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Uniform local amenability
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Abstract. The main results of this paper show that various coarse (‘large scale’) geometric
properties are closely related. In particular, we show that property A implies the operator norm
localisation property, and thus that norms of operators associated to a very large class of metric
spaces can be effectively estimated.

The main tool is a new property called uniform local amenability. This property is easy to
negate, which we use to study some ‘bad’ spaces: specifically, expanders and graphs with large
girth. We also generalise and reprove a theorem of Nowak relating amenability and asymptotic
dimension in the quantitative setting.

Mathematics Subject Classification (2010). Primary 46L85; Secondary 30L05, 43A07.

Keywords. Coarse embedding in Hilbert space, property A, operator norm localization, metric
sparsification, expander, graphs with large girth.

1. Introduction

The fundamental difficulty of computing operator norms arises in many areas of
functional analysis. In the context of metric geometry, it arises in the study of Roe
algebras of finite propagation operators and is important in higher index theory [16]
and theoretical physics [8], among other places. In higher index theory, the most
important examples of metric spaces are often discrete groups.

The operator norm localisation property (ONL), which was introduced by Chen—
Tessera—Wang—Yu in [3], provides a powerful tool for localising the problem. It has
been used to compute trace invariants and for other purposes in work on operator
algebras and Baum—Connes type conjectures [9], [22], [23], [20].

Here we show that ONL holds for any bounded geometry metric space, and in
particular any countable discrete group, which satisfies Yu’s property A. It is therefore
more or less universally held: very few metric spaces are known which do not satisfy
property A. This generalises results of [3], [4], [9], and combined with [6], it also
reproves results from [5].

The main technical tool used in the proof is the introduction of a property ULA
(‘uniform local amenability’) and its measure theoretic counterpart ULA;; these
should be viewed as local versions of Block—Weinberger amenability [2]. The addi-
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tional properties of metric sparsification (MSP) and coarse embeddability (CE) have
also been studied in this context and we take the opportunity to record the relation-
ships between these properties that were known to us when this paper was completed
(1); these relationships are mainly new, and are of interest in their own right.

CE ULA
2)
(3)ﬂ / ﬂ(@ 0
—— ULA
A= 1 <> MSP ==> ONL

(1) Proposition 3.2 below.

(2) Lemma 2.7 below. The converse is open.

(3) Corollary 3.5 below. The converse is false: see Corollary 4.3.
(4) Theorem 3.8 below.

(5) This is proved in [3], Section 4.

(6) Theorem 3.12 below. The converse is open.

Of course, (2) follows from (4), (5) and (6), but we record it separately for the
sake of the remark at the end of this introduction. Note in particular that this implies
that all amenable groups have MSP and ONL, a well-known open problem in the
theory. We also prove that for a box space, the properties A, MSP, ULA, ULA, and
ONL are equivalent.

Since this paper was completed, we learnt of a beautiful result of Hiroki Sako
[18], that A and ONL are in fact equivalent in general (for bounded geometry metric
spaces). It follows from this and our results that in fact the properties A, MSP, ULA,,,
ONL appearing in figure (1) are all equivalent; combining our results with Sako’s,
we get the following quite satisfactory picture:

CE ULA
A<= ULA, MSP ONL.

Note that this gives an affirmative answer to a question posed by Chen-Tessera—
Wang-Yu [3], Question 1, p. 1510. Sako’s methods are operator algebraic, using
analysis of uniform Roe algebras, whereas ours are more purely coarse geometric;
in particular, the two proofs that A implies ONL are quite different. It might be
interesting to give a more coarse geometric proof of the implication ONL = A4 from
Sako’s paper. In [18], Theorem 5.2, Sako also points out that MSP is equivalent to
the property weighted hyperfiniteness, introduced quite recently by Elek and Timar
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[7], and thus that weighted hyperfiniteness is equivalent to property A as well. This
answers a question of Elek and Timar.
We leave the following questions open.

Questions. Are the properties ONL, ULA, A, ULA,,, MSP all equivalent? Does
ULA imply CE (it follows from Corollary 4.3 below that CE cannot imply ULA)?

Apart from being useful to prove the implications above, ULA and ULA , have a
significant advantage over the other properties in figure (1): it seems to be easier to
check that they fail. This allows us to give simple proofs that expanders and sequences
of graphs with ‘large’ girth do not have ULA. In particular, this gives new examples
of spaces without ONL, and reproves and generalises the main results of [21] and
[11]. Note also that it follows from our results, Sako’s theorem, and an example
of Arzhantseva—Guentner—Spakula [1] that CE is strictly weaker than all the other
properties in figure (1), apart possibly from ULA. The relative ease with which ULA
and ULA, can be falsified may also play an important role in the construction of
new non-exact groups (and more generally, metric spaces without property A), a task
which to date has proved very difficult.

