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1. Introduction

A spectral triple .A; H ; D/ consists of a faithful representation of a C�-algebra A

as bounded operators on a separable Hilbert space H along with a self-adjoint, un-
bounded operator on H satisfying the additional conditions

(1) the set fa 2 A j ŒD; a� 2 B.H /g is norm dense in A, and

(2) the operator a.1 C D2/�1 is a compact operator on H for all a in A.

Alain Connes developed spectral triples as a generalization of a Fredholm module
which puts the spectrum of an unbounded, self-adjoint operator at the forefront [4].
Using spectral triples Connes was able to recover geometric data from commutative
algebras in a framework that extended to the noncommutative case [4], [5]. By now
spectral triples are at the forefront in Connes’ noncommutative geometry and play a
key role in the noncommutative analogue of the calculus. In this paper, we investi-
gate spectral triples for C�-algebras associated with hyperbolic dynamical systems
known as Smale spaces. These are the C�-algebras introduced by David Ruelle in
his investigation of Gibbs states associated with hyperbolic diffeomorphisms, which
are of the type introduced by Connes in connection with foliations [20].

Let us begin with a heuristic definition of a Smale space. Suppose that .X; d/ is
a compact metric space and ' W X ! X is a homeomorphism. We say .X; d; '/ is
a Smale space if X is locally a hyperbolic product space with respect to '; that is,
there is a global constant "X > 0 such that if x is in X we have two sets X s.x; "X /
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and Xu.x; "X / whose intersection is fxg and the Cartesian product of these sets
is homeomorphic to a neighborhood of x. Moreover, for any points y and z in
X s.x; "X / we require that d.'.y/; '.z// < ��1d.y; z/ where � > 1 is globally
defined. Similarly, Xu.x; "X / has the same property if we replace ' with '�1. We
call X s.x; "X / and Xu.x; "X / the local stable and unstable sets of x respectively.

David Ruelle introduced Smale spaces as a purely topological description of the
basic sets of Axiom A diffeomorphisms on a compact manifold [21]. A basic set is a
closed, '-invariant subset of the manifold but does not need to be a manifold itself.
In fact, these sets are usually fractal and have no smooth structure whatsoever. We
note that, under mild conditions, Smale spaces are chaotic dynamical systems. We
also remark that examples of Smale spaces include shifts of finite type, solenoids, the
dynamical systems associated with certain substitution tilings, and hyperbolic toral
automorphisms.

Several C�-algebras can be associated with a Smale space. The first algebra
we wish to study is the C�-algebra associated with the stable equivalence relation.
To do so, it is most convenient to find a transversal, so that it becomes an étale
equivalence relation. Natural transversals are available as the unstable equivalence
classes, but care must be used when defining a suitable topology on the groupoid of
stable equivalence restricted to the unstable transversal. The situation is simplified
when the transversal is '-invariant, so our transversal is defined to be the unstable
equivalence classes of a '-invariant set of periodic points. A groupoid C�-algebra is
produced which first appeared in [16] and is strongly Morita equivalent to the stable
C�-algebra appearing in [14]. The unstable C�-algebra is constructed in an analogous
fashion. Furthermore, the homeomorphism ' gives rise to an automorphism on both
the stable and unstable algebras and the crossed products are known as the stable
and unstable Ruelle algebras [14]. We shall define spectral triples on all of these
C�-algebras.

To define a spectral triple we begin by considering specific classes of the stable
(unstable) equivalence relation. In our situation, each equivalence class can be asso-
ciated with a point in the orbit of a periodic point. These periodic orbits are viewed
as attractors in the sense that, given " > 0 and any point x in an equivalence class
associated with a periodic point, there is an integer N such that the distance between
the periodic orbit and 'n.x/ is within " for all n � N . A similar result is true on
the unstable equivalence relation provided we replace ' with '�1. A function is
defined on the equivalence classes of an orbit which essentially counts the number of
iterations of ' required to move each point into a fixed stable neighbourhood of the
associated periodic point. Moreover, if the point begins in this fixed neighbourhood
then the function will count the number of inverse iterations required to remove the
point from the neighbourhood. Using this function, we define a Dirac operator D,
which gives rise to a spectral triple on the stable algebra. A similar construction
defines a spectral triple on the unstable algebra. Furthermore, the Dirac operator D

commutes with the automorphism used to define the crossed product Ruelle algebras
and therefore the spectral triple defined extends to the Ruelle algebras as well. All
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of these spectral triples turn out to be � -summable; that is, the operator e�.1CD2/ is
trace class.

A much more desirable property for spectral triples is finite summability. A
spectral triple .A; H ; D/ is finitely summable when the operator .1 C D2/�p=2 is
trace class for some p 2 R. The infimum over all such p 2 R is called the spectral
dimension of the spectral triple. Defining a new Dirac operator by D D �D , where
� > 1 is the local expansive constant of the Smale space and D is the aforementioned
Dirac operator, we obtain a finitely summable spectral triple provided we make further
assumptions on the function used to define D. We note that this spectral triple does
not extend to the Ruelle algebras.

Acknowledgements. Great acclamation is due to Ian Putnam who supervised my
work during my doctoral studies, from which this note is based.

