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An equivariant noncommutative residue

Shantanu Dave�

Abstract. Let � be a finite group acting on a compact manifold M and let A.M/ denote the
algebra of classical complete symbols on M . We determine all traces on the cross-product
algebra A.M/ Ì � as residues of certain meromorphic zeta functions. Further we compute
the cyclic homology for A.M/ Ì � in terms of the de Rham cohomology of the fixed point
manifolds S�Mg . In the process certain new results on the homologies of general cross-
product algebras are obtained.
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1. Introduction

On a closed manifoldM the (classical) pseudo-differential operators form an algebra
‰1.M/. The space of smoothing operators‰�1.M/ is then an ideal and the quotient
A.M/´ ‰1.M/=‰�1.M/ is called the algebra of complete symbols. Let � be
a finite group acting on M by diffeomorphisms. The group � then acts on ‰1.M/

and on A.M/ by push-forward of operators, namely if D is a pseudo-differential
operator and g 2 � , then

g �D.f /´ gD.g�1f / for all f 2 C1.M/:

In this paper we consider traces on the cross-product algebra A.M/ Ì � and com-
pute its Hochschild and cyclic homology groups. We consider some applications to
asymptotics of representations.

The traces on A.M/ Ì � are considered as equivariant generalization of the
noncommutative residue of Wodzicki [27] and Guillemin [12]. To a generator Ag in
A.M/ Ì � and an invariant order 1 positive elliptic operator D one associates the
zeta-function,

�Ag;D.z/´ Tr.D�zAg/:

By means of stationary phase analysis near the fixed points of the diffeomorphism
g, a meromorphic extension of these zeta functions to the whole of C with some
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simple poles is provided. Then for a fixed conjugacy class h�i a trace on A.M/Ì �
is obtained by

Trh�i
� P

g2� Agg
�´ reszD0

� P
g2h�i �Ag;D.z/

�
; (1)

which we shall refer to as equivariant noncommutative residue associated to the
conjugacy class h�i.

The above mentioned trace has applications analogous to the noncommutative
residue. For instance we obtain a very special case of an equivariant Weyl’s formula
of [5], namely if � acts faithfully on M and � is an irreducible representation of
� , then, for an invariant operator D , with eigenvalues �i and corresponding eigen-
spaces Vi ,

N�;D.�/´ P
�i <�

“multiplicity of � in Vi ” ' C

dim �
�

dim M
order.D/ :

This technique can be applied to the difference of certain representations �1��2 en-
abling a study of comparative asymptotics of representations. Further results include
an equivariant Connes trace formula as well as extensions of the logarithmic symbols
based on a 2 cocycle in H 2.Slog.M/ Ì �/ as in [13].

Hence the question arises whether the traces defined in (1) are all the traces that
can arise on A.M/Ì� . By computing the homologies of A.M/Ì� we shall find an
answer to this question as well as understand the higher analogues of these equivariant
noncommutative residues.

Our result is as follows. Let �� ´ fg 2 � j g� D �gg be the centralizer of g in
� . Let k� D dim.T �M � /. Then

HHk.A.M/ Ì �/ DP
h�i
H k� �k.S�M � � S1/�� :

Here the sum is taken over a set of representatives of the conjugacy classes. Also

HCk.A.M/ Ì �/ D P
j �0

HHk�2j .A.M/ Ì �/:

Our determination of these homology groups extends the results of [7], using
also techniques from [8], [9]. Interestingly, there are some qualitatively new phe-
nomena arising at the nontrivial conjugacy classes that are not expected from the
non-equivariant case.

The cross-product algebra A.M/Ì� has a natural filtration that comes from the
order of the operators on A.M/. We use the spectral sequence associated to this
filtration in our homological computation. The first hurdle here is that the associated
graded algebraGr.A.M//Ì� is noncommutative. Nevertheless, this algebra is the
cross-product of a commutative algebra by a finite group, and as such it preserves many
features of commutativity. In particular, its Hochschild homology has a description
using differential forms on the fixed point sets of the elements of the group [3]. The
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differentials in the spectral sequence turn out to preserve this structure. The action of
the first relevant differential, d2, is similar to the one in the case without group action
as explained in [7], albeit technically different. Here one can exploit the structure
of certain symplectic submanifolds of the cotangent bundle. This explains the fact
that the residue trace associated to each conjugacy class of � (provided that that
conjugacy class has a nonempty, connected fixed point set) will no longer have the
property of being localized to a singly homogeneous component of the symbol in any
coordinate neighborhood. This is in contrast to the usual case when there is no group
action, where the residue trace is localized on the component of homogeneity �n of
the complete symbol.

As mentioned above, we need to know as explicitly as possible the Hochschild
homology groups of C1.S�M/Ì� . These homology groups are already well known
from the results of Baum and Connes [3] on the homology of cross-products by proper
actions or from [8]. However in Sections 4 and 5 of this paper we provide a more
mundane and explicit calculation which we shall need in order to identify the terms in
the above mentioned spectral sequence. Sections 6 and 7 give the necessary technical
background in topologically filtered algebra and symplectic geometry. The main
homology result is computed in Section 8. Further the paper is organized as follows.
We begin in Section 2 with the analysis of the zeta functions z 7! Tr.D�zAg/ by the
use of the stationary phase principle. In Section 3, we use the Tauberian theorem to
obtain some results on asymptotics of representations in eigenspaces.

