arbitrary connected symplectic cone Y denote by ¢ the space of smooth functions
which are homogeneous of degree a. If Y is of dimension 2n > 2 with compact
base, we prove in Theorem 2.9 below that

(P!, P™Y = ker(resy) N P11

_[ptrm ifl+m#-n+1, (1.4)
~|ker(resy) N P il +m o= —n + 1.

Here resy denotes the symplectic residue (Definition 2.3, Section 2.3.1).

For m = 1 this is [Gui85], Thm. 6.2, cf. also [Wod87b], 1.20. The m here
corresponds to the m in (1.3). Hence, proving (1.4) for arbitrary m is crucial. One
could hope that the original method of [Gui85] can be adapted to all m. As shown
in Neira Jiménez [NJ10], Sec. 1.4, this indeed works for (I,m) # (0,0), but the
method fails for the case / = m = 0. This was pointed out to the second author by
Jean-Marie Lescure.

We therefore offer a completely new approach to the proof of (1.4), which is even
more elementary than the proof in [Gui85], Sec. 6; the latter uses the elliptic regularity
theorem.

Let us explain the basic idea of our approach. Denote by w the symplectic form
on Y. Then " is a volume form. Furthermore, one has the formula (1.2 in [Wod87b])

{f.glo" =d(gix,0"). (1.5)

Using this formula, an elementary calculation (see the proof of Theorem 2.9) shows
that f € P17 1isin {L!, ™} if and only if there is a homogeneous differential
form B (of homogeneity n 4+ [ 4+ m — 1) such that fw” = df.

Thus the problem of proving (1.4) is reduced to the calculation of the 2n-th de
Rham cohomology of homogeneous differential forms. It is no additional effort to
calculate the whole homogeneous de Rham cohomology of a cone: So let Z be a
smooth paracompact manifold andlet 7 : ¥ — Z be a R principal bundle over Z (a
cone). Denote by Q27 P4(Y) the smooth p-forms which are homogeneous of degree
a (see Section 2). Then it is easy to see that the exterior derivative preserves the
homogeneity and hence we can form the homogeneous de Rham cohomology groups
H?$P4(Y). In Theorem 2.1 we show that H? $%(Y') vanishes for @ # 0 and that for
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a = 0itis canonically isomorphic to H?~1(Z) @ H?(Z). In particular, for compact
oriented Z we find that H4™Y £0(Y) is isomorphic to C. The choice of a homoge-
neous volume form for ¥ (e.g. »” if w is the symplectic form of a symplectic cone Y
of dimension 27) leads then to a concrete isomorphism resy : H4™Y P%(Y) — C.
This is called the residue of the cone.

To finish the outline of the proof of Theorem 1.1, let us explain the connection
between the residue of the cone T* M \ M (aka the symplectic residue) and the residue
trace. So let M be compact connected of dimension n > 1 and let w be the standard
symplectic form on T*M \ M. For A € CL*(M) the leading symbol o, (A) is then
an element of P4(T*M \ M). Furthermore, if a # —n then the symplectic residue
resy (04(A)) vanishes and if a = —n then res,, (0,(A)) is up to a normalization equal
to the residue trace Res(A) (cf., e.g., [Les99], Prop. 4.5). This fact is used in the
proof of Theorem 4.6 where (1.3) is deduced inductively from (1.4) using the symbol
calculus.

There is another aspect which we would like to comment on. Namely, it is
interesting to note that Res and TR as well as the leading symbol traces have precise
analogues on the symbolic level. This analogy is not only formal but is used in
Section 4.4.

The basic idea is easy to explain, cf. also [Les10], Sec. 4: Let U C R” be an open
subset and let A € CL%(U) with complete symbol 0 € CS*(U x R") (CS* denotes
the space of classical symbols of order a, see Section 2.4.1). Then the Schwartz
kernel of A is given by the oscillatory integral (cf. eq. (3.1))

KA(x,y)=/ VG (x, ) dE,  dE = (2m)TdE.

[RII

To obtain a trace on CL?(U) one hence has to regularize the integral

/UKA(x,x)dx:/U/[;n o(x,&)dédx.

Only the inner integral is problematic and there are two natural regularizations of the
inner integral, the residue and the cut-off integral, which then lead to Res and TR (cf.
Section 2.4.2). Let us ignore the x-dependence and consider the Hormander symbols
CS*(R™) (= CS*({0} x R™)). This is the space of smooth functions f on R” such
that f ~ Z;io Ja—j; with f,_;(§) positively homogeneous of order a — j for &
large enough.

In view of the fact that the symbolic analogue of commutators are Poisson brackets
and in view of the explanations after eq. (1.5) the analogue of a hypertrace is then a
linear functional t: CS?(R"”) — C such that 7(f) = 0 if the n-form o = fd&; A
-+ A d&, is exact within forms whose coefficients lie in CS**!(R"). Now for « to
be exact in this sense it is equivalent that /' = Z;Ll g, 07 with 0; € CS4tL(R™).
This follows from an elementary calculation, cf. the proof of Corollary 2.4.

In sum the analogue of a hypertrace is a linear function 7 on CS?(R") such that
1(851. f)=0for j =1,...,n. Such functionals have been investigated by Paycha
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[Pay(07] and were partially classified (up to functionals on smoothing symbols). As
explained in e.g. [Sco10], Sec. 4.6.3, studying these functionals is one way to prove
the existence of the residue trace; there is another approach which makes more heavy
use of heat trace asymptotics, cf., e.g., [Les99], Sec. 4.

Functionals with the “Stokes property”, 7(d¢, /) = 0, can most naturally be
classified by looking at a certain variant of de Rham cohomology. Namely, putting
T(fd&in---AdE,) := ©(f) one obtains a linear function on the top degree de Rham
cohomology of forms in R” whose coefficients lie in CS?(R"). While the calculation
of this cohomology is possible, it will be postponed to a subsequent paper. Rather
it turns out that the homogeneous cohomology developed in Section 2 plus a simple
lemma about Schwartz functions (Lemma 2.12) suffice to classify the functionals
with the Stokes property.

In Proposition 2.13 we completely characterize the functionals on CS?(R") with
the Stokes property or equivalently when a function in CS*~1(R") can be written as a
sum of partial derivatives of functions in CS®(R"). This generalizes [Pay07], Prop. 2,
Thm. 2.

The paper is organized as follows. In Section 2 we study homogeneous differential
forms on cones and calculate their de Rham cohomology. As applications we prove the
aforementioned generalization of Guillemin’s Theorem on homogeneous functions
and a characterization of functionals with the Stokes property.

In Section 3 we first review some basic facts about pseudodifferential operators
and trace functionals. We introduce pretraces and hypertraces and we give some
examples. In Section 4 we apply the results of Section 2 and provide a result about
the representation of a classical pseudodifferential operator as a sum of commutators.
We use this result to give the classification of hypertraces and traces on CL% (M) for
different values of a. For the case of integral a we give two proofs, one relying on a
result due to Ponge [Pon10] and a completely self-contained one in Section 4.4.

Finally, in Section 5 we extend the results about tracial functionals to operators
acting on sections of vector bundles over the manifold. The main result then is
Theorem 5.7.
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cluded in this paper with her kind permission. Furthermore, we would like to thank
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develop the new approach via homogeneous cohomology. Finally we thank the two
anonymous referees for their detailed suggestions for improvements. We think the
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2. Cohomology of homogeneous differential forms

In this section we calculate the de Rham cohomology of homogeneous differential
forms on cones. The theory is stunningly simple. Nevertheless as corollaries we
obtain generalizations of the results of Guillemin [Gui85] on the representation of
homogeneous functions on symplectic cones as sums of Poisson brackets. Also our
approach generalizes the theory of homogeneous functions on R” \ {0} in a straight-
forward way. Therefore, we also obtain as a corollary the precise criterion when a
homogeneous function can be written as a sum of partial derivatives of homogeneous
functions, cf. [FGLS96], [Les99]. Finally, this criterion is generalized to classical
symbol functions, generalizing [Pay07], Prop. 2, Thm. 2.

2.1. Homogeneous differential forms on cones. A cone over a manifold B is a
principal bundle 7: ¥ — B with structure group R* , the multiplicative group of
positive real numbers. Basic examples we have in mind are R” \ {0} (cf. Exam-
ples 2.1.1, 2.2.1 below) and the cotangent bundle with the zero section removed,
T*M \ M, of acompact connected manifold M ; the latter is even a symplectic cone
and such cones are discussed in detail in Section 2.3. In both cases the R’} action is
given by multiplication.

Denote by 0: ¥ — Y, the action of A € R%. Via ®; := g, we obtain a one
parameter group of diffeomorphisms of Y. Let X € C*®°(TY) be the infinitesimal
generator of this group, which is sometimes called the Liouville vector field.

A differential form w € Q7 (Y) is called homogeneous of degree a if 0w = A%w
for all A € R7.. The space of differential forms of form degree p and homogeneity
a is denoted by QPP4(Y). P4(Y) := QOP4(Y) are the smooth functions on Y
which are homogeneous of degree a.

We choose a function » € P1(Y) which is everywhere positive and put Z :=
{y €Y | r(y) = 1}. mz is a diffeomorphism from Z onto B and r induces a
trivialization of Y as follows:

Y > RLXZ, y () 0rp)-1Y)
Note that

D04 (¥) = (r(@2(¥)), 0r(0, v))-102(¥) = (Ar(¥), 04 (yy-1Y)-

Hence @ intertwines the R* action on Y and the natural R% action on the product
[R"‘Jr x Z. For convenience we will from now on work with the trivialized bundle
[Rj‘r x Z. The first coordinate will be called r, so the Liouville vector field is then
given by X = r%.

