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Electrodynamics from noncommutative geometry
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Abstract. Within the framework of Connes’ noncommutative geometry, the notion of an
almost commutative manifold can be used to describe field theories on compact Riemannian
spin manifolds. The most notable example is the derivation of the Standard Model of high
energy physics from a suitably chosen almost commutative manifold. In contrast to such a
non-abelian gauge theory, it has long been thought impossible to describe an abelian gauge
theory within this framework. The purpose of this paper is to improve on this point. We provide
a simple example of a commutative spectral triple based on the two-point space and show that
it yields a U.1/-gauge theory. Then we slightly modify the spectral triple such that we obtain
the full classical theory of electrodynamics on a curved background manifold.
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1. Introduction

The framework of Connes’noncommutative geometry [6] provides a generalization of
ordinary Riemannian geometry. Within this framework, the notion of an almost com-
mutative manifold (or an almost commutative geometry [17]) can be used to describe
gauge field theories on Riemannian spin manifolds. Following a series of articles
starting with [9], [2], [3] (see also [12]–[15]), this led in [4] to a noncommutative
geometrical description of the full Standard Model of high energy physics, including
the Higgs mechanism and neutrino mixing. In fact, a non-abelian SU.N /-Yang–Mills
gauge theory can be described simply by considering matrix-valued functions on a
background Riemannian manifold M . A key role is played by the adjoint action of
the group of unitary matrices onM : it acts as PSU.N / forN the rank of the matrices.

This approach immediately raises a problem if one wishes to describe abelian
gauge theories, since PSU.N / is trivial if N D 1. In fact, it was long believed to be
impossible to describe abelian gauge theories within the framework of noncommuta-
tive geometry. In this paper, we show that it is very well possible, and we construct a
spectral triple (i.e., a noncommutative manifold) that describes a U.1/-gauge theory
and even the full theory of electrodynamics.



434 K. van den Dungen and W. D. van Suijlekom

In [18], Sect. 9.3, it is claimed that for commutative algebras the gauge fields (and
hence the gauge group) are trivial. The proof is based on the claim that the left and
right action appearing in the adjoint action can be identified for a commutative algebra.
Though this claim holds in the case of the canonical triple describing a Riemannian
spin manifold, it need not be true for arbitrary commutative algebras. The almost
commutative manifold given in Section 3 below provides a counter-example. See
also the more recent [1] for another counter-example, involving real algebras.

This paper is organized as follows. We start by reviewing some definitions and
results from noncommutative geometry, specializing to the case of almost commu-
tative manifolds. We pay special attention to the form of the gauge group for such
manifolds. Then, in Section 3, we consider the product of spacetime with a two-point
space, however, from a noncommutative point of view, tracing back to the early non-
commutative models [9]. Essentially, the Riemannian geometry of the product is the
usual (commutative) one, but the spin (KO) dimension is different, very similar to [4].

In Section 4 we will show how the above example can be modified to provide
a description of one of the simplest examples of a gauge theory in physics, namely
electrodynamics. Because of its simplicity, it helps in gaining an understanding of
the formulation of gauge theories in terms of almost commutative manifolds, and it
provides a first step towards an understanding of the derivation of the Standard Model
from noncommutative geometry [4]. See also [23] for a review.

2. Spectral triples and gauge symmetry

2.1. Spectral triples. In this section we shall briefly recall the notion of spectral
triples. We shall follow the definitions as they appear in [10], Ch. 1, §10, for more
details we refer to that book and the references therein.

A spectral triple .A;H ;D/ is given by a unital �-algebra A represented faithfully
as bounded operators on a Hilbert space H and a self-adjoint operator D (referred
to as a Dirac operator) with compact resolvent and such that all commutators ŒD; a�
are bounded for a 2 A. Note that this implies that the A-module generated by
operators of the form aŒD; b� (a; b 2 A) consists of bounded operators on H . These
differential one-forms will play a key role later, as they will appear as gauge fields.
We set accordingly:

�1
D.A/ WD ˚ P

j

aj ŒD; bj � j aj ; bj 2 A
�
:

A spectral triple might have additional structure such as a Z2-grading � on H ,
making A even and�1

D.A/ odd. Correspondingly, the Hilbert space decomposes as
H D H C ˚ H � into the ˙1 eigenspaces of � . In this case, we will call the spectral
triple even, otherwise it is odd.

Furthermore, an (even) spectral triple has a real structure if there is an anti-linear
isomorphism J W H ! H with J 2 D ", JD D "0DJ and, if the spectral triple is
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even, J� D "00�J . The signs ", "0 and "00 determine the KO-dimension n modulo 8
of the spectral triple, according to:

n 0 1 2 3 4 5 6 7

" 1 1 �1 �1 �1 �1 1 1

"0 1 �1 1 1 1 �1 1 1

"00 1 �1 1 �1
Moreover, the action of A is required to satisfy the commutation rule

Œa; b0� D 0 for all a; b 2 A; (2.1)

where we have defined the right action b0 of b on H by

b0 ´ Jb�J�1:

We also require such a commutation relation for �1
D.A/ with the right action of A,

i.e.,

ŒŒD; a�; b0� D 0 for all a; b 2 A:

Example 2.1. The motivating example for the definition of spectral triples is the
canonical triple. Let M be a compact Riemannian spin manifold. We then define
the canonical triple by

.A;H ;D/ D .C1.M/;L2.M; S/; =D/;

whereS is the spinor bundle onM and =D is the canonical Dirac operator given locally
by �i��rS

� . Here, rS is the Levi-Civita connection lifted to the spinor bundle.
Due to the property Œ =D; a� D �i c.da/, we can identify the differential one-forms
�1

=D
.C1.M// with de Rham differential one-forms (via Clifford multiplication c).
IfM is even-dimensional (say of dimensionm), we have a Z2-grading �mC1 and

an anti-linear isometry JM , which is the charge conjugation operator on the spinors.
The Riemannian spin manifoldM can be fully described by this canonical triple [7],
[8].