In [10] an abstract algebra of pseudo-differential operators is associated to a spec-
tral triple. The cross-product A.M/Ì� is the algebra of abstract pseudo-differential
operators associated to the spectral triple of the crossed-product algebra C1.M/Ì�
in case of an equivariant Dirac operator on a spin manifold.1 The current work is
partly motivated by the desire to understand abstract pseudo-differential operator al-
gebras. Furthermore we also expect to use the cyclic homology computations in this
paper to obtain another perspective on the Lefschetz fixed point formula in [2] using
an excision argument in cyclic homology [28].

Acknowledgment. I would like to thank Victor Nistor for all his suggestions and
comments. I would like to also thank Matthias Lesch for pointing me to the work
of Brüning [5] on computation of asymptotics of representations of eigenspaces on
invariant operators.

2. Explicit description of traces

Here we shall construct a nontrivial trace on the cross-product algebra A.M/ Ì � ,
corresponding to those conjugacy classes h�i of the group � , so that the elements
� 2 h�i have a nonempty fixed point set on the cosphere bundle, that is, S�M � ¤ ;.

1 The computations in this paper extend to the case of group actions on vector-bundles and the corre-
sponding cross-product of pseudo-differential operators.
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The homology computations of latter sections show that under suitable conditions
these are all the traces on A.M/ Ì � .

Let us fix our terminology. In the sequel a constant order holomorphic family
A.z/ 2 ‰m.M/ of pseudo-differential operators on a closed manifold M is one
that can be obtained from a holomorphic family of complete symbols of fixed order
and a holomorphic family of regularizing operators. (The regularizing operators are
given the Fréchet topology of C1.M �M/.) Furthermore, by a holomorphic family
A.z/ 2 ‰z.M/ we mean that A.z/ D B.z/Dz C C.z/, where B is a holomorphic
family of order-zero operators,D is a positive first order pseudo-differential operator,
and C.z/ is a holomorphic family of regularizing operators. See [1], [15], [16], [21]
and the references therein for more details.

Let us fix a positive, elliptic, order one operator D 2 ‰1.M/ that is invariant
under the � action. This is to say Dg D gD as operators on C1.M/ for all g 2 � .
The complex powers Dz can be defined easily by the spectral theorem, but it is a
more subtle fact that each Dz is a pseudo-differential operator of order z. This was
proved by Seeley [26]. Another proof was given by Guillemin in [12].

In particular, Seeley’s result implies that for Re.z/ < �n, the operator Dz is of
trace-class, and hence the map

z ! tr.Dz/

is a holomorphic function on the half plane Re.z/ < �n of complex numbers.
For A in ‰1.M/ and any group element g, we define

�g;A.z/´ Tr.D�zAg/:

This function is a priori defined only when D�zA is a trace-class operator, which is
the case when Re.z/ > nCorder.A/. A standard stationary phase argument applied
near the fixed point submanifold M g provides the following result (see [11]).

Proposition 2.1. Let kg D dimM g , D a positive order one elliptic operator in-
variant under � and A any classical pseudo-differential operator. Then the function
z 7! Tr.D�zAg/ is holomorphic on the half plane Re.z/ > d , d D kg C order.A/,
and has a meromorphic extension with possible simple poles at z D d , d � 1,
d � 2, ….

In fact in Proposition 2.1, the operators D�zA could be replaced by any holo-
morphic family R.z/ with order R.z/ D �z.

Remark 2.2. For any order m positive operator D, the operator D D D
1
m is of

order one and hence for the operator D its zeta function �g;A.z/ D Tr.D�zAg/ has
a meromorphic extension to the complex numbers with possible poles at d

m
, d�1

m
, ….

It is for example known that nonsimple poles can occur in the zeta function of
operators on spaces with singularities [24], [17], [21].
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Although the function �g;A does depend on the choice of an invariant operator D ,
the residue of �A;g at z D 0 does not. Indeed if D1 is another such operator invariant
under � , then letR.z/ D D�z

1 �Dz . SinceR.0/ D 0 there is a holomorphic family
S.z/ such that R.z/ D zS.z/. Thus we obtain

reszD0 Tr.D�zAg �D�z
1 Ag/ D reszD0 Tr.zS.z/Ag/ D 0; (2)

where the last equality holds becauseS.z/Ag can have at most simple poles. Thus we
can define �g.A/´ reszD0 Tr.D�zAg/ for any operator D with the aforementioned
properties. It is immediate from the definition that �g descends to a function on A.M/.

Let us first note that we can now indeed define traces on the cross-product of the
complete symbol algebra.

Corollary 2.3. Let B.M/ D A.M/ Ì � . For any conjugacy class h�i 2 h�i, the
map Trh�i

R W B.M/ 7! C given by

Trh�i
R

� P
g2� Agg

�´P
g2h�i �g.Ag/

is a trace on B.M/.

Proof. By linearity it suffices to check that each Trh�i
R satisfies the trace property on

the generators. If g; h 2 � then gh and hg belong to same conjugacy class and thus

�hghiŒAg;Bh� D reszD0 Tr.D�zŒAg;Bh�/:

For any operators A, B , C such that ABC , ACB and BAC are trace class and
Tr.ACB/ D Tr.BAC/ the following obviously holds:

Tr.AŒB; C �/ D Tr.ŒA;B�C /:

Thus for Re.z/ large enough,

Tr.D�zŒAg;Bh�/ D Tr.ŒD�z; Ag�Bh/ D Tr.ŒD�z; A�gBh/:

Here the equalities hold because D commutes with g. But then ŒD�z; A� D zR.z/

for some holomorphic familyR.z/. As mentioned already, Tr.R.z/gBh/ can at most
have a simple pole at z D 0, and hence reszD0 zR.z/gBh D 0.