With the projection 7 : R} x Z — Z, a differential form w € QP P4(R% x Z)
can be written

o =r""Ydr An*t 4+ rn*y (2.1
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with
n=iyw e QP(Z), t=is(xw)e Q7 (Z), (2.2)

where iz: Z < Y is the inclusion map and ¢ denotes interior multiplication by
the Liouville vector field X. We have furthermore

dw = r*Ydr A (an*n—n*dzt) + rén*dzn € Qp“e?a(mi xZ), (23)

so exterior derivation preserves the homogeneity degree. Hence we can form the
homogeneous de Rham cohomology groups

ker(d: QPPYY) — QPTIPYY))
im(d: QP1PeY) — QPLYY))

HPPAUY) = 2.4)

These cohomology groups can easily be calculated:

Theorem 2.1. Let Z be a smooth paracompact manifold, let w: Y — Z be a RY.
principal bundle over Z.

(1) Ifa # 0, then H? P4(Y) = {0}.
(2) Ifa = 0, then the map

U:QPUY) - QTN 2Z2) e Q(Z), o+ (1,n) = (i3(xw),iyw),
is an isomorphism of cochain complexes, hence it induces an isomorphism
HPPY(Y)~ HP Y (Z)® H?(2). (2.5)

In terms of the everywhere positive function r € P1(Y) the inverse of W is
given by (t,n) — r~dr A ¥t + m*n.

Proof. (1) As before we work with the trivialized bundle R} x Z. If  is closed,
then (2.3) implies that
dzt =an, dzn=0,

and hence we obtain a form analogue of Euler’s identity (see eq. (2.8) below)
dixw) = d(r®n*t) = ar® tdr An*t + rén*dzt = aw. (2.6)
Thus w is exact if a # 0, explicitly
L.
w = —d(ixw).
a

(2) Now let @ = 0 and consider w € QPJPO([Rj_ x Z). Since ¢}, 0 = w, we see
that the Lie derivative &£ 5cw vanishes,

Exw = — *w =0,
X dr t=0Qet
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and Cartan’s magic formula dix + txd = £y implies that dtxw = —txdw. Thus
diz(lxw),izw) = (—iz(xdw),izdw),

and hence the exterior derivative on Q°71(Z) @ Q°(Z) can be modified by a sign
such that d W = Wd. From (2.1) and (2.2) it follows that W is bijective and that its
inverse is given by (t, ) — r~ldr A m*t + ¥ . O

Remark 2.2. We comment on a special case of Theorem 2.1 which combines the
constructions of the residue of a homogeneous function on R” \ {0} (see the next
section) and of Guillemin’s symplectic residue (Section 2.3).

Letdim Y = n and suppose that o € 2" P%(Y) is a homogeneous volume form.
Then i} (txw) is a volume form on Z. In particular Z is orientable and we choose
the orientation such that i 7 (1xxw) is positively oriented. If additionally Z is compact,
then integration yields an isomorphism H"~1(Z) = C.

For f € £7%(Y) the closed form fw € Q"PO(Y) defines a class [fw] €
H"P°(Y) which under the isomorphism W of Theorem 2.1 corresponds to the class

[i7(fixw)] € H'Y(Z).

Definition 2.3. For f € £74(Y) we define the residue with respect to the fixed
volume form w € Q"P%(Y) to be the complex number corresponding to the class
[fw] € H"P°(Y) under the composition of the isomorphisms H”P°(Y) =
H" Y(Z) = C:

resy(f) = /Z i3 (fixo).
For f € PY(Y),b # —a, we putres,(f) = 0.

We emphasize that the definition of res,, depends on the choice of the homo-
geneous volume form w. The significance of Theorem 2.1 lies in the fact that
resey(f) = 0 if and only if there is a homogeneous differential form B such that

dB = fo.

2.1.1. Example. ¥ = R"\ {0} = R} x $"7!, B = Z = S"~!. We elaborate on
this interesting special case. Denote by (£1, ..., &,) the coordinates on R” \ {0} and
putw :=d& A---ANdE, € Q"PT(R" \ {0}). Then

n

K=Y big wo= YD GdE A AdE A Adg Q)

i=1 i=1

The form txw is in Q"7 (R” \ {0}), and i;n_l (txw) is the standard volume form
on S”~!. Moreover, by (2.6) we have

d(fixw) = (a +n)fo,
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f € P4R" \ {0}). On the other hand by (2.7),

A(fiw) = 3 05,5 d6r A+ n 8 = (505 6 +0f o

1=

and thus we arrive at Euler’s identity for homogeneous functions:
n
> (0 f)& =af. (2.8)
i=1

Corollary 2.4. Let res,, be the residue associated to v = d&; N -+ AN dE, €
QPP (R" \ {0}) according to Definition 2.3. Then for a homogeneous function
f e PYR" \ {0}) the following holds:

(1) resy(dg; f) = 0.

(2) There exist o; € PYTY(R" \ {0}) such that f = Z;l=1 ¢, 05 if and only if
resy, (f) = 0. Note that res, (f) # 0 only ifa = —n.

Proof. Tt follows from Theorem 2.1 (cf. the remarks before Definition 2.3) that for
a function g € P*(R" \ {0}) the residue vanishes if and only if the class [gw] €
H" P4Tn(R™ \ {0}) vanishes.

To prove (1) we note that (dg; f)dé1 A -+ A, = dn with the form

n= ()T fdE A AdE A A dE € QT PUTIR \ {0))

and hence res, (dg; /) = 0.

(1) shows that for the o; in (2) to exist it is necessary that res,(f) = 0. To
prove sufficiency consider f € LP4(R" \ {0}) with res,(f) = 0. Then there is
n € QUpatn (R \ {0}) with dn = fw. We write

n=3(=1)"lo;dEy A AdE A A dE, 2.9)
j=1
with o; € PHI(R" \ {0}). Then f = Y 7_, 0, 0;. O

2.2. Extension to log-polyhomogeneous forms. We generalize our previous con-
siderations to log-polyhomogeneous forms.
A p-form w € QP(R% x Z) is called log-polyhomogeneous of degree (a, k) if

k .
w =) wjlog'r,
Jj=0

with w; € QPP4(RY x Z), cf. [Les99]. The set of all such forms is denoted by
QP Pk (RY x Z).
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The exterior derivative preserves the (a, k)-degree. More explicitly,
d((r* 'dr Ax*t + r®x*n)log’ r)
= (" Ydr A (an*n—a*dzr) + ra*dzn)log’ r + jro ldr Am*nlog/ 7y

Hence analogously to eq. (2.4) we define the log-homogeneous de Rham coho-
mology groups

ker(d: QP LUK (Y) — QPFLPak(y))

HPPok(Y) = ,
0= S @r 1Pk (Y) - QPPak(Y))

for which we can prove the following analogue of Theorem 2.1.

Theorem 2.5. Let Z be a smooth paracompact manifold, let w: Y — Z be a R,
principal bundle over Z. Let r € P (Y) be everywhere positive.

(1) Ifa # 0 then H? Pk (Y) = {0}.
(2) Ifa = 0 then the map

ok QN (Z)d Q(Z) > QPO (Y),
(t.n) = rYdr A (n*7) logk r + ¥,

induces an isomorphism
HP?(®%): HP~Y(Z) ® H?(Z) =~ H? PO* (V).

Let 1P%: HP POk (Y)Y — HP=Y(Z) @ HP(Z) be the inverse of HP(®F).
Then for a closed form @ = Z?:o wj log/ r € QPPOK(Y), w;j € QPPOY),
one has 17 ([w]) = (i3 (xar)]. [i5wo)).

Proof. We consider a closed form w € QP Pk (R x Z) and write
w = wg logk r4yx
with y € QP P*~1(R* x Z). Then
0 = dw = (dwy) logk r + lower log degree,
thus wg is closed and Euler’s identity (2.6) gives

diixw) = d(ixowg logk r) + lower log degree
= awg logk r + lower log degree
= aw + lower log degree.

If a # 0, then w is cohomologous to w — %d(ixa)) € Ql”{/’“’k_l([k’fF x Z). By
induction and Theorem 2.1 one then shows that w is exact.
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Next let @ = 0 and consider a form w € QP?O”‘([R"; X Z):

k )
o= (r"Ydr nr*t; + 7*nj)log’ r,
/=0

k . .
do = Y (=r7Ydr Anmx*dztj + n*dzn;)log’ r + jr=tdr Am*n;log/~'r
j=0
= (—r7Ydr A7*dzT + 7¥dznE) logh r
+ Z;-:(l)(r_ldr A(j + D)*njs1 — w*dztj) + n*dzn;j) log! r.
Thus dw = 0 if and only if

dzte =0, dzne =0,
dzn; =0, dztvi=( +Dnjy1. j=0,....k—1

This implies that H 7 (®F) and 7 7* are well defined and it is a routine matter to check
that they are inverses of each other. O

2.2.1. Example. Y = R"\ {0}, B = Z = S™""!. As in the homogeneous case we
put:

Definition 2.6. Let f € £7k(R" \ {0}). We define the residue of f to be the
integral

esoi(f) = 5, () = [ i i) w = d&i A+ d,

Note that by Theorem 2.5, H" %% (R" \ {0}) = H"~'(S""!) = C, and that
resy (f) is the image in C of the class [ fw] under this isomorphism. Therefore
exactly as Corollary 2.4 one now proves:

Corollary 2.7. For a log-polyhomogeneous function f € PK(R" \ {0}) the fol-
lowing holds:

(1) rese k(g /) = 0.

(2) There exist 0} € Ptk (R \ {0}) such that | = Z7=1 J¢; 05 if and only if
res, k (f) = 0. Note that res, i (f) # O only ifa = —n.

2.3. Homogeneous functions on symplectic cones. In this section we give an ex-
plicit expression of a homogeneous function in terms of Poisson brackets. This
generalizes work of Guillemin [Gui85], Thm. 6.2.

To fix some notation and to fix some (sign) conventions let us briefly collect some
basic facts from symplectic geometry.
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Let Y be a symplectic manifold with symplectic form w. The Hamiltonian vector
field Xy associated to f € C*°(Y) is characterized by tx,w = —df. The Poisson
bracket of two functions f, g € C*°(Y) is defined by

{/f g} = o(Xy, X).

If X; and X, are Hamiltonian vector fields, then [X, X5] is also a Hamiltonian
vector field with Hamiltonian function w(X1, X3) (see Def. 18.5 in Cannas da Silva
[CdSO01]),

X1, X2]® = X (x) . x) @
hence
Xirer = Xox, . xo) = [Xr. Xel,
and (C*°(Y),{,}) is a Poisson algebra.