2. Smale spaces

In the Introduction we gave a heuristic definition of a Smale space and in this section
we comment on how to make this definition rigorous, as well as discussing properties
required in the sequel. The reader is encouraged to reference [14] and [21] for
additional details on these remarkable spaces.

To make the definition of a Smale space rigorous requires us to postulate the
existence of constants "X > 0 and � > 1 as well as a map, called the bracket, satisfying
the axioms found in [14], [21]. The constant "X > 0 gives specific meaning to the
term ‘local’used in the sequel and � > 1 is the expansive constant of the Smale space.
The idea of the bracket is to encode the local product structure; if d.x; y/ < "X , then
fŒx; y�g D X s.x; "X / \ Xu.y; "X /.

The local stable and unstable sets of a point x in X are now defined by

X s.x; "/ D fy 2 X j d.x; y/ < " and Œy; x� D xg
and

Xu.x; "/ D fy 2 X j d.x; y/ < " and Œx; y� D xg;
where 0 � " � "X . Figure 1 illustrates the bracket with respect to these sets.

Definition 2.1. A dynamical system .X; d; '/ having a bracket map is a Smale space.
Moreover, a Smale space is said to be irreducible if the set of periodic points under
' are dense and there is a dense '-orbit.

There are canonical global stable and unstable equivalence relations on X . Given
a point x in X we define the stable and unstable equivalence classes of x by

X s.x/ D ˚
y 2 X j lim

n!C1 d.'n.x/; 'n.y// D 0
�
;

Xu.x/ D ˚
y 2 X j lim

n!C1 d.'�n.x/; '�n.y// D 0
�
:
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X s.x; "X/

Xu.x; "X/

x Œx; y

X s.y; "X/

Xu.y; "X/

yŒy; x

Figure 1. The bracket map.

We shall also employ the notation x �s y if y is in X s.x/ and x �u y if y is
in Xu.x/. To see the connection between the global stable and local stable set of
a point, we note that, for any x in X and " > 0, we have X s.x; "/ � X s.x/.
Furthermore, a point y is in X s.x/ if and only if there exists N � 0 such that 'n.y/

is in X s.'n.x/; "/ for all n � N . This nontrivial fact follows from the expansive
nature of ' in the unstable direction and is most easily observed when x is a fixed
point. Indeed, since y 2 X s.x/, there exists N 2 N such that d.'n.y/; x/ < " for
all n � N . Suppose that 'n0.y/ is not in the local stable set of x for some n0 � N ;
that is, Œ'n0.y/; x� ¤ x. By the definition of the bracket, Œ'n0.y/; x� 2 Xu.x; "/ and
it follows that we can find m such that d.'mŒ'n0.y/; x�; x/ > " and consequently
that d.'mCn0.y/; x/ > ", a contradiction. A slightly more complex argument holds
when x is not a fixed point. Making the obvious modifications, the same is true in
the unstable situation.

As topological spaces the stable and unstable equivalence classes are quite un-
seemly with respect to the relative topology of X . In fact, if .X; d; '/ is irreducible
it follows that both the stable and unstable equivalence classes of orbits are dense in
X [21]. To rectify this situation we observe that the local stable sets form a neigh-
borhood base for a topology on the global stable sets; that is, given an equivalence
class X s.x/, the collection fX s.y; ı/ j y 2 X s.x/ and ı > 0g is a neighbourhood
base for a Hausdorff and locally compact topology on X s.x/. We define a topology
on the unstable equivalence classes in an analogous fashion.
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3. C�-algebras of Smale spaces

In this section we will construct C�-algebras from an irreducible Smale space. These
C�-algebras are referred to as the stable and unstable algebras. In [20], David Ruelle
constructed C�-algebras from the stable and unstable equivalence relations. Putnam
and Spielberg then refined these constructions in [16] and defined groupoids that
are equivalent, in the sense of Muhly, Renault, and Williams [12], to the stable and
unstable groupoids, but which are étale. We follow the development in [16] and the
reader is referred there for further properties of these algebras.

Notice that exchanging the homeomorphism ' with '�1 interchanges the stable
and unstable equivalence relations. This phenomenon persists at the level of the
stable and unstable C�-algebras as well. For this reason we omit any discussion of
the unstable C�-algebra since we can define the unstable algebra to be the stable
algebra of the Smale space with ' exchanged with '�1.

3.1. Étale groupoids on Smale spaces. Let .X; d; '/ be a Smale space and let
P and Q be finite sets of '-invariant periodic points. At this point we make no
restrictions on the sets P and Q, however, in the following section we will add the
assumption that P and Q are disjoint. Define

X s.P / D S
p2P

X s.p/; Xu.Q/ D S
q2Q

Xu.q/; Xh.P; Q/ D X s.P / \ Xu.Q/:

Lemma 3.1 ([21]). If .X; d; '/ is an irreducible Smale space, and P and Q are
both '-invariant sets of periodic points, then Xh.P; Q/ is dense in X . Moreover, if
P \ Q D ;, then Xh.P; Q/ does not contain any periodic points.

