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Bost–Connes systems, Hecke algebras, and induction

Marcelo Laca, Sergey Neshveyev, and Mak Trifković

Abstract. We consider a Hecke algebra naturally associated with the affine group with totally
positive multiplicative part over an algebraic number field K and we show that the C�-algebra
of the Bost–Connes system for K can be obtained from our Hecke algebra by induction, from
the group of totally positive principal ideals to the whole group of ideals. Our Hecke algebra
is therefore a full corner, corresponding to the narrow Hilbert class field, in the Bost–Connes
C�-algebra of K; in particular, the two algebras coincide if and only if K has narrow class
number one. Passing the known results for the Bost–Connes system for K to this corner, we
obtain a phase transition theorem for our Hecke algebra.

In another application of induction we consider an extension L=K of number fields and
we show that the Bost–Connes system for L embeds into the system obtained from the Bost–
Connes system for K by induction from the group of ideals in K to the group of ideals in
L. This gives a C�-algebraic correspondence from the Bost–Connes system for K to that for
L. Therefore the construction of Bost–Connes systems can be extended to a functor from
number fields to C�-dynamical systems with equivariant correspondences as morphisms. We
use this correspondence to induce KMS-states and we show that for ˇ > 1 certain extremal
KMSˇ-states for L can be obtained, via induction and rescaling, from KMSŒLWK�ˇ-states for
K. On the other hand, for 0 < ˇ � 1 every KMSŒLWK�ˇ-state for K induces to an infinite
weight.
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Introduction

The original system of Bost and Connes [2] is based on the C�-algebra of the Hecke
pair of orientation-preserving affine groups over the rationals and over the integers.
The Bost–Connes Hecke algebra was subsequently shown to be a semigroup crossed
product [14], and this realization simplified the analysis of the phase transition and
the classification of KMS-states [9], [17]. For general number fields several Hecke
algebra constructions have been considered, see e.g. [8], [1], [15]. In particular,
the systems introduced in [15] and studied further in [16] exhibit the right phase
transition with spontaneous symmetry breaking, but only when the number field has
class number one and has no real embeddings. Eventually, however, it was not a
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Hecke algebra but a restricted groupoid construction modeled on semigroup crossed
products that yielded the generalization of Bost–Connes systems for general number
fields which is now widely regarded as the correct one [4], [7], [12]. A key step in this
construction is the induction from an action of the group of integral ideles to an action
of the Galois group of the maximal abelian extension. In this paper we demonstrate
two uses of induction in the study of Bost–Connes type systems for algebraic number
fields.

Our first application of induction appears in Section 2, where we provide a defini-
tive account of the relation between Bost–Connes systems and “Hecke systems” for
arbitrary number fields. Specifically, we consider affine groups, over the field and
over the algebraic integers, but we restrict the multiplicative subgroup to consist of
totally positive elements, that is, to elements that are positive in every real embedding.
The resulting inclusion of affine groups is then a Hecke pair and in Proposition 2.2
we show that the corresponding Hecke C�-algebra is a semigroup crossed product
which is a full corner in a group crossed product by the group of totally positive prin-
cipal ideals. Our main result in this section is Theorem 2.4, where we show that the
Bost–Connes algebra AK for K is a corner in the algebra obtained by induction from
this crossed product to a crossed product by the full group of fractional ideals over
K. This realizes our Hecke algebra as a corner in the Bost–Connes algebra for K and
allows us easily to derive a phase transition with symmetry breaking for our Hecke
C�-algebra by importing the known result for Bost–Connes systems from [12].

Since our construction restricts multiplication to totally positive elements, the
corner is naturally associated to the narrow Hilbert class field HC.K/ of K, namely,
the maximal abelian extension of K unramified at every finite prime. As it turns
out, there is a similar crossed product construction for every intermediate field K �
L � HC.K/ between K and its narrow Hilbert class field HC.K/, for which a
generalization of our main result holds, see Theorem 3.1. In particular, when L D
H.K/ is the Hilbert class field, we get an algebra containing the Hecke algebra of
[15] as its fixed point subalgebra with respect to the action of a finite subgroup of the
Galois group. The rest of Section 3 is devoted to describing relations between phase
transitions of the various systems associated to number fields.

Our second application of induction is in Section 4, where we elucidate the func-
toriality of the construction of a Bost–Connes type system from an algebraic number
field. Our main result here is Theorem 4.4, where we show that the construction
of Bost–Connes type systems extends to a functor which to an inclusion of number
fields K ,! L assigns a C�-correspondence which is equivariant with respect to
their suitably rescaled natural dynamics. Finally, in Proposition 4.5 we show that
KMS-states of AK at high inverse temperature pass through the correspondence mor-
phism and, after renormalization and adjusting of the inverse temperature, they give
KMS-states of AL, while other KMS-states, for low inverse temperature, induce to
infinite weights and hence do not yield KMS-states of AL.
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1. Algebraic preliminaries

Let K be an algebraic number field with ring of integers O. For any place v of K,
denote by Kv the completion of K at v. We indicate that v is finite (i.e., defined by
the valuation at a prime ideal of O) by writing v−1; in that case, let Ov be the clo-
sure of O in Kv . We similarly put vj1 when v is infinite (i.e., defined by an embedding
of K into R or C), and denote by K1 D Q

vj1 Kv the completion of K at all infinite
places. The adele ring AK is the restricted product, as v ranges over all places, of the
rings Kv , with respect to Ov � Kv for v−1. When the product is taken only over
finite places v, we get the ring AK;f of finite adeles; we then have AK D K1 �AK;f .
The ring of integral adeles is yO D Q

v−1 Ov � AK;f . Let NK W A�
K;f

! .0; C1/

be the absolute norm.
We will need basic facts of class field theory. A good general reference is [3].

(1) There exists a continuous surjective homomorphism rK W A�
K ! G .Kab=K/

with kernel Ko1K�, where Ko1 D Q
v real R�C �Qv complex C� is the connected

component of K�1.

(2) If � W K ,! L is an embedding of number fields then we have a commutative
diagram

A�
K

rK ��

�

��

G .Kab=K/

VL=�.K/BAd N�
��

A�
L rL

�� G .Lab=L/.

Here N� 2 G . xQ=Q/ is any extension of � , so that Ad N� defines an isomor-
phism G .Kab=K/ ! G .�.K/ab=�.K//, and VL=�.K/ W G .�.K/ab=�.K// !
G .Lab=L/ is the transfer, or Verlagerung, map. The definition of this map is
rather involved, but all we will need to know is that it exists and fits into the
above diagram.

(3) Let v be a finite place of K, and Nv any extension of v to Kab. The inertia group
I Nv=v does not depend on the choice of the extension Nv, and satisfies I Nv=v D
rK.O�

v /. Therefore an abelian extension L=K is unramified at v if and only if

O�
v is in the kernel of the composed map A�

K

rK��! G .Kab=K/
restriction�����! G .L=K/.

(4) The narrow Hilbert class field HC.K/ is the maximal abelian extension of K

which is unramified at all finite places v. By (3), we have G .Kab=HC.K// D
rK. yO�/ � G .Kab=K/.