Another special case of a spectral triple is a real even finite spectral triple, given
by the data

F ´ .AF;HF;DF; �F; JF/;

for a finite-dimensional Hilbert space HF. The operators DF, �F and JF, as well as
the action of the algebra AF, are now simply given by matrices acting on HF, subject
to the aforementioned (anti-)commutation relations. As a first result, we prove
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Lemma 2.2. For any real even finite spectral triple F , we can write with respect to
the decomposition H D H C ˚ H �:

KO-dimension 0 W JF D
�
jC 0

0 j�

�
C for symmetric j˙ 2 U.H ˙/I

KO-dimension 2 W JF D
�

0 j

�j T 0

�
C for jj � D j �j D II

KO-dimension 4 W JF D
�
jC 0

0 j�

�
C for anti-symmetric j˙ 2 U.H ˙/I

KO-dimension 6 W JF D
�
0 j

j T 0

�
C for jj � D j �j D I;

with C denoting complex conjugation.

Proof. Any anti-unitary operator JF can be written as UC , where U is some unitary
operator on HF. We then have J �

F D CU � D U TC and JFJ
�
F D UU � D I.

The different possibilities for the choice of JF are characterized by the relations
J 2

F D UCUC D U xU D " and JF�F D "00�FJF. By inserting "; "00 D ˙1 according
to the KO-dimension, the exact form of JF can be directly computed by imposing
these relations.

We now combine the canonical triple for a spin manifoldM with the finite spectral
triple F to arrive at the noncommutative manifolds that are of particular interest in
the context of particle physics.

Definition 2.3. A real even almost commutative (spin) manifold M �F is described
by

.A;H ;D/ ´ .C1.M;AF/; L
2.M; S/˝ HF; =D ˝ I C �mC1 ˝DF/;

together with a grading � D �mC1 ˝ �F and a real structure J D JM ˝ JF.

2.2. The gauge group. We would like to study the notion of ‘symmetry’ for almost
commutative manifolds. The starting point is to define an equivalence of spectral
triples. The symmetry is then revealed when it turns out that the bosonic and fermionic
action functionals of a spectral triple are identical for equivalent spectral triples (see
Definition 2.4). We take our definition of equivalent spectral triples from [7] (cf. [18],
§6.9) but make a slight modification by incorporating the algebra isomorphism ˛.

Definition 2.4. Two spectral triples .A1;H1;D1/ and .A2;H2;D2/, with the as-
sociated representations �j W Aj ! B.Hj / for j D 1; 2, are unitarily equivalent if
there exists a unitary operator U W H1 ! H2, called the intertwining operator, such
that

UD1U
� D D2; U�1.a/U

� D �2.˛.a// .a 2 A/;



Electrodynamics from noncommutative geometry 437

where ˛ is an algebra isomorphism A1 ! A2.
If the two triples are even with grading operators �1 and �2, one also requires

that U�1U
� D �2. If the two triples are real with real structures J1 and J2, one also

requires that UJ1U
� D J2.

Note that for a discussion of the equivalence of spectral triples, it is good to
explicitly mention the representation of the algebra on the Hilbert space, since the
intertwining operator affects this representation. Let us now consider two basic
examples of intertwining operators.

Proposition 2.5. The following two spectral triples are equivalent to the spectral
triple .A;H ;D; �; J / with representation � W A ! B.H /:

(1) .A;H ; UDU �; �; UJU �/ with representation � B ˛u for U D �.u/ with u 2
U.A/;

(2) .A;H ; UDU �; �; J / with representation � B ˛u for U D �.u/J�.u/J � with
u 2 U.A/,

where ˛u is the inner automorphism of A given by ˛u.a/ ´ uau�.

Proof. (1) We only need to check that U�.a/U � D � B ˛u.a/ and U�U � D � . The
latter relation is evident since the grading operator � commutes with the algebra. We
also see that

U�.a/U � D �.u/�.a/�.u/� D �.uau�/ D � B ˛u.a/:

(2) First, we easily see from (2.1) that U � �.u/�.u�/0 is a unitary operator.
The relationU�U � D � holds since�.u/J�.u/J �� D ."00/2��.u/J�.u/J �. Since
�.u�/0 commutes with �.a/, we find that

U�.a/U � D �.u/�.a/�.u/� D � B ˛u.a/:

Using the property�.a/0J D J�.a�/ for all a 2 A, one can check thatUJU � D J .

In the first case of Proposition 2.5, the intertwining operator U is given by left
multiplication with an element of the unitary group U.A/. In the second case, the
action of the operator U on a vector � 2 H can be written as U� D u�u�, since we
identify JuJ � with the right action of u�. This case is especially interesting because
we see that the intertwining operator has no effect on J . Thus, the group generated
by all operators of the form U D uJuJ � characterizes all equivalent spectral triples
.A;H ; UDU �; �; J /, in which only the Dirac operator is affected by the unitary
transformation.

Definition 2.6. The gauge group G .A/ of a real spectral triple .A;H ;D; J / is
defined by

G .A/ ´ fU D uJuJ � j u 2 U.A/g:
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Before we continue to evaluate the exact form of this gauge group, we first consider
the following subalgebras of A:

AJ ´ fa 2 A j aJ D Jag; zAJ ´ fa 2 A j aJ D Ja�g: (2.2)

The definition of AJ is taken from [4], Prop. 3.3 (cf. [10], Prop. 1.125, p. 192); it is
a real commutative subalgebra in the center of A. We have provided a similar but
different definition for zAJ , since this subalgebra will turn out to be very useful for
the description of the gauge group in Proposition 2.8. Note that aJ D Ja� if and
only if a D a0, i.e., if and only if its left and right action on H coincide.

Proposition 2.7. For a complex algebra A, the subalgebra zAJ is an involutive
commutative complex subalgebra of the center of A.

Proof. Since we must have Œa; b0� D 0 for any a; b 2 A, we have Œa; b� D 0 for any
a 2 A and b 2 zAJ , so zAJ is contained in the center of A. The requirement a D a0

is complex linear and also implies that a� D .a0/� D .a�/0, so we have a� 2 zAJ for
a 2 zAJ . Finally, we check that for a; b 2 zAJ we find .ab/0 D b0a0 D ba D ab,
so ab 2 zAJ .

Proposition 2.8. There is a short exact sequence of groups

1 ! U. zAJ / ! U.A/ ! G .A/ ! 1;

where zAJ is defined in (2.2).

Proof. The map Ad W U.A/ ! G .A/ given by u 7! u.u�/0 is surjective by defi-
nition. The commutation relation (2.1) implies that Ad is a group homomorphism.
Its kernel is given by elements u 2 U.A/ for which u.u�/0 D 1. In other words,
Ker Ad consists of all unitary elements in zAJ .