Finally, we look briefly at the quantitative aspects of the theory, using our ideas to
give a new and more general proof of a theorem of Nowak [12], Theorem 6.1, relating
quantitative versions of asymptotic dimension to quantitative versions of amenability.
There seems to be more that can be said here: in particular, we sketch an idea for
constructing more examples of spaces with CE but not A.

Remark. Throughout this piece, we make a blanket assumption that all metric spaces
are of bounded geometry, and the implications above are in general only known to be
valid under this assumption. As some readers may be interested, we record whether
the known proof of each implication in figure (1) requires bounded geometry (where
in each case, ULA, and ULA are to be understood in the ‘set’ definition rather than
the ‘function’ definition — see Lemmas 2.3 and 2.4 below) : (1) yes; (2) no; (3) no;
(4) no; (5) no; (6) yes. We note that Sako’s proof that ONL is equivalent to A uses
bounded geometry in both directions.

Odutline of the paper. In Section 2 below, we define ULA and ULA,, and discuss
some basic properties. In Section 3 we recall the definitions of A, CE, MSP and
ONL, and fill in all the new implications in figure (1).

The last two sections explore these properties. In Section 4 we prove that ex-
panders and sequences of graphs with large girth do not have property ULA, and
that all the properties A, ULA, ULA, MSP, ONL are equivalent for a box space.
Finally, in Section 5 we briefly discuss quantitative versions of our ‘local amenability’
properties; as mentioned above, the main result is a generalisation of a theorem of
Nowak.



586 J. Brodzki, G. A. Niblo, J. Spakula, R. Willett, and N. Wright

Notation and conventions. If X is a metric space, x € X and E C X, we use the
following conventions.

B(x;R) :={y € X | d(x,y) < R},
EC:={yeX|y¢¥¢E}
Nr(E):={y e X [d(y,E) <R},
BRE = NR(E)\E

A metric space X is said to be bounded geometry if for all R > 0 there exists
Npg € N suchthat |B(x; R)| < Ng. Throughout, we say ‘X is a space’ as shorthand
for ‘X is a bounded geometry metric space’. Note that almost everything in this piece
would go through if we only worked with metric spaces that are coarsely equivalent
to some bounded geometry metric space (thus for example many manifolds).

A map between metric spaces f: X — Y is called a coarse embedding if there
exist non-decreasing functions p, p—: [0, 00) — [0, 00) such that p_(¢) — oo as
t — oo and

p—(dx (x1,x2)) = dy (f(x1). f(x2)) < p+(dx (x1.X2))

forall x1, x5 in X. The functions p_ and p are called distortion functions associated
to f. The map f is called a coarse equivalence if it is a coarse embedding, and if in
addition there exists C > 0 such that d(f(X),y) < C forally € Y.

2. Uniform local amenability

In this section we introduce our versions of ‘uniform local amenability’, ULA and
ULA,, below. in order to motivate the definitions we recall the Block—Weinberger
definition of amenability for a metric space [2], Section 3.

Definition 2.1. A space X is called amenable if for all R, ¢ > 0 there exists a finite
subset £ of X (called a Fglner set) such that

[0RE| < ¢|E].

Although this property (and its negation) are very useful in some contexts, it has
shortcomings: one of these is that it does not pass to subspaces. As an attempt to
rectify this, the following definition is very natural.

Definition 2.2. Let X be a space. Then X is said to be uniformly locally amenable if
for all R, ¢ > 0 there exists S > 0 such that for any finite subset F' of X there exists
E C X with diam(E) < S and

0RE N F| < ¢|ENF).
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Essentially, the definition says that all finite subsets of X must be amenable, in
such a way that amenability is seen by Fglner sets of uniform size. Any finite metric
space is of course trivially amenable in its own right: the non-triviality comes from
requiring uniformity.

The property in Definition 2.2 is equivalent to ULA from Definition 2.5 below;
that definition is more convenient, but requires some preliminary lemmas. We will
also need an a priori stronger version of uniform local amenability (the two could
be equivalent), where probability measures rather than finite subsets are used to
‘localize’. This is ULA, which is also introduced below.

The next two technical lemmas provide groundwork for these definitions.

Lemma 2.3. Let X be a space. The following two properties are equivalent.

(1) Forall R, ¢ > 0 there exists S > 0 such that for all probability measures | on
X there exists a function ¢ € 11 (X) such that

* diam(supp(¢)) < S,
* the ‘variational inequality’

X wx) X e —oWl<e X u®leMx)| @)

x&supp(p) 2 &S“ypl;gi)e x €supp(u)

holds.

(2) Forall R, € > O there exists S > 0 such that for all probability measures |1 on
X there exists a finite set E C X with

e diam(E) < S,
e the inequality L(0R E) < e (E) holds.

The proof below is a standard argument based on that showing the ‘Reiter’ formu-
lation of amenability implies the ‘Fglner’ formulation: for the readers’ convenience,
we provide the details.

