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The odd-dimensional analogue of a theorem of Getzler and Wu
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Abstract. We prove an analogue for odd-dimensional manifolds with boundary, in the b-
calculus setting, of the higher Atiyah—Patodi—Singer index theorem by Getzler and by Wu, and
thus obtain a natural counterpart of the eta invariant for even-dimensional closed manifolds.
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Introduction

The goal of this paper is to prove an analogue for odd-dimensional manifolds with
boundary of the higher Atiyah—Patodi-Singer index theorem of Getzler [Get93a]
and Wu [Wu93]. For notational simplicity, we will restrict the discussion mainly to
spin manifolds. However all results can be straightforwardly extended to general
manifolds, with appropriate modification.

Suppose N is an odd-dimensional spin manifold with boundary and carries an
exact b-metric [Mel93], cf. Section 1. For g € Ui (C°°(N)) a unitary over N, let
Ch.(g) (resp. Chd®(g)) be the Chern character of g in entire cyclic homology of
C*®(N) (resp. de Rham cohomology of N). In the following, fy; is the regularized
integral on N with respect to its b-metric (see Section 1) and ff(N ) is the ff—genus
form of N. Let D be the Dirac operator on N and °D be its restriction to the boundary
dN . Denote the higher eta cochain of D by r]'(aD), introduced by Wu [Wu93].

Theorem. Let N be an odd-dimensional spin manifold with boundary. Endow N
with an exact b-metric and let D be its associated Dirac operator. Assume D is
invertible. For g € Up(C*®(N)) a unitary over N, if ||d % || < A where A the lowest
nonzero eigenvalue of |8D| and %g is the restriction of g to the boundary, then

st(D.g™' Dg) = ][N AN) A ChR(g) — (' (D).Ch.(g)).  (O.1)

*The author was partially supported by the US National Science Foundation awards no. DMS-0969672.



648 Z.Xie

Here sf(D, g~ Dg) is the spectral flow of the path D,, = (1 —u)D +ug~'Dg
with u € [0, 1] (see Section 4). In order for sf(D, g~ ! Dg) to be well defined, the
infimum of the essential spectrum of |D,|, denoted by inf spec.. (] Dy|), has to be
greater than zero for each u. The latter condition is fulfilled if and only if the restriction
D,, to the boundary dN is invertible for each u. Thus the almost flatness condition
|ld % || < A ensures that sf(D, g~ Dg) is well defined.

Let °Ch*(D;) be the b-analogue of the odd Chern character by Jaffe—Lesniewski—
Osterwalder [JLOS8S], cf. Section 2. The above theorem is proved by interpolating
between the limit of °Ch*(D;) as t — oo and its limit as # — 0, where D; = tD.
In fact, the limit at # = oo does not exist in general. However, when evaluated at
Ch.(g) with g satisfying the almost flat condition above, the limit of °Ch*(D,) as
t — oo does exist and gives the spectral flow sf(D, g~ Dg). To prove this, i.e., the
equality

Jlim ("Ch*(Dy).Ch.(g)) = sf(D.g™' Dg). (0.2)

we first show (see Proposition 4.6 below) that

1
(D, ¢! Dg) = lim % /0 Tr(Dye™ P du. (0.3)

This is a generalization to the b-calculus setting of Getzler’s spectral flow formula
for closed manifolds, cf. [Get93b], Corollary 2.7. Once we show eq. (0.3), the proof
of eq. (0.2) reduces to

1
Tim ﬁ [T (Due Phydu = Jim (Ch*(D). Ch (). 04
In turn, to verify this, we consider a multiparameter version of the Chern character
Ch(A) of the superconnection A (see [Get93b], also Section 5 below, for the precise
definition). Each side of eq. (0.4) corresponds to one term in the formula obtained by
applying Stokes theorem to Ch(A,) for each fixed . We then show the vanishing of
the rest of the terms as t — 00, hence prove the validity of eq. (0.4), cf. Section 5. The
rest of the proof proceeds along the lines of Getzler’s even counterpart, cf. [Get93a].
Due to the fact that °Tr is not a trace, °Ch* (D, ) is not a closed cochain. The integral
of its boundary from 0 to oo gives the odd eta cochain r)'(aD) on the right-hand side
of (0.1).
As a corollary of the main theorem, by comparing eq. (0.1) with Dai—Zhang’s
Toeplitz index formula for odd-dimensional manifolds with boundary [DZ06], we
show that if ||d%]| < A, then

(n"(’D). Ch.(%)) = —ij(dN.%) mod Z,

where 7j(N, %) is the (reduced) eta invariant of Dai—Zhang. This equality provides
more evidence for the naturality of the Dai—Zhang eta invariant for even-dimensional
closed manifolds.
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An outline of this article is as follows. In Section 1, we recall some facts from
b-calculus on manifolds with boundary and Chern characters in cyclic homology. In
Section 2, we define a b-analogue of the JLO Chern character and prove its entireness.
Then we state our main theorem (Theorem 3.1 below) in Section 3. We prove the
main step of the proof to the main theorem in Section 4 and 5.

Acknowledgements. I am grateful to Henri Moscovici for his continuous support
and advice. I also want to thank Matthias Lesch for many helpful suggestions.

1. Preliminaries

Throughout the paper, we denote by Cl, (C) the complex Clifford algebra with odd-
degree generators ¢;, 1 <i < g, and relations

cicj +cjci = —28,'j.

This is a Z,-graded *-algebra with ¢/ = —c;.

1.1. Manifolds with Boundary and b-metrics. Let M be an odd-dimensional spin
manifold with boundary. We fix a Riemannian metric, say w, and a spin structure
on M. Furthermore, we assume the Riemannian metric is of product type near the
boundary, that is, on [0, &), x dM a collar neighborhood of dM, it takes the form

w = (dx)* + h,

where / is the Riemannian metric on 0M. Denote by M the manifold obtained by
attaching an infinite cylinder (—oo, 0] x M to M along oM :

M = (—00,0] x M Ugps M.

The Riemannian metric M extends naturally to a Riemannian metric on M, still
denoted by w.

Notice that (1\2 ,w) is isometric to a standard b-manifold, that is, a manifold
with boundary carrying a b-metric. To see this, one performs the change of variable
X + r = e* on the cylindrical end. This replaces (—oo, 0], x dM by a compact
cylinder [0, 1], x dM. Moreover, the metric w induces a metric on N = [0, 1] x
dOM Uyps M under the coordinate change. In particular, the induced metric restricted
on [0, 1], x M takes the form

2
(ﬁ) T+
r

which is an exact b-metric on N, cf. [Mel93] and [Loy05]. Unless otherwise specified,
all b-metrics in this paper are assumed to be exact.
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1.2. Clifford modules and Dirac operators. Consider N = [0, 1], x M Uy M

with an exact b-metric. The set of b-vector fields, that is, vector fields on N tangential

to N, is closed under Lie bracket. By the Swan—Serre Theorem, such vector fields

are smooth sections of a vector bundle ®TN over N, called the b-tangent bundle of

l];V , cf. [Mel93], Lemma 2.5. We denote its dual bundle, the b-cotangent bundle, by
T*N.