It is clear from the stationary phase analysis of Proposition 2.1 that Trh�i
R vanishes

when elements of h�i have no fixed points on the cosphere bundle S�M . Let us also
note when these traces are nontrivial.

Lemma 2.4. Let m D �kg , and let A be of order m with principal symbol am D
	.A/. Then there exists a constant C > 0 such that �g.A/ D C

R
S�M g 	.A/ dvol.

In particular, if S�M g ¤ ; then Trhgi
R .D�kgg/ ¤ 0 for a positive invariant

order one operator D .
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Remark 2.5. We shall see in 8.2 that essentially all the traces on the algebra of
complete symbols A.M/� � are of the from Trh�i

R . In general, there are some more
traces on the algebra ‰1.M/ � � which arise at isolated fixed points of elements
of � . These traces do not descend to the complete symbol algebra as isolated fixed
points do not contribute to the residues of the zeta functions. A study of traces on
‰1.M/�� and their relation to the Lefschetz fixed point theorem in [2] is currently
in progress.

3. Asymptotics for representations in eigenspaces

Let � 2 R.�/ be a representation of the group � . We can define a trace on the
cross-product algebra B.M/ corresponding to � by

��

� P
g2�

Agg
�´ P

g2�


�.g/�g.Ag/:

Since 
� is a class function, this trace is a linear combination of the traces TrR

defined before. Let us denote by �´ 1
j�j

P
g2� g the idempotent in CŒ��. Then one

can likewise obtain traces on the invariant algebra A.M/� by A! ��.A�/. Such a
trace is the residue of a � function, namely the one obtained from the meromorphic
extension using Proposition 2.1 of

��;A.s/´ 1

j�j
X
g2�


�.g/Tr.D�sAg/; Re.s/ > n:

Here D is a � invariant positive order one operator.
We say that the action of � onM is faithful or effective if for any g 2 � such that

the fixed point manifoldM g equalsM it follows that g must be the identity element.

Lemma 3.1. Let n D dimM . If the action of � on M is effective, then ��;Id has a
pole at s D n.
Proof. Let kg D dimM g for any group element g. If the action of the group � is
effective then kg < n whenever g is not the identity element e. Since �e;Id.s/ does
have a pole at s D n and all the �g;Id do not, ��;Id is holomorphic in the half plane
Re.s/ > n and must have a pole at s D n.

For the remainder of this section, we assume that the� action is effective. Let f�ig
be the set of eigenvalues of D . Then each eigenspace V�i

D ker.D��i / is invariant
under � , and so acquires a representation �V�i

of � . We count the multiplicity of
the representation � asymptotically in the eigenspaces V�i

. Let � be an irreducible
representation and let

N�;D.�/´
X

�i ��

hV�i
; �i D

X
�i ��

1

j�j
X
g2�


�.g/
V�i
.g/:
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The following result on the asymptotics of N�;D.�/ is a special case of results in
[5].

Proposition 3.2 (Asymptotic estimates). Let the group action of � onM be faithful.
Then for an irreducible representation� and a� invariant operator D , the multiplic-
ity counting function, N�;D.�/ � C dim ��n=m, where C > 0 and m D ord.D/.

Proof. First we notice that for sufficiently large values of Re.s/, the zeta functions
have a nice expression of the form

�g;Id.s/ DP
i


V�i
.g/��s

i ; Re.s/ > kg :

Therefore,

��;Id.s/ D
Z 1

0

��sdN�;D.�/:

By Lemma 3.1 the function ��;Id.s/ is holomorphic on the half plane Re.s/ > n

and has a non-zero residue K at s D n. Let C D TrR.D
�n/. Then we note that K

is of the form K D C �� .e/
j�j . The asymptotic estimate follows by direct application

of a Tauberian theorem (See for example [14], Theorem 4.1).

Let us now consider a pair of irreducible representations �j , j D 1; 2, of equal
dimension and compare their occurrence in eigenspaces of our invariant operator D .
We shall assume that for all but finitely many eigenvalues �i ,

hV�i
; �1i � hV�i

; �1i:
Applying the same argument as above we obtain the following.

Corollary 3.3. Suppose that �j are irreducible representations as above and let
k D maxg2�fdimM g j 
�1

.g/ ¤ 
�2
.g/g. Then asymptotically,

N�1;�2;D.�/´
P

�i ��

hV�i
; �1 � �2i ' C�k :

4. Hochschild and cyclic homology for cross-products

The Hochschild and cyclic homology of algebras play the role of differential forms
and de Rham cohomology in Connes’ noncommutative geometry [9]. Our main goal
is to compute the homologies for the cross-product algebra A.M/Ì� . In this section
we shall begin with a mundane approach to compute homologies for cross-product
algebras.

Let A be an algebra and � be a finite group acting on it by � W � ! Aut.A/.
For most purposes, A will be a unital locally convex topological algebra with jointly
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continuous product. We define the cross-product algebra B D A Ì � as the algebra
generated by elements of the form fagg j ag 2 A; g 2 �gwith the product given by

agg � bhh D agg.bh/gh:

The Hochschild homology of B admits a natural decomposition. For every conjugacy
class h�i of the group � , there is a subcomplex of H�.B/ given by

H�.A/� D f.ag0
g0 ˝ ag1

g1 ˝ � � � ˝ agn
gn/ j g1 � g2 � � �gn � g0 2 h�ig;

which yields the decomposition

H�.B/ DL
h�i

H�.A/� :

Here we shall also use the notation L�.A; �; �/ for H�.A/� if we need to specify
the group � explicitly.