(5) The subfield of H.K/ � HC.K/ fixed by G .Kab=H.K// D rK.K�1 yO�/ is
called the (wide) Hilbert class field. It is characterized by being the maximal
abelian everywhere unramified extension of K, so it is unramified at every finite
place and stays real over each real place of K.

It is convenient to remove any reference to infinite places from the above standard
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statement of class field theory. In order to do this we consider the multiplicative
subgroup K�C � K� of totally positive elements, that is, elements which are positive
in every real embedding of K. Put also O�C D O \ K�C and O�C D O� \ K�C. The
following isomorphisms are well known, but for the reader’s convenience we still
include a proof. The closures considered are in the finite ideles.

Proposition 1.1. The restrictions of the Artin map rK to A�
K;f

� K� yO� � yO� give
isomorphisms

A�
K;f =K�C Š G .Kab=K/;

K� yO�=K�C Š G .Kab=H.K//;

yO�=O�C Š G .Kab=HC.K//:

Remark. It is stated in [15], Proposition 4.1, that yO�=O� Š G .Kab=HC.K//, but
the proof given there works only when all units are totally positive. The main results
of [15] are not affected since they only concern totally imaginary fields.

Proof of Proposition 1.1. From A�
K D Ko1K�A�

K;f
it follows that the map QrK ´

rK jA�
K;f

W A�
K;f

! G .Kab=K/ is surjective. Since Ko1A�
K;f

is open in A�
K , the

kernel of the restriction of rK to Ko1A�
K;f

is

Ko1A�
K;f \ Ko1K� D Ko1A�

K;f \ Ko1K� D Ko1K�C:

Hence the kernel of QrK is the image of Ko1K�C in Ko1A�
K;f

=Ko1 D A�
K;f

, which is

K�C � A�
K;f

. This proves the first isomorphism.
To prove the second isomorphism, observe that rK.K�1/ D QrK.K�/. In order to

see this denote by j the embedding of K� into A�
K;f

. Then K�1K� D Ko1K�j.K�/,

whence rK.K�1/ D rK.j.K�// D QrK.K�/. It follows that G .Kab=H.K// D
rK.K�1 yO�/ D QrK.K� yO�/. Since K� yO� is open in A�

K;f
and contains K�C, which

is dense in the kernel of QrK , we get the second isomorphism.
Finally, the third isomorphism follows from G .Kab=HC.K// D QrK. yO�/ and

yO� \ K�C D O�C.

Let JK Š A�
K;f

= yO� be the group of fractional ideals of K and let PK;C Š
K�C=O�C be the subgroup of principal fractional ideals with a totally positive generator.
By the above proposition the preimage of G .Kab=HC.K// in A�

K;f
is the group

K�C yO�. Hence

G .HC.K/=K/ Š A�
K;f =K�C yO� Š JK=PK;C:

The last quotient is by definition ClC.K/, the narrow class group of K.
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The fundamental construction underlying this paper is induction. Let � W H ! G

be a homomorphism of groups and X be a set with a left action of H . The formula
h.g; x/ D .g�.h/�1; hx/ defines a left action of H on G � X . The quotient

G �H X ´ Hn.G � X/

is called the balanced product associated to the pair .�; X/, or the induction of X via
�. There is a natural left action of G on G �H X : g.g0; x/ D .gg0; x/. Restricting
to H , we get an action of H on G �H X . The composition of the map X ! G � X ,
x 7! .e; x/, with the quotient map G �X ! G �H X gives a map i W X ! G �H X .
This map is H -equivariant in the sense that i.hx/ D �.h/i.x/. It induces a bijection
HnX Š Gn.G �H X/.

Assume now that G and H are discrete groups, � is injective, and X is a locally
compact space with an action of H by homeomorphisms. In this case i.X/ is a clopen
subset of G �H X and the map i W X ! i.X/ is a homeomorphism. If the action of H

on X is proper, we get a homeomorphism HnX Š Gn.G �H X/ of locally compact
spaces. For general actions there is a version of this homeomorphism for reduced
crossed products, thought of as noncommutative quotients. Namely, consider the
transformation groupoid G � .G �H X/ defined by the action of G on G �H X .
Observe that gi.X/ \ i.X/ ¤ ; if and only if g 2 �.H/. It follows that the
reduction of G � .G �H X/ by the open subset i.X/ � G �H X is a groupoid
which is isomorphic to the transformation groupoid H � X . Therefore we have the
following result.

Proposition 1.2. Let � W H ! G be an injective homomorphism of discrete groups,
let X be a locally compact space with an action of H . Then i.X/ is a clopen subset of
G �H X , the corresponding projection in the multiplier algebra of C0.G �H X/Ìr G

is full, and
C0.X/ Ìr H Š 1i.X/.C0.G �H X/ Ìr G/1i.X/:

The same is true for full crossed products. In our applications the group G will
be abelian, so that reduced and full crossed products coincide.

2. From Hecke algebras to Bost–Connes systems

For a number field K consider the following inclusion of ax C b groups:

P C
O

D
�

1 O

0 O�C

�
� P C

K D
�

1 K

0 K�C

�
:

Recall that a pair of groups � � G is called a Hecke pair if every double coset can
be written as a finite disjoint union of left and right cosets:

�g� D
L.g/F
iD1

�li D
R.g/F
j D1

rj �; g; li ; rj 2 G:
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This happens if and only if the subgroups � and g�g�1 are commensurable for every
g 2 G. In that case, the modular function of the pair is defined by

�.g/ D L.g/

R.g/
D Œ� W � \ g�g�1�

Œg�g�1 W � \ g�g�1�
:

Lemma 2.1. The inclusion P C
O

� P C
K is a Hecke pair, and for y 2 K, x 2 K�C we

have

�

�
1 y

0 x

�
D NK.x/;

where NK W A�
K;f

! .0; C1/ is the absolute norm.

Proof. This can be checked by direct computation of double cosets, as in [15]. Al-
ternatively we can embed the pair P C

O
� P C

K densely into the pair

xP C
O

D
 

1 yO
0 O�C

!
� xP C

K D
 

1 AK;f

0 K�C

!

of subgroups of
�1 AK;f

0 A�
K;f

�
, and use the theory of topological Hecke pairs as in [19].

The group xP C
K is locally compact, and xP C

O
is a compact open subgroup, which

shows that . xP C
O

; xP C
K / is a Hecke pair. Since P C

K is dense in xP C
K and P C

O
D xP C

O
\P C

K ,
it follows that .P C

O
; P C

K / is also a Hecke pair. Furthermore, the modular function of
.P C

O
; P C

K / is the restriction of the modular function of the locally compact group xP C
K

to P C
K .

If � and � are Haar measures on K�C and AK;f , respectively, then

d	

�
1 y

0 x

�
D d�.x/d�.y/

is a left-invariant Haar measure on xP C
K . Since � has the property �.� x/ D NK.x/�. �/

for x 2 A�
K;f

, we get the required formula for the modular function of .P C
O

; P C
K /.

