
J. Noncommut. Geom. 7 (2013), 547–561
DOI 10.4171/JNCG/126

Journal of Noncommutative Geometry
© European Mathematical Society

Applications of Følner’s condition to quantum groups

David Kyed� and Andreas Thom

Abstract. Using the Følner condition for coamenable quantum groups we derive information
about the ring-theoretical structure of the Hopf algebras arising from such quantum groups, as
well as an approximation result concerning the Murray–von Neumann dimension associated
with the corresponding the von Neumann algebra.
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1. Preliminaries on quantum groups

Consider a compact quantum group G in the sense of Woronowicz [26]; i.e., G con-
sists of a (not necessarily commutative) unital, separable C�-algebra C.G/ together
with a unital and coassociative �-homomorphism �G W C.G/ ! C.G/˝C.G/ which
furthermore has to satisfy a certain non-degeneracy condition [26]. We remind the
reader that such a C�-algebraic compact quantum group automatically gives rise to a
purely algebraic quantum group (i.e., a Hopf �-algebra [10]) whose underlying alge-
bra will be denoted Pol.G/, as well as a von Neumann algebraic quantum group (see
[12]) whose underlying algebra will be denoted L1.G/. We also recall that the C�-
algebra C.G/ possesses a distinguished state h, called the Haar state, which plays the
role corresponding to the Haar measure on a genuine compact group. The compact
quantum group is said to be of Kac type if its Haar state is a trace. Performing the
GNS construction with respect to h yields a Hilbert space denoted L2.G/ on which
C.G/ acts via the corresponding GNS-representation �. The image �.C.G// will
be denoted C.G/red and the von Neumann algebra L1.G/ is by definition the weak
operator closure of C.G/red. We denote by J the modular conjugation arising from
h and by � W L1.G/ ! B.L2.G// the �-anti-homomorphism �.a/ D J �.a/�J .
There is also a universal representation associated with G, and we will denote the
norm closure of Pol.G/ in this representation by C.G/max; the reader is referred to
[2] for the details on this construction.

�The work of the first author was funded partially by the DFG grant SCHI 525/7-1 and partially by The
Danish Council for Independent Research j Natural Sciences.
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Example. The canonical example of a compact quantum group, upon which the
general definition is modeled, is obtained by considering a compact, second countable,
Hausdorff topological group G and its C�-algebra C.G/ of continuous, complex
valued functions. The comultiplication is then the Gelfand dual of the multiplication
map and the Haar state is given by integration against the Haar probability measure
�. In this case the von Neumann algebra is L1.G; �/ and the associated Hopf �-
algebra is the algebra generated by matrix coefficients arising from the irreducible
representations of G.

Example. For a discrete countable group � its reduced C�-algebra C �
red.�/ can be

turned into a compact quantum group by defining the comultiplication on a group
element � 2 � by �� D � ˝ � . In this situation, the Haar state is the standard
trace on C �

red.�/ and the Hopf-algebra and von Neumann algebra are, respectively,
the complex group algebra C� and the group von Neumann algebra L.�/.

To any quantum group G (compact as well as just locally compact) a so-called
multiplicative unitary W on L2.G/ x̋ L2.G/ is associated; this is a unitary which
(inter alia) has the property that

C.G/red D Œ.id ˝ !/W j ! 2 B.L2.G//��;

where, for a subset X of a normed space, ŒX� denotes the norm closure of the linear
space spanned by X . Furthermore, a compact quantum group G comes with a dual
quantum group yG of so-called discrete type whose underlying C�-algebra is given by

c0. yG/ ´ Œ.! ˝ id/W j ! 2 B.L2.G//��:

For a detailed treatment of C�-algebraic (locally compact) quantum groups and their
duality theory we refer the reader to the work of Kustermans and Vaes [11].