Proposition 2.8 ([Wod87b], 1.2). The Poisson bracket of two functions f, g € C*°(Y)
satisfies

{f.g}o" =ndf ndg A" ! = d(gix,o"). (2.10)

Let Y be a symplectic cone, i.e., a cone w: ¥ — Z with a symplectic form
w € Q2P1(Y). We assume furthermore that Z is compact and connected; of course,
Y is then connected, too. The main example we have in mind is the cotangent bundle
with the zero section removed, T*M \ M, of a compact connected manifold M of
dimension dim M > 1, with its standard symplectic structure. The base manifold Z
is then the cosphere bundle S* M. In the case M = S (the only compact connected
one-dimensional manifold!), each of the two connected components of 7*S! \ S! is
a symplectic cone over S!.

2.3.1. The symplectic residue. Let dimY =: 2n, so 0" € Q?"P"(Y) is a homo-
geneous volume form on Y. We can apply Definition 2.3 and define the symplectic
residue of a function f € P%(Y) to be the residue with respect to the volume form
o". That is

- e
resy (f) :=respn(f) = {fz iz(Jixe™) ?fa -
0 ifa # —n.
Recall that the definition of resy depends on the choice of the homogeneous volume
form w”. Furthermore, recall that, by Theorem 2.1, resy ( ) = 0 if and only if there
is a form B € Q2" 1 P4 (Y) such that df = fo".
We note in passing that the form « := (xw isin Q1P 1(Y) and by Euler’s identity
for forms, eq. (2.6), it satisfies o = do. Our definition of the symplectic residue
differs from the original one by Guillemin [Gui85] by a factor.
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2.3.2. Homogeneous functions in terms of Poisson brackets. Now we prove the
following generalization of [Gui85], Thm. 6.2.
In the following we will for brevity write $¢ instead of P¢(Y).

Theorem 2.9. Let Y be a connected symplectic cone of dimension 2n > 2 with
compact base. Then for any real numbers I, m the following holds:

(PP = Ker(resy) N P71 = {‘fPHm 1 | flmEon

ker(resy) N P11 if | +m = —n + 1.
Remark 2.10. The proof we present is based on the homogeneous cohomology
developed in Section 2.1, in particular Theorem 2.1. While [Gui85] uses the elliptic
regularity theorem, our Theorem 2.1 is completely elementary. More importantly
our result is more general than loc. cit. where m = 1 is assumed. The technique of
[Gui85], Sec. 6, can be applied to prove Theorem 2.9 for (I,m) # (0,0), but the
method fails? for the case [ = m = 0; for details see [NJ10], Sec. 1.4.

Proof. We first note that Proposition 2.8 implies that {P!, £} c P!T"~1  Fur-
thermore, by loc. cit. we have { f, g}o" = d(gix, "), andif f € Pl g e P™ then
gux, 0" € Q2n—1 plm+n=1 Thygs the homogeneous cohomology class of { f, g}w”
vanishes and hence resy ({ £, g}) = 0. So {P!, P} C ker(resy).

Conversely, let f € P71 be given with resy(f) = 0. Then by Theo-
rem 2.1 (see also Definition 2.3), the homogeneous cohomology class of fw" €
Q2n prtl+m=1 yanishes and hence there is a g € Q271 Pn+I+m=1 gych that

fo" = dB.

1. I # 0 or m # 0. Since the claim is symmetric in / and m, we may, without loss
of generality, assume that [ # 0.

Choose functions gi,...,gy € P! such that at every point y of ¥ their dif-
ferentials dg1ly,...,dgn|y span the cotangent space 7,7Y. Let Xi,..., Xy be
the Hamiltonian vector fields of g1,...,gn. Since @” is a volume form, also
x, @" |y, ... xy@"]y span AZ"TITFY.

Consequently, there are functions f1,..., fy € C*(Y) such that

N
ﬁ = .lepjtxja)n'
j=

Since B, Xj, o™ are homogeneous, it is clear that also f; can be chosen to be
homogeneous. Counting degrees then shows f; € ™. Thus by Proposition 2.8,

N N N
fa)” = dIB = Zl d(ijXja)”) =n Zl dg] /\df] /\Cl)n_1 = Zl{g],f]}a)”,
J= J= J=

’The second author would like to thank Jean-Marie Lescure for pointing this out to her.
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and hence [ = Z]N:l{gj,fj} e (P, Pm).

2.1 = m = 0. In this case f € £~!. By assumption, n > 1 and thus by eq. (2.6),
1
fo® = —ld(ftxa)”)z le(foz/\a)”_l), o= Ixw. (2.11)
n— n—

The 1-form fo is homogeneous of degree 0 and since @ = txw, it is the pullback of
al-formon Z.

Wenow choose g1, ..., gy € P suchthatatevery point z of Z, their differentials
span the cotangent space 7,Z. Of course it is impossible to find homogeneous
functions of degree 0 such that their differentials span 7)"Y atevery y € Y.

Therefore there are functions fi, ..., fy € C*(Y) such that

N
fa = ; fidgi.

As before, we see that f; can be chosen such that f; € $°. Moreover, continuing
eq. (2.11) and again using Proposition 2.8,

N
n __ n n—1 __ n g . n—1
fo ——n_ld(fa)/\a) = _ld(iilﬁdgl)Aw

n
| XN
= mz{fiﬂi}wn,
i=1

and we reach the conclusion f = -1 YN {fi g} € (PO, PO} O

Remark 2.11. If n = 1, then {£°, £} = 0. Indeed, by eq. (2.10) with n = 1,
{f.gvw =df ndg,soif f,g € P° we have {f. g} = 0. In this one-dimensional
case, there are two different symplectic residues (res™, res™), corresponding to each
connected component of 7*S! \ §1; then, when / # 0 or m # 0, we can argue as in
the corresponding part of the proof of Theorem 2.9 to conclude that

(Pl pmy = plrm=1 %fl—i—m;éO,
ker(rest) Nker(res™) N P11 if | + m = 0.

2.4. The residue of a classical symbol function. As an application of homogeneous

cohomology we give a precise criterion when a classical symbol function is a sum

of partial derivatives. A more thorough discussion of de Rham cohomology of forms

whose coefficients are symbol functions will be given in a subsequent publication.

2.4.1. Classes of symbols. Suppose that U C R” is an open subset. We denote
by S™(U x RY), m € R, the space of symbols of Hérmander type (1,0) ([Hor71],
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[Shu01]) and order at most m. More precisely, S (U x RV) consists of those a €
C*®(U x RY™) such that for multi-indices € 7" .y € Zﬂ\r’ and compact subsets
K C U we have an estimate

0907a(x, )| < Cayx(1+ D", xeK RN, (212

The best constants in (2.12) provide a set of semi-norms which endow S*°(U x
RY) := U,uer S™(U x RY) with the structure of a Fréchet algebra. A symbol
a € S™(U x RY) is called classical if there are a,,—; € C*®°(U x RV) with

Amej (X, 7E) = 1" T ap_;(x,E), r>1, |E > 1, (2.13)
such that
N-—1
a— Y am—j € S"NU x RV) (2.14)
j=0

for N € Z . The latter property is usually abbreviated to a ~ Z}io Am—j-

Homogeneity and smoothness at 0 contradict each other except for homogeneous
polynomials. Our convention is that symbols should always be smooth functions,
thus the a,,—; are smooth everywhere but homogeneous only in the restricted sense
of eq. (2.13). The homogeneous extension of a,,—; to U x R" \ {0} will also be
needed: we put

al,_(x.&) = am_j(x.E/IEDIE™T . (x.£) €U xR"\{0}.  (2.15)

Furthermore, we denote by S™°°(U x R") := (,cg S*(U x R") the space of smooth-
ing symbols.

CS™(U x RN) c S™(U x RY) denotes the space of classical symbols of order
m. Let us repeat the warning from the first paragraph of the introduction: in view of
(2.12) and (2.13) one has CS™ (U x RY) c CS™*" (U x RN if and only if r is a non-
negative integer. For non-integral » > 0 one has CS™ (U x RV )NCS™ (U xRN) =
ST®(U x RY).

Note that S™°(U x RV) = CS™°(U x RY) = (N ,cg CS*(U x R™).

For brevity we write CS?(R") (S¢(R")) instead of CS? ({pt} x R"™) (S ({pt} x R")).
Note that ST*°(R") = 8(R") is nothing but the Schwartz space of rapidly decaying
functions.

We will now discuss the analogue of Corollary 2.4 for the space CS*(R"). We
start with smoothing symbols.

Lemma 2.12. Let f € S(R") be a Schwartz function. Then there are functions
aj € CST" N(R") such that f = Y}_, 3¢, 0;.
One can choose the o to be Schwartz functions if and only if f e S =0.

Proof. We start with the first claim and note that if » = 1 then the function o (§) =
5 £ty dtisin CSO(R) and dgo = f.
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For general n we infer from the standard proof of the Poincaré Lemma in R"
applied to the closed form f d&; A --- A d§,, that we can put

1
0 (8) = /0 FaH)E " dr.

Indeed,
1 1
0e, 0 (5) = /O Fasm e + [0 de, () (1E)E;"d1.

thus
n 1 1 n
Zasjaj(é)zf f(té)nl”_ldt+/ > 9 (f)(tE)§;t"dt
j=1 0 0 j=1

1
=/0 A (ftE)")dt = f(§).

It remains to show that 0} € CS™*1(R™). The function o; is certainly smooth. For
|€] > 1 we have by change of variables r = ¢|£|:

oj(@:/omf( é) n=1drg| g

= [ (g )rtariere - /oof( )

The first summand is homogeneous of degree —n + 1 while the second summand
satisfies the estimates of a Schwartz function at oo (it is not a Schwartz function
since it is not smooth at 0). Thus o; € CS™*!(R") and its homogeneous expansion
consists only of one term of homogeneity —n + 1,

oj<s)~/0°°f( é) "dr .

proving the first claim.