Recall that if � � G is a Hecke pair, then the space H .G; �/ of finitely supported
functions on �nG=� is a �-algebra with product

.f1 � f2/.g/ D P
h2�nG

f1.gh�1/f2.h/

and involution f �.g/ D f .g�1/. Denote by Œg� 2 H .G; �/ the characteristic func-
tion of the double coset �g� . The Hecke algebra H .G; �/ is faithfully represented
on `2.�nG/ by

.f 
/.g/ D P
h2�nG

f .gh�1/
.h/ for f 2 H .G; �/ and 
 2 `2.�nG/:
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Denote by C �
r .G; �/ the closure of H .G; �/ in this representation. The C�-algebra

C �
r .G; �/ carries a canonical action of R defined by Œg� 7! �.g/�it Œg�.

Proposition 2.2. The C�-algebra C �
r .P C

K ; P C
O

/ is isomorphic to

1 yO=O�
C

.C0.AK;f =O�C/ Ì˛ .K�C=O�C//1 yO=O�
C

;

where the action ˛ of K�C=O�C on C0.AK;f =O�C/ is defined by ˛x.f / D f .x�1�/.
Furthermore, the isomorphism can be chosen such that the canonical action of R
on C �

r .P C
K ; P C

O
/ corresponds to the restriction to the corner of the action � on the

crossed product defined by

�t .f ux/ D NK.x/�itf ux for f 2 C0.AK;f =O�C/ and x 2 K�C=O�C;

where the ux are the canonical unitaries implementing ˛.

Proof. This is analogous to [15], Theorem 2.5, so we will be relatively brief. We will
use an argument similar to the one in [11], Section 3.1.

Consider the groups xP C
K and xP C

O
from the previous lemma. Then C �

r . xP C
K ; xP C

O
/

is canonically isomorphic to pC �
r . xP C

K /p, where p D R
xP C

O

ugd	.g/ is the projection

corresponding to the compact open subgroup xP C
O

(the Haar measure 	 is assumed to be
normalized so that the measure of xP C

O
is one). The projection p is the product of two

commuting projections p1 and p2 corresponding to the subgroups
�

1 yO
0 1

�
and

�1 0

0 O�
C

�
,

respectively. Since xP C
K is a semidirect product of AK;f and K�C, the C�-algebra

C �
r . xP C

K / is isomorphic to C �
r .AK;f /ÌK�C. The group AK;f is selfdual; we normalize

the isomorphism 1AK;f Š AK;f by requiring that the annihilator of yO is again yO.
Then the image of the projection p1 under the isomorphism C �

r .AK;f / ! C0.AK;f /

is 1 yO . Therefore

pC �
r . xP C

K /p Š 1 yOp2.C0.AK;f / Ì K�C/p21 yO : (2.1)

The projection p2 corresponding to the subgroup O�C of K�C commutes with the
unitaries ux , x 2 K�C, and p2C0.AK;f /p2 D C0.AK;f =O�C/p2. Therefore

p2.C0.AK;f / Ì K�C/p2 D p2.C0.AK;f =O�C/ Ì K�C/p2:

Moreover, we have a surjective �-homomorphism C0.AK;f =O�C/ Ì .K�C=O�C/ !
p2.C0.AK;f =O�C/ Ì K�C/p2 which maps f 2 C0.AK;f =O�C/ to fp2 and u Nx ,
Nx 2 K�C=O�C, to uxp2, where x 2 K�C is any representative of Nx. To see that this is an
isomorphism, assume we have a covariant pair of representations of C0.AK;f =O�C/

and K�C=O�C. Since K�C \ O�C D O�C, the unitary representation of K�C=O�C defines
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a continuous representation of K�C with kernel containing O�C. Thus we get a co-
variant pair of representations of C0.AK;f =O�C/ and K�C such that the corresponding
representation of the crossed product maps p2 into one. Therefore any representation
of C0.AK;f =O�C/ Ì .K�C=O�C/ factors through

p2.C0.AK;f =O�C/ Ì K�C/p2:

Thus p2.C0.AK;f =O�C/ Ì K�C/p2 Š C0.AK;f =O�C/ Ì .K�C=O�C/; which together
with (2.1) gives the result.

The corner 1 yO=O�
C

.C0.AK;f =O�C/ Ì .K�C=O�C//1 yO=O�
C

can also be viewed as the

semigroup crossed product C. yO=O�C/ Ì .O�C=O�C/; see [10], Theorems 2.1 and 2.4.

As a consequence of the above proposition we see that the group yO�=O�C acts
on C �

r .P C
K ; P C

O
/; the action is however noncanonical, as the isomorphism in the

proposition depends on the choice of the isomorphism 1AK;f Š AK;f . Recall that
by Proposition 1.1 we have yO�=O�C Š G .Kab=HC.K//.

By Proposition 2.2 the C�-algebra C �
r .P C

K ; P C
O

/ is a full corner in the crossed

product algebra defined by the action of K�C=O�C on AK;f =O�C. We now induce
this action via the inclusion K�C=O�C Š PK;C ,! JK of totally positive principal
fractional ideals into all fractional ideals:

XC
K ´ JK �K�

C
=O�

C
.AK;f =O�C/:

We equip the crossed product C0.XC
K / Ì JK with the dynamics given by

�
K;C
t .f ug/ D NK.g/itf ug for f 2 C0.XC

K / and g 2 JK ; (2.2)

where NK.g/ denotes the norm of a fractional ideal g. Note that if g D .x/ for some
x 2 K, then NK.g/ D NK.x/�1. Consider also the subset Y C

K � XC
K defined by

Y C
K D f.g; !/ 2 XC

K j g! 2 yO= yO�g:
Here we think of g 2 JK as an element of A�

K;f
= yO�; then g! is a well-defined

element of AK;f = yO�. In other words, if we identify XC
K with a quotient of A�

K;f
�

AK;f , then Y C
K is the image of f.g; !/ 2 A�

K;f
� AK;f j g! 2 yOg. Since yO is

compact and open in AK;f and K�C=O�C has finite index in JK , the set Y C
K is compact

and open in XC
K . We put

AC
K D 1

Y
C

K

.C0.XC
K / Ì JK/1

Y
C

K

D C.Y C
K / Ì J C

K ;

where J C
K � JK is the subsemigroup of integral ideals. Since �K;C fixes 1

Y
C

K

, it

restricts to a dynamics on AC
K , which we continue to denote by �K;C. Thus, starting
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from the Hecke algebra C �
r .P C

K ; P C
O

/, we have constructed a C�-dynamical system
.AC

K ; �K;C/.
On the other hand, the Bost–Connes system associated with K is defined as

follows [7], [12]. Consider the balanced product XK D G .Kab=K/ � yO� AK;f ,

the induction of the multiplication action of yO� on AK;f via the restriction of the
Artin map A�

K ! G .Kab=K/ to yO�. This space has a natural action of JK , induced
from the action of A�

K;f
on G .Kab=K/ � AK;f given by g.�; x/ D .�rK.g/�1; gx/.

Consider the crossed product C�-algebra C0.XK/ Ì JK . Define a dynamics by the
same formula as in (2.2):

�K
t .f ug/ D NK.g/itf ug for f 2 C0.XK/ and g 2 JK :

To define the Bost–Connes system, we pass to the corner

AK ´ 1YK
.C0.XK/ Ì JK/1YK

;

corresponding to the compact subspace YK D G .Kab=K/ � yO�
yO. Since �K fixes

1YK
, it restricts to a dynamics on AK , which we continue to denote by �K .