By a Clifford module over N of degree ¢, we mean a Z,-graded Hermitian vector
bundle & over N with commuting graded *-actions of the Clifford algebra Cl,(C)
and the Clifford bundle Cl(b T*N), cf. [Get93a].

Let § be the spinor bundle over N and C!!' = C* @ C~ be a Z,-graded two
dimensional vector bundle. Then § ® C!!! is a Clifford module of degree 1 over N,
where each w € ['(N,CI(®T*N)) actson § ® C'!' by (. c(“’)) and the generator

c(w) 0
e1 of C1;(C) acts on § ® CH by (2, §).

1.3. b-norm. In this section, we introduce a b-norm on C3 (M ). We shall use
this b-norm to prove the entireness of the b-JLO Chern character in Section 2. Here

exp(M ) is the space of smooth functions on M which expands exponentially on

the infinite cylinder (—oo, 0], x dM, cf. [Loy05]. A smooth function f € C °°(M )
expands exponentially on (—oo, 0], x oM if

S, y) ~ Z e fie(v)

for (x, y) € (—o00, 0] x IM, where fi(y) € C*(dM) for each k. More precisely,

we have
N—1

fy) = X e fi(y) = eV Ry (x,y),

k=0

where all derivatives of Ry (x, y) in x and y are bounded.

Remark 1.1. Notice that C o"(M ) becomes exactly C*°(N) if one performs the
change of variable x — ¢* on the cylindrical end.

On (—o00, 0], x M, for each a € C°°(M), we have

exp
— X
a=a;+ e ax,

where a;¢, a0 € CS (M ) and a. is constant with respect to x. We define a norm on
% (M) by

exp

b .
lall := llalli 4 2llacolls

where ||a|; is the C'-norm of @ and ||aeo||1 is the C !-norm of an..

Lemma 1.2. °| - || is a well-defined multiplicative norm.



The odd-dimensional analogue of a theorem of Getzler and Wu 651

Proof. Note that (@ 4+ D)oo = Goo + boo and (ab)oo = dcboo + Aoobe + €*aoobso
So it is clear that

*llaall = [Al-"llall, Plla + bl < lall +°|5].

To prove the norm is multiplicative, we first notice that ||a.|| < |la||, |[dac|| < ||da]|
and

d(e*aooboo) = (e¥dX)aoobso + € d(doobso).
Thus we have
2||acboo + aoobc + exaooboo”l
= 2||acboo + aoobe + exaooboo” + 2||d(acboo + aoobe + exaooboo)”
+2|la|l - |dboo |l + 2[|daco |l - |1l
<2|lall1 - 1bsollt + 2llacoll1 - 1D]l1 + 4llacollt - 6o ll1-

By applying the inequality [lab|[y < (la[l + [|da|)([|b]| + [|db]]), we obtain

*llab]l < ®llal -*lIb]I. O
1.4. b-trace. For f € exp(M ), we have
f=Jfet+e foo

on the cylindrical end (—o0, 0] x dM, where f. is constant with respect to x .

Definition 1.3. The regularized integral of f € C
is defined to be

][Afdvoltzf flm dVOl—i—/ e” foo dvol.
M M (—00,0]x0M

For A € W~ °°(M V), let K4 be its Schwartz kernel and K4|a the restriction
of K4 to the diagonal A C M x M Then the fiberwise trace of K4|a, denoted
by tr(K4|a), is a function in C (M ), cf. [Loy05]. We define the b-trace of A €

PP (M, V) to be

(M ) with respect to the b-metric

exp

exp
"Tr(4) := ][A tr(K4|a) dvol.
M
When V is Z,-graded, we define the b-supertrace of A by
bStr(A) = ][A str(K4|a) dvol,
M

where str is the fiberwise supertrace on Endz, (V).
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1.5. Cyclic homology and cyclic cohomology. For A an algebra over C, let
Cn(4) = A® (4/0)%".

An element of C,(A) is denoted by (ag,ai,...,a,). Sometimes we also write
(ap,ai,...,an), to emphasise the degree of the element.

Definition 1.4.

n .
b(ag,...,an) = >_ (=D (ag,...,aidi41,...,a,),
i=0

n

B(ao,...,a,) = Z(—l)”i(l,ai,...,an,ao, e Qi—1).
i=0

Let C4+(A) = [[; Cak(A) and C_(A) = [[; Cak+1(A), then we have the chain
map
b+ B: Ci(A) — Cx(A).

The homology of this chain complex is called the periodic cyclic homology of A4,
denoted by HP 1 (A).

When A is a Banach algebra, we use the inductive tensor product instead of the
algebraic tensor product in the definition of C,(A). We denote the resulted space of
continuous even (resp. odd) chains by Cfp (A) (resp. C°P(A)). Let us define

An
llcotcr+-lla= Sl;P Wllcnll-
Then an even chainco + ¢ + --- € ijp(A) is called entire if ||co + c2 + -+ |2 is

finite for some A > 0. Entire odd chains in C™P(A) are defined the same way. The
space of even (resp. odd) entire chains will be denoted by C¥(A) (resp. C2(A)). It
is easy to check that b and B are continuous maps from C{(A4) to C£(A), hence
(CL(A),b + B) is a well-defined chain complex. The resulting homology is called
the entire cyclic homology of A4, denoted H{ (A).

Similarly, the entire cyclic cohomology of 4, denoted by HF, is defined to be the
homology of the cochain complex (C wi (A),b + B), where

CE(A) := (CL(A))* = the space of continuous linear functionals on C£(A),

with b and B being the obvious dual maps of those defined for cyclic homology.

1.6. Odd Chern character. For each Banach algebra A, we have the generalized
trace map Tr : C,,(M,(A)) — C,(A) with

Tr(ao,...,an) = Z ((ao)ioil’(al)iliz""’(an)inio)'

0<iQ,...,in <r
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It is easy to check that the generalized trace map induces a chain complex homomor-
phism C¢(M,(A)) — C£(A). For an invertible element g € GL,(A), its Chern
character is defined to be

o0
Ch.(g) := kZ (—D*K!Tr(g7 . g, ... g7 @) okt
=0

We have Ch.(g) € C®(A) and (b + B)Ch.(g) = 0. Moreover, let h: [0,1] —
GL, (A) be a smooth path of invertible elements. Then we have (cf. [Get93b])

% Ch.(h;) = (b + B)Ch.(h.1),

where the secondary Chern character éfl.(h, t) of h is defined as

~ . o) k )
Cho(h,t) = Tr(h;Yhy) + 3 (=DK1 Y. Tr(h @ hy)®U+D

k=0 j=0
®hy ' he ® (h7' @ h)®* D)y 5.
If we denote

1
Tch.(h) = / Ch.(h,t)dt,
0

then
Ch.(h1) — Ch.(hg) = (b + B) Tch.(h).