From Proposition 2.7 we know that zAJ is a subalgebra of the center of A. If we
denote by Z the subgroup of U.A/ that commutes with A, then the group U. zAJ / of
the previous proposition is contained in Z. The quotient U.A/=Z yields the group
Inn.A/ of inner automorphisms of the algebra. Proposition 2.8 then implies that in
general, the gauge group G .A/ is larger than Inn.A/. If U. zAJ / is equal to Z, we
have in fact Inn.A/ ' G .A/.

2.3. Inner fluctuations and gauge transformations. In this section we will first
define the inner fluctuations of a spectral triple. These inner fluctuations arise from
considering Morita equivalences between algebras. For a detailed discussion, we
refer to [7] or [10], Ch. 1, §10.8. In this section we will simply give the definition.

Recall Connes’ differential one-forms �1
D.A/, spanned by operators of the form

aŒD; b� (with a; b 2 A). For a real spectral triple (endowed with a real structure J )
we may replace D with

DA ´ D C AC "0JAJ�1;
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for a self-adjoint A D A� 2 �1
D . The elements A are called the inner fluctuations of

the spectral triple.
In Proposition 2.5 we have seen that an elementU D uJuJ � 2 G .A/ transforms

the Dirac operator as D ! UDU �. Let us now consider the effect of this transfor-
mation on the fluctuated Dirac operatorDA D DCAC"0JAJ �. A direct calculation
shows that DA 7! UDAU

� is equivalent to a transformation on A of the form

Au ´ uAu� C uŒD; u�� 2 �1
D:

In other words, the transformation of a fluctuated Dirac operator can again be written
in the form of a fluctuated Dirac operator. This only works because we have restricted
U.A/ to the gauge group G .A/, to make sure that the conjugation operator J remains
unchanged. The resulting transformation on the inner fluctuation A ! Au shall be
interpreted in physics as the gauge transformation of the gauge field.

2.4. The action functional. In the previous sections we have recalled spectral triples
and their symmetries. It is now time to introduce interesting invariant functionals on
them.

Definition 2.9 (Chamseddine–Connes [2]). Let .A;H ;D/ be a spectral triple as
above. The spectral action of a real spectral triple is defined by

SbŒA� ´ Tr
�
f

�
DA

ƒ

��
;

where f is a positive even function,ƒ is a cut-off parameter andDA is the fluctuated
Dirac operator.

The spectral action describes only the action for the (bosonic) gauge fields. For
the terms involving fermions and their coupling to the bosons, we need something
extra. The precise form of the fermionic action depends on the KO-dimension of
the spectral triple. For the purpose of this paper, we will only consider the case of
KO-dimension 2 and give the fermionic action for this case. Referring to the sign
table in Section 2.1, p. 435, we thus have the relations

J 2 D �1; JD D DJ; J � D ��J:
We use the decomposition H D H C ˚H � by the grading � . Following [4] (cf. [10],
Ch. 1, §16.2–3, p. 275–280), the relations above yield a natural construction of an
anti-symmetric bilinear form on H C, given for �; � 0 2 H C by

AD.�; �
0/ D hJ �;D� 0i;

where h ; i is the inner product on H . We define the set of classical fermions corre-
sponding to H C,

H C
cl ´ fQ� j � 2 H Cg;

to be the set of Grassmann variables Q� for � 2 H C.
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Definition 2.10. For a real even spectral triple .A;H ;D; �; J / of KO-dimension 2
we define the full action functional by

SŒA; �� ´ SbŒA�C Sf ŒA; �� ´ Tr
�
f

�
DA

ƒ

��
C 1
2

hJ Q�;DA
Q�i

for Q� 2 H C
cl .

The factor 1=2 in front of the fermionic action Sf has been chosen for future
convenience. The action functionalSŒA; Q�� is invariant under unitary transformations;
in fact, it is invariant under transformations of the gauge group G .A/.

Note that we have incorporated two restrictions in the fermionic action Sf . The
first is that we restrict ourselves to even vectors in H C, instead of considering all
vectors in H . The second restriction is that we do not consider the inner product
hJ Q� 0;DA

Q�i for two independent vectors � and � 0 but instead use the same vector �
on both sides of the inner product. Each of these restrictions reduces the number of
degrees of freedom in the fermionic action by a factor 2, yielding a factor 4 in total.
It is precisely this approach that solves the problem of fermion doubling pointed out
in [19] (see also the discussion in [10], Ch. 1, §16.3).

2.4.1. The heat expansion. For future purpose, let us recall some results on heat
kernel expansions. For more details we refer the reader to [16]. Suppose that we
have a vector bundle E on a compact Riemannian manifold M and a second-order
differential operator H W �.E/ ! �.E/ of the form H D �E � Q, where �E is
the Laplacian of some connection on E and Q 2 �.End.E//. For a generalized
Laplacian H on E we have the following asymptotic expansion (as t ! 0), known
as the heat expansion [16], §1.7:

Tr.e�tH / � P
k�0

t
k�m

2 ak.H/:

Here m is the dimension of the manifold, the trace is taken over the Hilbert space
L2.M;E/ and the coefficients of the expansion are given by

ak.H/ ´
Z

M

ak.x;H/
pjgj dmx:

The coefficients ak.x;H/ are called the Seeley—DeWitt coefficients. We also state
here without proof Theorem 4.8.16 from [16]. Note that the conventions used by
[16] for the Riemannian curvature R are such that g��g��R���� is negative for a
sphere, in contrast to our own conventions. Therefore we have replaced s D �R.
Furthermore, we have used that f I�I� D ��f for f 2 C1.M/.
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Theorem 2.11 ([16], Theorem 4.8.16). For a generalized LaplacianH D �E �Q
the first three non-zero Seeley–DeWitt coefficients are given by

a0.x;H/ D .4�/�
m
2 Tr.Id/;

a2.x;H/ D .4�/�
m
2 Tr. s

6
CQ/;

a4.x;H/ D .4�/�
m
2 1

360
Tr.�12�s C 5s2 � 2R��R

�� C 2R����R
����

C 60sQC 180Q2 � 60�QC 30�E
���

E ��
/;

where the traces are now taken over the fibre Ex . Here s is the scalar curvature of
the Levi-Civita connection r, � is the scalar Laplacian and �E is the curvature of
the connection rE corresponding to �E .