Proof. Assume the first condition holds. Let R, ¢ > 0 be given, and let u be a
probability measure; we must find S > 0 (which is independent of i) and E as in the
second condition. Let S and ¢ be as in the first condition; by replacing ¢ with |¢|, we
may assume that ¢ is non-negative. Let F; = supp(¢) andlet F; D F, D --- D F,
be a sequence of (finite) subsets of X such that we can write

n
a
¢ = Z |T§|XFN
i=1
where each a; is a positive real number and y g, is the characteristic function of F;.
The variation inequality in line (2) above can then be rewritten

it

n
woX r X R@-xrMI<eX F X p()xF (),
x€supp(u) J (6;“;’1;(51)? i=1 x€supp(u)
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from which it follows that for some i,

> owx) Y r)—xrOI<e Y wx)xF(x) = eu(F).
x€supp(1) dy(isugg% x&supp(u)

On the other hand, the left-hand side in the line above is at least (g F;); it follows
that E := F; satisfies all the conditions in the second part of the lemma.

Conversely, assume that the condition in the second part of the lemma holds. Let
R, e, u be as given. Let Ng be an absolute bound on the number of points in a ball of
radius R, and let S > 0 and E’ satisfy the conditions in the second part with respect
to the data 2R, ¢/ Ng, W, so, in particular,

W E') < NiRM(E’)-
Let E = Nr(E') = E' UR(E'). Then dg(E) U dg(X \ E) C d2r(E’), 50
HOR(E) UR(X \ B)) < p(@:r(E) < 2= p(E) < ~—p(E). ()
R R

Let now ¢ be the characteristic function of E. We have

X pnx) X o) — ¢l

x€supp(p) Y Esupp(u)
d(x.y)<R
=2 ux) XY e -9+ X ux) X lp(x)—¢»)l
x€E YEIR(E) xeX\E YEIR(X\E)
d(x.y)=R d(x.y)=R
= X px) X @ -+ X px) X () -9l
x€dRr(X\E) YEIR(E) x€IR(E) YEIR(X\E)
d(x.y)<R d(x.y)<R
< NRr > p(x)
x€IR(X\E)UIR(E)

< Nrp(dr(X \ E) Udr(E));

combining this with line (3) gives

X pwx) Y ) - <ew(E) =¢ ZXM(X)MJ(X)I-

xesupp(u) de;prl;g)e

The support of ¢ is just E, which is a subset of supp(it) of diameter at most S + R;
we are done. O

The following lemma can be proved in the same way as Lemma 2.3.

Lemma 2.4. Let X be a space. The following two properties are equivalent.

(1) Forall R, & > 0 there exists S > 0 such that for all finite subsets F of X there
exists a function ¢ € [1(X) such that
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* diam(supp(¢)) =< S,
* the ‘variational inequality’

X X e —e(l<e X [¢(x)]

xeF  YeF xeF
d(x.y)<R

holds.

(2) Forall R, & > 0 there exists S > 0 such that for all finite subsets F of X there
exists a finite set E C X such that

e diam(E) < S,
* the inequality |0RE N F| < ¢|E N F| holds.

Definition 2.5. We call the property appearing in Lemma 2.3 above ULA ;. We call
ULA, or uniform local amenability, the property appearing in Lemma 2.4.

Lemma 2.6. Let Y be a space with ULA (resp. ULA,,), and X be a space such that
there exists a coarse embedding f: X — Y. Then X has ULA (resp. ULA,,).
In particular, ULA and ULA,, are coarse invariants.

Proof. Let f: X — Y be acoarse embedding between spaces and let p+ : [0, 0c0) —
[0, 00) be associated distortion functions. We assume (as we may) that p_ has the
following property: forallty < t,,if p_(¢2) > 0,then p_(¢;) < p—(t»). Furthermore,
denote D = sup,cy | f 1 (¥)!.

We are going to show that if ¥ has ULA (or ULA,,), then X does as well. We
shall use the second formulation from Lemmas 2.4 and 2.3. We give the argument
for ULA.

Given R, ¢ > 0, declare S = p_!(S’), where S’ comes from ULA for Y with
parameters p4(R) and ¢/D; we now check that this S satisfies the requirements.
Given a finite F C X, let E/ C Y be the set whose existence is guaranteed by
ULA for Y with respect to the subset f(F) and parameters p+(R) and ¢/D, i.e., E’
satisfies diam(E’) < S’ and

95, R E' N F(F)| < S IE' N f(F)]

Passing to E’ N f(F), we may assume that E’ C f(F).

Denote E = f~!(E’) N F. Observe that if 0 < d(x, E) < R for some x € F,
then 0 < d(f(x), E’) < p+(R). Moreover, there are at most D points whose image
under f coincides with f(x). Consequently,

0RE N F| < D|3,, (R E' N f(F)| < ¢|E'| < 6|E| = ¢|E N F|.

Finally, note that diam(E) < p—!(diam(E’)) < S. This finishes the argument for
property ULA.