The fundamental notions and results from the representation theory of compact
groups (e.g. irreducibility, decomposition into irreducibles, the Peter–Weyl theorem
etc.) have counterparts in the (co)representation theory of compact quantum groups.
We shall not elaborate further on these results but refer the reader to [25] and [16] for
more details. We will, however, need some notation concerning the corepresentations
of G which will be set up in the following. Let Irred.G/ denote the set of equivalence
classes of irreducible corepresentations; we label this set by an auxiliary (countable)
set J and choose for each ˛ 2 J a unitary representative u˛ 2 C.G/ ˝ B.H˛/.
Abusing notation slightly, we shall often identify u˛ with the corresponding class in
Irred.G/. Moreover, we choose a fixed orthonormal basis for H˛ and may therefore
also regard u˛ as an element in Mn˛

.C.G// where n˛ D dimC H˛ . We remind
the reader that the free Z-module R.G/ D ZŒIrred.G/� becomes a fusion algebra,
in the sense of [9], in which the product “ �T” is obtained from the tensor product of
corepresentations. The dimension function associated with this fusion algebra maps
an irreducible, unitary corepresentation u to its matrix size nu and the conjugation
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operator u 7! Nu is (essentially) given by taking the contragredient corepresentation.
We refer to [13], Example 2.3, for a detailed description of the fusion algebra structure.
Finally, we remind the reader that a compact quantum group G is called coamenable
if the counit " W Pol.G/ ! C extends to a character on C.G/red. This notion was
investigated in detail by Bédos, Murphy and Tuset in [2].

The aim of the present paper is to derive information of ring-theoretical nature
about coamenable quantum groups from the following result.

Theorem 1.1 ([13]). A compact quantum group G is coamenable if and only if it
satisfies Følner’s condition; i.e., for any " > 0 and any finite, non-empty subset
S � Irred.G/ there exists a finite subset F � Irred.G/ such that

P

u2@
sym
S

.F /

n2
u < "

P

u2F

n2
u:

Here the symmetric boundary @
sym
S .F / is defined as follows: The interior and the

boundary of F relative to S are defined, respectively, as

intS .F / D fu 2 F j supp.u �T v/ � F for all v 2 Sg and @S .F / D F nintS .F /;

and the symmetric boundary is then given by

@
sym
S .F / D @S .F / [ @S .F c/:

Here F c denotes the complement in Irred.G/ of the set F and u �T v denotes the
product in the fusion algebra ZŒIrred.G/�. Note that if F , S and " are as in the Følner
condition, we trivially get that

P

u2@S .F /

n2
u < "

P

u2F

n2
u: (1)

Simplifying notation, we write jF j D P
u2F n2

u for a finite subset F � Irred.G/ and
the inequality (1) may therefore be written in a more compact form as

j@S .F /j < "jF j:
In particular, the Følner condition allows us to choose a sequence of subsets .Fk/k2N

of Irred.G/ such that
jintS .Fk/j

jFkj ����!
k!1

1:

Remark. Note that quantum groups of the form C �
red.�/ are coamenable exactly

when � is amenable, and in this case the quantum Følner condition identifies with
the classical Følner condition for � . All commutative examples are automatically
coamenable since the counit is given by evaluation at the identity in the correspond-
ing compact group and therefore automatically globally defined and bounded. By
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results of Banica [1], the q-deformed SU.2/-groups SUq.2/ of Woronowicz are all
coamenable and so is the quantum permutation group on four points SC

4 (the lat-
ter is furthermore of Kac type). Further examples of compact coamenable quantum
groups of Kac type can be obtained by forming crossed products of discrete amen-
able groups acting on compact Kac algebras [3] and even more general examples of
compact coamenable quantum groups can be obtained by considering the (cocycle)
crossed product of a (cocycle) matched pair of a discrete amenable quantum group
and a coamenable compact quantum group [4], [20], [22]. In connection with Theo-
rem 3.4 we note that the liberated orthogonal group OC

2 ' SU�1.2/ is coamenable
and of Kac type and that its associated Hopf algebra is a domain.

Assume for the rest of this section that G is of Kac type; then the discrete dual quan-
tum group yG is unimodular and its underlying Hopf algebra cc. yG/ is �-isomorphic1

to
Lalg

˛2J B.H˛/:

The (bi-invariant) Haar functional Oh W cc. yG/ ! C with Oh.h/ D 1 is given by the
simple formula

.x˛/˛2J 7! P

˛2J

n˛ TrH˛
.x˛/;

where TrH˛
.�/ is the non-normalized trace on B.H˛/. For a finite subset F �

Irred.G/ we denote by PF the central projection in cc. yG/ given by
P

u2F 1nu
,

and we note that Oh.PF / D jF j. Moreover, we denote by WF the jF j-dimensional
subspace

spanCfuij j u 2 F g � Pol.G/:

The algebra cc. yG/ has a natural representation L W cc. yG/ ! B.L2.G// and the func-
tional Oh gives rise to a normal, semi-finite, faithful Haar weight on the enveloping
von Neumann algebra `1. yG/ ´ L.cc. yG//00 turning it into a Kac algebra of discrete
type. In this representation, the projection PE projects onto the finite dimensional
subspace W xE where Nu 2 Irred.G/ denotes the conjugate of u. Clearly the func-
tional h gives rise to a faithful (tracial) state on the enveloping von Neumann algebra
L1.G/ D �.Pol.G//00 and the two Haar functionals are linked via the following
simple relation.

Proposition 1.2 ([23]). For any a 2 L1.G/ and any x 2 `1. yG/ with Oh.x�x/ < 1
we have Tr.a�x�xa/ D h.a�a/ Oh.x�x/:

Here Tr.�/ denotes the ordinary trace on B.L2.G//.

1The isomorphism also exists in the non-Kac case.
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2. The relative dimension function

Consider a compact quantum group of Kac type and a finite subset F � Irred.G/

and denote by P n
F 2 cc. yG/n the diagonal amplification of the central projection

PF 2 cc. yG/; i.e., P n
F is the projection onto the finite dimensional subspace

W nxF D spanCfuij j u 2 xF gn � L2.G/n:

For a closed subspace K � L2.G/n we denote by QK the orthogonal projection onto
K and define the dimension of K relative to F as

dimF .K/ D jF j�1 Trn.QKP nxF /;

where Trn.�/ denotes the trace on B.L2.G/n/. Here, and in what follows, we
suppress the representations � and L for the sake of notational convenience.

Proposition 2.1. The relative dimension function dimF .�/ has the following prop-
erties:

(i) The number dimF .K/ is non-negative and finite.

(ii) If K1 � K2, then dimF .K1/ � dimF .K2/.

(iii) If K is L1.G/-invariant, then dimF .K/ D dimL1.G/.K/ ´ h.QK/, the
Murray–von Neumann dimension of K.

(iv) If K � spanCfuij j u 2 F gn, then dimF .K/ D jF j�1 dimC.K/.

Proof. Properties (i) and (ii) follows from traciality and positivity of the standard trace
Trn.�/, and (iv) is seen through a straight forward calculation using the orthonormal
basis fpn˛u˛

ij j ˛ 2 I; 1 � i; j � n˛g for L2.G/. Using the unimodularity of
yG and the trace formula in Proposition 1.2 one sees that for any matrix T in either
Mn.L1.G// or Mn.L1.G/0/ we get

Trn.T �P n
F T / D hn.T �T / Oh.PF /;

where hn W Mn.B.L2.G/// ! C is given by hn..Tij /n
i;j D1/ D Pn

iD1 h.Ti i /. From
this formula (iii) follows. See [13], Lemma 5.1, for more details.

Remark. The relative dimension function above is a quantum analogue of a con-
struction considered for groups by Eckmann in [6] and Elek in [7].

3. Zero-divisors in quantum groups

In [7] Elek proves that for amenable torsion-free groups the zero-divisor conjecture
of Kaplansky is equivalent to Linnell’s analytic zero-divisor conjecture. The aim of
this section is to boost Elek’s argument to obtain the following result:
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Theorem 3.1. If G is coamenable and a 2 Pol.G/ is not a left zero-divisor, then
�.a/ acts with trivial kernel on L2.G/. Similarly, if a is not a right zero-divisor in
Pol.G/, then �.a/ has trivial kernel.

As in the previous section, G denotes here a compact quantum group of Kac type.
We note that when applied to quantum groups of the form C �

red.�/, with � discrete
and amenable, Theorem 3.1 identifies with Elek’s original result. The contents of
Theorem 3.1 can also be derived from the proof of [13], Theorem 6.1, but we give
here the following shorter and more illuminating proof.