Now assume that the square of the fluctuated Dirac operator DA is of the form
�E �Q for some vector bundleE. Applying the heat expansion onDA

2 then yields
(as t ! 0)

Tr.e�tDA
2

/ � P
k�0

t
k�m

2 ak.DA
2/;

where the Seeley–DeWitt coefficients are given by Theorem 2.11. Then, on writ-
ing f as a Laplace transform, we obtain in the case of a 4-dimensional manifold
asymptotically (as ƒ ! 1)

Tr
�
f

�
DA

ƒ

��
� 2f4ƒ

4a0.DA
2/C 2f2ƒ

2a2.DA
2/C a4.DA

2/f .0/C O.ƒ�1/;

(2.3)
where fj D R 1

0
f .v/vj �1dv are the momenta of the function f for j > 0.

Example 2.12. For the canonical triple of a 4-dimensional spin manifold M , we
obtain (see [10], Theorem 1.158)

Tr
�
f

� =D
ƒ

��
� 4
�2

Z
M

LM .g��/
pjgjd4x C O.ƒ�1/;

where the gravitational Lagrangian LM is given by

LM .g��/ ´ 2f4ƒ
4 � 1

6
f2ƒ

2sCf .0/
�
1
120

�s� 1
80
C����C

���� C 11
1440

R�R��
:

The first two terms yield the Einstein–Hilbert action including a cosmological con-
stant. In addition, we obtain a higher-order contribution from the Weyl gravity term
C����C

���� , as well as a boundary term �s and a topological contribution from
R�R�.
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3. The two-point space

In this section we will provide a simple example of an almost commutative manifold,
based on the product of a spin manifold M with a two-point space X . The spectral
triple describing this example will have a commutative algebra. As mentioned in the
introduction, it has been claimed [18], Sect. 9.3, that the inner fluctuation ACJAJ �
vanishes for commutative algebras. The proof is based on the claim that the left and
right action can be identified, i.e., a D a0 for a commutative algebra. Though this
claim holds in the case of the canonical triple describing a spin manifold, it need not
be true for arbitrary commutative algebras. The spectral triple given in this section
provides a counter-example.

What can be said for a commutative algebra, is that there exist no non-trivial inner
automorphisms. It is thus an important insight here that the gauge group G .A/, as
defined in Definition 2.6, is larger than the group of inner automorphisms, so that a
commutative spectral triple may still lead to a non-trivial gauge group. In fact, we
will show that our example given below describes an abelian U.1/-gauge theory.

3.1. A two-point space. We shall consider a finite spectral triple FX corresponding
to the two-point space X D fx; yg. A complex function on this space is simply
determined by two complex numbers. The algebra of functions on X is then given
by C.X/ D C2. Let us consider the even finite spectral triple FX given by

.C.X/;HF;DF; �F/:

We require that the representation C.X/ ! B.HF/ is faithful, which implies that the
Hilbert space HF must be at least 2-dimensional. Thus, the simplest possible choice is
to take HF D C2. We use the Z2-grading�F to decompose HF D H C

F ˚H �
F D C˚C

into the two eigenspaces HḞ D f 2 HF j �F D ˙ g. Hence, we can write

�F D
�
1 0

0 �1
�
:

Because of the relations Œ�F; a� D 0 and DF�F D ��FDF, the self-adjoint Dirac
operator must be off-diagonal and the action of an element a 2 AF on  2 HF can
be written as

a D
�
aC 0

0 a�

� �
 C
 �

�
: (3.1)

Thus, the even finite spectral triple FX we will study in this section is given by

.AF;HF;DF; �F/ D
�

C2;C2;

�
0 t
Nt 0

�
;

�
1 0

0 �1
� �

(3.2)

for some complex parameter t 2 C and with the representation of AF on HF given
by (3.1).
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Proposition 3.1. The even finite spectral triple FX given by (3.2) can only have a
real structure ifDF D 0.

Proof. We must have JF
2 D " and JF�F D "00�FJF, and we shall consider all possible

(even) KO-dimensions separately. Thus, we apply Lemma 2.2 to the finite spectral
triple FX given above and, for each even KO-dimension, also impose the relations
Œa; b0� D 0 and ŒŒDF; a�; b

0� D 0. This gives:

KO-dimension 0: We have JF D �jC 0

0 j�

�
for j˙ 2 U.1/. For b D �bC 0

0 b�

�
we

then obtain

b0 D
�
jCbC SjC 0

0 j�b� Sj�

�
D b;

and see that this indeed commutes with the left action of a 2 C2. Next we check the
order-one condition

0 D ŒŒDF; a�; b
0� D .aC � a�/.bC � b�/DF:

Since this must hold for all a; b 2 C2, we conclude that we must require DF D 0.

KO-dimension 2: We have JF D �
0 j

�j 0

�
for j 2 U.1/. We now obtain

b0 D
�
jb� Nj 0

0 jbC Nj
�

D
�
b� 0

0 bC

�

and see that this indeed commutes with the left action of a 2 C2. Next we check the
order-one condition

0 D ŒŒDF; a�; b
0� D .aC � a�/.b� � bC/DF:

Again we conclude that we must require DF D 0.

KO-dimension 4: We have JF of the same form as in KO-dimension 0 but now
with j˙ D �j T˙ 2 U.1/. This implies that j˙ D 0, so the given finite spectral triple
cannot have a real structure in KO-dimension 4.

KO-dimension 6: We have JF D �
0 j
j 0

�
for j 2 U.1/. We again obtain

b0 D
�
jb� Nj 0

0 jbC Nj
�

D
�
b� 0

0 bC

�
;

just as for KO-dimension 2. Hence again the commutation rules are only satisfied for
DF D 0.
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3.2. The almost commutative manifold. Let us now consider the product of the
finite spectral triple FX of the two-point space, as described by (3.2), with the canon-
ical triple describing a compact Riemannian spin manifold M , as in Example 2.1.
From here on we will take M to be 4-dimensional. Thus we consider the almost
commutative manifold M � FX given by the data

M � FX ´ .C1.M;C2/; L2.M; S/˝ C2; =D ˝ I; �5 ˝ �F; JM ˝ JF/;

where we still need to make a choice for JF. The algebra of this almost commutative
manifold is given by C1.M;C2/ ' C1.M/ ˚ C1.M/ ' C1.M � X/. Thus,
the underlying space N ´ M �X ' M tM consists of the disjoint union of two
identical copies of the space M , and we can write C1.N / D C1.M/˚ C1.M/.
We can also decompose the total Hilbert space into H D L2.M; S/ ˚ L2.M; S/.
For a; b 2 C1.M/ and  ; 	 2 L2.M; S/, an element .a; b/ 2 C1.N / then simply
acts on . ; 	/ 2 H by .a; b/. ; 	/ D .a ; b	/.