2. JLO Chern character in b-calculus

In this section, we shall define the b-JLO Chern character and prove its entireness.
Let M be as before and § be the spinor bundle over M. Then$; =S ®C!lisa
Clifford module over M of degree 1, where the generator e of Cl; (C) acts on §; by
(% 3) Let D be the Dirac operator on M and write

— 0 D byl Ay
9_(1) O)e WM S)).

Notice that © is odd and self-adjoint, and (graded) commutes with the action of
ClL (©).

2.1. JLO Chern character in b-calculus. For A € W™ (]\71 :81), we define

1
5Stry(A) := ——="Str(e; 4).
r(l)( ) zﬁ r(el )



654 Z.Xie

More generally, for A € >W™ (1\2 ; V) with V a Clifford module of degree ¢, we define

bStr(q)(A) = bStr(e; ...eqA),

(4m)a/2
where {e1,..., e} is a set of generators of Cl, (C).
Definition 2.1. The b-JLO Chern character of © is defined to be

®Ch™(D)(aq, ..., an)
= b<a0’ [91 (l]], D) [9’ an])

= / PStr(y) (a0€—005>2 [D,a]e™ ! 2 [D,aple™ " 92) do,
AN
where [—, —] stands for the graded commutator.
A straightforward calculation gives the following lemma.

Lemma 2.2. We have

*Ch?*T1(D)(aq. . . ., drk+1)
1

- ﬁ A2k+1

We see that the definition of °Ch® (D) is a natural generalization of the JLO odd
Chern character (for Dirac operators on closed manifolds) to the b-calculus setting.

— 2 _ 2 _ 2
*Tr(age P [D,ay]e P ... [D, azk41]e 72+1P7)do.

Lemma 2.3 ([Get93b], Lemma 4.4). For g € U,(C° (1\71)) we have

exp

(PCh (D), Y52 o k! Str(p, ..., plak+1) = (°Ch* (D), Ch.(g™!) — Ch.(g)),

where p = (g g;l) € C;%(M) ® End(C"!") with C’'" = (C")* @ (C")~ being
Z,-graded.

Proof. Notice that

0 [®.g7']
[D,p]l = ([@,g] 0 )

[D, ple (D, ple ™
B (—[S,g‘lle“’gz[@,g]e"@z 0 )
. .

and

—[0, gle [, g1 ]e7T®’
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It follows that

*(p.[D. pl.....[D.p]) = (—DFTV (T [D.g]... . [D.¢7].[D.g])
— (=D (D67 (D8] [D,877])
= (-D*(g.[D.g7".....[D.gl.[D.g7"])
— (D" (g7 [D.g].....[D.87"].[D.g]).

Hence the lemma follows. O

2.2. Entireness of the b-JLO Chern character. For A € b\IJ_°°(]\7I ,V), we let

M (4) := / tr(K4|a) and °Tre"(A4) := ][ tr(K4|a).
M (—00,0]x0M

When 7V is a Clifford module of degree 1, we define
Strff)(4) := / stray(Kala) and  °Strfl§(4) := ][ str(1) (Ka|a).
M (—00,0]x0M

When A|(—x0,01xanm is of trace class, we also write Str‘(";S1 (A) instead of bStrf‘;gl(A).
Now let us give an upper bound in terms of °||a; || for

/ bStr(l)(aoe_°0©2 [D,a1]e™ S [D, an]e_"”gz) do
AR
= / Stré‘f)(aoe_""@2 [D,a1]e™ ! P2 [@,an]e_a”gz) do (2.1)
An
+/ bStr‘Erl“;(aoe_“(’Dz[@,al]e_albz...[@,an]e_"”i)z) do (2.2)

For the first summand (2.1), by standard differential calculus on compact manifolds,
one has

_ 2 _ 2 2
‘/ Stref) (aoe™ " L [D, aple™ 7 )do| < TeM (e727) *lao®llay |l . . . llan ],

cf. [GS89], Lemma 2.1.
For the second summand (2.2), first notice that on (—o0, 0] x dM,

[©,a] = c(da;) + e*[c(anodx) + c(dax)] = C + e*B,

where C = c¢(da;), B = c(@oodx) + ¢(daso) and c¢(—) stands for the Clifford
multiplication. Similarly, we write

[D,a;] =C; +e*B; and ag = Co+ e" By,

where C; is constant along the normal direction x. Notice that || B;|| < °||a;|| and
|C;|l < P®|la;i|. Hence the term (2.2) is a sum of the following two types:
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D / bStr‘E‘rl“)i(Coe_"O5)2 . Cne_"”gz) do,
An

n / bStr?’I“)j(Coe_""@2 ... e_"fz)zexBi e~oi+1D? Cne_”"Dz) do.
A}’l

Let us denote the Dirac operator on R x dM by Dg and write Dp = ( DO[R DO[R). By

[LMPO09], Proposition 3.1, (e_"@é — e“’gz)l(_oojo]ng is of trace class and there
is a constant K¢ such that

ITr(e ™% — ¢=2)| Looojxane| < Ko forall 0 <o < 1. 2.3)

Type 1. Since ||e_"©%? | <1and ||e_“32|| < 1, one has
_ 2 _ 2
|bStr‘E‘1“;(Coe 00D ...Che onD |(—oo,0]><3M)|

n _ 5 _ 5
<+ DKo [T Gl + [°Stfy (Coe 700 ... Cre™ PR | (oo 0xan) |
i=0
n
= (n+ DKo [T G
i=0
where the last equality follows from the fact
D2 o D2
bStr‘("l“)i(Coe 00D ...Cpe Un@Rl(—oo,O]xBM) =0

by the definition of the b-trace.
Type 11. Due to the presence of the factor e*,

— 2 )2 g, 2 _ 2
Coe 0007 || ¢ 0D X B, o 0i+1D7 | (C, 7D

is of trace class.
Without loss of generality, it suffices to give an upper bound for

Strf’l“)i(exBoe_UO@zAle_U‘ 22 Ane_""@z),
where A; = B; or C; as defined above for 1 < i < n. First by the inequality (2.3),

|Strf‘f‘)j(exBoe_"°©2Ale_‘” D7 Ane_“"©2)|

n
< (n+ DKol Boll TT 14

i=1

—onD2 o1 D2 2
+ |Str?’1“)i(exBoe 90Dk 4,710k | A,e Gn:D[R|(—oo,0]><8M)|~
Now we can rewrite

— 2 _ 2 _ 2
e*Boe PPk A1 1Pk | A,e Ok

= (exBoe_""@%?e_ﬁlx)(eﬂlele_‘”sée_ﬂzx)eﬂzx .. e_ﬂ"x(eﬂ"xAne_””@%?),
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with 1 > B; > B, > --- > B, > 0. By [LMP09], Proposition 3.7, there is a constant
K’ such that

dinlM-l—lU

ePi* Ao DR Pivix|| | —1 S KN ABi = Biv) (o, )

for all i. Notice that
_dimM-‘rlo, _dim]\2/1+1

o 5 —¢ oln(o)

is bounded on [0,1]. If we take §; = (n + 1 —i)/(n + 1), then by the Holder
inequality one has

L0 01 D2 o D2
{Strf(”l“;(exBoe 90Dk A17O1Pk . A,e 0"5)”3|(—oo,0]xaM)|

n
< K n + D[ Boll TT 114l
i=1

for some fixed constant K.
Applying the estimates above, we have the following proposition.