Proof. By symmetry, it suffices to treat the case where a is not a right zero-divisor.
Since fu˛

ij j ˛ 2 J g constitutes a linear basis for the space Pol.G/ the element
a 2 Pol.G/ has a unique linear expansion a D P

i;j;˛ t˛
ij u˛

ij and we may therefore
consider its support which is defined by

S D supp.a/ D fu˛ 2 Irred.G/ j there exists i; j 2 f1; : : : ; n˛g such that t˛
ij ¤ 0g:

Since G is assumed to be coamenable, we can choose (see Section 2) a sequence of
finite sets Fk � Irred.G/ such that

jintSFkj
jFkj ����!

k!1
1:

Denote intS .Fk/ by Gk for simplicity. Because any product of matrix coefficients
uij vkl is contained in the linear span of the matrix coefficients of the tensor product
u �T v, we see that �.a/ restricts to an operator

�.a/k W WGk
! WFk

:

We now prove that

dimFk
.ker.�.a/k// ����!

k!1
dimL1.G/.ker.�.a///: (	)

Proof of .	/. Since �.a/ 2 L1.G/0 both ker.�.a// and rg.�.a// are closed L1.G/-
invariant subspaces. Using Proposition 2.1 we therefore get

jFkj�1 dimC.ker.�.a/k// D dimFk
.ker.�.a/k//

� dimFk
.ker.�.a///

D dimL1.G/.ker.�.a///;

(2)

and
jFkj�1 dimC.rg.�.a/k// D dimFk

.rg.�.a/k//

� dimFk
. rg.�.a///

D dimL1.G/. rg.�.a///:

(3)
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Since the Murray–von Neumann dimension is additive, the inequalities (2) and (3)
yield

1 D dimL1.G/.L
2.G//

D dimL1.G/.ker.�.a/// C dimL1.G/. rg.�.a///

� dimFk
.ker.�.a/k// C dimFk

.rg.�.a/k//

� jFkj�1 dimC.ker.�.a/k// C jFkj�1 dimC.rg.�.a/k//

D jFkj�1 dimC WGk

D jFkj�1jGkj:

Since jFkj�1jGkj k!1����! 1, this forces

lim
k!1

dimFk
.ker.�.a//k/ D dimL1.G/.ker.�.a///;

lim
k!1

dimFk
.rg.�.a//k/ D dimL1.G/. rg.�.a///;

as desired.

Theorem 3.1 now follows easily: If ker.�.a// is non-trivial, then we have the
inequality dimL1.G/.ker.�.a/// > 0, and by .	/ there must exist a k 2 N such that
dimFk

ker.�.a/k/ > 0. This can only happen if ker.�.a/k/ is non-trivial and since
ker.�.a/k/ � WGk

� Pol.G/, this proves the claim.

In particular, Theorem 3.1 implies the following stability of regularity:

Corollary 3.2. If a 2 Pol.G/ is a regular element2, then it stays regular in the
over-ring L1.G/

Proof. This follows from the fact that the GNS-construction provides an embedding
of L1.G/ into L2.G/.

Our next application regards a non-commutative analogue of the construction of
the field of fractions associated with a (commutative) integral domain – the so-called
Ore localization. We first quickly review the basics on this construction and refer the
reader to [14] for a thorough treatment of the subject.

Definition 3.3. Let R be a ring and let Z � R be a multiplicative subset containing
no zero-divisors. Then R is said to satisfy the (left) Ore condition with respect to Z

if for all a 2 R and s 2 Z there exist b 2 R and t 2 S such that ta D bs.

2I.e., not a zero-divisor from either side.
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If R satisfies the Ore condition with respect to Z then there exists a ring Z�1R

and a ring homomorphism 
 W R ! Z�1R such that 
.s/ is invertible for any s 2
Z, each element in Z�1R can be written as 
.s/�1
.r/ for s 2 Z and r 2 R

and which furthermore is universal in the following sense: For any ring S and any
homomorphism ' W R ! S such that '.Z/ � S� there exists ˆ W Z�1R ! S such
that ˆ B 
 D '. In particular, if R is a domain and Z D R n f0g, then 
 is injective
and Z�1R is a skew-field.

Theorem 3.4. If G is a coamenable, compact quantum group of Kac type and Pol.G/

is a domain, then Pol.G/ satisfies the (left) Ore condition with respect to the set Z

of all non-zero elements. Moreover, the skew-field Z�1Pol.G/ embeds into the ring
of operators affiliated with L1.G/.

The proof is an extension of an old argument due to Tamari [19].