Lemma 2.3. The map � W A�
K;f

� AK;f ! A�
K;f

� AK;f , �.x; y/ D .x�1; xy/,

induces a JK-equivariant homeomorphism XK Š XC
K . In this homeomorphism YK

is mapped onto Y C
K , and the set

ZHC.K/ D G .Kab=HC.K// � yO�
yO � YK

is mapped onto i. yO=O�C/ D fOg � yO=O�C, where i is the canonical embedding

AK;f =O�C ,! XC
K .

Proof. Take two copies of A�
K;f

�AK;f with the left action of A�
K;f

�A�
K;f

defined

by .g; h/.x; y/ D .gxh�1; hy/. Then �..g; h/.x; y// D .h; g/�.x; y/. Restricting
the action to the subgroup K�C � yO� of A�

K;f
� A�

K;f
, we get a homeomorphism

.A�
K;f � AK;f /=.K�C � yO�/ Š .A�

K;f � AK;f /=. yO� � K�C/: (2.3)

To compute the quotient by K�C � yO�, we can first divide out by K�C (which acts

only on the first component), and then by yO� (which balances both). The quotient by
yO� � K�C is similar. Therefore the bijection (2.3) gives the first homeomorphism in

.A�
K;f =K�C/� yO�AK;f Š .A�

K;f = yO�/�
K�

C

AK;f Š .A�
K;f = yO�/�

K�
C

=O�
C

AK;f =O�C;

the second coming from the fact that O�C D yO� \ K�C acts trivially on A�
K;f

= yO�.

Since K�C=O�C D K�C=O�C, we get the desired homeomorphism XK Š XC
K after

identifications A�
K;f

=K�C Š G .Kab=K/ from Proposition 1.1, and A�
K;f

= yO� Š JK .
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The map � W A�
K;f

� AK;f ! A�
K;f

� AK;f is A�
K;f

-equivariant with respect

to the action g.x; y/ D .xg�1; gy/ on the first space and g.x; y/ D .gx; y/ on the
second. This implies that the homeomorphism XK ! XC

K is JK-equivariant.
The subset YK � XK is the image of the subset A�

K;f
�O � A�

K;f
�AK;f , while

Y C
K is the image of f.x; y/ j xy 2 Og. We have �.A�

K;f
� O/ D f.x; y/ j xy 2 Og,

so the homeomorphism XK ! XC
K maps YK onto Y C

K .

Finally, by Proposition 1.1, the Galois group G .Kab=HC.K// is the image of yO�
under theArtin map, so G .Kab=HC.K//� yO�

yO is the image of yO�� yO � A�
K;f

�AK;f

in XK . It follows that the image of G .Kab=HC.K// � yO�
yO in XC

K D JK �K�
C

=O�
C

.AK;f =O�C/ is the image of yO� � yO � A�
K;f

� AK;f under the quotient map, so it

is fOg � yO=O�C D i. yO=O�C/.

We can now state one of our main results.

Theorem 2.4. The homeomorphism from Lemma 2.3 gives rise to a canonical iso-
morphism of C�-dynamical systems .AK ; �K/ Š .AC

K ; �K;C/. This induces an iso-
morphism

C �
r .P C

K ; P C
O

/ Š pKAKpK

of our Hecke algebra onto the corner of AK defined by the full projection pK corre-
sponding to the compact open subset ZHC.K/ � YK from Lemma 2.3.

Proof. It follows immediately from Lemma 2.3 that the homeomorphism of XK to
XC

K induces an isomorphism .AK ; �K/ Š .AC
K ; �K;C/ mapping pKAKpK onto

1
i. yO=O�

C
/
AC

K1
i. yO=O�

C
/

D 1
i. yO=O�

C
/
.C0.XC

K / Ì JK/1
i. yO=O�

C
/
:

By Proposition 1.2, the latter algebra is isomorphic to 1 yO=O�
C

.C0.AK;f =O�C/ Ì
.K�C=O�C//1 yO=O�

C

, which is in turn isomorphic to C �
r .P C

K ; P C
O

/ by Proposition 2.2.

The projection pK is full because JK i. yO=O�C/ D XC
K .

Therefore the Bost–Connes system for K can be constructed from C �
r .P C

K ; P C
O

/

by first dilating the semigroup crossed product decomposition of the Hecke algebra
to a crossed product by the group PK;C Š K�C=O�C of principal fractional ideals with
a totally positive generator, then inducing from PK;C to JK , and finally restricting to
a natural corner.

As an easy application we can classify KMS-states of the Hecke C�-algebra
C �

r .P C
K ; P C

O
/ Š C. yO=O�C/ Ì .O�C=O�C/ with respect to the canonical dynamics.

To formulate the result, for an element c of the narrow class group ClC.K/ denote
by . � ; c/ the corresponding partial zeta function,

.s; c/ D P
a2J

C

K
W a2c

NK.a/�s:
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Theorem 2.5. For the system .C. yO=O�C/ Ì .O�C=O�C/; �/ we have:

(i) For every ˇ 2 .0; 1� there is a unique KMSˇ -state, and it is of type III1.

(ii) For every ˇ 2 .1; 1/ extremal KMSˇ -states are of type I and are indexed by
the subset Y C

K;0 � XC
K D JK �K�

C
=O�

C
.AK;f =O�C/ defined by Y C

K;0 D f.g; !/ j
g! 2 yO�= yO�g; explicitly, the state 'ˇ;x corresponding to x D .g; !/ 2 Y C

K;0

factors through the canonical conditional expectation onto C. yO=O�C/, and on

C. yO=O�C/ it is given by

'ˇ;x.f / D 1

.ˇ; cx/

X
h2.K�

C
=O�

C
/\gJ

C

K

NK.hg�1/�ˇ f .h!/;

where cx 2 ClC.K/ is the class of g�1.

Proof. By Theorem 2.4 the system .C. yO=O�C/ Ì .O�C=O�C/; �/ is isomorphic to the
full corner .pKAKpK ; �K/ of the Bost–Connes system. By [13], Theorem 3.2, there
is a one-to-one correspondence between KMS-weights of equivariantly Morita equiv-
alent algebras. In our case we deal with unital C�-algebras, so every densely defined
weight is finite. Therefore for every ˇ 2 R the map ' 7! '.pK/�1'jpKAKpK

is a
bijection between KMSˇ -states on AK and those on pKAKpK . A more elementary
way to check that this is a bijection (at least for ˇ ¤ 0) is to apply [12], Proposi-
tion 1.1, to reduce the study of KMS-states for both systems to a study of measures
satisfying certain scaling and normalization conditions. Once we have this bijection,
we just have to translate the classification of KMS-states for the Bost–Connes system
to our setting.