We now define a groupoid on .X; d; '/ by

Gs.X; '; Q/ D f.v; w/ j v �s w and v; w 2 Xu.Q/g:
We remark that Gs.X; '; Q/ is a closed transversal to stable equivalence on .X; d; '/

in the sense of Muhly, Renault, and Williams [12].
We aim to define an étale topology Gs.X; '; Q/. Suppose that v �s w and

v; w 2 Xu.Q/. Since v �s w it follows that there exists N such that

'N .w/ 2 X s.'N .v/; "X=2/;

see Section 2. By the continuity of ', define 0 < ı < "X=2 so that

'n.Xu.w; ı// � Xu.'n.w/; "X=2/ for all 0 � n � N:

Given N , ı, we may now define a map hs on Xu.w; ı/ via

hs.x/ D '�N Œ'N .x/; 'N .v/�:
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Let ı0 D supfd.v; hs.x// j x 2 Xu.w; ı/g. It is shown in [14] that the map
hs W Xu.w; ı/ ! Xu.v; ı0/ is a local homeomorphism. An illustration of the map hs

is given in Figure 2.

X s.w/

Xu.w; ı/

w

x

X s.v/

Xu.v; ı0/

v

hs.x/ D N N .x/; N .v

Xu.'N .w/; "X=2/Xu.'N .v/; "X=2/

N .w/

N .x/

N .v/

N .x/; N .v

NN

Figure 2. The local homeomorphism hs W Xu.w; ı/ ! Xu.v; ı0/.

Lemma 3.2 ([14]). Let v; w in X be such that v �s w and v; w 2 Xu.Q/. There
exists 0 < ı; ı0 � "X=2 and an integer N such that the map hs W Xu.w; ı/ !
Xu.v; ı0/ is a local homeomorphism.

Theorem 3.3 ([14]). Let v, w in X be such that v �s w and v; w 2 Xu.Q/, and let
N , ı, ı0 and hs be defined by Lemma 3.2. The collection of sets

V s.v; w; hs; ı/ D f.hs.x/; x/ j x 2 Xu.w; ı/; hs.x/ 2 Xu.v; ı0/g
formaneighbourhood base for a topology onGs.X; '; Q/. In this topology, the range
and source maps take each element in the neighbourhood base homeomorphically
to an open set in Xu.Q/. Moreover, this topology makes Gs.X; '; Q/ a second
countable, locally compact, Hausdorff groupoid. That is, Gs.X; '; Q/ is an étale
groupoid.

3.2. The stable C�-algebra of a Smale space. We aim to study the groupoid C�-
algebra of the étale groupoid Gs.X; '; Q/. To accomplish this, we apply Renault’s
construction [17].
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Let Cc.Gs.X; '; Q// denote the continuous functions of compact support on
Gs.X; '; Q/, which is a complex linear space. A product and involution are de-
fined on Cc.Gs.X; '; Q// as follows. For f; g 2 Cc.Gs.X; '; Q// and .x; y/ 2
Gs.X; '; Q/, let

f � g.x; y/ D P
.x;z/2Gs.X;';Q/

f .x; z/g.z; y/; f �.x; y/ D f .y; x/:

This makes Cc.Gs.X; '; Q// into a complex �-algebra.
We aim to define a norm on Cc.Gs.X; '; Q// and then complete Cc.Gs.X; '; Q//

in this norm to define a C�-algebra. At this point there are several options. First we
could look at all possible representations of Cc.Gs.X; '; Q// as operators on a Hilbert
space. From these Hilbert spaces we obtain a norm and the completion is called the
full C�-algebra. Alternatively, we could consider a single representation on each
equivalence class, called the regular representation. This gives rise to the reduced
norm and the completion is the reduced C�-algebra. In fact, it is shown in [16] that
the groupoid of stable equivalence is amenable so that the full and reduced groupoid
C�-algebras are isomorphic.

Definition 3.4. The stable C�-algebra, S.X; '; Q/, is the completion of
Cc.Gs.X; '; Q// in the reduced norm. When no confusion will arise, S.X; '; Q/ is
denoted by S .

A third option is possible when .X; d; '/ is irreducible, which is called the funda-
mental representation [8], [16]. We aim to represent Cc.Gs.X; '; Q// as operators
on the Hilbert space

H D `2.Xh.P; Q//:

To that end, for f 2 Cc.Gs.X; '; Q// and � 2 H , we define a representation
� W Cc.Gs.X; '; Q// ! B.H / via

�.f /�.x/ D P
.x;y/2Gs.X;';Q/

f .x; y/�.y/:

With this formula, �.f / is a bounded linear operator on H . Moreover, we can
complete �.Cc.Gs.X; '; Q/// in the operator norm on this Hilbert space to obtain a
C�-algebra.

Let us comment on the generality of this construction. In the case that .X; d; '/

is mixing, every stable and unstable equivalence class is dense. Moreover, X s.P / \
Xu.Q/ is dense in Xu.Q/ so that � is a faithful representation to the reduced C�-
algebra and hence is isometric [17]. Therefore, the full, reduced, and fundamental
C�-algebras of Gs.X; '; Q/ are all isomorphic and S.X; '; Q/ is simple. For an
irreducible Smale space, it can be shown that there is a canonical decomposition of
X into a finite number of distinct mixing components that are cyclically permuted
by ' so that X s.P / and Xu.Q/ are dense in each component. This remarkable fact
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is proven in both [15] and [21]. Therefore, � is faithful and S.X; d; '/ is a direct
sum of a finite number of simple components. We note that S.X; '; Q/ is separable,
nuclear, and stable [16], [14].