The argument for ULA, can be done along the same lines, using push-forward
measures. O
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The following lemma is immediate: indeed, one should think of ULA as be-
ing the special case of ULA, where the probability measure must be a normalised
characteristic function.

Lemma 2.7. ULA,, implies ULA.

3. Relationship of uniform local amenability with other properties

In this section we look at the relationships between the uniform local amenability
properties we introduced in the last section, and some other coarse properties: prop-
erty A, coarse embeddability, the metric sparsification property, and operator norm
localisation.

Property A. The following definition of property A is due to Higson—Roe [10],
Lemma 3.5.

Definition 3.1. Let X be a space, and Prob(X) denote the simplex of probability
measures on X, considered as a subset of /!(X). We say that X has property A if for
all R, & > 0 there exists S > 0 such that there exists £: X — Prob(X), denoted by
X = &, with

* &k — &) || <eforallx,y € X withd(x,y) <R,
* &, in supported in B(x; S) forall x € X.

Proposition 3.2. Property A implies ULA,,.

Proof. Assume X has A, and let R, ¢ > 0, and p be a probability measure on X.
Write F := supp(u). Let Nr denote the maximal number of points in a ball of radius
R in X (hence also in F). Property A for X implies that all subsets of X have A
uniformly, i.e., for all R, ¢ > 0 there exists S > 0 such that for any subset £ of X
there exists £: E — Prob(FE) satisfying the conditions in Definition 3.1 for R, ¢, S
— this is folklore, following for example from the proof of [19], Proposition 4.2. In
particular, there exists S > 0 independently of u and a function £: F — Prob(F)
satisfying the conditions in Definition 2.1 for the parameters R, ¢/Ng, S. Fixing
x € F for the moment, we then have

> l&x =&l < Nre/Nr =¢,

yeF
d(x,y)<R

whence (using the fact that u and each £, is a probability measure)

Lopnx) X g —bli<e ZFM(X)Iléxll-

xeF YEF
d(x.y)<R
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Expanding the norms on both sides gives

2. 2 M(x) > 5x(2) =& (@) <& X Y n(x)Ex ()],

zeF xeF YEF, d(x,y)<R zeF xeF

whence there exists zg € F such that

> nx) D 16x(z0) —éy(z0)l <& ZF/L(X)lgx(ZON;

xeF yEF
d(x,y)<R

defining ¢: F — C by ¢(x) = &(z¢) (and extending ¢ to all of X by setting it to
be zero outside of F'), we are done. O

Coarse embeddings into Hilbert space

Definition 3.3. Let X be a space. We say that X has property CE if X admits a
coarse embedding into a Hilbert space.

The following theorem is an immediate consequence of a result of Ostrovskii [14],
Theorem 2.

Theorem 3.4. Let X be a space that does not have CE. Then there exists ¢ > 0 and
R > 0 such that for all S > 0 there exists a probability measure | on X such that
for all E C supp(u) with diam(E) < S we have

WORE) > eu(E).

Proof. Let D be as in the conclusion of [14], Theorem 1. Let R = 8D + 1 and
e = 1/4D (so in Ostrovskii’s notation, ¢ = ¢(D, R)). Let n be so large that
n—R/2 > §, and let v, and F be as given in the conclusion of [14], Theorem 2.
We may then take p to be the restriction of v, to F, and it is easy to check that our
conclusion follows from [14], Theorem 2. Ll

Of course, the conclusion of Theorem 3.4 simply is the negation of property
ULA,, so the following corollary is immediate.

Corollary 3.5. For a space X, ULA,, implies CE. O
The metric sparsification property. We recall the following definition.

Definition 3.6. Let X be a space. X is said to have the metric sparsification property
(MSP) if there exists ¢ > 0 such that for all R > 0 there exists S > 0 such that
for all probability measures p on X there exists a subset 2 C X equipped with a
decomposition
Q=]
1

such that
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* n()=c,
e diam(€2;) < S for all 7,
* d(R2;,Qj)> Rforalli # j.

Remark 3.7. Itis proved in [3], Proposition 3.3, that if X has MSP for some constant
¢ > 0, then it has it for any ¢ with 0 < ¢ < 1.

Theorem 3.8. For a space X, MSP is equivalent to ULA,,.

Proof. Assume that X has MSP. Let R, ¢ > 0, and let i be a probability measure
on X. Letc > 1/(1 + ¢); by Remark 3.7, we may assume that this is the ‘c’ in
the definition of MSP. Let S > 0 and Q = [ |; Q; be a decomposition as in the
definition of MSP with respect to the parameter 2R and the probability measure pu.
As the collection { Ng(£2;)}; is disjoint, and as p(€2) > ¢, we have

1 1
2 W(NR(S2:)) = pu(X) = 1 = 2p(RQ) = £ 3 p(S2).
1 1
It follows that there exists i such that if £ := €; then

H(NR(E)) < Lu(E);

as the left-hand side is simply w(E) + w(dg E), however, this rearranges to

HORE) < (3 = 1)u(E),

and by choice of ¢, this is the desired conclusion.