3.2.1. Distances. To any spectral triple .A;H ;D/ one can associate a distance
function on the space of states on A:

dD.p; q/ D supfjp.a/ � q.a/j j a 2 A; kŒD; a�k � 1g;
For the canonical triple, A D C1.M/ whose state space is homeomorphic to M . It
turns out that d =D is equal to the geodesic distance dg between points p and q onM .
For more details we refer to Proposition 1.119 of [10] (see also [22], [11], [21], [20])

We will use this formula as a generalized notion of distance, so on our finite
spectral triple FX we can write

dDF.x; y/ D supfja.x/ � a.y/j j a 2 AF; kŒDF; a�k � 1g:
Note that we now have only two distinct points x and y in the space X , and we
shall calculate the distance between these points (cf. [18], Sect. 6.8). An element
a 2 C2 D C.X/ is specified by two complex numbers a.x/ and a.y/ and its
commutator with DF becomes

ŒDF; a� D .a.y/ � a.x//
�
0 t

�Nt 0
�
:

The norm of this commutator is ja.y/ � a.x/j jt j, so kŒDF; a�k � 1 if and only if
ja.y/ � a.x/j � 1

jt j . We thus obtain that the distance between the two points x and
y is given by

dDF.x; y/ D 1

jt j :

If there is a real structure JF, we have t D 0 by Proposition 3.1, so then the distance
between the two points becomes infinite.



Electrodynamics from noncommutative geometry 445

Let p be a point inM , and write .p; x/ or .p; y/ for the two corresponding points
in N D M � X . A function a 2 C1.N / is then determined by two functions
ax; ay 2 C1.M/, given by ax.p/ ´ a.p; x/ and ay.p/ ´ a.p; y/. Now consider
the distance function on N given by

d =D˝I.n1; n2/ D supfja.n1/ � a.n2/j j a 2 A; kŒ =D ˝ I; a�k � 1g:
If n1 and n2 are points in the same copy of M , for instance if n1 D .p; x/ and
n2 D .q; x/ for pointsp; q 2 M , then their distance is determined by jax.p/�ax.q/j
for functions ax 2 C1.M/ for which kŒ =D; ax�k � 1. Thus, in this case we obtain
that we recover the geodesic distance on M , i.e., d =D˝I.n1; n2/ D dg.p; q/.

However, if n1 and n2 are points in a different copy of M , for instance, if n1 D
.p; x/ and n2 D .q; y/, then their distance is determined by jax.p/� ay.q/j for two
functions ax; ay 2 C1.M/ such that kŒ =D; ax�k � 1 and kŒ =D; ay �k � 1. These
latter requirements however yield no restriction on jax.p/ � ay.q/j, so in this case
the distance between n1 and n2 is infinite. We thus find that the space N is given
by two disjoint copies of the Riemannian manifold M , which are separated by an
infinite distance.

3.3. U.1/-gauge theory. We would now like to derive the gauge theory that corre-
sponds to the almost commutative manifold M � FX . Recall that the gauge group
G .A/ is given by the quotient U.A/=U. zAJ /, so if we wish to obtain a nontrivial
gauge group, we need to choose J such that U. zAJ / ¤ U.A/. By looking at the
form of JF for the different (even) KO-dimensions, as given in Section 3.1, we con-
clude that FX must have KO-dimension 2 or 6. In analogy with the noncommutative
description of the Standard Model [4] we choose to work in KO-dimension 6. The al-
most commutative manifoldM �FX then has KO-dimension 6C4 mod 8 D 2. This
means that we can use Definition 2.10 to calculate the fermionic action. Therefore,
we will consider the finite spectral triple FX given by the data

FX ´ .AF;HF;DF; �F; JF/ ´
�
C2;C2; 0;

�
1 0

0 �1
�
;

�
0 C

C 0

� �
;

which define a real even finite spectral triple of KO-dimension 6. Now let us derive
the gauge group.

Proposition 3.2. The gauge group G .AF/ of the two-point space is given by U.1/.

Proof. First, note that U.AF/ D U.1/� U.1/. We show that U.. zAF/JF/ � U.AF/\
. zAF/JF ' U.1/ so that the quotient G .AF/ ' U.1/ as claimed. Indeed, for a 2 C2

to be in . zAF/JF it has to satisfy JFa
�JF D a. Since

JFa
�J �

F D
�
0 C

C 0

� �Sa1 0

0 Sa2

� �
0 C

C 0

�
D

�
a2 0

0 a1

�
;
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this is the case if and only if a1 D a2. Thus, . zAF/JF ' C whose unitary elements
form the group U.1/, contained in U.AF/ as the diagonal subgroup.

We will now derive the gauge field for the almost commutative manifoldM �FX .
Thus, we need to calculate the inner fluctuations of the Dirac operator. For a; b 2
C1.M;C2/, an inner fluctuation A takes the form

A D aŒD; b� D aŒ =D ˝ I; b� D i�� ˝ a@�b μ �� ˝ A�;

where we have defined the hermitian field A� 2 C1.M;R2/. Using the relation
JM�

� D ���JM , the total inner fluctuation is then given by

AC JAJ � D �� ˝ .A� � JFA�J
�
F / μ �� ˝ B�: (3.3)

An arbitrary hermitian field of the form A� D ia@�b would be given by
�X1

� 0

0 X2
�

�
for two U.1/ gauge fields X1

�; X
2
� 2 C1.M;R/. However, A� only appears in the

combination

B� D A� � JFA�J
�1
F D

�
X1

� 0

0 X2
�

�
�

�
X2

� 0

0 X1
�

�
μ

�
Y� 0

0 �Y�

�
D Y� ˝ �F;

where we have defined the U.1/ gauge field Y� ´ X1
� � X2

� 2 C1.M;R/ D
C1.M; i u.1//. Thus, the fact that we only have the combination AC JAJ � effec-
tively identifies the U.1/ gauge fields on the two copies ofM , so thatA� is determined
by only one U.1/ gauge field. We summarize:

Proposition 3.3. The inner fluctuations of the almost commutative manifoldM �FX

described above are parametrized by a U.1/-gauge field Y� as

D 7! D0 D D C ��Y� ˝ �F:

The action of the gauge group G .A/ ' C1.M;U.1// on D0 by conjugation is
implemented by

Y� 7! Y� � iu@�u
� .u 2 G .A//:

So far we have seen that the almost commutative manifold M � FX describes
a gauge theory with local gauge group U.1/, where the inner fluctuations of the
Dirac operator provide the U.1/ gauge field Y�. The question arises whether this
model is suitable for a description of (classical) electrodynamics. There appear to
be two problems, even before considering the fermionic action Sf explicitly. First,
by Proposition 3.1, the finite Dirac operator DF must vanish. However, we want our
fermions to be massive, and for this purpose we need a finite Dirac operator that is
non-zero.