Each element of f 2 Cc.Gs.X; '; Q// can be written as a finite sum of func-
tions with support in a neighbourhood base set of the form V s.v; w; hs; ı/. We use
functions of this form so often in the sequel that we completely describe them in the
following lemma, which follows from the definitions.

Lemma 3.5. Suppose that a 2 Cc.Gs.X; '; Q// with support on the basic set
V s.v; w; hs; ı/ with v �s w, v; w 2 Xu.Q/ and hs W Xu.w; ı/ ! Xu.v; ı0/ a
local homeomorphism. Then, for ıx 2 H ,

�.a/ıx D
´

a.hs.x/; x/ıhs.x/ if x 2 Xu.w; ı/ and hs.x/ 2 Xu.v; ı0/;
0 if x … Xu.w; ı/:

Define Source.a/ � Xu.w; ı/ to be the points for which a is non-zero on its domain.

We note that every element in S.X; '; Q/ can be uniformly approximated by
a finite sum of functions supported in a neighbourhood base set. We will usually
begin by proving results using these functions and then appealing to continuity for
the general result.

3.3. The stable Ruelle algebra of a Smale space. A brief construction of the stable
Ruelle algebra is given. The Ruelle algebras were first constructed in [20] and alterna-
tive constructions were given in [14] and [16] along with many remarkable properties
of these C�-algebras. We also note that the stable and unstable Ruelle algebras were
shown to satisfy a noncommutative version of Spanier–Whitehead duality in [8].

Given an irreducible Smale space .X; d; '/, the homeomorphism ' W X ! X

induces an automorphism ˛ on the C�-algebra S.X; '; Q/ by

˛.a/.x; y/ D a.'�1.x/; '�1.y//;

where a is in S.X; '; Q/ and .x; y/ are in Gs.X; '; Q/. The homeomorphism ' also
induces a canonical unitary on the Hilbert space H D `2.Xh.P; Q// via

uıx D ı'.x/:

Routine calculations show that .�; u/ are a covariant representation for .S; ˛/.

Definition 3.6 ([14]). The stable Ruelle algebra is the crossed product

S.X; '; Q/ Ì˛ Z:

Occasionally, we suppress the dependence on Q and write S Ì˛ Z.
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4. Spectral triples on Smale spaces

4.1. Spectral triples. Here we define a spectral triple and state some general prop-
erties of spectral triples used in the sequel. For a general reference to spectral triples
see [4].

To simplify notation we begin to employ Œa; b� to denote the commutator ab �ba.

Definition 4.1. A spectral triple .A; H ; D/ consists of

(i) a separable Hilbert space H ,

(ii) a �-algebra A of bounded operators on H ,

(iii) an unbounded self-adjoint operator D on H such that

(a) the set fa 2 A j ŒD; a� 2 B.H /g is norm dense in A, and

(b) the operator a.1 C D2/�1 is a compact operator on H for all a in A.

We note that the condition a.1 C D2/�1 is a compact operator on H , for all a in
A, can be replaced with .1 C D2/�1 is a compact operator on H , when A is unital.

Definition 4.2. Suppose that .A; H ; D/ is a spectral triple over a unital C�-algebra
A with

tr..1 C D2/� p
2 / < 1

for some positive number p. Then the spectral triple is said to be p-summable.
Furthermore, the value

dimS ..A; H ; D// ´ inffp > 0 j tr..1 C D2/� p
2 / < 1g

is called the spectral dimension of the spectral triple. We call .A; H ; D/ � -summable
if, for all t > 0,

tr.e�t.1CD2// < 1:

For spectral triples coming from non-unital C�-algebras the definitions of summa-
bility are much more complex. See [18] for details. However, in the case we are
interested in, where the C�-algebra is S.X; '; Q/, the definition simplifies (since
S.X; '; Q/ has local units and Xu.Q/ is the unit space of the groupoid). For
S.X; '; Q/, the spectral triple .S; H ; D/ is p-summable if, for all a in Cc.Xu.Q//,

tr.a.1 C D2/� p
2 / < 1

and it is � -summable if, for all a in Cc.Xu.Q// and for all t > 0,

tr.ae�t.1CD2// < 1:
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4.2. Spectral triples for Smale spaces. We wish to construct spectral triples on the
stable C �-algebras of a Smale space which are geometric and encode the dynamics
in a natural way. We begin by constructing a function on X s.P / and use this function
to define a spectral triple on S.X; '; Q/.

Let P and Q be finite, mutually distinct, '-invariant sets of periodic points. From
this point forward, assume that S.X; '; Q/ is represented on H D `2.Xh.P; Q// in
order to simplify notation.

Select 0 < " � ��1"X=2 where � > 0 is the local expansion constant of the
Smale space .X; d; '/. We aim to define a function !0 W X s.P / ! Œ0; 1�. Consider
the closed sets X s.P; "/ and X s.P / n '�1.X s.P; "// and observe that these two
sets are disjoint. Now an application of Urysohn’s lemma implies that there exists a
continuous function

!0 W X s.P / ! Œ0; 1�

such that !0.x/ D 0 for all x 2 X s.P; "/, and !0.x/ D 1 for all x 2 X s.P / n
'�1.X s.P; "//. We remark that in practice we may define !0 as desired on the com-
plement of our two closed sets, but at this point we merely require that a continuous
function exists. A typical function !0 is illustrated in Figure 3, where the notation
appearing in the figure is defined as follows.