For the second claim the necessity of [p, f = 0 is clear. In fact the proof of
the Poincaré Lemma with compact supports (Bott and Tu [BoTu82], Sec. 1.4) works
verbatim for the forms Q2°S(R”) with coefficients in S(R”). Thus the closed n-form
fd&r A+ AdE, is exact in Q°S(R”) if and only if [, f = 0. If this is the case
then fd& A---AdE, = dn withan (n — 1)-form n € Q"~'§(R"). Expanding 7 as
in (2.9) we see that f = »7_, d¢,0; with Schwartz functions o;. O

2.4.2. The residue and the regularized (cut-off) integral. We now extend the
residue (Definition 2.3) from homogeneous functions to CS¢(R").
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Let o € CS*(R") have asymptotic expansion ¢ ~ 27‘;0 0q4—j,cf.eq. (2.13) and
(2.15). Then 6_; € £~/ (R" \ {0}). Put

res(o) := resw(oﬁn) = / i;n_l(afn)d volgn—1 = / i;,,_l(ofntxw),
sn—1 Ssn—1

where ® = d&; A --- A d&,. In other words the residue of o equals the residue of its
homogeneous component of homogeneity degree —n. Thus res(o) # 0 only if a is
an integer > —n. The functional res was studied in [Pay(07].

We also recall the regularized integral or cut-off integral f: CS*(R") — C
(cf., e.g., [Les10], Sec. 4.2): If f € CS*(R") then the asymptotic expansion f ~
Z;io Ja—j implies that as R — oo one has an asymptotic expansion

oo

[ 1©ds v X R 4R () log R.
l|<R R—=o00 iTh
a—j+n#0

The regularized integral fg, f(§)d§ is, by definition, the constant term ¢ in this
asymptotic expansion. It has the property that fp, de; f # O only if a is an integer
>-—n+1.

The following result generalizes [Pay07], Prop. 2 and Thm. 2, where it was proved
modulo smoothing symbols.

Proposition 2.13. (1) Let a € Z. For a symbol f € CS*(R") there exist symbols
o; € CS"@(R™), r(a) := max(a, —n) + 1, such that f = Z;':l ¢, 05 if and only

if res(f) =0.
(2)Leta € R\Z. Forasymbol f € CS*(R") there existsymbols o; € CS*T1(R")

such that f = Y i_, 3¢, 05 if and only if fpn f = 0.
Proof. (1) We will repeatedly use that, by construction, the asymptotic relation
eq. (2.14) may be differentiated, i.e., if g € CS*(R") with g ~ Y ;2 g4—i, then
[e.e]
dg; 8 ~ D 0g;8a—1-
=0

Now leta € Z and f € CS*(R") with f ~ 3772, fay. I f = 3 7_; 0,7
with 7; € CS" @ (R™), then certainly fro= Z;':l g, T}f_n_H and hence res(f) =
res(f_hn) = 0 by Corollary 2.4.

Conversely, if res(f) = 0 then again by Corollary 2.4 there are t}fa_l 4 €
PIFL(R™ \ {0}) such that f7 |, = > i1 O T}fa—l+1'
We fix a cut-off function y € C*°(R") such that
1 if|§]=1/2,
¢) = T 51 =1/ (2.16)
0 if|g] <1/4.
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Now asymptotic summation [ShuO1], Prop. 3.5, guarantees the existence of 7; €

CS**(R") such that ; ~ 3772, xt,_, | and hence

n o n : oo
Z ngrj ~ Z Z )(ngrj’a_lﬂ ~ IZ:O fa—l ~ f’

j=1 1=0j=1
thus

-y O, 77 = g € ST(R) = S(R"). 2.17)
j=1

Applying Lemma 2.12 to g the case a € Z is settled.

(2)Leta € Z. It wasremarked before Proposition 2.13 that the condition J[[Rn f=
0 is necessary. To prove sufficiency consider f € CS*(R") with fp,, f = 0. Since
a € Z,we have res( ) = 0 trivially. Therefore, as before we arrive at (2.17) (this is
the content of [Pay07], Prop. 2). Still we have [p, g = fpn f‘Z?:l frn dg; 7j = 0.
Now apply the second part of Lemma 2.12 to g, and the proof is complete. O

3. Pseudodifferential operators and tracial functionals

Standing assumptions. Unless otherwise said, in the rest of the paper M will denote
a smooth closed connected Riemannian manifold of dimension n. The Riemannian
metric is chosen for convenience only to have an L2-structure at our disposal. One
could avoid choosing a metric by working with densities.

Given b € R, we use the notation Z <, := Z N (—00,b], Z-p := Z N (b, +00).

3.1. Classical pseudodifferential operators. We denote by L°(M) the algebra
of pseudodifferential operators with complete symbols of Hormander type (1,0)
([Hor71], [ShuO1]), see Section 2.4.1. The subalgebra of classical pseudodifferential
operators is denoted by CL*(M).

Let U C R” be an open subset. Recall that for a symbol o € S™(U x R"), the
canonical pseudodifferential operator associated to o is defined by

Op(u() i= [ oo de = [ [ ot o) dyds.
R” rR*JU
3.1)
where @& := (2m) " d&. For a manifold M, elements of L* (M) (resp. CL*(M)) can
locally be written as Op(o) with o € S*(U x R") (resp. CS*(U x R")).
Recall that there is an exact sequence

0 — CL™ Y (M) — CL™(M) 2% ™(T*M \ M) — 0, (3.2)

where g, (A) is the homogeneous leading symbol of A € CL™(M). It has a (non-
canonical) global right inverse Op which is obtained by patching together the locally
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defined maps in eq. (3.1). 05, (A) is a homogeneous function on the symplectic cone
T*M \ M (cf. Section 2.3). We will tacitly identify ™ (T*M \ M) by restriction
with C®°(S*M). Here S*M is the cosphere bundle, i.e., the unit sphere bundle
CcCT*M.

Recall that the leading symbol map is multiplicative in the sense that

0a+b(A o B) = 04(A) 0p(B) (3.3)

for A € CL%(M), B € CL?(M). Furthermore, we record the important formula

asr (14, B) = +{0a(4). (B}, G4

which is a consequence of the asymptotic formula for the complete symbol of a
product, cf., e.g., [ShuO1], Thm. 3.4.

3.2. Tracial functionals on subspaces of CL*(M). Leta € R. CL*(M) is an
algebra if and only if a € Z . In this case a linear functional 7: CL*(M) — C is
a trace if and only if

t([A,B]) =0 forall A, B € CL*(M). 3.5)

Therefore, in order to characterize traces on CL?(M), one has to understand the
space of commutators [CL*(M),CL%(M)]. Note that the commutator [4, B] €
CL2%(M). Here, in the situation of operators with scalar coefficients, one even
has [A4, B] € CL?*"1(M). However, AB and BA are only in CL2%(M) and that
[4, B] € CL2¢"Y(M) is only due to the fact that the leading symbols of 4 and B
commute. If A, B are pseudodifferential operators acting on sections of a vector
bundle (see Section 5) then one can only conclude that [4, B] is of order 2a.

Conversely, if 7: CL24(M) — C is a linear functional satisfying eq. (3.5) then
any linear extension T of ¢ to CL*(M) is a trace on CL*(M).

CL2%(M) is a subspace of CL*(M) if and only if @ € Z . However, for any
a € R it makes sense to consider linear functionals on CL2% (M) satisfying (3.5):

Definition 3.1. Let b € R and let 7: CL?(M) — C be a linear functional.

(1) 7 is called a pretrace if T([A, B]) = 0 for all A, B € CL?/?(M).

(2) 7 is called a hypertrace if t([A, B]) = 0 forall A € CL®(M), B € CL?(M).
If CL*(M) C CL?(M) we sometimes use the abbreviation 7, := © | CL*(M).

Remark 3.2. If b € Z -, then any hypertrace on CL®(M) is a trace on CL?(M)
since CL? (M) c CL%(M). The restriction of a trace on CL? (M) to CL??(M) is
obviously a pretrace.

Next we discuss the canonical (pre-, hyper-)traces which exist on CL%(M) for
various a.
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3.2.1. The L2-trace. A pseudodifferential operator A of order ord(4) < —n =
—dim M is a trace-class operator. The standard Hilbert space trace on operators
acting on L2(M) is denoted by Tr. Note that

Tr(A) = /M Ka(x,x)d vol(x),

where K4 is the Schwartz kernel of the operator A. If K4 is supported in a coordinate
chart U, where A is given by Op(o) with 6 € CS*(U x R"), then by, eq. (3.1),

Tr(A) = /;] /IR” o(x,&)d&dx. (3.6)

Since for any trace-class operator K in the Hilbert space L2(M ) and any bounded
operator T in L?(M) one has Tr(K T) = Tr(TK), it follows that Tr is a hypertrace
on CL*(M) for any real a < —n. Furthermore, if p,g > 1 are real numbers
such that 1/p + 1/q = 1 and if A € LP(L?*(M)), the p-th Schatten ideal of
operators in L2(M), and B € L9(L?*(M)), then also Tr(AB) = Tr(BA). From
CLY(M) C LP(L?*(M)) fora < —n/ p it then follows that

Tr([A, B]) = 0 for A € CL*(M), B e CL)(M)ifa+b < —n. (3.7)

In particular, Tr, = Tr } CL*(M) is a pretrace for any a < —n. In fact, eq. (3.7)
can be improved slightly:

Lemma 3.3. Let A € CL4(M), B € CLY(M) witha + b < —n + 1. Then [A, B]
is of trace-class and Tr([A, B]) = 0.

Proof. We follow Section 4 of [Les99]. Let P € CL! (M) be an elliptic pseudodiffer-
ential operator whose leading symbol is positive and let A € CL4(M), B € CL?(M).
We put . .

V3(B):=B, V" 'B:=[P,V}B]

and by induction, for all j € N we have
V}B € CLY(M).