Second, from [5], Ch. 7, §5.2, we find the Euclidean action for a free Dirac field:

S D �
Z
i N .��@� �m/ d4x; (3.4)
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where the fields  and N must be considered as totally independent variables. Thus,
we require that the fermionic action Sf should also yield two independent Dirac
spinors. Let us write fe; Neg for the set of orthonormal basis vectors of HF, where e is
the basis element of H C

F and Ne of H �
F . Note that on this basis, we haveJFe D Ne,JF Ne D

e, �Fe D e and �F Ne D �Ne. The total Hilbert space H is given by L2.M; S/˝ HF.
Since we can also decompose L2.M; S/ D L2.M; S/C ˚ L2.M; S/� by means of
�5, we obtain that the positive eigenspace H C of � D �5 ˝ �F is given by

H C D L2.M; S/C ˝ H C
F ˚ L2.M; S/� ˝ H �

F :

An arbitrary vector � 2 H C can then uniquely be written as

� D  L ˝ e C  R ˝ Ne

for two Weyl spinors  L 2 L2.M; S/C and  R 2 L2.M; S/�. One should note
here that this vector � is completely determined by only one Dirac spinor  ´
 L C R, instead of the required two independent spinors. Thus, the restrictions that
are incorporated into the fermionic action of Definition 2.10 are such that the present
example is in fact too restricted.

4. Electrodynamics

4.1. The finite spectral triple. Inspired by the previous section, which shows that
one can use the framework of noncommutative geometry to describe a gauge theory
with the abelian gauge group U.1/, we shall now attempt to describe the full theory of
electrodynamics. There are two changes we need to make to the U.1/-gauge theory
of the previous section. We need to incorporate a non-zero finite Dirac operator DF

to obtain mass terms for the fermions, and we also need to obtain two independent
Dirac spinors in the fermionic action. Both these changes can be simply obtained by
doubling our finite Hilbert space.

We start with the same algebra C1.M;C2/ that corresponds to the space N D
M � X ' M t M . The finite Hilbert space will now be used to describe four
particles, namely both the left-handed and the right-handed electrons and positrons.
We will choose the orthonormal basis feL; eR; SeL; SeRg for HF D C4, with respect
to the standard inner product. The subscript L denotes left-handed particles, and the
subscriptR denotes right-handed particles, and we take �FeL D eL and �FeR D �eR.

We will choose JF such that it interchanges particles with their anti-particles, so
JFeR D SeR and JFeL D SeL. As in Section 3.3, we will choose the real structure
such that is has KO-dimension 6, so we have J 2

F D I and JF�F D ��FJF. This last
relation implies that the element SeR is left-handed and SeL is right-handed. Hence, the
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grading �F and the conjugation operator JF are given by

�F D

0
BB@
1 0 0 0

0 �1 0 0

0 0 �1 0
0 0 0 1

1
CCA ; JF D

0
BB@
0 0 C 0

0 0 0 C

C 0 0 0

0 C 0 0

1
CCA :

The grading �F decomposes the Hilbert space HF into HL ˚ HR, where the
bases of HL and HR are given by feL; SeRg and feR; SeLg, respectively. We can also
decompose the Hilbert space into He ˚H Ne , where He contains the electrons feL; eRg,
and H Ne contains the positrons f SeL; SeRg.

The elements a 2 AF D C2 are represented in terms of the basis feL; eR; SeL; SeRg
by

a D
�
a1

a2

�
7!

0
BB@
a1 0 0 0

0 a1 0 0

0 0 a2 0

0 0 0 a2

1
CCA : (4.1)

Note that this representation commutes with the grading, as it should. We can also
easily check that Œa; b0� D 0 for b0 ´ JFb

�J �
F , since both the left and the right

action are given by diagonal matrices. For now we will still take DF D 0, and hence
the order-one condition is trivially satisfied. We have now obtained the following
result:

Proposition 4.1. The real even finite spectral triple

FED ´ .C2;C4; 0; �F; JF/

as given above defines a real even finite spectral triple of KO-dimension 6.

4.1.1. A non-trivial finite Dirac operator. Let us now consider the possibilities for
adding a non-zero Dirac operator to the finite spectral triple FED. Since DF�F D
��FDF, the Dirac operator obtains the form

DF D

0
BB@
0 d1 d2 0
Nd1 0 0 d3Sd2 0 0 d4

0 Sd3
Sd4 0

1
CCA :

Next we impose the commutation relation DFJF D JFDF, which implies that d1 D
Sd4. For the order-one condition, we calculate

ŒDF; a� D .a1 � a2/

0
BB@
0 0 �d2 0

0 0 0 �d3Sd2 0 0 0

0 Sd3 0 0

1
CCA ;
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which then imposes the condition

0 D ŒŒDF; a�; b
0� D .a1 � a2/.b2 � b1/

0
BB@
0 0 d2 0

0 0 0 d3Sd2 0 0 0

0 Sd3 0 0

1
CCA :

Since this must hold for all a; b 2 C2, we must require that d2 D d3 D 0. To
conclude, the Dirac operator only depends on one complex parameter and is given by

DF D

0
BB@
0 d 0 0
Nd 0 0 0

0 0 0 Nd
0 0 d 0

1
CCA : (4.2)

From here on we will consider the finite spectral triple FED given by

FED ´ .C2;C4;DF; �F; JF/:

4.2. The almost commutative manifold. By taking the product with the canonical
triple, our almost commutative manifold (of KO-dimension 2) under consideration is
given by

.C1.M;C2/; L2.M; S/˝ C4; =D ˝ I C �5 ˝DF; �5 ˝ �F; JM ˝ JF/:

We will refer to this almost commutative manifold as M � FED. As in Section 3,
the algebra decomposes into C1.M;C2/ D C1.M/ ˚ C1.M/, and we now
decompose the Hilbert space as H D .L2.M; S/˝ He/˚ .L2.M; S/˝ H Ne/. The
action of the algebra on H , given by (4.1), is then such that one component of the
algebra acts on the electron fields L2.M; S/˝ He , and the other component acts on
the positron fields L2.M; S/˝ H Ne .