Notation. We define the following sets that anticipate the constructions in the sequel.

�P D X s.P; "/ n P;

�c
P D X s.P / n X s.P; "/;

E0 D '�1.X s.P; "// \ �c
P ;

EN D '�N .E0/:

X s.p/
p

!0

0

11

E 1 E0 E1 E2 E3 E4

p
c
p

Figure 3. The function !
p

0
for some p in P .

Let us make some remarks about these sets. Observe that !0.x/ D 0 for x 2 �P

and !0.x/ � 0 for x 2 �c
P . In particular, the function !0 is defined to either 0 or 1

on the points of closure of E0. Also note thatS
N 2Z

EN D X s.P / n P:
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Using !0 allows us to encode the dynamics in a natural manner. Let x be a point
in X s.P / n P . We aim to define a function which essentially counts the number of
iterations it requires for x to be drawn into �P if it begins in �c

P and subtracts to
number of inverse iterations it requires for x to be removed from �P if it begins in
�P . To that end, define !s W X s.P / n P ! R via

!s.x/ D
1P

nD0

!0 B 'n.x/ �
1P

nD1

.1 � !0/ B '�n.x/:

The function !s , arising from the function !0 in Figure 3, is illustrated in Figure 4.
The following lemma summarizes the essential properties of !s .

p
X s.p/

!s

1

2

3

4

5

1
E 1

E0 E1 E2 E3 E4

Figure 4. The function !s for some p in P .

Lemma 4.3. Suppose that P is a finite, '-invariant set of periodic points in a Smale
space .X; d; '/ and !s W X s.P / n P ! R is defined as above. Then

(1) !s.x/ � 0 for x 2 �P and !s.x/ � 0 for x 2 �c
P ,

(2) !s B ' � !s D 1,

(3) !s.x/ D !0 B 'N .x/ C N for x 2 EN , and

(4) !s is continuous on X s.P / n P .

Proof. First suppose that x 2 E�N for some N 2 N. Then the sum on the left in the
definition of !s is zero since !0.x/ D 0 and '.x/ 2 E�N �1. The sum on the right
is finite since 'N .x/ 2 E0 and 1 � !0.'n.x// D 0 for all n � N C 1. Moreover,
we have the calculation

!s.x/ D �
1P

nD1

.1�!0/B'�n.x/ D �.N �1/�.1�!0/.'N .x// D !0.'N .x//�N:



574 M. F. Whittaker

On the other hand, suppose that x 2 EN for some N 2 N [ 0. Then the sum on the
right in the definition of !s , is zero since 1 � !0.x/ D 0 and '�1.x/ 2 EN C1. The
sum on the left is finite since 'N .x/ 2 E0 and !0.'n.x// D 0 for all n � N C 1.
Moreover, we have the calculation

!s.x/ D
1P

nD0

!0 B 'n.x/ D !0.'N .x// C N:

This proves that !s is well defined and the first three statements in the lemma. For
the fourth, we observe that !s.x/ is continuous on EN , for all N 2 Z, since !0 is
continuous on E0. If Ek \ EkC1 D r , for k 2 Z, it follows, from the definition of
!s , that !s.r/ D k C 1. Since

S
N 2Z EN D X s.P / n P and !s gives equal value

to the common boundary of Ek and EkC1 for all k 2 N, !s is continuous.

We now consider how the function !s interacts with functions in Cc.Gs.X; '; Q//

supported on basic sets, see Lemma 3.5 for details on basic sets and for a definition
of Source.a/ for a in S.X; '; Q/.

Lemma 4.4. Suppose that P is a finite, '-invariant set of periodic points in a Smale
space .X; d; '/ and !s W X s.P / ! R is defined as above. Let a 2 Cc.Gs.X; '; Q//

be supported on a basic set V s.v; w; hs; ı/ so that Source.a/ � Xu.w; ı/ and
hs.Source.a// � Xu.v; ı0/. Then

(1) there exists N 2 Z such that En \ Source.a/ D ; for all n � N ,

(2) the number of points in EN \ Source.a/ is finite for all N ,

(3) if x 2 EN \ Source.a/, there exists K 2 N such that hs.x/ 2 SK
kD�K EN Ck .

Proof. Since Source.a/ is a pre-compact subset of Xu.Q/ and P ª Xu.Q/, define
ı0 > 0 via ı0 D inffd.p; x/ j p 2 P; x 2 Source.a/g. Now there exists N 2 Z
such that En � X s.P; ı0/ for all n � N . Therefore, En \ Source.a/ D ; for all
n � N as well. For the second claim, Source.a/ and EN are transverse and compact
for all N , it follows that EN \ Source.a/ is finite.