Part (i) is an immediate consequence of [12], Theorem 2.1, and [18], Theorem 2.1.
As for part (ii), by [12], Theorem 2.1, for every ˇ 2 .1; C1/ extremal KMSˇ -

states on AK are indexed by the set YK;0 ´ G .Kab=K/ � yO�
yO� � YK : the state

corresponding to x 2 YK;0 is defined by the probability measure �ˇ;x on YK which
is concentrated on J C

K x and has the property �ˇ;x.hx/ D NK.h/�ˇ �ˇ;x.x/ for
h 2 J C

K . It is easy to see that the homeomorphism � W XK ! XC
K from Lemma 2.3

maps YK;0 onto Y C
K;0. Thus extremal KMSˇ -states for .C. yO=O�C/ Ì .O�C=O�C/; �/

are indexed by the set Y C
K;0. The state 'ˇ;x corresponding to x 2 Y C

K;0 is defined by

the measure �ˇ;x , which is concentrated on i�1.J C
k

x/ where i W AK;f =O�C ,! XC
K

is the canonical embedding, and is determined by the property that �ˇ;x.i�1.hx// D
NK.h/�ˇ c for every h 2 J C

K such that hx 2 i. yO=O�C/, where c is a uniquely
defined normalization constant. If .g; !/ 2 JK � .AK;f =O�C/ is a representative of

x 2 Y C
K;0 � JK �

K�
C

=O�
C

.AK;f =O�C/, then hgx 2 i. yO=O�C/ for h 2 J C
K if and

only if hg 2 K�C=O�C, and then i�1.hx/ D .hg/!. Therefore i�1.J C
K x/ consists of

points h! with h 2 .K�C=O�C/ \ gJ C
K , so that, up to a normalization constant, the
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measure �ˇ;x is P
h2.K�

C
=O�

C
/\gJ

C

K

NK.hg�1/�ˇ ıh! :

To get a probability measure we need to divide the above sum by .ˇ; cx/.

Remark 2.6. (i) We can equivalently say that extremal KMSˇ -states for ˇ > 1 are
in a one-to-one correspondence with K�C=O�C-orbits in A�

K;f
=O�C, that is, with the

set A�
K;f

=K�CO�C D A�
K;f

=K�C Š G .Kab=K/. Any such orbit carries a measure �,

unique up to a scalar, such that �.h!/ D NK.h/�ˇ �.!/ if h 2 K�C and ! lies on

the orbit. With a suitable normalization the part of the orbit lying in yO=O�C defines

a probability measure on yO=O�C which gives the required state. The corresponding
partition function is the partial zeta function defined by the class of the orbit in
A�

K;f
= yO�K�C Š ClC.K/.

(ii) Even if the classification of KMS-states for .AK ; �K/ were not known, it
would still be convenient to induce from K�C=O�C to JK and work with AK instead of
C �

r .P C
K ; P C

O
/. Indeed, the action of K�C=O�C on AK;f =O�C is more complicated than

that of JK on XK , e.g. because K�C=O�C-orbits not passing through yO�=O�C do not
have canonical representatives, and one would be forced to consider the set of ideals of
minimal norm in their narrow class, analogously to [16]. By contrast, JK-orbits in XK

enter YK at a unique point in YK;0. Furthermore, the group G .Kab=K/ Š A�
K;f

=K�C
acts on AK and induces a free transitive action on extremal KMSˇ -states (ˇ > 1).
Only when restricted to G .Kab=HC.K// Š yO�=O�C does this action come from
automorphisms of the algebra C �

r .P C
K ; P C

O
/. The main reason why AK is easier to

study than C �
r .P C

K ; P C
O

/ is that the ordered group .JK ; J C
K / is lattice-ordered, unlike

.K�C=O�C; O�C=O�C/ (an intersection of two principal ideals need not be principal).
(iii) The induced space XK D G .Kab=K/ � yO� AK;f comes with a natural action

of G .Kab=K/, which in turn induces a symmetry of the system defined by automor-
phisms of the algebra AK , and not just of the KMSˇ -states. This is different from the
symmetry considered in [4], which comes from the action of the semigroup yO\A�

K;f

on AK by endomorphisms defined by the action of A�
K;f

on the second coordinate of

XK D G .Kab=K/ � yO� AK;f . The endomorphisms defined by elements of yO \ K�C
are inner, so one gets a well-defined action of . yO\A�

K;f
/=. yO\K�C/ � G .Kab=K/ on

KMSˇ -states, which then extends to an action of the whole Galois group G .Kab=K/.

Despite the fact that the two actions of yO \ A�
K;f

differ significantly at the C�-
algebra level, they actually coincide on KMSˇ -states. The reason is that they define
the same actions on the space of JK-orbits of points in Y 0

K .
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3. Comparison with other Hecke systems

The C�-algebra associated with the Hecke inclusion of full affine groups

PO ´
�

1 O

0 O�
�

� PK ´
�

1 K

0 K�
�

was studied in [15] and [16]. By [15], Theorem 2.5, the corresponding Hecke C�-
algebra C �

r .PK ; PO/ is isomorphic to a crossed product by the semigroup of principal
ideals,

1 yO=O�.C0.AK;f =O�/ Ì .K�=O�//1 yO=O� D C. yO=O�/ Ì .O�=O�/:

It is known that for imaginary quadratic fields of any class number these Hecke
systems are Morita equivalent to Bost–Connes systems [5], Proposition 4.6. We also
know from [12], Remark 2.2 (iii), that for totally imaginary fields K of class number
one the Hecke systems are actually isomorphic to the Bost–Connes systems. In this
section we will generalize these results and show that for arbitrary number fields
C �

r .PK ; PO/ embeds into the corner of AK corresponding to the Hilbert class field.
Our construction of the corner pKAKpK works for any intermediate field L

between K and its narrow Hilbert class field HC.K/. Namely, let QrK W A�
K;f

!
G .Kab=K/ be the restriction of the Artin map to the finite ideles. For K � L �
HC.K/, put UL D Qr�1

K .G .Kab=L//. We have A�
K;f

D UK � UL � UHC.K/ D
K�C yO�. For example, when L D H.K/ is the Hilbert class field, we have UH.K/ D
K� yO�. These descriptions of UK , UH.K/, and UHC.K/ are the content of Proposi-
tion 1.1.

Put IL D UL= yO� � JK . The action g.x; y/ D .xg�1; gy/ of UL on UL � AK;f

descends to an action of IL on .UL=K�C/ � yO� AK;f Š G .Kab=L/ � yO� AK;f . Then
similarly to Theorem 2.4 we have the following result.

Theorem 3.1. The map A�
K;f

� AK;f ! A�
K;f

� UL � AK;f , defined by .x; y/ 7!
.x�1; 1; xy/; induces a JK-equivariant homeomorphism

G .Kab=K/ � yO� AK;f Š JK �IL
.G .Kab=L/ � yO� AK;f /:

This homeomorphism in turn induces an isomorphism of C�-algebras

qLAKqL Š C.G .Kab=L/ � yO�
yO/ Ì I C

L ;

where qL D 1ZL
is the projection corresponding to the subset ZL D G .Kab=L/� yO�

yO � YK , and I C
L D IL \ J C

K is the subsemigroup of integral ideals in IL.

Remark 3.2. Recall from [4], [12] that AK can be interpreted as the algebra of the
equivalence relation of commensurability of 1-dimensional K-lattices divided by (the
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closure of) the scaling action of Ko1. Then the subalgebra qLAKqL corresponds to
lattices that are up to scaling defined by ideals in IL. For L D HC.K/ the algebra
qLAKqL has an interpretation as a Hecke algebra, and hence a presentation derived
from the multiplication table of double cosets. It would be interesting to see whether
qLAKqL has a similar natural presentation for other L.