Let us first identify the homologies of each of the conjugacy component H�.A/�
with that of a certain twisted Hochschild complex.

4.1. Twisted Hochschild complex for commutative algebras. We consider a com-
mutative algebra A. Let us as usual write Ae D A˝A. Given an automorphism h

of A, consider the Ae module Ah with the same linear structure as A, but the module
structure given by

.a˝ b/ � c D ac � h.b/:
Furthermore let us consider the complex C�.A/h D

L
A˝nC1; bh, where the

twisted Hochschild differential bh is defined by

bh.a0 ˝ a1 ˝ � � � ˝ an/ D .a0h.a1/˝ � � � ˝ an/

C
nP

iD1

.�1/i .a0 ˝ � � � ˝ aiaiC1 ˝ � � � ˝ an/:

In case of a group action on a manifoldM we shall be able to very easily identify
the homology of the twisted complex C�.C1.M//h with the differential forms on
the fixed point manifold M h. Hence in this section we show that twisted homology
gives the same homology as the conjugacy component H�.C1.M/ Ì �/hhi.

To begin with let us make the following observation.

Lemma 4.1. We have

H .C�.A/h; bh/ ' TorAe

� .A;Ah/:

Proof. This is a simple direct calculation. Let us introduce H 0�.A/ to be the bar
resolution for a unital algebra A. That is, H 0�.A/ D .A˝nC1; b0/ is the standard
projective resolution of A by Ae modules. Consider the map

 W Hn.A/˝Ae Ah ! Cn.A/h;

 .a0 ˝ a1 ˝ � � � ˝ an/˝ a! .anah.a0/˝ a1 ˝ � � � ˝ an�1/:
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Then we check that bh B  D  B b0 ˝ 1, which means that  is a morphism
of complexes. The result follows from the fact that  is an isomorphism and the
definition of the Tor groups.

Abstractly the above result tells us that the twisted Hochschild complex C�.A/h
has the same homology as the conjugacy component H�.A/hhi, but we are looking
for a concrete quasi-isomorphism.

To this end we begin with another well-known acyclic model. For any finite
group G, let ˇG ´ .ˇG/n D CŒG �G � � � � �G„ ƒ‚ …

n times

� be the complex endowed with

the differential

Nd.g0; g1; : : : ; gn/ D
nP

iD0

.�1/i .g0; g1; : : : ; ygi ; : : : ; gn/;

where the notation ygi as usual means that the entry is omitted. This differential also
comes from a simplicial object structure on ˇG. It is well known that

Hq.ˇG/ D
´

C if q D 0;
0 if q > 0;

and hence ˇG is a free resolution for the trivial G module C.
For any subgroup G � � , we define the complex

zLn.A; G; h/´ .C�.A/h/n ˝ ˇGn

with induced simplicial structure and differential given by

bh ˝ Nd.a0g0; a1g1; : : : ; angn/ D .a0h.a1/g1; a2g2; : : : ; angn/

C
n�1P
iD1

.�1/i .a0g0; : : : ; aiaiC1giC1; : : : ; angn/

C .�1/n.ana0g0; a1g1 : : : ; an�1gn�1/:

As one would expect this zL�.A; G; h/ complex is a simply connected cover of
H�.A/hhi. ( See [23] for a more detailed presentation.)

An application of the Eilenberg–Zilber isomorphism (see [20], Ch. VIII.8) gives
us the following result. Throughout we shall keep track of our quasi-isomorphisms.

Lemma 4.2. zL.A; G; h/ is quasi-isomorphic to C�.A/h.

Proof. By definition, zL.A; G; h/n ' ˇGn ˝ .C�.A/h/n. Thus by the Künneth
formula and the Eilenberg–Zilber theorem, we have the diagram

zL.A; G; h/ �G ��

f

��������������
C�.A/h

�G

��

ˇG ˝ C�.A/h,
g

��������������

�

�������������
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where we write

�G.a0g0; a1g1; : : : ; angn/´ .a0; a1; : : : ; an/

and similarly

�G.a0; a1; : : : ; an/´ .a0e; a1e; : : : ; ane/:

The maps f and g are the maps for the Eilenberg–Zilber quasi-isomorphism, and
� is the projection on the first component. (The Eilenberg–Zilber isomorphism
applies because the complex zL.A; G; h/ is obtained from the product of two simplicial
objects.) That is,

�..ˇG/l ˝ Ck.A// D
´
0 if l ¤ 0;
Ck.A/ if l D 0:

Since Hq.ˇG/ D 0 for q > 0, � turns out to be a quasi-isomorphism. Thus �G and
�G are quasi-isomorphisms.

Let A be a commutative unital algebra with an action of a group � . Let h 2 h�i
be an element of the conjugacy class h�i and C�.A/h be the corresponding twisted
complex under the action of h, then we can make the following identifications:

Proposition 4.3. The conjugacy component of the Hochschild homology H�.A/h is
quasi-isomorphic to C�.A/h�h .

The chain map G W H�.A/h�i ! C�.A/�h

h
is given by the explicit formula

Gh.b0h0; b1h1; : : : ; bnhn/

D 1

j�hj
X

g02�h

.hg0h
�1
0 .b0/; g0.b1/; : : : ; g0h1 : : : hn�1.bn//:

(3)

Proof. There is a covering map ˛ W zL.A; �; h/! H�.A/� given by

˛.a0g0; a1g1; : : : ; angn/

D .g�1
n a0hg0; g

�1
0 a1g1; : : : ; g

�1
n�1angn/

D .g�1
n .a0/g

�1
n hg0; g

�1
0 .a1/g

�1
0 g1; : : : ; g

�1
n�1.an/g

�1
n�1gn/;

which is a chain map. In fact, ˛ is a morphism of simplicial objects and�h equivariant.
We would like to lift this map ˛ from H�.A/hhi to zL.A; �; h/�h .