Proposition 2.4. °Ch*(D) is an entire cyclic cochain.

Proof. We have

I°Ch" (D) (ao. - . .. an)|
= |"{ao, [D,a1),....[D,an))|
‘/ ®Str(yy (@oe 702’ [D, ay]e 127 . [D, aple” ") do

2"(n 4+ 1)(K™" 4 2Ko)
< 1 220 lao | las |

b
- Pl

It follows that ®Ch*(®) defines a continuous linear functional on C®(A4), i.e., an
entire cyclic cochain in C (4). O

3. Odd APS index theorem for manifolds with boundary

In this section, we shall state and prove the main theorem of this paper. Let M be
an odd-dimensional spin b-manifold with a b-metric as before and D its associated
Dirac operator. Recall that the spinor bundle S of M naturally induces a Clifford
module of degree 1, denoted by § ® C'I!, where the generator e; of Cl; (C) acts on
§ ® C! by (9 3), where C!'I! = CT @ C~ is Z,-graded. We put

0 D
S):(D O) and O =12.
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We define
PCh* (D, )(ag, ar. ..., an) = "(ao. [Dr. ail,....[D:.an])

fora; € COO(M). Here

exp
b«AO’ Al’ o An» = / bstr(l)(Aoe—Go(dS)t-i-@%) . Ane—cn(di)t-i-@%)) dO,
A
with

00
— 2 _ 2 _ 2 _ 2
e S@D:+7) . Z(_S)k/ e Gosfi),d@le 01597 .dD,e okSD7 Jo
Ak
k=0

Notice that (cf. [Get93a], Lemma 2.5)

®(Ag, A1, ..., Ap) =%(Ao, ...  Ap) — Y (Ao, ..., A, dtD, Aiy1, ..., Ap)

-

14

Therefore

bCh* (D, t)(ao, . . ., an)
- b(aOﬂ [Sl‘aalL L) [Dhan])
n .
— Y (=D'di™{ao. [Dr.a1l. . ... [Dr.ai]. D, [Dr. ai41]. . ... [Dr. anl).
i=0

Recall that

*Tr[Q, K] = 2’—” f_oo Iy (%m@x))da

ifeither Q or K'isin W, > (M, V), where I(Q, A) (resp. I(K, A)) is the indicial family
of Q (resp. K), cf. [Loy05], Theorem 2.5. For the Dirac operator D above, we have
I[(D,X) =D +ike(v),

where v = dx is the normal cotangent vector and c(v) is the Clifford multiplication
of v, cf. [Get93b], Proposition 5.4. In the following identities ([Get93a], Lemma 6.3),
we assume that the indicial family 7(A4;, A) of A; is independent of A and commutes
with Cl; (C) and c(v). Let us denote the degree of A; with respect to the Z,-grading
by [4;].

(1) If we denote &; = (|Ao| + -+ + |Ai—1])(|A;| + -+ + |A,]), then

*(Ao, A1..... Ap) = (=DF(A;, ... A, Ao, .., Aisr).

Q) S (=1)FOL, Ay, Ans Aoy s Aia)) = (Ao, A1, Ap).
i=0
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(3) We have
®( Ao, ..., Ai—1, [d D + D%, Ai], Ais1, ..., An))
="(Ao..... i1 Ai, .. AR) = (Ao, ...  AiAir1. ... An)).
(4) Write §; = |Ao| + -+ + |Aj—1]|. Then
d(Ao, Ar,..., An) — (P40, %1, . %A4,)

n
= S (=)0iv(Ag. Ay, .. A1 [d + Dr. A Aig1. .. An).
i=0

Here we define
9(%40.,%41, ...,%4,)

_ / DSir (o) (A ge 0@ DD | g mon @D DD 4o
AYI
where

1 . 0 1 0
bStr(z)(B) = EbStr (e1e2B) withey = (_1 O)’ e = (c(v) C%U))

and

9
D =1 W1th®=(aD 0).

Now if we let A9 = ag and 4; = [Dy,a;] for 1 <i <n, where aq; € C;%(M),
then it is easy to see that

[d + Dy, Ao] = [d + Dy, a0] = [Dy, aol
and
[d+ 2D, A4;]]=[d+ D:,[D,ai]] = [dD; + Sz,ai] with1l <i <n.

Therefore, by applying the identities above to A9 = ag and 4; = [Dy, a;], we see
that ([Get93a], Theorem 6.2)

(d —b — B)°Ch*(D, 1) = Ch*(?D, 1), (3.1)
where
Ch"(*®.1)(ao. %1, ... . %an) = (a0, D¢ %a1]. ... . [’Dy. %an)).

Let a € Q*(0, 00) be the differential form o = (°Ch*(®, ¢), Ch.(g)). Then

da = (Ch*(°D, 1), Ch.(%)).
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By the fundamental theorem of calculus,
2 e 9
(i) —aln) = ([~ o0 (®.1).Chu (%) ).
1
Therefore, if both of the following limits exist, then
lim a(7) — lim a(t) = — (" (°D), Ch.(%)).
t—00 t—0

Here n°(?D) = fooo Ch*(?D, t), which is the higher eta cochain of Wu [Wu93],
although our normalization factor is different from that of Wu. More explicitly,

| 2kl 00
10D (ag, ar, . ... az11) = — Z(—l)’/ dt’(ao, Dy, a1]. ...

S 0

'-"[aDtaai]78Da [aDt7ai+1]7'"’[aDt9a2k+1])t
where

NAg,....An)s = / Str(Aoe_"OBDl2 . Ane_G”anz) do.
AYI

Let us also write 7°(°D) = 5°(?®). This higher eta cochain 1°(’D) has a finite radius
of convergence, cf. [Wu93], Proposition 1.5. In order for

(n'(°D). Ch.(%))
to converge, we shall make the following assumptions throughout the rest of this
paper:
(1) 2D is invertible and the lowest eigenvalue of |’D| is A;
2 IPD. %] = lld %]l < A.
Let us denote by

o0

ChR(g) ==Y

k=0

1

k! ~
(27ri)k+1 k + 1)! tr((g_ldg)ZkH) € Q*(M)

the Chern character of g in the de Rham cohomology of M. Then we have the
following main theorem of this paper.