The relation between the Hecke algebra C �
r .PK ; PO/ from [15] and the Bost–

Connes algebra AK is obtained by setting L to be the Hilbert class field. The result
generalizes Remark 33 (b) in [2], made for K D Q.

Proposition 3.3. We have qH.K/AKqH.K/ Š C.G .Kab=H.K//� yO�
yO/Ì .O�=O�/

and

qH.K/A
rK.K�

1/

K qH.K/ D .qH.K/AKqH.K//
rK.K�

1/ Š C �
r .PK ; PO/:

Note that rK.K�1/ is a finite group of order not bigger than 2r , where r is the
number of real embeddings of K.

Proof of Proposition 3.3. The first isomorphism is justTheorem 3.1 with L D H.K/.
Since rK.K�1/ � G .Kab=H.K//, the projection qH.K/ is rK.K�1/-invariant, so

qH.K/A
rK.K�

1/

K qH.K/ D .qH.K/AKqH.K//
rK.K�

1/:

As was observed in the proof of Proposition 1.1, we have rK.K�1/ D QrK.K�/.
Therefore, using that G .Kab=H.K// Š K� yO�=K�C, we get

G .Kab=H.K//=rK.K�1/ Š K� yO�=K�K�C D K� yO�=K� Š yO�=O�:

As . yO�=O�/� yO� AK;f Š AK;f =O�, we thus have an IH.K/-equivariant homeomor-
phism between the quotient of G .Kab=H.K// � yO� AK;f by the action of rK.K�1/

and the space AK;f =O�, so that

.C.G .Kab=H.K// � yO�
yO/ Ì .O�=O�//rK.K�

1/ Š C. yO=O�/ Ì .O�=O�/:

Since the latter algebra is isomorphic to C �
r .PK ; PO/ by [15], Theorem 2.5 (see also

[15], Definition 2.2), we conclude that .qH.K/AKqH.K//
rK.K�

1/ Š C �
r .PK ; PO/.

Remark 3.4. (i) Since we have G .HC.K/=K/ Š A�
K;f

=K�C yO� Š ClC.K/ and

G .H.K/=K/ Š A�
K;f

=K� yO� Š Cl.K/, the fields HC.K/ and H.K/ coincide if
and only if K�C=O�C D K�=O�, that is, K� D O�K�C. In this case the above result
implies that C �

r .PK ; PO/ is isomorphic to a fixed point subalgebra of C �
r .P C

K ; P C
O

/

under a finite group action. This is easy to see by definition of Hecke algebras: the
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isomorphism simply comes from the restriction map H .PK ; PO/ ! H .P C
K ; P C

O
/,

f 7! f j
P

C

K

, and as a finite group we can take O�=O�C, with the action defined

by conjugation by matrices
�

1 0
0 x

�
, x 2 O�. Observe that in this case the group

rK.K�1/ Š K�=K�C Š O�=O�C is a quotient of O�=O�C.
(ii) The previous proposition can be used to apply the classification of KMS-states

of the Bost–Connes system for K to analyze KMS-states of C �
r .PK ; PO/. Namely,

it follows from [12], Proposition 1.1, that, for ˇ ¤ 0, KMSˇ -states on C �
r .PK ; PO/

are in a one-to-one correspondence with measures on

AK;f =O� Š . yO�=O�/ � yO� AK;f Š .G .Kab=H.K// � yO� AK;f /=rK.K�1/

satisfying certain scaling and normalization conditions. Any such measure defines
an rK.K�1/-invariant measure on G .Kab=H.K// � yO� AK;f satisfying similar con-
ditions, hence it gives a KMSˇ -state on the algebra qH.K/AKqH.K/. Thus we have a
bijection between KMSˇ -states on C �

r .PK ; PO/ and rK.K�1/-invariant KMSˇ -states
on qH.K/AKqH.K/, or equivalently, on AK . Using this we get a result for C �

r .PK ; PO/

similar to Theorem 2.5, but with “pluses erased”. We leave details to the interested
reader, limiting ourselves to pointing out that in this case the role of Y C

K;0 is played

by the subset f.g; !/ j g! 2 yO�= yO�g Š A�
K;f

=K� Š G .Kab=K/=rK.K�1/ of the
set

JK �K�=O� .AK;f =O�/ Š .A�
K;f =K�/ � yO� AK;f

Š .G .Kab=K/ � yO� AK;f /=rK.K�1/:

In particular, for every ˇ > 1 we have a free transitive action of G .Kab=K/=rK.K�1/

on the set of extremal KMSˇ -states of C �
r .PK ; PO/. This completes and simplifies

the analysis in [16].
(iii) Another topological Hecke pair naturally associated with K is

� D
 

1 yO
0 yO�

!
� G D

�
1 AK;f

0 A�
K;f

�
:

The corresponding C�-algebra is isomorphic to the symmetric part A
G .Kab=K/
K of the

Bost–Connes system for K. Indeed, if p 2 C �
r .G/ is the projection corresponding

to the compact open subgroup � of G, then similarly to the proof of Proposition 2.2
we have

C �
r .G; �/ D pC �

r .G/p Š 1 yO= yO�.C0.AK;f = yO�/ Ì .A�
K;f = yO�//1 yO= yO� ;

and it remains to note that AK;f = yO� D XK=G .Kab=K/.
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4. Functoriality of Bost–Connes systems

Consider an embedding � W K ,! L of number fields. We also denote by � other
embeddings which it induces, e.g. of AK ,! AL, A�

K;f
,! A�

L;f
, JK ,! JL, etc.

Recall that the Bost–Connes system for K is constructed using an action of JK on
XK D G .Kab=K/ � yO�

K

AK;f . We induce this action to an action of JL by letting

X� D JL �JK
XK ;

so X� is the quotient of JL � XK by the action h.g; x/ D .g�.h/�1; hx/ of JK . We
want to compare the action of JL on X� with that on XL.

Consider the map � �� W A�
K �AK;f ! A�

L �AL;f . Identifying XK and XL with
quotients of A�

K � AK;f and A�
L � AL;f , respectively, we then get a map XK ! XL,

which we continue to denote by � . Note that on the level of Galois groups it is defined
using the transfer map VL=�.K/ W G .�.K/ab=�.K// ! G .Lab=L/, see property (2)
of the Artin map in Section 1.

The map � W XK ! XL is JK-equivariant in the sense that �.hx/ D �.h/�.x/

for h 2 JK and x 2 XK . It follows that we have a well-defined map

�� W X� ! XL; �� .g; x/ D g�.x/:

Lemma 4.1. The map �� W X� D JL �JK
XK ! XL is JL-equivariant and its image

is dense.

Proof. Equivariance is clear. To show density it is enough to show that the JL-orbit
of the point .e; 1/ 2 XL D G .Lab=L/ � yO�

L

AL;f is dense. By Lemma 2.3 we have

a JL-equivariant homeomorphism XL ! JL �L�
C

=O�
L;C

.AL;f =O�
L;C/, which maps

.e; 1/ into .OL; 1/. Therefore density of the JL-orbit of .e; 1/ is equivalent to density
of L�C in AL;f , and the latter can be showed as follows. Take an arbitrary open set
in AL;f of the form U D Q

v2S Uv �Qv…S Ov for some finite set of places S . We
know that L is dense in AL;f , so we can find an element l 2 L \ U . Let p1; : : : ; ps

be the integer primes below the primes in S . Take an integer N big enough for the
integer n D .p1 : : : ps/N to satisfy a) n C U D U and b) n > �.�l/ for all real
embeddings � W L ,! R. Then n C l 2 L�C \ U .