Then for N large enough one has

N—-1 (—l)] )
ePp=3" ' (ViB)e P + Ry (1),
j=0 7°
where Ry (¢) is a smoothing operator such that Tr(ARy (¢)) = Tr(Ry (£)A) = O(t)
ast — 071 therefore

N-1 ;
Tr((4. Ble™P) == > (_jt ')J Tr(A(VLB)e F) + 0(), t—0t. (38
j=1 7
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Invoking the short time heat kernel asymptotics, cf., e.g., Grubb and Seeley [GrSe95],

. o0 o0
Tr(A(VHB)e F) ~, Lo+ Y (ck + dilogt)tk=a=b=n 1 3~ o4tk (3.9)
k=0 k=0

we see that for j > 1, thanksto j —a —b —n > 0,

lim t/ Tr(A(V}) B)e™'F) = 0. (3.10)
t—>0

Since [A, B] € CL**?~Y(M)anda+b—1 < —n, the operator [A, B] is of trace-class
and from (3.8), (3.9), and (3.10) we thus infer

Tr([4. B]) = lim Tr([4, Ble™'P) = 0. O
t—0

3.2.2. The Kontsevich-Vishik canonical trace. Fornon-integer a thereis aregular-
ization procedure which allows to extend the L2-trace in a canonical way to CL% (M)
(see [KoVi95], [Les99], [Les10], Sec. 4.3). Inbrief fora € R\ Z>_, thereis a canon-
ical linear functional, the Kontsevich—Vishik canonical trace, TR: CL*(M) — C
such that

TR, = TR | CL*(M) = Tr } CL*(M) = Tr, ifa < —n,

3.11
TR([A,.B]) =0 ifAeCL*M), BeCLY(M), a+b & Z=_py1. G-I

Usually the second property is stated only fora + b & Z. However, ifa + b < —n
then AB is of trace-class and TR(AB) = Tr(AB) = Tr(BA) = TR(BA) follows
from the theory of the trace in Schatten ideals (see an analogous discussion in the
previous section). If only a + b — 1 < —n then [A, B] is still of trace-class and
TR([A, B]) = Tr([A4, B]) = 0 follows from Lemma 3.3.

The properties (3.11) immediately imply that the canonical trace TR is ahypertrace
and a pretrace on CL*(M) fora € R\ Z>_,.

3.2.3. Theresidue trace. The residue trace, called by some authors the noncommu-
tative residue, somehow complements the canonical trace. In terms of the complete
symbol, the residue trace of an operator A € CL*(M) is given by (see [Wod87b])

1 1
Res(d) = res(o(A) = o [ [ onu ()8 v(@) n

where v (£) is a volume form on S} M and res is the symplectic residue on 7*M \ M
(cf. Section 2.3.1 and Section 2.4.2). Res is the unique trace on the whole algebra
CL*(M) whenever n > 1 ([Wod87b], [BrGe87], [FGLS96], [Les99]). By definition,
this trace vanishes on trace-class pseudodifferential operators and non-integer order
pseudodifferential operators.

The residue trace Res is a pretrace and a hypertrace on CL*(M) foralla € R. It
is non-trivial, however, only ifa € Z~_,.
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4. Operators as sums of commutators

In order to classify traces and (pre-, hyper-)traces on CL? (M) we first study the
representation of an operator as a sum of commutators.

4.1. Smoothing operators. The closure of the algebra CL™*°(M) of smoothing
operators in B(L?(M)) is the algebra of compact operators. The latter is known
to be simple. Indeed one has the following, which is in a sense an analogue of the
second part of Lemma 2.12:

Theorem 4.1 ([Gui93], Thm. A.1). Let M be a closed manifold. Then for any
J € CL™°(M) with Tr(J) = 1 the following holds: for R € CL™*°(M) there exist
smoothing operators S1,...,Sy,T1,..., Ty € CL™°(M) such that

R =Tr(R)J + % [S;. T;1.
j=1

Briefly, we have an exact sequence
0 — [CL™°(M),CL~®(M)] — CL™®(M) 25 C - 0.

Can we write J as a sum of commutators of general pseudodifferential operators?
Since Res is up to constants the only trace on CL* (M) (for M compact and connected
of dimension > 1), the answer is yes. A more precise answer is the following.

Proposition 4.2 ([Pon10], Prop. 4.2 ). Let M be a compact Riemannian manifold of
dimension n > 1. Then CL™®°(M) C [CL®(M),CL™"*1(M)].

We present here a brief variant of the proof of Ponge; our proof is based on

Lemma 4.3. Letn > 2.
(1) The operator Q; of convolution by the function
Yj

L) =05

e dy, (log |y1)

is a classical pseudodifferential operator of order —n + 1 on R™.
(2) For any smoothing operator R € CL™°°(R") there exist B; € CLT"T1(R"),
j=1,...,n, such that R = Z;;l[Op(xj), Bj].

Remark 4.4. Op(x;) is the pseudodifferential operator associated to the symbol
function (x, &) — x;. Of course, this is nothing but the operator of multiplication by
the coordinate x;. Therefore, Op(x;) commutes with multiplication operators, a fact
that will often be used below.
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Proof. (1) We have f; | R" \ {0} € P~1(R" \ {0}). Since f; is locally integrable
on R”, it defines a distribution in D’(R") which is homogeneous of degree —1. Then
by [H6r03], Thm. 7.1.18 and 7.1.16, f; € 8(R") and its Fourier transform f, is
a homogeneous distribution of degree —n + 1 in R” which is smooth in R” \ {0}.
With the cut-off function y of eq. (2.16) we therefore have Xﬁ e CSTMTL(RM).
Furthermore, (1 — y) is compactly supported and thus (1 — y) = 1,@ with ¢ € S(R").
Foru € C°(R"), the space of compactly supported smooth functions on R”, we now
have

Qju = f;*u=O0p(xfiu+ W * f;) *u.

Convolution by the Schwartz function y* f; is smoothing and thus Q; € CL™"*1(R").

(2) A smoothing operator R has asmooth kernel Kg(x, y), and therefore, (x, y)
KRr(x,y) — Kgr(x,x) is smooth and vanishes on the diagonal. It follows that there
are smooth functions K1, ..., K, such that

Kr(x,y) = Kr(x,x) + Z(x, —y)Kj(x,y).
=1

Let QO be the operator defined by the kernel Ko (x,y) = Kg(x,x), and let R; be
the smoothing operators defined by the kernels K (x, y), then

n
R =0+ ) [Op(x)). Rj].
ji=1
Let H; be the operator with kernel (x, y) — f;(x —y)Kgr(x,x). H; is Q; followed
by multiplication by the smooth function x + Kg(x,x) and is therefore, by the
proved part 1., a classical pseudodifferential operator of order —n + 1. Since

Z(x, ¥ f5 (6 — VKR, x) = Z(x’ |§ Kr(x, %)

Jj=
= KR(x,x) = Ko(x,y),

it follows that Q = Z;?:l [Op(x;), H;]. The result of the lemma follows with B; :=
R;j + H; € CLT"TL(R"). O

Proof of Proposition 4.2. Let U C R" be an open set and let R € CLcomp(U )bea
smoothing operator with compactly supported Schwartz kernel Kg € C°(U x U).
Let ¢ € C°(U) be such that ¢ (x)¥ (y) = 1 in a neighborhood of the support of the
kernel of R, then YRy = R.

By Lemma 4.3 there exist P; € CL™"*!(U) such that R = Y 7_,[Op(x;), P;].
Let y € C°(U) be such that y = 1 in a neighborhood of supp(y). Then we have

V[Op(x;), Pily = Op(x;) x ¥ Piy — v Py Op(xi) x = [Op(xi) x, Y Piyr],
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thus
n

R = ) [Op(x; x). ¥ Piy]. 4.1)

i=1

Note that x; y € C°(U) and P,y € CLEN(U).
Now let {¢;} C C°>°(M) be a partition of unity subordinate to a finite open
covering {U;} of M by coordinate charts. Furthermore, choose ; € C°(U;) such

that ¥; = 1 in a neighborhood of supp(¢;). Then for any R € CL™*°(M) we have
j g PP y

N N
R= El 0 Ry + Zl 9i R(1 =)
J= J=

—00

For each index j the operator ¢; Ry; belongs to CL T (U;), so by the previous
argument it can be written as a sum of commutators of the form (4.1). Moreover, the
operator S := ZJN=1 @j R(1 — ;) is smoothing and its Schwartz kernel vanishes
on the diagonal, so its trace vanishes and by Theorem 4.1 it can be written as a
sum of commutators in [CL™*°(M),CL™*°(M)]. Hence R belongs to the space
[CLO(M),CL™"*1(M)], as claimed. O

The degrees 0 and —n + 1 in the commutator [CL® (M), CL™""1(M)] in Propo-
sition 4.2 can be traded against each other as the following simple but very useful
lemma due to Sylvie Paycha shows. This lemma is included with her kind permission.

Lemma 4.5. Forany o, € R,
[CL®(M), CL**P (M)] C [CL*(M),CL (M),

meaning that any commutator in [CL® (M), CL**B (M)] can be written as a sum of
commutators in [CL* (M), CLA (M)).

Proof. Let A € CL°(M), B € CL*"#(M). Fix a first order positive definite el-
liptic operator A € CLI(M). Then AA*, A*A, A* € CL*(M), BA™,A™*B,
ABA % A™®BA € CLA (M). Moreover,

[AA®,A"®B] = AB — A"*BAA®, 4.2)
[AA, BA™®] = A*ABA™ — BA, 4.3)
[ABA™®, A%] = AB — A*ABA™, (4.4)
[A™“BA, A% = A"*BAAY — BA. 4.5)

Adding up (4.2)—(4.5) yields twice the commutator [A4, B], therefore we obtain
[A, B] € [CL¥(M),CLA (M))]. O
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4.2. General classical pseudodifferential operators. We now combine the main
result of Section 2.3, Theorem 2.9, and the results of the previous Section to obtain
statements about general pseudodifferential operators as sums of commutators. This
improves, for classical pseudodifferential operators, [Les99], Propositions 4.7 and
4.9; for such operators these results in fact go back to [Wod84]. In [Les99] the
more general class of pseudodifferential operators with log-polyhomogeneous symbol
expansions was considered.