Theorem 3.1. Let M be an odd-dimensional spin b-manifold with a b-metric and D
its associated Dirac operator. Assume that D is invertible. Let g € U (C*°(M)) be
a unitary over M. If ||d%|| < A, where A is the lowest nonzero eigenvalue of |°D]|,
then

st(D.g™' Dg) = ][M A#) A ChR(g) — (5 (D). Ch.(%)).

P dV2/47i \1/2 . o . .
Here A(M) = det (M) / , With ®V the Levi-Civita b-connection associated
sinh®V2/47i

A~

to the b-metric on M .
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Proof. We need to identify the limits of a(¢) for t = co and t = 0. In the case
of closed manifolds, the local formula for the limit of «(¢) as ¢ — 0 follows from
Getzler’s asymptotic calculus, cf. [BF90], [CM90], [Get83]. A direct calculation in
the b-calculus setting is carried out in [LMP09], Sections 5 and 6. In particular, we
have

lim «(7) = lim (°Ch*(®), Ch.(g)) = ][ AM) A Ch¥R(g).
t—0 t—0 M
Now the theorem follows immediately once we have
lim «(t) = sf(D,g ' Dg),
t—>00
which we will prove in Proposition 5.8 below. O

Corollary 3.2. With the same notation as above,
(n"(’D). Ch.(%)) = —7(0M %) mod Z.

Proof. Here r';(8]\71 ,%) is the eta invariant of Dai and Zhang [DZ06]. Without loss
of generality, we can assume that the unitary g is constant along the normal direction
of the cylindrical end. In this case, we have

}. Adin ncnie) = [ o At
M M

by definition of the regularized integral. Now comparing the above theorem with the
Toeplitz index theorem on odd-dimensional manifolds by Dai and Zhang [DZ06],
Theorem 2.3, we have

(n"(®D), Ch.(%)) = —ii(dM, %) mod Z. n

This equality provides more evidence for the naturality of the Dai—Zhang eta
invariant for even-dimensional closed manifolds.

4. Spectral flow

In this section, we proceed to explain the notion of spectral flow and prove an analogue
of Getzler’s formula for spectral flow (cf. [Get93b], Corollary 2.7) in the b-calculus
setting.

Following Booss-Bavnbek, Lesch and Phillips [BBLPOS5], we define the notion
of spectral flow as follows.

Definition 4.1. Let T;,: # — J for u € [0, 1] be a continuous path of (possibly
unbounded) self-adjoint Fredholm operators. Then its spectral flow, denoted by
st(Tw)o<u<1, is defined by

sf(Ty)o<u<1 = wind(k (Ty)o<u<1):
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where k(T) = (T —i)(T +i)~! is the Cayley transform of 7" and wind (x (T;,)o<u<1)
is the winding number of the path k(73 )o<u <1 (see also [KL04], Section 6). We also
write sf(Tp, T1) for the spectral flow if it is clear what the path is from the context.

Actually, in this paper, where we are concerned with smooth paths of self-adjoint
Fredholm operators, we use the following equivalent working definition of the spectral
flow (cf. [BBLPOS5, Section 2.2]). Let T,,: # — H for u € [0, 1] be a smooth path
of (possibly unbounded) self-adjoint Fredholm operators. For a fixed uy € [0, 1],
there exists (a, b) C [0, 1] such that

(1) ug € (a,b) (unless ug = 0 or 1, in which case uy = a = 0 if uy = 0, and
uO:b= 11fu0= 1),

(2) dimker(7y) < dimker(7y,) forallu € (a,b).

By shrinking the neighborhood (a, ) if necessary, we can assume that the essential
spectrum of | Ty, | for u € (a, b) is bounded below uniformly by A¢ and the spectrum
of T, in (—Ag, Ag) consists of discrete eigenvalues. We can further assume 7, has
the same number of eigenvalues (counted with multiplicities) in (—Ag, Ag), for all
u € (a, b). By perturbation theory of linear operators (cf. [Kat95], 1.6, V.4.3, VIL.3),
there are smooth functions S on (a, b) such that {8 (u)}x gives a complete set of
eigenvalues of Ty, in (—A¢, Ag). Letny, (resp. n,) be the number of nonnegative eigen-
values of T} (resp. T, ) in (—Ag, A). Then we define the spectral flow of (73)q<u<p
to be

Sf(Tu)asufb = (np — ng). 4.1)

We call an interval (a, b) as above together with uy € (a, b) a pointed gap interval.
It is easy to see that the formula (4.1) is additive with respect to disjoint pointed gap
intervals. Let us cover [0, 1] by finitely many intervals, say [a;, bi]Jo<i<n Such that
each (a;, b;) is a pointed gap interval, with b; = a;+1, ug = ap =0, u, = b, = 1
and u; € (aj,bj) for1 < j <n —1. Then we define

n

st(Tu)o<u<1 = ) Sf(Tu)ajsusbj-
Jj=0

By additivity of formula (4.1), we see that sf(73)o<u<1 so defined is independent of
the choice of pointed gap intervals.

Let M be an odd-dimensional spin b-manifold with a b-metric as before and D
its associated Dirac operator. Let D, = (1 —u)D +ug~'Dg. Since by assumption
| [°D, %] || < A, we see that °D,, is invertible for all u € [0,1]. It follows that
inf spec (| Dy|) > 0 for all u € [0, 1]. Thus {Dy}o<u<i1 is an analytic family of
self-adjoint Fredholm operators.

Following from the discussion above, we see that for each fixed u¢ € [0, 1], there
exists (a,b) C [0,1] and Ay > 0 such that the spectrum of D, in (—A4¢, A¢) consists
of discrete eigenvalues for all u € (a, b). Moreover, we can assume D,, has the same
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number of eigenvalues in (—Ag, Ag) for all u € (a, b). We put

Au = DuPus
B, :=D,(I — P,) + Py, 4.2)
Cy, =D, — Py),

where P, is the spectral projection of D, on (—Ag,Ag). Let Bx be the smooth
functions on (a, b) such that {8 (1)} gives the complete set of eigenvalues (counted
with multiplicities) of A,. Since { Dy, }o<u<1 is an analytic family of operators, By is
an analytic function of u € (a, b). It follows that for each k, B, either has only finitely
many isolated zeroes or is itself constantly zero. Hence by shrinking (a, b) as much
as needed, we can assume that f; either is a constant zero function or has only one
zeroin (a, b). In the latter case, by shrinking (a, b) again if necessary, we can assume
that the isolated zeros can only occur at ug. Moreover, for each u € (a, b), there is
a set of orthonormal eigenvectors {¢x (4)}1<k<m such that A, ¢ (1) = B (u)Pr (1)
and the vector-valued function ¢ is analytic with respect to u for each 1 < k < m.