The map �� is not proper unless �.K/ D L, which can be seen e.g. from Propo-
sition 4.5 (ii) below. It defines a JL-equivariant injective homomorphism C0.XL/ !
Cb.X� /, hence an injective homomorphism

��
� W C0.XL/ Ì JL ! M.C0.X� / Ì JL/:

On the other hand, we have a JK-equivariant embedding i� W XK ,! X� , x 7!
.OL; x/. By Proposition 1.2 it gives us an isomorphism

i�
� W 1i� .XK/.C0.X� / Ì JL/1i� .XK/ ! C0.XK/ Ì JK :
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Thus we can define a .C0.XL/ÌJL/-.C0.XK/ÌJK/-correspondence, that is, a right
Hilbert .C0.XK/ Ì XK/-module with a left action of C0.XL/ Ì JL, by

zA� D .C0.X� / Ì JL/1i� .XK/; h
; i D i�
� .
�/:

The actions of C0.XL/ Ì JL and C0.XK/ Ì XK are given by ��
� and .i�

� /�1. Since
JLi� .XK/ D X� , the projection 1i� .XK/ 2 M.C0.X� / Ì JL/ is full. As ��

� is
injective, it follows that the left action of C0.XL/ Ì JL is faithful.

It is convenient to have the following description of the Hilbert module zA� . Con-
sider C �.JL/ as a right Hilbert C �.JK/-module C �.JL/� with the right module struc-
ture defined by the embedding C �.JK/ ,! C �.JL/ defined by � , and the C �.JK/-
valued inner product h
; i D ��1.E.
�//, where E W C �.JL/ ! C �.�.JK// is
the canonical conditional expectation, so E.ug/ D 0 for g 2 JL n �.JK/.

Lemma 4.2. We have a canonical isomorphism

zA� Š C �.JL/� ˝C �.JK/ .C0.XK/ Ì JK/

of right Hilbert .C0.XK/ Ì JK/-modules. Under this isomorphism the left action of
C0.XL/ Ì JL is given by

ugf .uh ˝
/ D ugh ˝f .h�. �//
 for g; h 2 JL; f 2 C0.XL/; 
 2 C0.XK/ÌJK :

Proof. The module zA� is the closed linear span of elements of the form uhf 2
C0.X� /ÌJL with supp f � i� .XK/. It is then straightforward to check that the map
uhf 7! uh ˝ f .i� .�// is the required isomorphism.

Recalling now that the C�-algebra of the Bost–Connes system for K is AK D
C.YK/ Ì J C

K D 1YK
.C0.XK/ Ì JK/1YK

, where YK D G .Kab=K/ � yO�
K

yOK , we can

define an AL-AK-correspondence by

A� D 1YL
zA�1YK

:

Observe that since 1YK
is a full projection in C0.XK/ÌJK , the left action of C0.XL/Ì

YL on zA�1YK
is still faithful. Hence the left action of AL on A� is faithful.

Lemma 4.3. Assume � W K ! L and � W L ! E are embeddings of number fields.
Then we have a canonical isomorphism A� ˝AL

A� Š A�B� of AE -AK-correspon-
dences.

Proof. Using Lemma 4.2 we get the following isomorphisms of right Hilbert
.C0.XK/ Ì JK/-modules:

zA� ˝C0.XL/ÌJL
zA� Š .C �.JE /� ˝C �.JL/ .C0.XL/ Ì JL// ˝C0.XL/ÌJL

zA�

Š C �.JE /� ˝C �.JL/
zA�

Š C �.JE /� ˝C �.JL/ .C �.JL/� ˝C �.JK/ .C0.XK/ Ì JK//

Š C �.JE /�B� ˝C �.JK/ .C0.XK/ Ì JK/

Š zA�B� :
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It is easy to see that these isomorphisms respect the left actions of C0.XE / Ì JE .
The lemma is now a consequence of the following general result. If A and B are
C�-algebras, X is a right Hilbert A-module, Y is an A-B-correspondence and p 2 A

is a full projection then the map

Xp p̋Ap pY ! X ˝A Y; 
 ˝  7! 
 ˝ ;

is an isomorphism of right Hilbert B-modules. Indeed, we have

Xp p̋Ap pY Š X ˝A Ap p̋Ap pA ˝A Y;

so the result follows from the isomorphism Ap p̋Ap pA Š A, a ˝ b 7! ab, of
A-A-correspondences.

The correspondences we have constructed are not quite compatible with the dy-

namics of Bost–Connes systems, because NL B � D NŒLW�.K/�
K . It is therefore natural

to replace the absolute norm NK by the normalized norm zNK ´ N1=ŒKWQ�
K , and define

a dynamics Q�K on AK � C0.XK/ Ì JK by

Q�K
t .f ug/ D zNK.g/itf ug D NK.g/it=ŒKWQ�f ug D �K

t=ŒKWQ�.f ug/:

For an embedding � W K ! L of number fields we define a one-parameter group
of isometries U � on A� � C0.X� / Ì JL by

U �
t f ug D zNL.g/itf ug D NL.g/it=ŒLWQ�f ug :

The correspondence A� then becomes equivariant for the dynamical systems .AL; Q�L/

and .AK ; Q�K/ in the sense that

U �
t a
 D Q�L

t .a/U �
t 
 for a 2 AL;

U �
t .
a/ D .U �

t 
/ Q�K
t .a/ for a 2 AK ;

hU �
t 
; U �

t i D Q�K
t .h
; i/:

It is clear that the isomorphism A� ˝AL
A� Š A�B� is equivariant with respect

to the actions of R by isometries U �
t ˝ U �

t on A� ˝AL
A� and U �B�

t on A�B� .
Summarizing properties of the correspondences A� we get the following result.

Theorem 4.4. The maps K 7! .AK ; Q�K/ for number fields K and � 7! .A� ; U� /

for embeddings � W K ! L of number fields, define a functor from the category
of number fields with embeddings as morphisms into the category of C�-dynamical
systems with isomorphism classes of R-equivariant correspondences as morphisms.

It is natural to ask whether this functor is injective on objects and morphisms. A
related problem has been recently studied in [6], where it is shown that the systems
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.AK ; �K/ and .AL; �L/ are isomorphic (via an isomorphism of a particular form) if
and only if K and L are isomorphic.

Next we will check how KMS-states for Bost–Connes systems behave under
induction with respect to correspondences A� . For this we shall use the general
construction of induced KMS-weights [13].