The derivation of the gauge group forFED is exactly the same as in Proposition 3.2,
so again we have the finite gauge group G .AF/ ' U.1/. The field B� ´ A� �
JFA�J

�
F now takes the form

B� D

0
BB@
Y� 0 0 0

0 Y� 0 0

0 0 �Y� 0

0 0 0 �Y�

1
CCA for Y�.x/ 2 R: (4.3)

Thus, we again obtain a single U.1/ gauge field Y�, carrying an action of the gauge
group G .A/ ' C1.M;U.1// (as in Proposition 3.3).

As mentioned before, our space N consists of two copies of M , and the distance
between these two copies is infinite (cf. Section 3.2). Now we have introduced a
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non-zero Dirac operator, but it commutes with the algebra, i.e., ŒDF; a� D 0 for all
a 2 A. Therefore, the distance between the two copies of M is still infinite.

To summarize, the U.1/-gauge theory arises from the geometric space N D
M tM as follows. On one copy of M we have the vector bundle S ˝ .M � He/

and on the other copy the vector bundle S ˝ .M � H Ne/. The gauge fields on each
copy of M are effectively identified to each other. The electrons e and positrons Ne
are then both coupled to the same gauge field, and as such the gauge field provides
an interaction between electrons and positrons.

4.3. The Lagrangian. We are now ready to explicitly calculate the Lagrangian that
corresponds to the almost commutative manifoldM �FED, and we will show that this
yields the usual Lagrangian for electrodynamics (on a curved background manifold),
as well as a purely gravitational Lagrangian. The action functional for an almost
commutative manifold, as given in Definition 2.10, consists of the spectral action Sb

and the fermionic action Sf , which we will calculate separately.

4.3.1. The spectral action. Before we can calculate the spectral action, we first
need to study the fluctuated Dirac operator in a little more detail. As in (3.3), we have
AC JAJ � D �� ˝ B�, where now B� is given by (4.3). This allows us to rewrite
the fluctuated Dirac operator in the form

DA D =D ˝ I C �� ˝ B� C �5 ˝DF D �i�� ˝ rE
� C �5 ˝DF;

where we have defined a new connection rE
� by

rE
� D rS

� ˝ I C iI ˝ B�: (4.4)

For the square of the fluctuated Dirac operator, we obtain by direct calculation

DA
2 D �E �Q;

where�E is the Laplacian of the connection rE andQ 2 �.End.M �HF// is given
by

Q D �1
4
s ˝ I � I ˝DF

2 C 1
2
i���� ˝ F�� :

Here we have defined the curvature F�� of the field B� as F�� ´ @�B� � @�B�.

Proposition 4.2. The spectral action of the almost commutative manifoldM � FED

as defined above is given by

Tr
�
f

�
DA

ƒ

��
� 1
4�2

Z
M

L.g�� ; Y�/
pjgj d4x C O.ƒ�1/

for

L.g�� ; Y�/ ´ 4LM .g��/C LY .Y�/C LH .g�� ; d /:
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Here LM .g��/ is defined in Example 2.12. LY gives the kinetic term of the U.1/-
gauge field Y� and is equal to

LY .Y�/ ´ 2
3
f .0/F��F �� ;

where we have defined the curvature F�� of the field Y� by F�� ´ @�Y� � @�Y�.
The Higgs potential LH (ignoring the boundary term) only gives two constant terms
which add to the cosmological constant, plus an extra contribution to the Einstein–
Hilbert action:

LH .g��/ ´ �8f2ƒ
2jd j2 C 2f .0/jd j4 C 1

3
f .0/sjd j2:

Proof. SinceDA
2 is of the form�E �Q, we obtain the heat expansion of the spectral

action from (2.3). Thus, we only need to calculate the Seeley–DeWitt coefficients
from Theorem 2.11. The trace over the Hilbert space HF yields an overall factor
4 D dim HF, so we obtain

a0.x;DA
2/ D 4a0.x; =D

2
/:

For the second coefficient we have

a2.x;DA
2/ D 4a2.x; =D

2
/C 1

16�2 Tr
� � I ˝DF

2 C 1
2
i���� ˝ F��

�
:

Since Tr.����/ D 4g�� and F�� is anti-symmetric, the trace over the last term
vanishes. From (4.2) we easily see that DF

2 D jd j2I, so we obtain

a2.x;DA
2/ D 4a2.x; =D

2
/ � jd j2

�2
:

For the last coefficient, we need the curvature �E
�� of the connection rE of (4.4).

Its square is given by

�E
���

E �� D �S
���

S �� ˝ I � I ˝ F��F
�� C 2i�S

�� ˝ F �� ;

where the last term is traceless. We also obtain a contribution from Q2, which is
given by

Q2 D 1
16
s2 ˝ I C I ˝DF

4 � 1
4
�������� ˝ F��F�� C 1

2
s ˝DF

2

plus traceless terms. We shall ignore the boundary term�Q. The last Seeley–DeWitt
coefficient is then given by

a4.x;DA
2/ D 4a4.x; =D

2
/C 1

16�2
1
360

Tr
� � 60s ˝DF

2 C 180.I ˝DF
4

� 1
4
�������� ˝ F��F�� C 1

2
s ˝DF

2/ � 30I ˝ F��F
��

�
:
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Using the trace identity

Tr
�
1
4
��������

�
D g��g�� � g��g�� C g��g��

along with the anti-symmetry of F�� , we calculate that

Tr
� � 1

4
�������� ˝ F��F��

� D 2Tr.F��F
��/ D 8F��F �� :

We thus obtain the final coefficient

a4.x;DA
2/ D 4a4.x; =D

2
/C 1

12�2 sjd j2 C 1
2�2 jd j4 C 1

6�2 F��F �� :

The result follows from inserting these Seeley–DeWitt coefficients into the asymptotic
expansion (2.3), where we realize that the coefficients ak. =D

2
/ yield the gravitational

Lagrangian LM of Example 2.12.