Following Getzler [Get93b], we define the truncated eta invariant of D to be
ne(D) = L /oobTr(De_SDz)s_l/zds = i /war(De—tzDz)dt
\/E e \/E R

and the reduced (truncated) eta invariant of D to be

ne(D) + dimker(D)

ES(D) = D

The following lemma is a natural extension of [Get93b], Proposition 2.5, to the b-
calculus setting.

Lemma 4.2. We have

dne(Bu) _ 2¢
du 7w

where E.(u) is defined by

Tr(Bye ¢ B4) + Eo(u),

2 oo rl 252 . 252
Eo(u) = __/ / t?°Tr[e™""Bu B2 B, e~ 19" Buldsdt
& ﬁ . 0 u u

2 [ee] 1 .
- T/ / 12Tr[e " Bi B, By Bye 9Bl dsdL.
T Je 0
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Proof. Using Duhamel’s principle, we have

d
Ene(Bu)

2 °°b . 2p2
= — Tr(Bye™" Bty dr

2 [ee] 1 . X
- — rue_z'gt uu—l—uue__zl%st
7= *Tr(Bye ™" But?(By By + ByBy)e '™ Bu) dsd
T Je 0

2 5y . _;2p2
= — Tr(Bye u)dt —
T Je

4

o0
= °Tr(12 By B2e " Bi) dt + Eo(u).
&

Integration by parts shows that

o0
/ Tr(t2 B, B,fe_tzB’%) dt
&

_ ! / oozder(B e’ Biydy
T2/, dr "

1 R t=00 1 [® .
= Tr(Bye By 4= / Tr(Bye™"*B4) dr.
2 t=¢ 2 Je

Since B, is invertible, PTr(¢ Bye™! 235) goes to 0 as t — oo. It follows that

2¢e

d .
%U&(Bu) = ﬁbTr(Bue_SZBa) + Eq(u). O

Corollary 4.3. Foru € (a, b),

dne(C 2¢ .
—”;(u W _ —ﬁbTr(Cue “Cly 4 Eq(u)

Proof. By definition, we have

Ne(Cy) = ne(By) — K/ e_tzd[,
€

where K = rank(P,) is independent of u € (a, b). Thus j_urle(cu) = dd—uﬁe(Bu)-
Notice that
bTr( B, 6—523,3)
= PTr(Cye™ ) + PTr(Pyue™ Pty 4+ MTr(Cue™ i) 4 PTr(Pye ™€)
= PTr(Cye ™™ C) 4 Tr(Pye ™ Pi) 4 Tr(Cue ™ Pi) 4 Tr(Pye =€)



The odd-dimensional analogue of a theorem of Getzler and Wu 665

. . _2p2 _2p2 . _202 .
since Pye ¢ Pi C, e~ Pi and P,e—¢ Ci are all trace class operators. In fact, since

P, is a projection and the rank of P, remains constant for each u € (a, b), using
Duhamel’s formula we have

. 1. . 1d
Tr(Pye © Fi) = = Tr((Py Py + Py Pu)e = Pty = — — Tr(e = Fit) = 0.
2 2e2 du

By the very definition of C,, (see formula (4.2) above), we have P,C,, = C,, P, = 0.
In particular, Tr(Cue_*’zP i ) = 0. Therefore,

d . L
0= Tr(Cye ¢ Pty = Tr(Cue " Py + Tr(Cye " Pi (Py Py + PuPy))
u

= Tr(Cue_sng).
Similarly, Tr(Pue_8203 ) = 0. We conclude that
bTr(Bue_‘szB’%) = bTr(C’ue_‘BZC’%).
Hence the corollary follows. O

Lemma 4.4. For t € (a,b) and t # ug, we have

d

2¢e
du s

= Tr(A'ue_szA%) .
T U=t

Ay
|, ===

Proof. Notice that

2 o 242
) = Y= [ Bt ar
w2
2 o 1242
=> N (Aye™ “uep(u), dr(u))dt.
k &
If Br(t) # 0O, then the same argument from Lemma 4.2 shows that

d [ 242 . 242
[ e . ety e = etdue i) e ).

du J, =
If Bx(r) = 0, then B = 0 on (a, b) by our choice of the interval (a, b). In particular,
Aydr () = 0forall u € (a,b). Then
d
0 (Auic(u), P (1))
U

= (Aur (). P () + (Augrc (u), i () + (Audpre ). he ()
= (Augr (u). . (w)).
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It follows that (A, ¢ (). ¢r (1)) = 0. Hence

(Aue™ Higp (), 1 () = (Audp (). $p. () = 0
for all u € (a, b). This finishes the proof. O

Corollary 4.5. Foru € (a,b) and u # uy,

d 2 .
(Dy)du = ——ibTr(Due_glezf) + Eo(u).

E Ne «/_
Proof. Notice that

ns(Du) = ne(Au) + ns(cu)
and
PTr(Aye°Ci) = PTr(Cue 40 = 0.

The corollary follows from the above lemmas. O

If we denote by O the cardinality of the set {Bx | Bx(1o) = 0 and Bi(a) > 0}
and by O~ the cardinality of the set {8% | Bx(19) = 0 and Bi(a) < 0}, then

dimker Dy, = dimker D, + Q7 + Q™ foru € (a,up). 4.3)

Since

lim 2 / e s — 41
A—>0E ﬁ & '

lim_ ne(Dy) = ne(Duygy) + Q+ -0 4.4
u—)uo

it follows that

Recall that, by definition, sf(Dg, Dy,) = O~ and

Ne(Duyy) + dimker(Dy,)

ée(Duo) = )

Therefore, the difference of equation (4.3) and equation (4.4) gives
sf(Dg, Duy) = E:(Duy,) — u]il}/ll_ £:(Dy).
—Ug
Similarly, sf(Dy,, Dp) = lim,_ + &(Dy) — §e(Dy,). Thus we have
0

sf(Dg, Dp) = lim &.(Dy) — lim_&.(Dy).
+ U—>U

u—)uo

With the above results combined, we have the following proposition.
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Proposition 4.6.
& 1 . 2p2
sf(D,g 'Dg) = lim —/ *Tr(Dye ¢ Pu) du.
e—>o0 /7 Jo

Proof. Let us cover [0, 1] by finitely many pointed gap intervals [a;, b;], 0 <i < n,
with u; € [a;, b;] such that b; = a;+1 with ug = a9 = 0, u, = b, = 1 and
uj € (aj,b;)forl < j <n—1. Then

sf(Do, D1) = §e(D1) — (Do) + Zlimu_m;r €e(Dy) — limu—mi_ €e(Dy)
1t d
=Es(Dl)_$a(D0)_§/0 Ens(Du) du

_ € 1b . —szD,% l !
= 6D~ &(D0) + = fo Tr(Dye™Phydu — - /O Eq(u) du.