For the converse, assume that X has ULA,. Let R > 0 and a probability measure
M1 = W be given; by an approximation argument, we may assume that F; =
supp(u1) is a finite set. Fix any € > 0, and let S > 0 be as given by ULA ;. Let now
E, C F; have diameter at most S and be such that

rOREY) < ep(Er).

Set F> := F1\(Ngr(E1)) and define i, to be the restriction of w to F, renormalised
so as to be a probability measure; by the definition of ULA, there exists E; C F,
such that

u2(0RE2) < epa(E3).
Note, however, that restricted to F», i, is just a rescaling of w, whence we also have
W(ORE2 N Fy) < ep(E7).

Similarly, we may now set F3 = F;\(Ngr(E1) U Nr(E>)), and continue the
process. It must eventually terminate (as F; is finite) giving us sequences F; D
F, D-.-D F,and Eq, ..., E, such that E; C F; for all n and so that
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e foralli, diam(E;) < S,
e fori # j,d(E;,E;) > R,
e foralli, u(drE; N F;) < eu(E;).
Set Q; := E; and Q :=|_| ;. We have finally that

L= u(F) = 3 p(E) + prEi 0 F) < (1 + () = (1 + e)u(@).

i=1 i=1

Hence ©(2) > 1/(1 + ¢), so we may take ¢ = 1/(1 + ¢) and are done. O

The operator norm localisation property. We give the following definition of the
operator norm localisation property (ONL): it is easily seen to be equivalent to the
original definition ([3], Definition 2.2).

Definition 3.9. Let X be a space and u a positive measure on X . Let # be a separable
Hilbert space, and consider the space of functions ¢p: X — # such that the norm

lpl? := X;(M(X)Ilcb(X)ll?;g

is finite. Taking the quotient by the subspace of functions of norm zero (this does form
a subspace by a version of Cauchy—Schwarz applied to the obvious inner product
associated to || - ||) gives a Hilbert space, which we denote /%(X, i, #). Recall
that any (bounded) operator T on this Hilbert space can be considered as a matrix
T = (Tx,y)x,yex, where each Tx , is a bounded operator on #.

For each R > 0, define Cr[X; i, #] to be the collection of bounded operators
(Tx,y) on I%(X, p, #) such that Ty , = 0 whenever d(x,y) > R.

We say that X has the operator norm localisation property (ONL) if there exists
¢ > 0 such that for any R > 0 there exists S > 0 such that for any probability
measure (1 and separable #, and any T € Cg[X; i, #] there exists a unit vector
¢ € I12(X, #) such that diam(supp(¢)) < S and such that

TN 2cx .90 = <IT | 8a20x,,50))-
Remark 3.10. Itis provedin [3], Proposition 2.4, thatif X has ONL for some constant
¢ > 0, then it has it for any ¢ with 0 < ¢ < 1.

We will need the following technical lemma.

Lemma 3.11. Let X be a space with ONL. Then there exists ¢ > 0 such that for all
R, M > 0 there exists S > 0 such that for all positive measures | and separable
Hilbert spaces #, and any positive operator A € Cr[X; u, H] with ||A|| < M there
exists norm one ¥ € 1*>(X, u, #) such that diam(supp(y)) < S and

(¥, Ay) = c[|A].

Moreover, one can take any ¢ with 0 < ¢ < 1.
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Proof. Let R, M and A be as in the statement. Let g be the (positive) square root
function on [0, M], and let (p,) be a sequence of polynomials converging uniformly
to g on [0, M]. Let e > 0 and p, be such that |g — p,|| < &, and note that for any
R > 0 there exists R’ such that if T € Cr[X; u, #], then p,(T) € Cp/[X; u, H].
Let now ¢ be as given in the definition of ONL for X, and let S be as in the
definition of ONL with respect to the parameter R’. Let v € [%(X, i, #) be of norm
one, with diameter of support at most .S, and such that || p, (A)¥ || > c|| pn(A)||- Then

VY, AY) = llg(A)y ]|
Z [ pa (DY = llgn(4) = pa(A)]|
z cllpn(All —&
(gD —e) —¢

= c/|All —e(1 +¢);

as ¢ was arbitrary (of course, S implicitly depends on ¢, but all that matters is that for
each ¢, some § exists), this completes the proof (one also alters ¢ slightly to get ¢ as
in the statement).

To see that one can get any ¢ with 0 < ¢ < 1, it suffices to use Remark 3.10, and
then again use that & was arbitrary. O

Theorem 3.12. If a space X has ONL, then it has ULA.