The map ˛ above also restricts to a chain map on the quasi-isomorphic complex
zL.A; �h; h/which we denote by ˛j�h

. An explicit lifting is easy to construct for ˛�h

as follows:
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Define, for any g0 2 �h a linear map Tg0
W L.A; �h; h/ ! zL.A; �h; h/ by the

formula

Tg0
.b0h0; b1h1; : : : ; bnhn/ D .hg0h

�1
0 .b0/g0; g0.b1/g0h1; : : :

: : : ; g0h1 : : : hi�1.bi�1/g0h1 : : : hi ; : : :

: : : ; g0h1 : : : hn�1.bn/g0h1 : : : hn/:

Then verify directly that
Tg0

bh � bTg0
D 0:

Let us define the map T D 1
j�hj

P
g02�h

Tg0
. Clearly T maps L.A:�h; h/ to

zL.A; �h; h/
�h . We next observe that ˛ B T D IdH�.A/�

and T B ˛ D Id zL.A;�;h/�h

and that T D ˛�1 and therefore must be a chain map. Thus we have established the
following commutative diagram of quasi-isomorphisms:

C�.A/�h

h

��h �������������
zL.A; �; h/�h

��

�� ˛ �� H�.A/�
T

��

zL.A; �h; h/
�h

˛�h �� L.A; �h; h/.
T

��
��

��

Here F ´ ˛ B �� W C�.A/�h

h
! H�.A/� is of the form

F.a0; a1; : : : ; an/ D .a0h; a1e; : : : ane/:

At the same time the inverse quasi-isomorphismG ´ �� BT W H�.A/h�i ! C�.A/h
is given by the formula (3)

Thus as a consequence we immediately have that

H�.A/h�i ' C�.A/�h

h
' TorAe

� .A;Ah/
�h :

As already mentioned earlier the computation shall be of interest in case of
A D C1.M/. We now begin our efforts to show that in this case homology of
C�.C1.M//h can be described by differential forms on the fixed point setsM h with
explicit identification given using the formula (3).

4.2. Local computations. Let us first specialize to the case when the algebra A D
C1.V / is the algebra of smooth functions on a vector space V and � W V ! V

is a linear transformation. In this section we shall identify our twisted Hochschild
homology that is the homology of the complex C�.A/� with the differential forms
on the fixed point subspace V � . To this end it is most convenient to introduce the
language of Koszul complexes.
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4.3. Koszul complex. Let R be a commutative ring. Let f1; f2; : : : ; fq 2 R. Let
fvj g be a basis for Cq . We define the Koszul complex of R generated by f1, f2, …,
fq by

Kl.R W f1; f2; : : : ; fq/ D R˝^lCq;

ı.r ˝ vi1 ^ vi2 ^ � � � ^ vil / D
j DqP
j D1

.�1/j .rfj ˝ vi1 ^ vi2 � � � ^ �vij ^ � � � ^ vil /:

This differential arises naturally from a simplicial module structure. We observe the
following properties:

Lemma 4.4. (1) Let R, R0 be two algebras over C and let S � R and S 0 � R0 be
subsets. Denote by S

a
S 0 D S ˝ 1 [ 1˝ S 0 � R˝R0. Then

K�.R˝R0 W S a
S 0/ DK�.R W S/˝K�.R0 W S 0/:

(2) Let V D Rn. Let A D C1.V /, and let Xi be the coordinate functions on V .
Then

Hq.K�.A W fXigniD1/ D
´
0 if q > 0;

C if q D 0:

Proof. Since the differential comes from a simplicial object structure the first fact is
a consequence of the Eilenberg–Zilber theorem.

The second fact follows from the Poincaré lemma and properties of the Fourier
transform.

Given a linear transformation � of a real vector space V we decompose V into a
fixed point subspace V � and an invariant complement .1 � �/V ,

V D V � ˚ .1 � �/V:
We come now to the main result of this section which is the local version of our

desired result.

Theorem 4.5. Let � be a linear automorphism of the algebra A D C1.V /. The
homology of the twisted complex .C�.A/� ; b� / is then given by the space of forms on
the fixed point V � ,

Hq.C�.A/� / ' �q.V � /;

and the identification is � equivariant.

Proof. Let ei be a basis of V such that ei 2 V � for 1 	 i 	 m and ei 2 .1 � �/V
for mC 1 	 i 	 n. Let Xi denote the corresponding coordinate functions.

Consider the Koszul complex

K�.Ae W fXi ˝ 1 � 1˝XigniD1/;
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which is a projective resolution of A over Ae . Hence by Lemma 4.1,

C�.A/� 'K�.Ae W fXi ˝ 1 � 1˝XigniD1/˝Ae A� :

Observe that K�.Ae W fXi ˝ 1 � 1 ˝ XigniD1/ ˝Ae A� can be identified with
another Koszul complex, namely K�.A W fXi � �.Xi /g/ via the map

 .a˝ b ˝ vi1 ^ � � � ^ vil ˝ c/ D a�.b/c ˝ vi1 ^ � � � ^ vil :

This results in the diagram

: : : �� .Ae ˝^l
V /˝Ae A�

ı˝1 ��

		

.Ae ˝^l�1
V /˝Ae A�

		

�� : : :

: : : �� .A˝^l
V /

ı �� .A˝^l�1
/ �� : : : .