Notice that £,(g~ ' Dg) = &(D) and fol E¢(u)du vanishes when ¢ — 00, hence the
proposition follows. O

5. Large time limit

In this section, we prove the equality
sf(D, g 'Dg) = Jlim (*Ch* (D), Ch.(g)).
—>00

This is the last step remaining to prove Theorem 3.1. We follow rather closely
Getzler’s proof for closed manifolds [Get93b].
Recall that we have

_ (0 D\ _vygi, . by _ (O DY _byiiang.
S—(D 0)6 Wi (M;$y), 5)—(31) 0 € "W (M ; S1)
and

0 g_l 0 (A7 rir
r=(, % )eCcsun@Enc™),

with C"I" = (C")* @ (C”)~ being Z,-graded. Let us put
Du=10-u)D—upDp e "W(M; 8, @, C""

for u € [0, 1], where §; ®; C’I" is the super-tensor product of §; and C’I". We see
immediately that

o - (1-u)D+ug 'Dg 0
“ 0 1-u)D +ugdg™!

_ (D +ug'[D.¢g] 0
- 0 D +ug[.g7
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We write Dy, = Dy, +sp (resp. 2D, s = D, +sp), where (u, 5) € [0, 1]x(—00,0].
Consider the superconnections A = d + D, s and N=d+ 35)u,s, where d is the

standard de Rham differential on the parameter space [0, 1] x (—oo, 0]. We have

A? = D2 + 5[Dy. p] + 5 + duD,, + dsp.
a2 =992 4 5["D,.%] + 5% + dud®,, + dsp.

Recall that the indicial family 7(D, A) of D is
[(D,X) =D +ike(v),

where v = dx is the normal cotangent vector and c(v) is the Clifford multiplication
of v, cf. [Get93b], Proposition 5.4. Therefore, we have

[(Dy. M) = %D, +ile(v),
[(Dy5. M) = 2D, +ire() + s,
I(d Dy, A) = dudDy + dsp,
(D2, 1) =22 + 2% + 5[’Dy, p] + 5%
Consider the Chern character of A defined by
Ch(A) := "Str(y(e ™).

Denote I';, the contour {u} x [0,00) and y; the contour [0, 1] x {s}. By Stoke’s
theorem, we have

Ch(A) — Ch(A Ch(A) — i Ch(A) = d Ch(A).
/Fl (A) /F ()+/yo (A) sggo/ys (A) /[O,I]X[O’Oo) ((5)1)

5.1. Technicallemmas. Inthissectionletus prove several technical lemmas. Notice
that by definition, we have

1
Ch(A) = —du/ DSir 1) (¢ PFHIDwAIH5D) By o= (1=0)DF 451D P15 g5
0

1
—ds / bStI'(l)(6_0(5)12’+s[©"’p]+s2)p e_(l_U)(Sﬁ"‘s[@u,P]‘i‘Sz)) do

Lemma 5.1. We have

1
/ Ch(A) = — / bStr () (Dye2%) du.
Y0 0
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Proof. Since

bStr(l) [e—o,’i)% , f)ue_(l_c)'rg%]

— —o(*D2+A%)y . .
1 [ Strg (%ague—(l—a)(d:gz—fﬂ)) d) =0,

2l J_ oo

it follows that

1 1
/ Ch(A) = —/ du(/ bStr(l)(e_Gs)%fé)ue_(l_a)s)%‘)do)
To 0 0

1
= —/ bStr(l)(S)ue_:D%)du. O
0

Lemma 5.2. We have

lim / Ch(A) = 0.

S—>00

Vs
Proof. First notice that a similar argument as that in Lemma 5.1 shows that
1
/ DSir 1) (¢ PFHIOwAIH?) ) (~(1-0)(DF s [Du452)) 1
0
= "Str(yy (p e~ DuSIRurl),
Using Duhamel’s principle, we have
bStr(l) (p 6_3)5_5[9“ ,p]—sz)
> 2 2 2 2
=) (=) / *Str(1y (pe~70Pu[Dy,, ple 1P . [Dy, ple 7"Ou) do.
n=0 An

The estimates in Section 2.2 show that

/ *Str(yy (pe 0024 [D,,. ple 1D . [Dy, ple 7" Pi)do
Aﬂ

HHH2Ho w2

<2"(n+1) '
n:

for some constants Ko and K. In fact K¢y and K can be chosen independent of u
since there is constant € such that

[ Tr(e 2% — ¢70)| oo axant| < €
for all o, u € [0, 1] (cf. [LMP09], Proposition 3.1). Hence

ibStr(l)(p e—i)ft—s[i)u,p]—sz)} < eK/e—s2~l-2,7‘6b||p||s

for some constants K and J’. Therefore fys Ch(A) = O(e_sz/ 2) as s — 00, hence
the lemma follows. O
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Lemma 5.3. We have
1 L]
/F Ch(A) = —/F Ch(A) = §<bCh (5)), Zzozo k! Stl'(p, N ,p)2k+1).
0 1

Proof. When u = 0, we have A2 = D2 + s[D, p] + s? + dsp. Using Duhamel’s
principle, we see that

Ch(A)]r,
[e.¢]
=) (ms)Hle / *Str(yy (e 70’ [D, ple ™17 ..
n=0 An

e i D2 (_dsp)e—o'i+1©2 . [S)’ p]€_0n92) do (52)

o) 2k+1
= X ey 3 LD p) o [0 2[00 4 [0 1)
=0 1=
o0
=z K15 s (p, (D, pl.....[D. plakrr.
=0

where we have used the fact (cf. [Get93a], Lemma 6.3 (2))
2k 41
> LD )L [0, p [0 ) [, P)) =2 [0, Pl 1D P2kt

i=0

It follows that
1 ]
/F Ch(A) = 5<bCh (@), Z?:O k! Str(p, e p)2k+1).
0

When u = 1, we have A2 = D% + 5[y, p] + 52 + dsp. Since D1 = —pDp, we
see that 5 5
[D1, p] = —[D, p] and e 1 = pe_s) p.

Furthermore, we notice that p[®D, p]p = [D, p]. Combining these with a calculation
similar to that in equation (5.2) with ® replaced by D, we see that

1 ]
[ ehea) = =3 0CH ©0). S kSt ... hara) 0
1
Lemma 5.4. We have
d Ch(A) = —"Str[D, 4. e *°] = Striyy (e~ A7),
Proof. Since [A, e‘Az] = 0, we have

2

_A2 —A2 —
dbStr(l)(e A )= bStr(l)[d,e A 1= —bStr(l)[,’Du,s,e A ].
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It follows that
1 [® d1(Dus, M) ., _p2
d Ch(A) = — St — T JA) ) dA
W) =2 /_oo r“)( e ))
1 o0
= / Str(py(ic(v) I(e™, 1)) dA
271 J oo

1 o0 2
= — Str(z)(I(e™A7, 1))d A
v /_oo
1 o0
-7 / e d X Sty (e~ A?)