Proof. Let X be a space with ONL. Let R, ¢ > 0. Let F be a finite subset of X, and

take u to be the measure given by the characteristic function of F. Take # = C, so

that /2 (X, u, #) identifies naturally with /2(F); we make this identification without

further comment, and denote by {3 }xeF the canonical basis of this Hilbert space.
Now let Ay be the operator on [?(F) defined by

AR:éx—> Y 8x—6);
yeF
d(x.y)=R
note that if Ng is an absolute bound for the cardinality of a ball of radius R in X,
then ||AR| < 2Ng. Let Ag = ||ARr|| — AR, which is an operator in Cr[X; u, #].
An explicit computation (cf. line (4) below) shows that A is a positive operator,
whence Ag is too and ||AR| = || Ag].

Choose ¢ with

82

4Ngr|ARI

Lemma 3.11 implies that there exists S (depending on R and ¢, but not on F') and a
norm one function v € [2(F) with diam(supp(y)) < S and such that

1l>c>1-—

(Y, ArY) = ¢ ARl
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Expanding and rearranging this gives that (¢, Ary¥) < (1 — ¢)||ARr||, and further
expanding the left-hand side and rearranging gives

IS S Ww-voP=wArp) <(1-0ldcl. @
xeF  YyeF
d(x.y)<R

On the other hand, Cauchy—Schwarz implies that if ¢ (x) = [ (x)|? then

2 2 ) —¢()

xeF  yeF
d(x.y)=R

(S

(X |w(x>—w(y)|2)%(z > @ +vomP)

xeF  yeF xeF  yeF
d(x.y)=R d(x.y)=R

Moreover, if Ng is the maximal number of points in a ball of radius R in X, this and
the fact that ||| = 1 in turn imply that

Y X Be-¢WI=2VN(X X W@-vkP)

xeF  yeF xeF YeF
d(x,y)<R d(x.y)=R

Finally, combining this with line (4) above gives that

YY) — o) < 2v/NrY (1 —0o)||Ag]

xeF  YeF
d(x.y)<R

=2y/NrlARlIV1 —c¢ ZF ()1,

where the equality uses again that ||| = 1 and the definition of ¢; the choice of ¢
completes the argument. O

4. Examples: spaces of graphs

In this section, we give two examples of spaces without ULA: expanding graphs, and
sequences of graphs with large girth. The first of these generalises and reproves [3],
Theorem 6.5, and the main theorem of [11], while the second generalises and reproves
the main result from [21]. We also prove that for a box space of a discrete group,
all the properties ULA, ULA,, A, MSP and ONL are equivalent, and equivalent to
amenability of the original group. Finally, we discuss how the non-bounded geometry
examples of Nowak with CE but not A [12] fit into our framework.
We start by recalling the definitions.

Definition 4.1. A space X is called a space of graphs if there exists a sequence (X},)
of finite connected graphs such that X = | | X,, (as a set), and if the metric on X
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restricts to the edge metric on each X, and is such that d(X,, X5) — oo asn — oo.
Note that as we assume X has bounded geometry, all the vertex degrees of all the X,
must be uniformly bounded.

A space of graphs X is called an expander if | X,| — oo as n — oo and there
exists ¢ > 0 such that whenever A C X, is such that |4] < |X},|/2 we have that
|01 4] = &l Al.

A space of graphs X is said to have large girth if girth(X,) — oo asn — oo
(recall that the girth of a finite graph is the length of its shortest non-trivial cycle).

Theorem 4.2. Say X is a space of graphs. If X is an expander, or if X has large
girth and all vertices have degree at least three, then X does not have ULA.

Proof. Assume first that X is an expander, let S > 0, and let Ng be the maximum
number of vertices in a ball of radius S. Let n be so large that | X,,| > 2Ng, and set
F = X,,. Then if E C X, is such that diam(E£) < S we have |01 E| > ¢|E| by the
expander assumption. This contradicts ULA.

Say now that X has large girth, and all vertices in X have degree at least three.
Let D be an upper bound on the degrees of all vertices in X. Let § > 0, and let n
be so large that any subset of diameter S + 1 of X, is isometric to a subset of a tree
(with all vertices of degrees at least three). Then [21], Lemma 3.3, implies that for
any subset E of X, such that diam(EF) < S we have |01 E| > ﬁ|E | (the definition
of ‘01’ used in [21] is different to that used here, but this does not matter); again, this
contradicts ULA. O

Corollary 4.3. None of the properties A, ULA,,, ULA, MSP or ONL are implied by
CE. In particular, ULA,,, A and MSP are all strictly stronger than CE.

Proof. Arzhantseva—Guentner—Spakula [1] have given an example of a space with
CE, which is actually a space of graphs with large girth (see also Ostrovskii [15]).
The corollary is immediate from this, Theorem 4.2, and the results of Section 3. [

Combining our results with Sako’s, it follows that in fact CE is strictly stronger
than all of the properties ULA,, MSP, A, ONL.
We now look at box spaces.