For the third claim, first note that given that a is supported in V s.v; w; hs; ı/,
there exists M such that for all x 2 Source.a/, d.'M .hs.x//; 'M .x// < "X=2 and
Œ'M .x/; 'M .hs.x//� D 'M .x/. Moreover, it follows that there exists L 2 N such
that D > "X where D D supfd.y; y0/ j y; y0 2 EL and Œy; y0� D yg; that is, we
can find EL so that EL has diameter larger than "X on the stable set of each periodic
point p in P . Now we claim that if .hs.x/; x/ 2 V s.v; w; hs; ı/ has the property
that x 2 Em where m � M C L C 1, then hs.x/ 2 S1

kD�1 EmCk . Indeed, for all
.hs.x/; x/ we have d.'M .hs.x//; 'M .x// < "X=2 and if 'M .x/ is in ELC1, then
by the triangle inequality we have 'M .hs.x// 2 S1

kD�1 ELC1Ck . Now applying
'�M to 'M .x/ and 'M .hs.x// proves the claim. We are left with the case that
Source.a/ 2 En for n < M C L C 1. However, combining part (1) and (2) implies
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that there are only a finite number of such elements, so that we may define

K D maxf1; ji � j j j hs.x/ 2 Ei ; x 2 Ej ; and i; j < M C L C 1g;
which is finite. Now K has the property that if x 2 EN \ Source.a/, then hs.x/ 2SK

kD�K EN Ck .

4.3. A �-summable spectral triple. In this section, we define a spectral triple on
S.X; '; Q/. The idea is to use !s to define a Dirac operator on H D `2.Xh.P; Q//.
Let

Dıx D !s.x/ıx :

The domain of D is given by

dom.D/ D ˚
� j P

x2Xh.P;Q/ !2
s .x/j�.x/j2 < 1 �

;

and routine calculations show that D is self-adjoint and unbounded.

Lemma4.5. For a 2 Cc.Gs.X; '; Q//, the commutator ŒD; a� is a bounded operator
on H .

Proof. Let a in Cc.Gs.X; '; Q// be supported on a basic set V s.v; w; hs; ı/. By
part (3) of Lemma 4.4, if x 2 EN \ Source.a/, then there exists K 2 N such that
hs.x/ 2 SK

kD�K EN Ck . Therefore, for any x 2 EN \ Source.a/, using part (3) of
lemma 4.3, we compute

kŒD; a�ıxk D k.!s.hs.x// � !s.x//a.hs.x/; x/ıhs.x/k
D j!s.hs.x// � !s.x/j ja.hs.x/; x/j
� j!0.'N CK.hs.x/// C N C K � .!0.'N .x// C N /j ja.hs.x/; x/j
� .K C 1/ja.hs.x/; x/j:

Since a is compactly supported, ja.hs.x/; x/j attains a maximum value. Moreover,
everything above is independent of N so that ŒD; a� is bounded. For the general case
we recall that any element of Cc.Gs.X; '; Q// is in the span of functions supported
on basic sets.

Proposition 4.6. For every a in S.X; '; Q/, the operator a.1 C D2/�1 is compact
on H .

Proof. Let a0 in S.X; '; Q/ be supported on a basic set of the form V s.v; w; hs; ı/.
By part (1) of Lemma 4.4, there exists M such that Em \ Source.a0/ D ; for
all m � M . Furthermore, by part (2) of Lemma 4.4, the number of elements in
EN \ Source.a0/ is finite for all N . Now using part (3) of Lemma 4.3, for x 2
EN \ Source.a0/ we have

ka0.1 C D2/�1ıxk D
���a0.hs.x/; x/

1 C !2
s .x/

ıs
h.x/

��� � ja0.hs.x/; x/j
1 C N 2

:
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Since a0 has compact support, let A D supfja0.hs.x/; x/j j x 2 Source.a0/g.
Moreover since hs takes basis vectors to basis vectors and is a homeomorphism from
Source.a0/ to hs.Source.a0// it follows that, restricted to EN ,

ka0.1 C D2/�1k � A

1 C N 2
:

Therefore, a0.1 C D2/�1 is a norm limit of finite rank operators. Moreover, a in
S.X; '; Q/ is a norm limit of finite sums of operators of the form a0, so a.1CD2/�1

is compact as well.

Before arriving at our main theorem for the section, we must delve into a technical
result. For an irreducible Smale space .X; d; '/, the topological entropy of .X; d; '/

is denoted h.X; '/ and is the growth rate of the number of essentially different orbit
segments of length N ; for further details see [2]. We state the following result which
is obtained by combining Lemma 5.9 and Proposition 5.12 in [10]. There are also
several similar results in [11].

Theorem 4.7 ([10]). Suppose that .X; d; '/ is an irreducible Smale space with P

and Q distinct, finite, '-invariant sets of periodic points. Then for any ı0; ı1 > 0

and any w 2 Xu.Q/, #fx j '�N .X s.P; ı0// \ Xu.w; ı1/g is finite. Moreover,

lim
N !1

ˇ̌
1
N

log.#fx j '�N .X s.P; ı0// \ Xu.w; ı1/g/ � h.X; '/
ˇ̌ D 0:

Theorem 4.8. Suppose that .X; d; '/ is an irreducible Smale space, then .S; H ; D/

is a non-unital, � -summable spectral triple.