Let R D C1.V � / be smooth functions on the fixed point manifold V � and let
R0 D C1..1 � �/V / be smooth functions on the invariant complement of V � .

Since A D C1.V / D C1.V � /˝C1..1��/V / D R˝R0, by Lemma 4.4 (1),

K.A W fXi � �.Xi /gnCq
iD1 /

DK.R W fXi � �.Xi /gmiD1/˝K.R0 W fXi � �.Xi /gnCq
iDmC1/

'K.R W f0g/˝K.R0 W fXigmCq
iDmC1/:

Now by applying Lemma 4.4 (2) to K.R0 W fXigmCq
iDmC1/, we have

K.A W fXi � �.Xi /gnCq
iD1 / DK.R W f0g/ ' �.V � /: (4)

Here the last identification is due to the following theorem, which we formulate
only in the 	 -compact case, for simplicity.

Theorem 4.6 (Connes’ HKR Theorem). Let X be a smooth, 	 -compact manifold.
Then theHochschild homology of the algebraA D C1.X/ is given by the differential
forms on X . The map


k.a0 ˝ a1 ˝ � � � ˝ ak/! a0da1da2 : : : dak

induces an isomorphism
HHk.C

1.X/ D �k.X/:

Proof. Let us consider X D Rn, which is sufficient to prove the equality in (4). It is
easily seen that the map 
 is a chain map. We define the inverse map (which is only
well defined on the homology)

E� W ��.Rn/! H�.C1.Rn//;

Ek.a0da1da2 : : : dak/ D 1

kŠ

X
�2Sk

sign.�/.a0 ˝ a�.1/ ˝ a�.2/ ˝ � � � ˝ a�.k//:
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Then the following diagram commutes.

�k.Rn/
�k ��

0

		

Hk.A/

b

		

Ek

��

�k�1.Rn/
�k�1 ��

Hk�1.A/.
Ek�1

��

Then the map 
k induces an isomorphism

HHk.C
1.Rn// ' �k.Rn/:

The case of a closed manifold X will be proved in the next section.

Thus combining all this information we get the following diagram.

C�.A/� ��

�

		

H�.A/˝Ae A�
�� TorAe.A;A� /



����������������

��.V � / K.Ae W fXi ˝ 1 � 1˝Xig/.��

We note that all the maps involved are � equivariant.

The next result now follows immediately by Proposition 4.3.

Corollary 4.7. Let� beafinite groupacting linearly onA D C1.V /andB D AÌ�
and let � 2 � . Then the h�i component of the Hochschild homology HH.B/� is given
by

HH�.B/� D �.V � /�� :

5. Equivariant HKR theorem

Thus far we have prepared for computing the Hochschild and cyclic homology of
C1.M/ Ì � . In order to do so it suffices to compute the homology C�.C1.M//h
where h 2 � varies over a set of representatives of conjugacy classes.

Proposition 5.1. The map Q
� W C�.C1.M//h ! ��.M h/, Q
n.a0˝a1˝ : : : an/´
a0da1da2 : : : danjM h , is a quasi-isomorphism.

Proof. We shall identify the complex C�.C1.M//h with a complex of sheaves over
M h as follows. First we shall identify C1.M/

y̋ nC1 with C1.M nC1/. With this
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identification made the differential bh takes the following form:

bhF.x0; x1; : : : ; xn�1/ D F.x0; h
�1x0; x1; : : : ; xn�1/

C
n�2P
iD1

.�1/iF.x0; x1; : : : xi ; xi ; : : : ; xn�1/

C .�1/n�1F.x0; x1; : : : ; xn�1; x0/:

Let in W M h !M nC1 be the inclusion ofM h inM nC1 given by s ! .x; x; : : : x/.
We shall denote by n

h
the image under this embedding. We also define

Jn ´ ff 2 C1.M nC1/ j support.f / disjoint from n
hg:

We shall prove at the end of this section that the following normalization result holds.

Lemma 5.2. The complex .Jn; bh/ is an acyclic subcomplex of Cn.C
1.M//h and

hence the quotient map C�.C1.M//h/ ! C�.C1.M//h=J� is a quasi-isomor-
phism.

Granting this result for the moment it follows immediately that if C.X/ denotes
the sheaf of smooth functions on a manifold X , then Kn ´ i�1

n C.M nC1/and bh

forms a complex of sheaves on M h with the property

H�.C�.C1.M//h/ ' H�.�.M h;K�/:

Furthermore, the map Q
� W C�.C1.M//h ! ��.M h/ factors through the quotient
�.M h;K�/ and determines a sheaf morphism still called 
�. Theorem 4.5 is pre-
cisely the statement that 
� induces an isomorphism at the level of stalks providing

H�.K�;p/ ' ��
p.M

h/

at each point p 2 M h. Since Kn are flabby sheaves, the homology and section
functor commute and we obtain that 
� is a quasi-isomorphism as desired.

The result on computing the homology of the cross-product algebra C1.M/Ì�
now follows immediately from Proposition 5.1 and (3).

Theorem 5.3. The map


h� ´ Q
� �Gh W H�.C1.M/ Ì �/h�i ! .��.M h//�h

is a quasi-isomorphism. Explicitly,


h
n.a0g0; a1g1; : : : ; angn/

D 1

j�hj
X

˛2�h

.h˛g�1
0 .a0/d˛.a1/; : : : d˛g1 : : : gn�1.an//jM h :
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We note here also that from the proof of Theorem 4.5 it follows that the inverse
(defined only on homology) is given by

Ek.a0da1da2 : : : dak/ D 1

kŠ

X
�2Sk

sign.�/. Qa0� ˝ Qa�.1/e˝ Qa�.2/e˝ � � � ˝ Qa�.k/e/;

where each Qaj is an extension of the function aj on Mh which is �h invariant and is
obtained by identifying a tubular neighbourhood of M h with .1 � g/TM h.