Assume A is a C�-algebra with a one-parameter group of automorphisms � , X

is a right Hilbert A-module, and U is a one-parameter group of isometries on X

such that Ut .
a/ D .Ut
/�t .a/ and hUt
; Uti D �t .h
; i/ (the first condition is in
fact a consequence of the second). Then U defines a strictly continuous 1-parameter
group of automorphisms �U on the C�-algebra B.X/ of adjointable operators on X ,
�U

t .T / D UtT U�t . Assume ' is a � -KMSˇ weight on A, so ' is � -invariant, lower
semicontinuous, densely defined and '.x�x/ D '.��iˇ=2.x/��iˇ=2.x/�/ for every
x in the domain of definition of ��iˇ=2. By [13], Theorem 3.2, there exists a unique
�U -KMSˇ weight ˆ on the C�-algebra K.X/ of generalized compact operators on
X such that

ˆ.��;�/ D '.hUiˇ=2
; Uiˇ=2
i/
for every 
 2 X in the domain of definition of Uiˇ=2, where ��;� 2 K.X/ is the
operator defined by ��;� D 
h
; i. Furthermore, the weight ˆ extends uniquely
to a strictly lower semicontinuous weight on B.X/. We will denote this weight by
IndU

X '.
Induced weights behave in the expected way with respect to induction in stages.

Namely, assume B is another C�-algebra with dynamics � and Y is a right Hilbert B-
module with a one-parameter group of isometries V such that hVt
; Vti D �t .h
; i/.
Assume further that B acts on the left on X and Utb
 D �t .b/Ut
 . By [13],
Proposition 3.4, if the restriction of IndU

X ' to B is densely defined then

IndV
Y ..IndU

X '/jB/ D IndV ˝U
Y ˝B X ' on B.Y /:

Returning to Bost–Connes systems, recall that by [12], Proposition 1.1, for every
ˇ ¤ 0 there is a one-to-one correspondence between positive �K-KMSˇ -functionals
on AK and measures � on XK such that �.YK/ < 1 and �.gZ/ D NK.g/�ˇ �.Z/

for g 2 JK and Borel subsets Z � XK . Such a measure defines a weight on
C0.XK/. By composing it with the canonical conditional expectation C0.XK/ Ì
JK ! C0.XK/, we get a weight on the crossed product, and its restriction to AK gives
the required functional corresponding to �. It follows from [12], Proposition 1.2,
that for ˇ > 1 such a measure � is completely determined by its restriction to
YK;0 D G .Kab=K/ � yO�

K

yO�
K , and any finite measure � on YK;0 extends uniquely to

a measure � on XK satisfying the above conditions. We denote the corresponding
functional on AK by 'ˇ;� . Then 'ˇ;�.1/ D K.ˇ/�.YK;0/, where K is the Dedekind
zeta function. One the other hand, for every ˇ 2 .0; 1� there is a unique KMSˇ -state,
and for the corresponding measure � we have �.YK;0/ D 0, see [12], Theorem 2.1.
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Proposition 4.5. Let L=K be an extension of number fields with K ¤ L, and
let ' a �K-KMSŒLWK�ˇ -state (hence a Q�K-KMSŒLWQ�ˇ -state) on AK . Put ˆ D
.IndU�

A�
'/jAL

, where � W K ! L is the identity map, so ˆ is a weight satisfying the

�L-KMSˇ -condition but possibly not densely defined. Then:

(i) If ˇ > 1 and ' D 'ŒLWK�ˇ;� for a measure � on YK;0, then ˆ D 'ˇ;��.�/. In
particular,

ˆ.1/ D L.ˇ/

K.ŒL W K�ˇ/
:

(ii) If ˇ 2 .0; 1�, then ˆ.1/ D C1.

Proof. Observe first that if p is a full projection in a C�-algebra A, then induction of
KMS-weights by the A-pAp correspondence Ap simply means extension. In view
of this the induction procedure for Bost–Connes systems can be described as follows.
Assume ' is defined by a measure � on XK as described above. It defines a measure
on i� .XK/. This measure extends uniquely to a measure 	 on X� such that

	.gZ/ D zNL.g/�ŒLWQ�ˇ 	.Z/ D NL.g/�ˇ 	.Z/ for g 2 JL and Borel Z � X� :

Then ˆ is the weight defined by the measure �� ´ ���.	/ on XL. Therefore
the claims are that (i) if ˇ > 1 and � D �jYK;0

then �� jYL;0
D ��.�/, and (ii) if

ˇ 2 .0; 1� then �� .YL/ D C1.
Assume ˇ > 1 and let � D �jYK;0

. Since the sets gYK;0, g 2 JK , are pairwise
disjoint and the measure � is determined by �, we have

�.Z/ D P
g2JK

zNK.g/ŒLWQ�ˇ �.gZ \ YK;0/ for Borel Z � XK :

In particular, � is concentrated on JKYK;0. Since the sets gi� .YK;0/, g 2 JL,
are pairwise disjoint, we have a similar formula for 	, so that 	 is concentrated on
JLi� .YK;0/. Since �� .i� .YK;0// � YL;0, we conclude that �� is concentrated on
JLYL;0 and �� jYL;0

D .�� B i� /�.�/ D ��.�/.
Assume now that ˇ 2 .0; 1�. For ˇ > 1=ŒL W K� it is immediate that �� .YL/ D

C1, since on the one hand �� .YL;0/ 	 �.YK;0/ > 0, and on the other we know
that if �� .YL/ < 1 then �� .YL;0/ D 0. But for ˇ � 1=ŒL W K� we need a different
argument.

Let v be a finite place of K. Consider the subset Wv of YK D G .Kab=K/� yO�
K

yOK ,

which is the image of G .Kab=K/�O�
K;v �Qw¤v;w−1 OK;w under the quotient map.

The scaling condition for � implies (see [12]) that

�.Wv/ D 1 � zNK.pv/�ŒLWQ�ˇ D 1 � NK.pv/�ŒLWK�ˇ :

Denote by J C
L;v the unital subsemigroup of J C

L generated by ideals pw with wjv. Then

for g 2 J C
L;v the sets �� .gi� .Wv// D g�.Wv/ are mutually disjoint and contained
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in YL. Hence

�� .YL/ 	
X

g2J
C

L;v

	.gi� .Wv// D
X

g2J
C

L;v

NL.g/�ˇ �.Wv/ D 1 � NK.pv/�ŒLWK�ˇQ
wjv.1 � NL.pw/�ˇ /

:

A similar computation for a finite set F of places v−1 yields

�� .YL/ 	
Y
v2F

1 � NK.pv/�ŒLWK�ˇQ
wjv.1 � NL.pw/�ˇ /

:

We claim that for ˇ 2 .0; 1� the above expression tends to infinity as F ranges over all
such sets. This is obviously the case for ˇ D 1, since the denominator converges to
L.1/�1 D 0, while the numerator converges to K.ŒL W K�/�1 ¤ 0 (as ŒL W K� 	 2

by assumption). Therefore it suffices to check that each factor in the above product
is a non-increasing function in ˇ on .0; 1�. To see this write pvOL as

Q
wjv psw

w , then

NK.pv/ŒLWK� D Q
wjv NL.pw/sw . Therefore is suffices to check that for numbers

x1; : : : ; xn > 1 and s1; : : : ; sn 	 1 the function

1 � x
�s1ˇ
1 : : : x

�snˇ
n

.1 � x
�ˇ
1 / : : : .1 � x

�ˇ
n /

is non-increasing in ˇ on .0; 1�. This in turn is easy to see using that the function
1�ax�sˇ

1�x�ˇ is non-increasing for any x > 1, s 	 1 and 0 � a � 1. Therefore,
�� .YL/ D C1.
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