Proof. We have shown that .S; H ; D/ is a spectral triple. It remains to show that
.S; H ; D/ is � -summable. We must show that, for a in Cc.Xu.Q// a positive oper-
ator, we have tr.ae�t.1CD2// < 1 for all t > 0. By part (1) of Lemma 4.4, there
exists M such that Em \ Source.a/ D ; for all m � M . Furthermore, by part (2)
of Lemma 4.4, the number of elements in EN \ Source.a/ is finite for all N . Now
using part (3) of Lemma 4.3, for x 2 EN \ Source.a/ we have

tr.ae�t.1CD2// D
X

x2Xh.P;Q/

hae�t.1CD2/ıx; ıxi

D
X

x2Source.a/

a.x; x/

et.1C!2
s .x//

�
1X

nDM

� X
#fxjx2En\Source.a/g

a.x; x/

et.1C.n/2/

�
:

(1)

Now from Theorem 4.7, for " > 0, there exists N such that for all n � N ,

#fx j x 2 En \ Source.a/g < en.h.X;'/C"/:
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Therefore, letting A D supfa.x; x/ j x 2 Source.a/g, we have

X
#fxjx2En\Source.a/g

a.x; x/

et.1C.n/2/
<

Aen.h.X;'/C"/

et.1C.n/2/

D Aen.h.X;'/C"/�t.1C.n/2/

< Aen.h.X;'/C"/�tn2

D Aen.h.X;'/C"�tn/:

Putting this into (1) and letting R denote the first N � 1 terms of the sum yields

tr.ae�t.1CD2// D R C
1P

nDM

Aen.h.X;'/C"�tn/;

which converges since we can choose N sufficiently large that tN > h.X; '/ C ".

Recall that the stable Ruelle algebra is the crossed product S Ì˛ Z, see Section 3.3.
As operators, S Ì˛ Z is the completion of spanfa �uk j a 2 S.X; '; Q/ and k 2 Zg in
the Hilbert space H D `2.Xh.P; Q//, where u is the canonical unitary on H defined
by uıx D ı'.x/. Using .2/ in Lemma 4.3, we have Œu; D� D u so that kŒu; D�k D 1.
Therefore, Œa � uk; D� D aŒuk; D� C Œa; D�uk is a bounded operator, and we obtain
a spectral triple on the stable Ruelle algebra as well.

Theorem 4.9. Suppose that .X; d; '/ is an irreducible Smale space. Then
.S Ì˛ Z; H ; D/ is a non-unital, � -summable spectral triple.

4.4. A p-summable spectral triple. In this section we add the hypothesis that the
function !0 is locally Lipschitz continuous in order to define a summable spectral
triple on S.X; '; Q/. The added assumption that !0 is locally Lipschitz continuous
will not restrict the Smale spaces we consider in any way since a locally Lipschitz
continuous function can be defined using the Smale space metric.

Let us define !0 to be locally Lipschitz continuous; that is, there exists a constant
C0 such that if x; y 2 E0, Œx; y� D x, and d.x; y/ < "X=2, then

j!0.x/ � !0.y/j < C0d.x; y/

where the metric comes from the Smale space itself. In fact, since .X; d/ is a compact
metric space we can always define such a function using the metric and regarding E0

as a disjoint union of closed sets, one for each element of P . Let us also define a
constant Cs D 2KC0 where

K D maxfk > 0 j Œx; y� D x; d.x; y/ < "X=2; with x 2 E0 and y 2 Ekg:
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Lemma 4.10. The function !s is locally Lipschitz continuous on
S1

nD0 En; that is,
if x; y 2 S1

nD0 En, d.x; y/ < "X=2 and Œx; y� D x, then

j!s.x/ � !s.y/j < Csd.x; y/:

Proof. First observe that !s.x/ is locally Lipschitz continuous, with Lipschitz con-
stant C0, on EN , for all N 2 N. Indeed, suppose x; y 2 EN such that Œx; y� D x.
Then using part (3) of Lemma 4.3,

j!s.x/ � !s.y/j D j.!0.'N .x// C N / � .!0.'N .y// C N /j
D j!0.'N .x// � !0.'N .y//j
< C0d.'N .x/; 'N .y// < C0��N d.x; y/:

Now suppose that x; y 2 S1
nD0 En, d.x; y/ < "X=2 and Œx; y� D x. Then we note

that if x 2 EN , then y 2 SKCN
kD�KCN Ek , where K comes from the definition of Cs .

The triangle inequality gives the desired result.

Define an operator D on H D `2.P; Q/ via

Dıx D �!s.x/ıx;

where � > 1 the local growth rate of .X; d; '/. The operator D is also self-adjoint,
unbounded, and has dense domain.

Lemma 4.11. For a in Cc.Gs.X; '; Q//, the commutator Œa; D� is a bounded oper-
ator on H .