Proof. Given a 2 Pol.G/ and s 2 Z we must find b 2 Pol.G/ and t 2 Z such that
ta D bs. Denote by S � Irred.G/ the union supp.a/[supp.s/ and choose, according
to the Følner condition, a finite subset F � Irred.G/ such that j@SF j < 1

2
jF j. We

then have

j@SF j < 1
2
jF j D 1

2
jintSF j C 1

2
j@SF j

such that j@SF j < jintSF j. Consider the linear map

WintS F ˚ WintS F 3 .x; y/
˛7��! xa � ys 2 WF ;

and note that

dimC WF D dimC WintS F C dimC W@S F

D jintSF j C j@SF j
< jintSF j C jintSF j
D dimC.WintS F ˚ WintS F /:

We may therefore choose a non-trivial element .t; b/ 2 ker.˛/. Note that this pair
will solve the desired equation. We therefore just have to prove that t is non-zero.
But if t D 0 then 0 D ta D bs and since s ¤ 0 and Pol.G/ is a domain this forces
b D 0, contradicting the choice of .t; b/. Thus, Pol.G/ satisfies the Ore condition
with respect to Z. Also L1.G/ is an Ore ring with respect to its regular elements
and its Ore localization identifies with its algebra of affiliated operators [18]. From
Corollary 3.2 it follows that each non-zero element in Pol.G/ stays regular in L1.G/

and hence becomes invertible considered as an affiliated operator. By universality
of the Ore localization we get an embedding of the skew-field Z�1Pol.G/ into the
algebra of affiliated operators.
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Remark. Note that the preceding theorem clarifies the possibility of extending the
Atiyah conjecture to a context of Kac algebras. Indeed, under suitable assumptions
regarding the torsion in the Kac algebra, one can conjecture that there exists an em-
bedding of the Kac algebra into a skew-field inside the algebra of affiliated operators.
We show that in the coamenable case, as for group rings of amenable groups, being
a domain already implies the existence of such a skew-field inside the algebra of
affiliated operators.

4. An approximation result

Let � be a discrete group and let .�i /i2I be an inverse family of normal subgroups
directed by inclusion. Denote by �i the canonical surjection � ! �=�i as well
as its natural extensions CŒ�� ! CŒ�=�i � and Mn.CŒ��/ ! Mn.CŒ�=�i �/.
Each matrix T 2 Mn.CŒ��/ gives, by right multiplication, rise to a �-equivariant
operator RT W CŒ��n ! CŒ��n which extends to an L.�/-equivariant operator
R

.2/
T 2 B.`2.�/n/. We denote the matrix �i .T / 2 Mn.CŒ�=�i �/ by Ti for no-

tational convenience. A standing approximation conjecture, due to Lück [15], in the
theory of L2-invariants states that if

T
i2I �i D feg then

dimL.�/ ker.R.2/
T / D lim

i
dimL.�=�i / ker.R.2/

Ti
/:

The approximation conjecture has been verified for matrices with entries in the integral
group ring by Lück. Unfortunately, there exists no analogue for the integral group
ring in the theory of Kac algebras. However, for matrices with entries in the complex
group ring the conjecture has also been verified in many cases; for torsion-free,
elementary amenable groups it was verified by Dodziuk, Linnell, Mathai, Schick and
Yates in [5], and later Elek verified it for all amenable groups in [8]. We now wish
to consider a quantum analogue of this result. For this, let G be a compact quantum
group of Kac type and consider a projective system of compact quantum subgroups
.Gi /i2I . That is; for each i; j 2 I with j � i we have surjective �-homomorphisms
�i W C.G/max ! C.Gi /max and �ij W C.Gj /max ! C.Gi /max that are compatible
with the comultiplications and make the following diagram commutative.

C.G/max
�j

��������������
�i

�� ������������

C.Gj /max �ij

�� �� C.Gi /max

Each corepresentation u 2 Mn.C.G// gives rise to a corepresentation �i .u/ D
.�i .ukl//kl 2 Mn.C.Gi // which need not be irreducible even when u is so. But
in case �i .u/ is irreducible for some i 2 I it has to stay irreducible; i.e., if j � i

then �j .u/ is also irreducible. As in the group case, each matrix T 2 Mn.Pol.G//



556 D. Kyed and A. Thom

gives rise to an L1.G/-invariant operator R
.2/
T 2 B.L2.G// and we denote by Ti

the matrix �i .T / 2 Mn.Pol.Gi //.