Theorem 4.6. Let M be a compact connected Riemannian manifold of dimension
n > 1. Fix Q € CL™"(M) with Res(Q) = 1. Then for any real numbers m,
a there exist Py, ..., Py € CL™(M) such that for any A € CL*(M) there exist
01....,0n € CLY ™Y (M) and R € CL™®°(M) with

N
A=Y [P;.Qj] +Res(4) Q + R.
j=1

Proof. We follow the proof of [Les99], Prop. 4.7, where the case m = 1 is discussed,
with a few modifications and improvements.

First, replacing A by A—Res(A) Q if necessary, we may without loss of generality
assume that Res(A4) = 0.

We choose p1,...,py € P™(T*M \ M) such that their differentials span the
cotangent bundle of T*M \ M at every point if m # 0; if m = 0 we choose the
pj such that their differentials restricted to S*M span the cotangent bundle of S*M
(cf. the proof of Theorem 2.9). Choose P; € CL™ (M) with leading symbols p;.
Consider the leading symbol o,(A) € P4(T*M \ M) of A. Its symplectic residue
is0ifa # —n, and if a = —n it is up to a normalization equal to Res(A4) (cf., e.g.,
[Les99], Prop. 4.5), hence it is also O in that case.

Then by Theorem 2.9 and its proof there are q](.l) € PMTYT*M \ M) such

that o4 (A) = 1 Z;V=1{Pj , qj(.l)}. Thus choosing Qj(.l) € CL*™*1(M) with leading
symbol q](-l) we find, see eq. (3.4),

N
AV = 4- Y (p; 0" e cL (),
j=1

We iterate the procedure inductively and assume that we have operators Qj(.l) €
CLe™™+1(M), 1 <[ < Iy, such that

0h) i ) l
A =A—ZI[PJ',QJ~ ] e CL* (M)
=
and
0 — oItV ecLamH =l (Mm), 1<l <l 1. (4.6)
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As for A we then choose B; € CL* ™ lo+1 (1) such that

N
AlotD = glo) _ S~ [p; B;] e CL* 07 (M).
j=1

Now put QJ(~10+1) = QJ(-IO) + Bj. Then (4.6) holds for all / and we can invoke the
asymptotic summation principle [Shu01], Prop. 3.5, and choose Q; € CL*™™*1(M)
such that forall/ € N, Q; — Q](.l) € CLS7+1=L(]M). Then

N
A— ZI[P]',Q]']ECL_OO(M). O
]:

Combining Theorem 4.6 and Lemma 4.5 we find

Theorem 4.7. Under the assumptions of Theorem 4.6 leta € Z, —n < a < 0. Then
CLY(M) = [CL@*V2(p), CLTY2 (M) @ C - 0, (4.7)
CLY(M) = [CL(M),CLT (M) @ C - Q. (4.8)

In other words for A € CL*(M) there exist operators Py,..., Py, Q1,...,0ON €
CL@HV/2(M) resp. Py, ..., Py € CLY(M), Q4,...,On € CL*TY(M) such that

N
A= ZI[P]', Q]] + Res(A) Q.
j=

Proof. Apply Theorem 4.6 with m = (a 4+ 1)/2 (resp. m = 0). This yields
Pi,..., Py in CL@tD/2(M) (resp. CLO(M)), Q4,...,0ns € CL@TD/2(pr)
(resp. CL*T1(M)) and R € CL™*°(M) such that

N/
A= Z [Pj, QJ] + Res(A) 0 +R.
j=1
By Proposition 4.2 we have
CL™ (M) C [CL%(M),CL™"!(M)] c [CLY(M),CL ! (M)]

and hence there are Py 1,..., Py € CLO(M)and Qn/y1....,Qn € CLATH(M)
such that R = ZJZ'V=N'+1 [P;. Qj] proving eq. (4.8).

To prove eq. (4.7), we apply Lemma 4.5 witha = (@ + 1)/2, 8 = —n+ 1 —q.
Theno — B = a + n € Z+g, hence CL? (M) c CL*(M) and we find

R e CL™®°(M) C [CL°(M),CL™""1(M)]
C [CL¥(M), CLA (M)] c [CL@*+D/2(pr), cL@+D/2 (1)), O
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4.3. Classification of traces on CL*(M). We are now going to classify the pre-
traces and the hypertraces on CL4(M ) for all a € R, as well as the traces on CL* (M)
for a € Z<¢. The following definition will be convenient.

Definition 4.8. Recall that for a linear functional 7: CL?(M) — C and CL*(M) C
CL? (M) we abbreviate 7, := © | CL%(M).
We fix once and for all a linear functional Tr: CL°(M) — C such that for
ae€l-_,
Tr } CL*(M) = Tr |} CL*(M),

cf. Definition 3.1. Furthermore put

TR, ifaeR\Zs_,,
TR, :=(Tr, ifaeZ, —n<a< =, (4.9)
Res, ifa e Z, #Sa.

TR, conveniently combines the Kontsevich—Vishik trace and the residue trace.
The notation is slightly abusive since for a,b € Z,a < (—n + 1)/2 < b, one has
TR, | CL2¢7Y(M) = Res | CL2*"Y(M) = 0 # Tr | CL?4~ (M) = TRag_1.
The disadvantages of this notational conflict are outweighed by the convenience of
having a common notation for the Kontsevich—Vishik trace and the residue trace.
This will free us from repetitively having to make a distinction between the cases
aeR\Zs_,anda e Z-_,.

We also emphasize that the choice of Tr is not canonical but certainly possible.

Proposition 4.9. Leta € R.

(1) Any pretrace on CL*(M) is a hypertrace on CL*(M).

(2) If © is a hypertrace on CL*(M) then there is a unique constant A € C such
thatt |} CL™°(M) = A Tr.

(3)If a € Z<pand t is atrace on CL*(M ) then t | CL?**(M) is a pretrace (and
hence a hypertrace). Conversely, given a pretrace on CL?>* (M), any linear extension
T of T to CLY(M) is a trace.

(4) Fora € Z <o, TRy is a trace on CL*(M). Fora € R\ (Z N [-n +1,—n/2])
it is a pretrace (and hence a hypertrace).

Proof. (1) follows from Lemma 4.5. (2) follows from Theorem 4.1. (3) is obvious.
(4) For ”+1 < a the claim follows from the properties of the residue trace.

Except for a = —n the fact that TR, is a pretrace follows since Res, and TR,
are pretraces.

Next consider a € R, a < =%, Then for A, B € CL*(M) it follows from
Lemma 3.3 that [A4, B] € CL?“~!(M) is of trace-class and that

TR24-1([4, B]) = Tr([4, B]) = 0.

This proves the remaining claims under (4). O
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Thus to classify traces on CL* (M) (for a € Z <), it suffices to classify pretraces
on CL2%(M). And to classify pretraces on CL? (M) (for any b € R!) it suffices to
classify hypertraces on CL? (M).

The following considerably improves a uniqueness result by Maniccia, Schrohe,
and Seiler [MSS08].

Theorem 4.10. Let M be a closed connected Riemannian manifold of dimension
n>1a¢€ R\ Z-_y, and let T be a hypertrace on CL*(M). Then there are
uniquely determined A € C and a distribution T € (C*°(S*M))* such that T =
ATR, + T o o,.

Consequently, a linear functional on CL*(M) is a hypertrace if and only if it is a
pretrace.

Remark 4.11. Recall from eq. (3.2) that o, denotes the leading symbol map. Since
the leading symbol is multiplicative (see eq. (3.3)), it follows that for any 7' €
(C*°(S*M))* the functional T o ¢, is a pretrace and a hypertrace on CL*(M).
Some authors (see [PaRo04]) call such traces leading symbol traces.

Proof. We note that if 7 is a hypertrace on CL? (M) then by Proposition 4.9 (2), there
isaunique A € C suchthatt } CL™*°(M) = A Tr.
We apply Theorem 4.6 with m = 0. Then for A € CL*"(M) we find

N
A= Z[Pj,Qj]-i-R, (4.10)
Jj=1

with P; € CL?, Q; € CL*(M). Note that Res(4) = Osincea — 1 € R\ Zs_,.
From eq. (4.10) we infer t(A4) = 7(R) = A Tr(R) = ATR(R) = A TR(A).

Thus we have 7 |} CL"'(M) = ATR |} CL* Y (M) = ATR,_; = ATR,_;.
Put 7 := 7 — ATR,. Then 7 vanishes on CL* ! (M) and thus in view of the exact
sequence eq. (3.2) there is indeed a unique linear functional 7 € (C*°(S*M))* such
that T = T o g,.

For the last statement we note that by Proposition 4.9 (1) every pretrace is a
hypertrace. For the converse note that 7 = ATR,+Too,,a € R \Z~_p,isindeed a
pretrace. For TR, this follows from Proposition 4.9 (4). For T ooy it is a consequence
of (3.3). O

The remaining cases of integral values are dealt with in the following.

Theorem 4.12. Let M be a closed connected Riemannian manifold of dimension
n>1,a € Z._,, andlet t be a hypertrace on CL*(M). Then there are uniquely de-
termined A € C and adistribution T € (C™°(S*M)) * suchthatt = A Resg +T 00,.

Consequently, a linear functional on CL*(M) is a hypertrace if and only if it is a
pretrace.
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Proof. We apply Theorem 4.7 and find for A € CL“~ (M),
N
A= Y [P;. Q)] +Res(A) Q. (4.11)
j=1

with P; € CL(M), Q; € CLY(M). Thus t(A) = t(Q)Res(A). As in the proof of
Theorem 4.10 one now concludes that t = t(Q) Res, +7 o 0.

The last statement follows from Proposition 4.9 and the fact that Res, and T o g,
are pretraces on CL4(M). O

Combining Theorem 4.10, Theorem 4.12 and Proposition 4.9 we now obtain a
complete classification of traces on the algebras CL* (M), a € Z <.

Corollary 4.13. Let a € Z <, and denote by
mq: CLY(M) — CLY(M)/ CL**~Y(M)

the quotient map. Let t: CL*(M) — C be a trace. Then there are uniquely deter-
mined A € C and T € (CL*(M)/ CL2~Y(M))* such that

7= ATR, + T o 7,.