Definition 4.4. Let I" be an infinite finitely generated discrete group, and let I'; >
', > '3 > .- be a decreasing sequence of finite index normal subgroups of I" such
that N, T, = {e}. Fix a generating set of ", and for each n let X,, = I'/ I, equipped
with the (Cayley) graph structure coming from the fixed finite generating set of I".

The box space associated to this data is the (it is unique up to coarse equivalence)
space of graphs associated to the sequence of graphs (X},).

Theorem 4.5. Let T be a finitely generated discrete group, and X = | | X, an
associated box space. Then the following are equivalent:
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(1) T is amenable.
(2) X has all of the properties A, ULA, ULA,,, MSP, ONL.
(3) X has one of the properties A, ULA, ULA,,, MSP, ONL.

Proof. Itis a theorem of Guentner—Roe [17], Proposition 11.39, that amenability of
I" implies property A for X (and hence, looking back at diagram (1), all of the other
properties). To complete the proof of the theorem, diagram (1) implies that it suffices
to prove that if X has property ULA, then I' is amenable.

Assume then that I has ULA and let ¢ > 0. Then there exists S such that for all n
there exists £, C X, withdiam(E,) < S and |01 E,| < €| Ey|. For n suitably large,
E,, lifts isometrically to a finite subset £ of I' such that 8;(E) is also an isometric
lift of 8, E,,. In particular, |3, E| < &|E|, which implies that I is amenable. O

Combining our results with Sako’s gives the result that in fact the properties A,
ULA,,, MSP, ONL are all equivalent for bounded geometry metric spaces. It would
be interesting to know if ULA was also equivalent to the others in general.

Remark 4.6. Recall that Nowak [12] has constructed CE metric spaces without A,
although without bounded geometry. Roughly, these are coarse disjoint unions of
powers of a fixed finite group. Nowak’s spaces are spaces of graphs in our sense if
one drops the bounded geometry assumption.

Note that the implications MSP = ULA, = ULA work for discrete metric
spaces, even without assuming bounded geometry (cf. Remark 1 above). Observe that
Nowak’s examples do not have ULA (whence also not ULA, or MSP). Indeed, ULA
for a coarse disjoint union of finite spaces X, implies that the pieces are amenable in
a uniform wayj, i.e., that for a given € > 0 there exists a Fglner set E,, C X, for each
n such that diam(E}) is uniformly bounded. However, [12], Theorem 4.4, implies
that this is not possible for Nowak’s examples.

5. Comments on the quantitative theory, and a theorem of Nowak

In this section, we make a few brief comments on quantitative versions of the theory,
concentrating on the relationship between this and established invariants in the case
of amenable groups. This enables us to recover (and slightly generalise) a result of
Nowak: [13], Theorem 6.1. The section is just meant to give a flavour of what is
possible; one could no doubt say rather more.

We also include an unrelated comment on using quantitative properties to tell the
difference between CE and A.

Throughout, we will focus on coarsely geodesic spaces as in the next definition.
The definition is slightly restrictive, but covers the motivating examples: graphs
and finitely generated discrete groups. On the other hand, it is easy to see that any
bounded geometry metric space that is ‘quasi-geodesic’ in any reasonable sense is
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quasi-isometric to one of this form. Equivalently, any monogenic coarse structure
can be metrised with a metric of this form: see for example [17], Proposition 2.57.

Definition 5.1. Let (X, d) be aspace. X is said to be coarsely geodesic if the metric
d is integer valued, and if forany n € N, x, y € X we have d(x, y) = n if and only
if there exists a sequence x = Xxg, X1, ..., X, = y such that d(x;, x;4+1) = 1 for all
i=0,..n—1

In our context ‘quantitative’ means ‘measured by a given function’. We will work
with functions up to the following notions of order and equivalence.

Definition 5.2. Let f,g: N — N be functions. We write f < g if there exist
constants ¢, d such that f(n) < cg(dn) for all n € N. We say that f and g are
equivalent, and write f ~ gif f < gandg < f.

The following is perhaps the most general ‘quantitative version’ of one of the
properties that we have studied. Although it makes sense in general, it only seems to
have much content in the case of coarsely geodesic spaces as above.

Definition 5.3. Let X be a space, ¢ > 0 and f: N — N be a non-decreasing
function. X is said to have WMSP(c, f) if for all R € N and all finite subsets F of
X there exists a subset 2 C F equipped with a decomposition

Q=]
i

such that
* Q] =c|F|,
e diam(R2;) < f(R) for all i,
* d(R2;,Q2j) > Rforalli # j.

The same proof as in Theorem 3.8 above shows that WMSP(c, ') is equivalent
to an appropriate quantitative version of property ULA. The results of Section 3 then
show that WMSP(c, f) (which should be thought of as standing for ‘weak metric
sparsification property with respect to ¢, f’) is implied by appropriate quantitative
versions of A, ULA,, MSP and ONL; we leave the details to the reader.