= Str(y) (e_aAz)' O

By Duhamel’s principle, the 2-form components in Str(y) (e_aAz) can be expanded
as

> Y e (1L, 0w pl e PO Pl P POl bl
k=21<i<j=<k —
i—th
e [POu, Pl 200 PO, Pl [POu, pl)u duds
N——

Jj-th

o0 _ 2 .
- Y =)L PDu. pl - POl pl D [P p).
k=21<i<j<k tfth-/

o PDupl, p PDu ) POu, pl)u duds,

Jj-th

(5.3)

where
(Ao, ..., Ap)u = / bStr(z)(Aoe_Joai)%Ale_alasa ...Ane_"”a@%)do.
Aﬂ

Recall that (cf. [GS89], Lemma 2.2)
(Ao, ..., An)u

n
— 3 (=)Aol A DUA+AnD (1 4, A Ao, A1)
i=0

Since °D,, aSSu and p are of odd degree and [?D,,, p] is of even degree, one has

oo k—1 .
53 =Y ¥ (2 (p.["Du. pl.....[[Du. pl. Dy . ['Du. p]....
k=2i=1 N——

i-th
o [POu, p])u duds.
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Let us define
Ch" Dy, V)(ao. ... .an) = (V) {ao, ['Du.a1]. ... ["Du. an])u,
where

(V) Ao, Ap)u = X (=)W HAD (A AV, A, An)u

0<i<n

Then the calculation above shows that

_0p2 S _2,~k :
Str(Z)(e A ) =— Z (_s)ke #2 <Ch (agu, 89u)a Str(p, ..., P)k)u duds.
k=0

We summarize this in the following lemma.

Lemma 5.5. We have

_O0A2 1 1 . ° S
/ Striy (%) = ([ 0D, 1w, 3 KISt(p...... plais).
[0,1]x[0,00) 20 k=0

Proof. Notice that Str(p, ..., p)r = 0 for k even, and

/ sk qg = = O
A 2

5.2. Large time limit. Recall that °D is invertible and g € Uy (C*°(N)) is a unitary
such that || [°D,%]| < A with A the lowest nonzero eigenvalue of |?’D|. In the
following, we also write g for 3g if there is no confusion. Notice that

IP°D. g1l =1 —g7'['D.gle” "I < 1°D. 8],
and similarly || [°D, g] || < | [’D, g™"] . Hence | [’D, g1 1| = | [’D. &] Il

Lemma 5.6. Let A; =d + 1D, 5. Then

lim d Ch(A;) = 0.
=00 J10,1]x[0,00)
Proof. Notice that
1D +ug™'’D, g]| = I’D| —ullg™'’D. g] || = » —ul|[’D. g] ||,
D +ug[®D, g™ = A —u| [’D, g] |

Whenu = 1,°D + ug™'[’D, g] = g7' °Dg. The lowest eigenvalue of |[g~' ?Dg]| is
also A since g is a unitary. Therefore, a similar argument as above shows that

D +ug™'’D. gl = A — (1 —w)| ’D. g] .
°D +ugl’D,g7 M| = A — (1 —w|[’D,g] |
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Thus |%D,,| is bounded below by
Mg 1= max{d —u| D, g] |, A — (1 —=w)[| D, g] II}-
Then there exists a constant C such that
Tr(e_’zaga) < Ce i

forallz > 1. where we may take C = sup,,¢[o,1] et Tr(e_abg),cf. [GS89], Theorem
C. One also notices that || [?D,, p] | = (1—2u)|| [’D, p] | < Ay. Therefore we have

2542 (. PDus pl. - PO, ). 20w, PO ple - "Dty Pz

L okt —12092 N 1
= ot I PP P, p) P 1D

C 252
< (2k)'tzk+2€ 1A% || [83)“’ p] ||2k+1 ||p[85), p] ”

Hence

‘ [ d Ch(A,)
[0,1]x[0,00)

- ’ f Strezy(e=7)
[0,1]x[0,00)

1 ~ o . o0
= ([ CN' ("Dt 1Dy)du, Y- KISt(p...... ploxsa)
0 k=0
L& C g2
=1l pll /O Y e D p P+ du
k=1

1
< zch/ D) P-33)e2 g,
0

where the last term goes to O when t — oo. This finishes the proof. O

Lemma 5.7. If g € U (C®(N)) is a unitary such that || [’D, %] || < A with A the
lowest nonzero eigenvalue of |’D|, then

Jlim (°Ch*(t D), Ch.(g)) = — Jlim (°Ch*(t®), Ch.(g™1)).
Proof. Recall equation (3.1):
(d —b — B)’Ch*(D, 1) = Ch*(?D,1).

Since Ch.(g) + Ch.(g™') —2Ch.(1) = (b + B) Tch.(h), where & is a smooth path
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of unitaries connecting (§ ¢) and (§ gg 1) (cf. Section 1.6), we have
Jim (*Ch*(t®), Ch.(g) + Ch.(g™ 1))
—>00
= lim (°Ch*(t®). Ch.(g) + Ch.(g™") —2Ch.(1))
—>00
= lim ((b + B)°Ch*(t®), Tch.(h))
—>00
= — lim (Ch* (t%D), Tch. (h)).
—00
Now a similar argument (without the presence of the parameter 1) as thatin Lemma 5.6
above shows that
lim (Ch*(+%D), Tch.(h)) = 0.
—>00
Hence the lemma follows. O
Proposition 5.8. We have

sf(D, g 'Dg) = Jlim (*Ch*(tD), Ch.(g)).

Proof. Notice that

. = D+ug D, g] 0
v 0 D +ug[, g7
0 D +ug™![D, g]
_ | D+ug'[D.g] 0
0 D +ug[D,g™"]
D +ug[D, g™ 0
Hence

! : 1! _
/ bStr(l)(Que_D%) du = _/ PTr(g7![D, gle~PHue 1[D,g])z) du
0 NE

1 lb —17\2
- Tr(g[D, g_l]e_(D+”g[D’g D )du.
v Jo
It follows from Theorem 4.6 that
1
lim | °Stre)(tDye " Pu) du = sf(D.g ' Dg) —sf(D.gDg ")

t—>00 0

= 2sf(D, g 'gD)

since sf(D, gDg™!) = —sf(D, g7 ' Dg).
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Now by applying Lemma 5.2, 5.3 and 5.1 to equation (5.1), we have

ad 1
_(bCh.(IS)’Zk!Stf(Pw-,P)zkH)—/ *Str(yy (1 Dye ™ " 2) du

k=0 0
=/ d Ch(Ay).
[0,1]%[0,00)
Therefore,
1 b : 25)2
lim Str(1)(t Dye™" i) du
t—o0 J

= lim (°Ch*(t®),Ch.(g) — Ch.(g™")) — lim d Ch(A,).

=0 J10,1]1x[0,00)

It follows from Lemma 5.6 that

2sf(D, g 'Dg) = tli)rgo(bCh'(tS)), Ch.(g) — Ch.(g™1)).

Now applying Lemma 5.7, we have

sf(D, g 'Dg) = lim (°Ch*(t®), Ch.(g)). O
1—>00
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