Remark 4.14. Note that for a = 1, the space CL!(M) is not an algebra but it is a
Lie algebra and it makes sense to talk about traces; in this case, the quotient map
is trivial and the proof below shows that Res is up to normalization the unique trace
on CLY(M).

In the case a = 0 this result was known, see [LePa07] (and also [Wod87a]).

If 2a < —n < a, Res, is a non-trivial trace on CL*(M). However, since
Res | CL24" (M) = 0 (since 2a—1 < —n), thereis A € (CL*(M)/ CL?4~1(M))*
such that Res, = A o 7.

By choosing right inverses 6,: C*(S*M) — CL*(M) to the symbol map one
iteratively obtains an isomorphism

a a
CL*(M)/ CL** Y (M) = l@l CL* k(M) /CLa*F =1 (M) = l@' C®(S*M).
k=0 k=0
Under this (non-canonical) isomorphism 7 € (CL4(M)/CL?%~!(M))* corresponds
to a (Ja| 4+ 1)-tuple (Tj)}a:lo of distributions 7; € (C®(S*M))*.

Proof. By Proposition 4.9, 15, = © | CL2%(M) is a hypertrace on CL?*(M). By
Theorem 4.10 (if 2a < —n + 1) resp. Theorem 4.12 (if —n 4+ 1 < 2a < 0) there is a
unique A € C such that

ATI‘za_l if2a < —n + 1,
T _ =
2471 7 YA Respyy if —n+1<2a <0.
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Putting o

T=1—ATR,
it follows that 7 vanishes on CL2¢~! (M) and hence is of the form T o 7z, for a unique
T e (CL4(M)/CL?"1(M))*. O

4.4. Alternative approach to Theorem 4.12. For this subsection we received con-
siderable help from Sylvie Paycha which is acknowledged with gratitude.

The proof of the uniqueness of the canonical trace TR (Theorem 4.10) relied
solely on the results of Section 2 and Theorem 4.1. The proof of the uniqueness of
the residue trace (Theorem 4.12), however, relied additionally on Theorem 4.7 and
thus on Proposition 4.2 due to Ponge. We will give here an alternative completely
self-contained proof of Theorem 4.12 which does not make use of Proposition 4.2.

Given a hypertrace T on CL*(M), a € Z, —n < a < 0, apply Theorem 4.6 with
m = 0. Then for A € CL“"}(M),

N
A= 2 [Pj. Qj]+Res(4) O + R,
j=1
with P; € CL®(M), Q; € CL*(M) and R € CL™°(M). If one can conclude that
7(R) = 0, then one can proceed as after (4.11). So we have to prove

Proposition 4.15. Let M be a closed Riemannian manifold and fora € Z, —n+1 <
a <0, let t be a hypertrace on CL*(M). Thent |} CL™°(M) = 0.

Proof. Let (U, x1,...,X,) be alocal coordinate chart of M. Recall that we denote
by CSmp(U x R") the set of classical symbols of order @ on U with U-compact
support, and CL‘ClomP(U ) denotes the space of classical pseudodifferential operators
of order @ on U whose Schwartz kernel has compact supportin U x U. Any operator
in CL{,,,,(U) can be extended by zero to an operator in CL*(M), and we have the

natural inclusion CL{,,,(U) C CL*(M).

comy

Note, however, that although for o € CS{,, (U x R") the operator Op(c) maps

com

CE(U) — CZ(U), it does not necessarily lie in CL{,,,,(U). Below we will take
care of this fact by multiplying by some cut-off function from the right.
Let 7 € 8(R") be a Schwartz function with [p, 7(§)d§ = 1. By Lemma 2.12

there exist 71, ..., 7, € CS*(R") such that
n
T= ) 0 Tk.
k=1

We note in passing that since the function t has non-vanishing integral, at least one
of the functions t; does not lie in S(R").

Next we choose f € CZ°(U) with [, f(x)dx = 1. Theno := f @z, defined by
o(x,§&) := f(x)r(§),is a smoothing symbol with U -compact support. Furthermore,

oc=f®t=[f® i g, Tk = i g, (f ® ), /U Rna(x,é)dédx:l.
k=1 k=1 x
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Integration by parts shows that (cf. [Hor03], Thm. 18.1.6, (3.4))
Op(o) = kZ Op(0g, (f ® ) = —i kZ [Op(xk). Op(f & )] (4.12)
=1 =1

Let Y € C°(U) be a function with ¥y = 1 in a neighborhood of supp( f'); then
¥ f = f. Moreover, forallk =1,...,n,

[Op(xk). Op(f ® )] Op(¥) = [Op(xk). Op(f ® ) Op(V)]

(4.13)
= [Op(¥xx). Op(f ® ) Op(¥)] + A

with

Ay = O0p(f ® 1) Op(¥) Op(xx) Op(¥) — Op(¥) Op(f ® 7%) Op(¥) Op(xk)

= Op(f ® 7) Op(¥) Op(xx)(Op(y) — 1).
(4.14)

Here we used that the operator Op(x;) commutes with the operator of multiplication
by ¥, Op(V), cf. Remark 4.4, and that v f = f.
Since f ® 1z € CSZ (U x R"), the operator Op(f ® 1) Op(¥) lies in

comp

CL‘Clomp(U ); similarly, ¥x; € ngomp(U x R™) and the operator of multiplication
by ¥xx, Op(¥xy), lies in CLS _ (U).

comp
Let 7 be a hypertrace on CL?(M ). Then t vanishes on [CLgomp(U ), CLmp (U)]-
In particular, forallk = 1,...,n,

t([Op(¥xk), Op(f ® ) Op(¥)]) = 0.

By Proposition 4.9 (2), we have © } CL™*°(M) = ATr for some A € C. Now,
since ¥ = 1 near the support of f, by (4.14) the operator Ay is smoothing and its
Schwartz kernel vanishes on the diagonal. Hence, its L?-trace vanishes and thus also
7(Ax) = ATr(Ag) = 0.

Thus, for Op(c) Op(y¥) € CL_*° (U), from (4.12) and (4.13) we conclude that

comp

©(Op(0) Op(y)) = —i ké 7([Op(xx). Op(f ® )] Op(¥))

=i kf (t([Op(¥xx). Op(f & ) Op(¥)]) + t(Ag)) H12)
=1

=0.

On the other hand, by (3.6) and Proposition 4.9 (2),

©(Op(0) Op(¥)) = ATr(Op(0) Op(¥)) = /\/

U x

o(x,&)dédx = A.
R”

Therefore, by (4.15) we obtain A = 0. O
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5. Extension to vector bundles

In this final section we extend the classification of traces and hypertraces to the spaces
CL%*(M, E) of pseudodifferential operators acting on sections of the vector bundle
E over M.

5.1. Preliminaries. Unless otherwise said, in the whole section M denotes a smooth
closed connected Riemannian manifold of dimensionn. Let E — M be a smooth her-
mitian vector bundle over M. We denote by CL% (M, E) the space of classical pseu-
dodifferential operators of order a acting on the sections of E. CL*(M, E) acts nat-
urally as (unbounded) operators on the Hilbert space L?(M, E) of square integrable
sections of E. The elementary discussion of traces, pretraces and hypertraces in Sec-
tion 3.2 extends verbatim to CL% (M, E). However, as noted there, we now only have
[CLY(M, E),CLY(M, E)] ¢ CL*t*(M, E) as opposed to [CL4 (M), CL?(M)] c
CL*t2=1(M) in the scalar case E = M x C. Lemma 4.5 holds with the same proof
for CL*(M, E) instead of CL*(M). Finally, Theorem 4.1 holds for CL™°(M, E)
too; this follows directly from Thm. A.1 of [Gui93], which is stated in a Hilbert space
context and is therefore flexible enough.
In sum, also Proposition 4.9 (1)—(3) holds accordingly:

Proposition 5.1. Leta € R.

(1) Any pretrace on CL*(M, E) is a hypertrace on CL*(M, E).

(2) If 7 is a hypertrace on CL* (M, E) then there is a unique constant A € C such
thatt |} CL™*°(M, E) = A Tr.

(3)If a € Z<y and t is a trace on CL*(M, E) then t } CL?>*(M,E) is a
pretrace (and hence a hypertrace). Conversely, given a pretrace on CL**(M, E)
then any linear extension T of t to CL*(M, E) is a trace.

For the analogue of Proposition 4.9 (4) see Proposition 5.5.
The main task now is to classify the hypertraces on CL4(M, E).

5.2. Trivial vector bundles. Let My (C) be the space of (N x N)-matrices with
coefficientsin C. Foralli, j = 1,..., N, we denote by E;; the elementary matrix in
My (C) with 1 in the (7, j)-position and 0 everywhere else. The matrices E;; form
a basis of My (C) and we have

EijEx; = 0 Ejp.

Let us denote by try the unique trace on the algebra My (C) such that try (E;;) = 1
foralli =1,...,N.
For a complex vector space V' we will tacitly identify My (V) with V ® My (C)
via
N
X = (xij)i,j = ' Zl Xij ® Eij.
l,]=
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Obviously, we have CL?(M, CV) = My (CL%(M)) = CL*(M) ® My (C). Here,
by slight abuse of notation CL* (M, CV) denotes the space of classical pseudodiffer-
ential operators acting on the trivial vector bundle M x CV.

Definition 5.2. Let a € R and let 7 be a linear functional on CL*(M ). Then we put

T Qtry: CLYM,CY) - C,
N N
A= (Aij)ij—= Y (tQun)(Ay; ® Eij) = Y t(4ii).
ij=1 i=1

It is straightforward to check that if 7 is a hypertrace (pretrace, trace) on CL% (M)
then T ® try is a hypertrace (pretrace, trace) on CL4 (M, CV).

Proposition 5.3. Let a € R. Then every hypertrace on CL*(M, CY) is of the form
T @ try with a unique hypertrace T on CL*(M).