4.3.2. The fermionic action. We have written the set of basis vectors of HF as
feL; eR; SeL; SeRg, and the subspaces H C

F and H �
F are spanned by feL; SeRg and feR; SeLg,

respectively. The total Hilbert space H is given by L2.M; S/˝ HF. Since we can
also decompose L2.M; S/ D L2.M; S/C ˚ L2.M; S/� by means of �5, we obtain

H C D L2.M; S/C ˝ H C
F ˚ L2.M; S/� ˝ H �

F :

A spinor  2 L2.M; S/ can be decomposed into  D  L C  R. Each subspace
HḞ is now spanned by two basis vectors. A generic element of the tensor product of
two spaces consists of sums of tensor products, so an arbitrary vector � 2 H C can
be uniquely written as

� D 
L ˝ eL C 
R ˝ eR C  R ˝ SeL C  L ˝ SeR (4.5)

for Weyl spinors 
L;  L 2 L2.M; S/C and 
R;  R 2 L2.M; S/�. Note that this
vector � 2 H C is now completely determined by two Dirac spinors 
 ´ 
L C 
R

and  ´  L C  R.

Proposition 4.3. The fermionic action of the almost commutative manifoldM �FED

defined above is given by

Sf D �i ˝JM z
; ��.rS
� � iY�/ z ˛ C hJM z
L; Nd z Li � hJM z
R; d z Ri:

Proof. The fluctuated Dirac operator is given by

DA D =D ˝ I C �� ˝ B� C �5 ˝DF:
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An arbitrary � 2 H C has the form of (4.5), and then we obtain the following expres-
sions:

J � D JM
L ˝ SeL C JM
R ˝ SeR C JM R ˝ eL C JM L ˝ eR;

. =D ˝ I/� D =D
L ˝ eL C =D
R ˝ eR C =D R ˝ SeL C =D L ˝ SeR;

.�� ˝ B�/� D ��
L ˝ Y�eL C ��
R ˝ Y�eR

� �� R ˝ Y� SeL � �� L ˝ Y� SeR;

.�5 ˝DF/� D �5
L ˝ NdeR C �5
R ˝ deL C �5 R ˝ d SeR C �5 L ˝ Nd SeL:
We decompose the fermionic action into the three terms

1
2

hJ Q�;DA
Q�i D 1

2
hJ Q�; . =D ˝ I/ Q�i C 1

2
hJ Q�; .�� ˝ B�/ Q�i C 1

2
hJ Q�; .�5 ˝DF/ Q�i

and then continue to calculate each term separately. The first term is given by

1
2

hJ Q�; . =D ˝ I/ Q�i D 1
2

hJM z
L; =D z Ri C 1
2

hJM z
R; =D z Li
C 1
2

hJM
z R; =D z
Li C 1

2
hJM

z L; =D z
Ri:
Using the fact that =D changes the chirality of a Weyl spinor and that the subspaces
L2.M; S/C and L2.M; S/� are orthogonal, we can rewrite this term as

1
2

hJ Q�; . =D ˝ I/ Q�i D 1
2

hJM z
; =D z i C 1
2

hJM
z ; =D z
i:

Using the symmetry of the form hJM z
; =D z i, we obtain

1
2

hJ Q�; . =D ˝ I/ Q�i D hJM z
; =D z i D �ihJM z
; ��rS
�

z i:
Note that the factor 1

2
has now disappeared in the result, and this is the reason why

this factor is included in the definition of the fermionic action. The second term is
given by

1
2

hJ Q�; .�� ˝ B�/ Q�i D �1
2

hJM z
L; �
�Y�

z Ri � 1
2

hJM z
R; �
�Y�

z Li
C 1
2

hJM
z R; �

�Y� z
Li C 1
2

hJM
z L; �

�Y� z
Ri:
In a similar manner as above, we obtain

1
2

hJ Q�; .�� ˝ B�/ Q�i D �hJM z
; ��Y�
z i;

where we have used that the form hJM z
; ��Y�
z i is anti-symmetric. The third term

is given by

1
2

hJ Q�; .�5 ˝DF/ Q�i D 1
2

hJM z
L; Nd�5
z Li C 1

2
hJM z
R; d�5

z Ri
C 1
2

hJM
z R; d�5 z
Ri C 1

2
hJM

z L; Nd�5 z
Li:
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The bilinear form hJM z
; �5
z i is again symmetric, but we now have the extra com-

plication that two terms contain the parameter d , while the other two terms contain Nd .
Therefore we are left with two distinct terms:

1
2

hJ Q�; .�5 ˝DF/ Q�i D hJM z
L; Nd z Li � hJM z
R; d z Ri:

Remark 4.4. It is interesting to note that the fermions acquire mass terms without
being coupled to a Higgs field. However, it seems we obtain a complex mass parameter
d , where we would desire a real parameter m. By simply requiring that our result
should be similar to (3.4), we will choose d ´ �im, so that

hJM z
L; Nd z Li � hJM z
R; d z Ri D i
˝
JM z
;m z ˛

:

The results obtained in this section can now be summarized into the following
theorem.

Theorem 4.5. The full Lagrangian of the almost commutative manifoldM �FED as
defined in this section can be written as the sum of a purely gravitational Lagrangian,

Lgrav.g��/ D 1
�2 LM .g��/C 1

4�2 LH .g��/;

and a Lagrangian for electrodynamics,

LED D �i.JM z
; .��.rS
� � iY�/ �m/ z /C 1

6�2f .0/F��F �� :

Proof. The spectral actionSb and the fermionic actionSf are given by Propositions 4.2
and 4.3. We shall now absorb all numerical constants into the Lagrangians as well.
This immediately yields Lgrav. To obtain LED, we need to rewrite the fermionic
action Sf as the integral over a Lagrangian. The inner product h ; i on the Hilbert
space L2.S/ is given by

h�;  i D
Z

M

.�;  /
pjgj d4x;

where the hermitian pairing . ; / is given by the pointwise inner product on the fibres.
Choosing d D �im as in Remark 4.4, we can then rewrite the fermionic action as

Sf D �
Z

M

i.JM z
; .��.rS
� � iY�/ �m/ z /pjgj d4x:
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