Note thatif X, Y are quasi-isometric metric spaces, and X has WMSP(c, f), then
Y has WMSP(c¢’, g) for some ¢’ > 0 and g with g ~ f. The argument is standard
and not directly relevant, so we omit it.

We will need the following two quantitative properties. Our aim is to relate them
to WMSP(c, f), and thus to each other.

Definition 5.4. Let X be an amenable space. The isodiametric function of X,
Ax : N — N is defined by

Ax (n) := min{diam(4) | A € X, |91 (4)] = (1/n)|A[}.
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Definition 5.5. Let X be a space. Let n be a natural number and 7: N — N be
a non-decreasing function. X is said to have asymptotic dimension at most n (with
respect to 7), in brief X has FAD(n, 7), if for all R € N there exist subsets QL ..,
Q"1 of X and decompositions Q° = | | ez, §2 such that

() X =U/L! Qi foreachi = 1,...,n + land all j; # ja,

(2) d(£2},.92) >R

3) diam(Qj.) < t(R)foreachi =1,...,n+ landall j.

Lemma 5.6. Let X be an amenable space in the sense of Definition 2.1 above, and
assume also that X has WMSP(c, f). Then for any R € N there exists a finite
(non-empty) subset E C X such that diam(E) < f(2R) and

INR(E)| < 2|E].

Proof. As X is amenable there exists a finite subset F C X such that |0gr F| < | F|.
Let 2 C F be as given in Definition 5.3 above with respect to the parameter 2R; we
may assume all the €2;s are non-empty. It follows from this that

(X INR(Q)]) = [0rF| = X (INR(Qi)| = [NR(2i) N IR F])

= Y IN&(Q) N F| < |F|
1

whence
> INR(S2i)| < 2|F|
1

by assumption on dg F'. From this and the fact that |2| > ¢|F'|, we see that

> INR(Q:)| < %Z|Qi|- 5)
1 1
Finally, there exists i such that if £ := €2; then
2
IN&(E)| < 2|E],
and of course diam(E) < f(2R). O

Theorem 5.7. Let X be a coarsely geodesic amenable space with WMSP(c, f).
Then Ax < f.

Proof. We assume X is unbounded, otherwise the result s trivial. Fix for the moment
R € N. Using Lemma 5.6, we see there exists a finite subset £ € X such that
INR(E)| < %|E |. We may rewrite this inequality as

INR(E)|  [N2(E)| [N1(E)|
Ne(B) " INi(E)]|E]

1
S_’
c
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whence (using the coarsely geodesic property) there exists m = 0, ..., R — 1 such
that if Ag = Ny, (FE), then

=)

Rearranging this slightly gives

01(AR)] _ (2\%
— 2 <(Z) -1 6
|AR| S(C) ©

and diam(Agr) < R + f(2R). Note moreover that because X is unbounded and
coarsely geodesic, we have f(n) > n for all n € N; in particular,

diam(Ag) <2f(2R). 7
Now we have |
1 2\ R log(2
- < (_) K —1 < R < %,
n = \c log("H)

whence lines (6) and (7) together imply that

2log(2/c)
Ax(n) < zf(T)'
log(*—)
Finally, note that
1 n

<
log(51) = log(2)

for all n € N (treating, as we may, the left-hand side as zero when n = 0) and f is
non-decreasing, whence

2log(2/c)n
log(2)

as required. O

Aﬂ@sﬁ( ) = s

The following theorem immediately implies [13], Theorem 6.1.

Corollary 5.8. Let X be a coarsely geodesic, amenable space with FAD(n, t). Then
Ay < 1.

Proof. ltis easy to see that FAD(n, T) implies WMSP(#, 7). The corollary is thus
immediate from Theorem 5.7. O

We conclude this section with a remark on quantitative phenomena and coarse
embeddings.
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Remark 5.9. One may try to define a ‘quantitative negation’ of ULA, as follows.

Let X be a space and f: N — Ry a non-decreasing, non-zero function. Then X
has =ULA, (f) if forall R > 0 and all S > 0 there exists a probability measure [
on X such that for all subsets E C supp(u) with diam(E) < S we have

pORE) = f(R)u(E).

Now, inspection of the proof of Theorem 3.4 above, and the ingredients for it from
[14], shows that if X does not have CE then it has =ULA () with f growing at
least linearly. On the other hand, for a space not to have ULA, it suffices to show
that it has =ULA , (/') for any (non-zero, non-decreasing) f. In particular, this gives
a potential quantitative approach to finding more examples of spaces without ULA
(hence without A), but with CE.

Note in this regard also that one easily sees that either of the classes of spaces
in Theorem 4.2 have —~ULA,(f) with f growing exponentially. In particular, the
‘quantitative method’ sketched above is not sufficient to detect CE for the main ex-
ample in [1]. We do not know if it is possible to find examples of spaces with
CE, but without A, using the quantitative method above, but leave it as an open
problem.
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