Proof. Let T be a hypertrace on CL*(M,CV). Fori,j = 1,..., N we put
T;; CLY(M) — C, T;i(A) =T(A® E;j).
Since Id € CL°(M, C"), we infer from the hypertrace property
T;j(A) =T(A® Ejij)
=T(A® Ein)(id®E;))
=T((d®Ej)(A® Ej1))
= 8ij T11(A),
thus 7;; = Ofori # jand Ty =Top = -+ = Tyny =i 7.
7 is a hypertrace on CL%(M). Namely, for A € CL*(M), B € CL°(M) we have
©(AB) =T((AB) ® E11)
=T(A® E11)(B ® E1))
=T(B®En)(A® En))
= 7(BA).
Certainly, we have T = t @ try.

For the uniqueness we only have to note that if T = t ® try, then 7(A4) =
T(A® Eq1). O

5.3. General vector bundles. Let E be a vector bundle over M. By Swan’s Theo-
rem there is a positive integer N, such that £ is a direct summand of M x CH: let
e € My(C®(M)) = C®(M, My (C)) be a smooth projection onto E. Then the
C° (M )-module of smooth sections of E is given by

[®(M, E) = e(C®(M)N). (5.1
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Note that since we assumed M to be connected (cf. Section 5.1), the idempotent
valued function e has constant rank.

The following lemma is well known. Since we could not find a place where it is
stated as needed we provide, for convenience, a quick proof:

Lemma 5.4. Let A := C®(M, My (C)). Then Ae A = A. Equivalently there
exist pj,q; € C°(M,My(C)), j = 1,...,r, such that

r

Y.rieqi =1y ® In, (5.2)
j=1

where 1) denotes the function which is constant 1 on M and Iy is the N x N identity
matrix.

Proof. Tt obviously suffices to prove eq. (5.2). Choose a finite partition of unity
v, j = 1,...,s,smoothfunctions y; € C®(M)suchthat y; = linaneighborhood
of supp(y/;) and such that in a neighborhood U; of supp(y;) there is a smooth map
v: Uj - My (C) such that

vev ! = e = (I(;c 8)

Choose (N x N)-matrices a;, by, ] = 1,...,t, with
t
dajexby = In.
=1

We tacitly view a;, b; also as constant matrix valued functions on M . Slightly abusing
notation we now find the decomposition

S
Iy ® Iy = Zl/fj)(j®1N
]_

|
-

I
-
M-~

~
Il
_
~
Il
_

—1
Vv ajegbjvy;

(v tav)e (v lbvyy). O

Bl
-
MN

\
Il
-
-
Il
-

For a linear functional v on CL%(M, C") we now put
tg(A) := t(ede). (5.3)

This definition depends on the choice of the idempotent e and is therefore not canon-
ical. As in the scalar case if CL*(M, E) C CL?(M, E) we write TEq ‘= TE |
CL*(M, E).
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Both the canonical trace TR and the residue trace Res are naturally defined on
CL*(M, E) for any vector bundle E (cf. [Les99]). To distinguish them let us for the
moment denote by TR®), Res®™) the corresponding functionals on CL*(M,CN)
and by TR, Res'®) the corresponding functionals on CL* (M, E).

Then one immediately checks that

TR™ =TR®try, TRE) = (TR®try)E,
Res™ =Res®@try, Res®) = (Res®try)E.

hence TR and Res are compatible with the operations 7 = 7 @ try and T — 7f in
the most natural way.

From now on we will write TR g for TR®) | and Res £ for Res®). A confusion
with the notation introduced in Definition 3.1 should not arise.

We also extend the linear functional Tr of Definition 4.8 to CL° (M, E) by defining

'ﬁ‘E = (ﬂ@trN)E.

Since Tr is not a trace, this definition may depend on the choice of the idempotent e,
hence is not canonical; but Tr already depended on a choice.
Finally we put TRg , := (TR, ® try)g on CLY(M, E). From Section 4.3 we
see
TRE’a ifa € R\ZZ_,,,

TREq :=Trgq ifac€Z, —n<a< =, (5.4)
Resg, ifaeZ, = <a.

Proposition 5.5. (1) Let a € R and let © be a hypertrace (resp. pretrace, trace)
on CL4(M,CN). Then tg: CL4(M,E) — C, A — t(ede), is a hypertrace
(resp. pretrace, trace) on CL*(M, E).

(2) Any hypertrace on CL*(M, E) is of the form (t ® try) g for a unique hyper-
trace T on CL*(M).

3. Fora € Z<o, TR gisatraceonCL*(M, E). Fora € R\(ZN[-n+1,-n/2])
it is a pretrace (and hence a hypertrace).

Proof. (1) To prove that the linear functional 7g is a hypertrace consider A €
CL%(M, E), B € CL°(M, E). Then

tg(AB) = 1(eABe) = t((eAe)(eBe)) = r((eBe)(eAe)) = t(eBAe) = tg(BA).

Note that eAe € CL*(M, cN ),eBe € cL? (M, CcN ). Repeating the argument with
A, B € CLY?(M, E) shows that if 7 is a pretrace then sois tg. Similarly ifa € Z <o
and 7 is a trace, then Tg 1S a trace.

(2) Conversely, let T be a hypertrace on CL*(M, E). We choose pj, q;, j =
1,...,r,according to Lemma 5.4. We will repeatedly use that multiplication by p;,
q; is in CL®(M, C¥) resp. that multiplication by epje, eq;e is in CL(M, E).
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Suppose we had a hypertrace T on CL? (M, C") such that Tg = T. Then, for
A e CLY(M,CV),

TA) =T((m ® In)A)

~

(pjeq;A)

~

I
~h

|
“M‘ M~ i~ 1M~ i~ 2
~

(pje*qjA)

~

55
(eqjApje) ©:2)

~.

I
~n

(e*q; Apje?)

~.

T(eq, Apje).

~.

Thus there is at most such a T. We now define T by the right-hand side of eq. (5.5)
We have Tg = T. Indeed, for A € CL*(M, E),

Tg(A) = T(eAe)

Z T((egjeAe)(epje))

ﬂM‘ W

T(epjeqjede) = T(ede) = T(A).
j

In the last line we used eq. (5.2).

Next we show that T is a hypertrace on CL4(M,C¥). For A € CL*(M,CN),
B € CLY(M, C") we find using eq. (5.2),

T(4B) = Y T(eq;A(lm ® In)Bpye)
=1

Z T(eq; Apreqr Bpje)

r

Y. T(eqxBpjeq;Apye)
1

-
Il

Js

WM*

T(eqk BApe) = T (BA).

By Proposition 5.3 there is now a unique hypertrace T on CL%(M) such that T =
T ® try. Then we conclude that T = TE = (t @ try)g. Recall that T is uniquely
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determined by 7" and 7 is uniquely determined by T, whence 7 is uniquely determined
by T.
(3) follows from (1), eq. (5.4) and Proposition 4.9. ]

Before stating the final result, we have to clarify what leading symbol traces
on CL%(M, E) look like. For the moment consider a closed manifold X with a
vector bundle £ — X. We can construct traces on the noncommutative algebra
I'*°(X,End E) as follows: first the fiberwise trace induces a linear map

trg: T°(X,End E) — C*(X), trg(s)(x) =trg, (s(x)).

The trace tr g vanishes on commutators. Thus forany 7' € (C*°(X))* the composition
T otrg is atrace on I'*°(X,End F).

It is straightforward to see that indeed all traces on ['*°(X, End E) are of this
form. Since we will not use this fact, we leave the details of proof to the reader:

Proposition 5.6. Let X be a closed manifold and let E be a vector bundle over X.
Then for any trace T on T'*° (X, End E) there is a unique distribution T € (C*(X))*
suchthatt = T otrg.

The final result is now a consequence of Theorems 4.10, 4.12, Corollary 4.13, and
Propositions 5.1, 5.5.

Theorem 5.7. Let M be a closed connected Riemannian manifold of dimension
n > 1 and let E be a complex vector bundle over M. Denote by I1: E — M the
projection map, by a,: CL*(M, E) — I'*°(S*M,[1* End E) the leading symbol
map, and by trg the fiberwise trace T*°(S*M,I1*End E) — C*°(S*M). Fix N
and an idempotent e as in eq. (5.1) and let TR 4 be as defined in eq. (5.4).

(1) Let a € R and let © be a hypertrace on CL*(M, E). Then there are uniquely
determined A € C and a distribution T € (C°° (S*M))* such that

AfT_RE,a ifa ¢ Z-_y,

. (5.6)
AResg, ifae€Z-_y.

t:Totrana+{

(2) Let a € Z <o and denote by
7q: CLY(M, E) — CL*(M, E)/ CL?>*(M, E)

the quotient map. Furthermore, let
6.: CLY(M, E)/ CL?>*(M, E) — CL*(M, E)

be a right inverse to m,.
Let t: CL(M, E) — C be a trace. Then there are uniquely determined A € C,
T € (C®(S*M))* and ® € (CL*(M, E)/ CL?>*(M, E))* such that

T = )LT_RE,a 4+ T otrg 0024(id—0, o y) + o m,.
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In the first line of eq. (5.6) the case a = —n is included, thus we write TR E.a
instead of TR g 4 there.

Proof. The right inverse 6, can be constructed successively from the map Op, cf. Re-
mark 4.14.
(1) By Proposition 5.5 there is a unique hypertrace T on CL%(M ) such that T =
(7 ® try)g. The claim now follows from Theorem 4.10 and Theorem 4.12 applied
to 7. Note that T otrg o 0, = ((T 0 04) @ try) g, cf. eq. (5.3) and Definition 5.2.
(2) Leta € Z<p. By Proposition 5.1, T | CL?%(M, E) is a hypertrace. Thus, by
(1) we have

ATR if 2a < —n,
T FCL2(M,E) = T o trg 0 02q + Era W=7 (5
AResg, if2a > —n.
We emphasize that by eq. (5.4)
— ATR if 2a < —n,
TRp, | CL2*(M,E) = {© “F2e 124 =710 (5.8)
AResg . if2a > —n.

Consider, for A € CL*(M, E),
7(A) 1= 1(A) —ATRg 4 (A) — T otrg © 024(A — 4 © 1a(A)).

Then due to eq. (5.8) and eq. (5.7) the functional 7 vanishes on CL2¢(M, E) and thus
is of the form ® o 7, with ® € (CL4(M, E)/CL?**(M, E))*. Thent = ®om, + 7
and the theorem is proved. O
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