The following computations of cyclic and periodic cyclic homology are routine.

Theorem 5.4. Let h�i be a conjugacy class of � and h 2 h�i.
HCk.C

1.M/ Ì �/� D �k.M � /�� ˚ L
j >0

H
k�2j
deRham.M

� /�� :

Proof. Since 
 W .B�.C1.M/Ì�/� ; b; B/! .��.M � /�� ; 0; d/ is a map of mixed
complexes which is an isomorphism on the columns by Theorem 5.3 above, 
� must
be an isomorphism on the total complexes of these mixed complexes.

Corollary 5.5. We have

HPk.B/� D
P

j 2Z

H
k�2j
deRham.M

� /�� :

Proof. In view of HHn.B/� D 0 for n > dimM , the periodicity map
S W HCnC2.B/� ! HCn.B/� is an isomorphism by the SBI-exact sequence. In

particular, lim �HC�.B/� DP
j 2ZH

k�2j
deRham.M

� /�� . Also lim �
1 CC�.B/� D 0.

We complete this discussion with a proof of the normalization result in Theo-
rem 5.1.

Proof of Lemma 5.2. This proof is analogous to the resolution of the normalized
complex for a simplicial object. There is a filtration of the subcomplex Jn constructed
as follows.

Let Ti W M ! M be the identity map when i ¤ 0 and T0 D h�1. We consider
open subsets VnC1

j �M nC1 for j D 0; 1; : : : ; n defined by

.x0; x1; : : : ; xn/ 2 VnC1
j () xj C1 ¤ Tjxj :

(Here we use the convention nC 1 D 0.) The necessary filtration is then described
by

FiJn D
iP

j D0

ff 2 C1.M nC1 j f 2 C1
c .V nC1

j g:

The differential induced on the corresponding associated graded algebra is easily seen
to be zero.



An equivariant noncommutative residue 725

6. Topologically filtered algebras

The algebra of complete symbols with the topology that is described below is not a
topological algebra in the sense that multiplication in A.M/ is not jointly continuous.
Hence we need a larger category, namely that of topologically filtered algebras defined
in [4]. We present a simplified category here. Let A be an algebra with filtration
A D S

p2Z FpA. That is to say, each FpA is a subspace FpA � FpC1A and the
multiplication map takes FpA � FqA ! FpCqA. We will say that A is a filtered
algebra for short.

Since, by definition, F0A is a subalgebra of A and F�j A is an ideal of F0A,
M

j
0 ´ F0A=F�j A is naturally an algebra and each M

j
p ´ FpA=Fp�j A is a

module over M
j
0 . Similarly, � ´ T

p FpA is an ideal in A. We call our algebra a
symbol algebra if � D 0. We only consider symbol algebras for now. That is, if A0
is any filtered algebra, we consider the algebra A D A0=�.

Definition 6.1. We say that a filtered algebra is topologically filtered if:

(1) A is a symbol algebra, that is, �´T
p FpA D 0.

(2) Each M
j
p D FpA=Fp�j A is a nuclear Fréchet space for all p and each j .

(3) Each module map M
j
p y̋ M

j
q ! M

j
pCq induced by the multiplication in A is

continuous.
We call an element P 2 F1A elliptic if it is invertible and hence for all integers
n the element ŒP n� 2M1

n is also invertible in the associated graded algebra.

(4) There exists an elliptic element such that the map FnA=Fn�1A 3 ŒP n� !
P n 2 FnA gives a linear splitting of Fn�1A ,! FnA! FnA=Fn�1A.

If A is a topologically filtered algebra then using the existence of an elliptic
element, we have

FpA D Fp�1 ˚ FpA=Fp�1A

D Fp�2 ˚ FpA=Fp�1A˚ Fp�1A=Fp�2A

D Fp�2 ˚ FpA=Fp�2A:

Since � D 0, by repeating the iterations, we obtain

FpA D lim �FpA=Fp�kA D Q
j �p

Fj A=Fj �1A:

We use this description to endow FpA with the projective limit topology from the
Fréchet topologies on FpA=Fp�kA. A is then endowed with the inductive limit
topology from A D lim�!FpA D Q

p FpA=Fp�1A. Since strong inductive limits of
nuclear spaces are nuclear, the topology on A is nuclear. We call the resultant topology
the weak topology on A. (The inductive limit topologies are ‘strong’ topologies.



726 S. Dave

The nomenclature here is to distinguish the inductive limit topology on A from yet
another topology which is stronger.) Since A is a filtered algebra, A0 ´ F0A is
a subalgebra and further A�1 ´ F�1A is an ideal in A0. By property (4), each
Ai D FiA=Fi�1A is a module over A0 D A0=A�1 generated by a single element
ŒP i �.

Proposition 6.2. The multiplication in A is separately continuous with respect to
the weak topology. The multiplication is jointly continuous on the subalgebra A0 D
F0A.