Proof. Let a in Cc.Gs.X; '; Q// be supported on a basic set V s.v; w; hs; ı/, which
implies that there exists M such that, for all .hs.x/; x/ 2 V s.v; w; hs; ı/, we have
d.'M .hs.x//; 'M .x// < "X=2. By Lemma 4.4, for all but a finite number of
.hs.x/; x/ 2 V s.v; w; hs; ı/ we have both x and hs.x/ in

S1
mDM Em. Suppose

we are given such an .hs.x/; x/. Without loss of generality suppose that x 2 Ek and
hs.x/ 2 Ej where M � k � j . We compute

kŒa; D�ıxk D k.�!s.x/ � �!s.hs.x///a.hs.x/; x/ıhs.x/k
D j�!s.x/ � �!s.hs.x//j ja.hs.x/; x/j
D �!s.x/j1 � �!s.hs.x//�!s.x/j ja.hs.x/; x/j
D �kC!0.'k.x//j1 � �!s.MC'M .hs.x///�.MC!s.'M .x///j ja.hs.x/; x/j
� �kC1j1 � �!s.'M .hs.x///�!s.'M .x//j ja.hs.x/; x/j
< �kC1j1 � �Csd.'M .hs.x//;'M .x//j ja.hs.x/; x/j
< �kC1j1 � �Cs"X =2j ja.hs.x/; x/j
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< �kC1j1 � �log�.1CCs"X =2/j ja.hs.x/; x/j
D �kC1j1 � .1 C Cs"X=2/j ja.hs.x/; x/j
D �kC1Cs"X=2 ja.hs.x/; x/j
� �kC1�M�kCs"X=2 ja.hs.x/; x/j
D Cs�MC1"X=2 ja.hs.x/; x/j;

where M depend only on the set V s.v; w; hs; ı/. Since a is compactly supported it
attains its maximum. Thus, in this case Œa; D� is bounded.

On the other hand, if .hs.x/; x/ is in the finite set where both x and hs.x/ are not
in

S1
mDM Em, then we can take the maximum value of j�!s.x/ � �!s.hs.x//j, which

is bounded simply because it is a finite set. Therefore, Œa; D� is bounded, the desired
result.

To complete the proof that .S; H ; D/ is a non-unital spectral triple we need
only show that a.1 C D2/�1 is a compact operator for every a in S.X; '; Q/.
The same argument as presented in Section 4.3 gives the result. We will now
show that .S; H ; D/ is a finitely summable spectral triple. Indeed, .S; H ; D/ is
log�.e/h.X; '/-summable, where h.X; '/ is the topological entropy of the Smale
space .X; d; '/. We note that the factor log�.e/ is merely a base change from a base
e logarithm to a base � logarithm.

Theorem4.12. Suppose that .X; d; '/ is an irreducible Smale space. Then .S; H ; D/

is a non-unital, log�.e/h.X; '/-summable spectral triple, where h.X; '/ is the topo-
logical entropy of the Smale space .X; d; '/.

Proof. We have shown that .S; H ; D/ is a spectral triple. It remains to show that
.S; H ; D/ is summable. We must show that, for a in Cc.Xu.Q// a positive operator,
we have

tr.a.1 C D2/� s
2 / < 1

for some s > 0. By part (1) of Lemma 4.4, there exists M such that Em\Source.a/ D
; for all m � M . Furthermore, by part (2) of Lemma 4.4, the number of elements
in EN \ Source.a/ is finite for all N . Now using part (3) of Lemma 4.3, for x 2
EN \ Source.a/ we have

tr.a.1 C D2/� s
2 / D

X
x2Xh.P;Q/

ha.1 C D2/� s
2 /ıx; ıxi

D
X

x2Source.a/

a.x; x/

.1 C �2!s.x//s=2

�
1X

nDM

� X
#fxjx2En\Source.a/g

a.x; x/

.1 C �2n/s=2

�
:

(2)
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Now from Theorem 4.7, for " > 0, there exists N such that for all n � N ,

en.h.X;'/�"/ < #fx j x 2 En \ Source.a/g < en.h.X;'/C"/: (3)

Therefore, letting A D supfa.x; x/ j x 2 Source.a/g, we have

X
#fxjx2En\Source.a/g

a.x; x/

.1 C �2n/s=2
<

Aen.h.X;'/C"/

.1 C �2n/s=2

<
Aen.h.X;'/C"/

.�2n/s=2

D A�log�.e/n.h.X;'/C"/

.�sn/

D A�n.log�.e/h.X;'/Clog�.e/"/�sn

D A�n..log�.e/h.X;'/Clog�.e/"/�s/:

Putting this into (2) and letting R denote the first N � 1 terms of the sum yields

tr.a.1 C D2/� s
2 / < R C

1P
nDM

A�n..log�.e/h.X;'/Clog�.e/"/�s/;

which converges geometrically for s > log�.e/h.X; '/ C log�.e/". Since this holds
for any " > 0 we have that

log�.e/h.X; '/ � inffs j tr.a.1 C D2/� s
2 / < 1g:

On the other hand, using the other inequality in (3), a similar computation shows that

tr.a.1 C D2/� s
2 / > R C

1X
nDM

minfa.x; x/g�s

2
�n..log�.e/h.X;'/�log�.e/"/�s/;

which converges geometrically only if s > log�.e/h.X; '/ � log�.e/" for every
" > 0. Therefore, we have

log�.e/h.X; '/ D inffs j tr.a.1 C D2/� s
2 / < 1g:

To conclude, we note that it is not obvious that the operator D gives rise to a
spectral triple on the stable Ruelle algebra S Ì˛ Z. We would be very interested to
know if it does.
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