Definition 4.1. The induced map on the level of fusion algebras �i W R.G/ ! R.Gi /

is called injective on F � Irred.G/ (or just F -injective) if �i maps F injectively into
Irred.Gi /. The family .�i /i2I is called locally injective if for all finite F � Irred.G/

there exists i 2 I such that �i is F -injective.

We remark that neither the injectivity nor the fact that �i .F / � Irred.Gi / is
automatic. Also note that if �i is injective on F for some i then �j is injective on F

whenever j � i . Another consequence of local injectivity is that the Haar state of G
can be approximated; more precisely the following holds.

Proposition 4.2. The family .�i /i2I is locally injective if and only if hG.a/ D
limi hGi

.�i .a// for any a 2 Pol.G/.

Proof. Assume first that .�i /i2I is locally injective. If a 2 Pol.G/ has linear ex-
pansion a D P

˛;k;l t˛
kl

u˛
kl

then h.a/ is just the coefficient of the trivial corepre-
sentation. Now choose i0 2 I such that �i0 is injective on supp.a/; then for all
i � i0 we have that �i .a/ D P

˛;k;l t˛
kl

�i .u
˛
kl

/ and that f�i .u
˛
kl

/ j u˛ 2 supp.a/g
is a linearly independent set of vectors in Pol.Gi /. Hence hG.a/ D hGi

.�i .a// for
all i � i0. Assume conversely that the approximation property holds and consider
some finite F � Irred.G/. For an irreducible, unitary corepresentation u we have
hG.�.u �T Nu// D 1 (where � is the character map [24]) and hence

1 D hG.�.u �T Nu//

D lim
i

hGi
.�i .�.u �T Nu///

D lim
i

hGi
.�.�i .u/ �T �i .u///

D lim
i

dimC Mor.e; �i .u/ �T �i .u//:

Therefore dimC Mor.e; �i .u/ �T �i .u// D 1 eventually and hence there exists i1 2 I

such that �i .F / � Irred.Gi / for i � i1. Similarly, if u; v 2 F are different,
we have hG.�.u �T Nv// D 0 and as above the approximation property implies that
hGi

.�.�i .u/ �T �i .v/// D 0 eventually. Thus, there exists i2 2 I such that �i .F /

consists of inequivalent corepresentations when i � i2. So, if i � maxfi1; i2g we
have that �i .F / consists of inequivalent, irreducible corepresentations as desired.

Note that the proof actually gives the stronger statement that hGi
.�i .a// D hG.a/

eventually. The aim of this section is to prove the following.
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Theorem 4.3. If G is coamenable and of Kac type and if the family .�i /i2I is locally
injective then

dimL1.G/ ker.R.2/
T / D lim

i
dimL1.Gi / ker.RTi

/

for each T 2 Mn.Pol.G//.

The verification of the approximation conjecture for amenable groups was recently
simplified by Pape in [17] and the proof of Theorem 4.3 follows the outline of his
proof.

Remark. Since G is assumed coamenable the same is true for each of the Gi ’s. This
follows by noting that the surjection �i W C.G/max ! C.Gi /max induces an injection

i W `1. yGi / ! `1. yG/ respecting the coproducts. If G is coamenable then yG is
amenable [20] and `1. yG/ therefore allows an invariant mean which restricts to an
invariant mean on `1. yGi / proving that Gi is coamenable. Similarly, since G is
assumed to be of Kac type each Gi is also of Kac type [21], Lemma 2.9; this is of
course needed in order for dimL1.Gi /.�/ to make sense.

Before the actual proof we will set up some notation and prove two small lemmas.
Since the statement in Theorem 4.3 is trivial if T D 0 we can assume T ¤ 0. Each
entry Tij has a unique linear expansion Tij D P

˛;p;q t
ij
˛;p;qu˛

pq and we now define
the support of T as the set

S D fu˛ 2 Irred.G/ j there exist i; j; p; q such that t ij
˛;p;q ¤ 0g;

which is non-empty since T is assumed non-zero. For a finite subset F � Irred.G/

we consider, as in the previous section, the subspace

W n
F D spanCfu˛

ij j u˛ 2 F gn � L2.G/n;

and we see that R
.2/
T restricts to an operator RF

T W W n
intS .F /

! W n
F . The following

lemma is a quantum group analogue of [17], Lemma 1.

Lemma 4.4. For each finite F � Irred.G/ we have

0 � dimL1.G/ ker.R.2/
T / � dimF ker.RF

T / � n
j@SF j
jF j :

We remind the reader that jF j is defined as OhG.PF / D P
u2F n2

u.

Proof. The first inequality follows from the inclusion ker.RF
T / � ker.R.2/

T /. To prove
the second inequality, we first note that Proposition 2.1 together with the dimension
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theorem from linear algebra implies that

dimF ker.RF
T / C dimF rg.RF

T / D jF j�1.dimC ker.RF
T / C dimC rg.RF

T //

D jF j�1 dimC W n
intS .F /

D jF j�1n.jF j � j@SF j/
D n � njF j�1j@SF j:

Now note that rg.R
.2/
T / is L1.G/-invariant so that

dimL1.G/ rg.R
.2/
T / D dimF rg.R

.2/
T / � dimF rg.RF

T /:

Using this and the additivity of dimL1.G/.�/ we get the desired inequality:

dimL1.G/ ker.R.2/
T / � dimF ker.RF

T / D n � dimL1.G/ rg.R
.2/
T / � dimF ker.RF

T /

� n � dimF rg.RF
T / � dimF ker.RF

T /

D n � .n � njF j�1j@SF j/
D njF j�1j@SF j:

For a finite set F � Irred.G/ the set �i .F / � ZŒIrred.Gi /� will be denoted by Fi

in the following. We remark that if �i is injective on F , then we have Fi � Irred.Gi /.

Lemma 4.5. Let F � Irred.G/ be a finite set and assume that �i W R.G/ ! R.Gi /

is locally injective (see Definition 4.1) on the set

 D F [ S [ S

x2F;s2S

supp.x �T s/

for some i 2 I . Then Si is the support of Ti and �i .@SF / D @Si
.Fi /. Moreover, for

any E �  we have OhGi
.PEi

/ D OhG.PE /.

Proof. The equality Si D supp.Ti / follows directly from the injectivity of �i on S .
The injectivity on  also implies that

�i .supp.x �T s// D supp.�i .x/ �T �i .s// for all x 2 F and all s 2 S:

From this the equality �i .@SF / D @Si
Fi follows. Since OhG.1u/ D n2

u for any
u 2 Irred.G/, the -injectivity gives

OhG.PE / D P

u2E

n2
u D P

u2Ei

n2
u D OhGi

.PEi
/:

We now give the proof of Theorem 4.3.
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Proof of Theorem 4.3. For given " > 0 the Følner condition provides an F �
Irred.G/ such that

j@S .F /j <
"

2n
jF j;

where S is the support of T as defined earlier. By assumption we can find i0 2 I

such that �i is locally injective on the set

 D F [ S [ S

x2F;s2S

supp.x �T s/

whenever i � i0. In particular f�i .
p

n˛u˛
kl

/ j 1 � k; l � n˛; u˛ 2 g is an
orthonormal set of vectors in L2.Gi /. From Lemma 4.5 we therefore obtain a com-
mutative diagram

W n
intS F �

�
.2/

i ��

RF
T

��

W n
intSi

Fi

R
Fi
Ti��

W n
F

�
�

.2/

i

�� W n
Fi

,

where the horizontal arrows are just given by �i , but now considered as a unitary
map of finite dimensional Hilbert spaces. From this we get dimF .ker.RF

T // D
dimFi

.ker.RFi

Ti
// and, using Lemma 4.4, we now get

jdimL1.G/ ker.R.2/
T / � dimL1.Gi / ker.R.2/

Ti
/j

� jdimL1.G/ ker.R.2/
T / � dimF ker.RF

T /j
C jdimF ker.RF

T / � dimL1.Gi / ker.R.2/
Ti

/j
� n

j@SF j
jF j C jdimFi

ker.RFi

Ti
/ � dimL1.Gi / ker.R.2/

Ti
/j

� n
j@SF j
jF j C n

OhGi
.P@Si

Fi
/

OhGi
.PFi

/
D 2n

j@SF j
jF j :

Therefore jdimL1.G/ ker.R.2/
T / � dimL1.Gi / ker.R.2/

Ti
/j < " whenever i � i0 and

the desired convergence follows.
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