Proof. First we prove that multiplication is jointly continuous on A0. This is an
immediate consequence of the universal property of projective limits. Since the
multiplication map on F0A=F�j A y̋ F0A=F�j A ! F0A=F�j A is continuous
for each j , by composition there is a continuous map

�j W lim �F0A=F�j A y̋ lim �F0A=F�j A! F0A=F�j A:

Using the universal property of lim �, there is thus a unique continuous map on

� W lim �F0A=F�j A y̋ lim �F0A=F�j A ! lim �F0A=F�j A D A0. To complete
the proof, we must verify that the map � is indeed the multiplication map. But mul-
tiplication on A0 composed with the projection A0 ! F0A=F�1A is just the map
�j above and hence the multiplication must be � by uniqueness (as algebraic maps)
on the projective limit:

F0A=F�j A y̋ F0A=F�j A �� F0A=F�j A

:::

��

:::

��

lim �F0A=F�j A y̋ lim �F0A=F�j A

��

� ��

�j

�����������������������������
lim �F0A=F�j A.

��

The separate continuity of the multiplication on A can be proved similarly.

Although a topologically filtered algebra A is a nuclear space and the completed
projective tensor product A

y̋ n is again nuclear by Proposition 6.2, the Hochschild
boundary map bmay not be continuous on A

y̋ n. We can define a Hochschild complex
for A in the following fashion.

Let
F 0

p ´
PP
pi �p

Fp0
A y̋ Fp1

A y̋ : : : y̋ Fpn
A:

Let FpCn.A/ ´ lim �F 0
p=F

0
p�f

. Then the differentials b and b0 are continuous on
each filtration, and if 1 2 F0A, then the operators s, t , N and B induce continuous
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maps on FpCn.A/. Denote by Fp HH�.A/ the homology of the complex FpC�.A/.
We define the Hochschild homology of A to be HH�.A/ D lim�!Fp HH�.A/.

Since it is often useful to use spectral sequences to compute homologies for such
filtered algebras, it is convenient to describe the topology on the associated graded
algebra of A by using the identification

Gr.A/ D lim�!
NL

pD�N

FpA=Fp�1A:

Moreover, the topology on the Hochschild complex for Gr.A/ is defined by

Hn.Gr.A//´ lim�!
� NL

pD�N

FpA=Fp�1A
�˝nC1

:

Again the Hochschild boundary map is continuous with respect to this topology. The
homogeneous components of Gr.A/ can be defined by

Hn.Gr.A//p ´ lim�!
NL

pD�N

yN
kj

Fkj
A=Fkj �1A;

where �N 	 kj 	 N and
P
ki 	 p.

Our main examples of topologically filtered algebras are the algebra of complete
symbols A.M/ over a closed manifold M and its cross-product A.M/ Ì � with
a finite group � . Other examples include the Heisenberg complete symbol algebra
AH .M/ over a Heisenberg manifold .M;H/.

7. Symplectic Poisson structure

To compute the homology of B.M/ ´ A.M/ Ì � we shall need a few basic
facts about the canonical symplectic structure on the T �M n f0g cotangent bundle
minus the zero section. First of all we observe that for an element � 2 � the fixed
point set T �M � is symplectic and can be identified as a symplectic manifold with
T �.M � /. (The same holds with the zero section removed.) Further one can choose
an extension procedure that assigns to a smooth function f 2 C1.T �M � n f0g/ a
function Qf 2 C1.T �M n f0g/ satisfying the following:

(i) The procedure is a symplectic extension as described in Proposition 7.1 below.

(ii) The procedure is �� equivariant.

The existence of such a procedure is easy to establish.

Proposition 7.1. Let Y be a symplectic submanifold of X . Then there exists an
extension C1.Y / ! C1.X/ denoted by f ! Of such that f Of ; OggX jY D ff; ggY
for all f; g 2 C1.Y /.
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We call an extension C1.Y / ! C1.X/ with the above property a symplectic
extension.

Proof. By choosing a connection on the bundle T Y ? �?��! Y we can obtain a sym-
plectic form !? on T Y ? such that Y is a symplectic submanifold and extending a
function f 2 C1.Y / to ��?f produces

f��?f; ��?ggT Y j?
Y
D ff; ggY for all f; g 2 C1.Y /:

By identifying a small enough tubular neighbourhoodU0 of Y inX with a neighbour-
hood of the zero section U1 in T Y ? we find a Moser diffeomorphism � W U0 ! U1

such that ��!? D !. The required extension is Of is any extension of the function
��.��?f jU0

/ using some partition of unity.

7.1. Canonical homology of symplectic manifolds. The Poisson structure on any
Poisson manifold M can be used to define a differential on differential forms,

ı W �k.M/! �k�1.M/;

and has a local expression of he form

ı.f0df1 ^ � � � ^ dfk/ D
P

1�i�k

.�1/i�1ff0; figMdf1 ^ � � � ^ cdfi � � � ^ dfk

C P
1�i<j �k

.�1/iCj �1f0dffi ; fj gM ^ df1 ^ � � �

� � � ^ cdfi ^ : : : � � � ^ cdfj ^ � � � ^ dfk :

(5)

The complex .��.M/; ı/ is called the Koszul complex of the Poisson manifold
.M; f g/, and its homology the Poisson homology, which we denote by HK�.M/.

Although ı can be defined for any Poisson manifold, we will restrict to the case
of the symplectic manifold M of dimension 2n. Here one can define a sympletic 
-
operator
W ��.M/! ��2n � 
.M/. The ı, d and
 satisfy the following relations
[6]:

(1) If ˛ 2 �k.X/, then 
 
 ˛ D ˛.

(2) ı D .�1/kC1 
 d
 on �k.X/.

(3) dı C ıd D 0 as a map on �k.X/.

A direct consequence is the following result for canonical homology of symplectic
manifolds..

Proposition 7.2. Let .M;!/ be a compact symplectic manifold of dimension 2n.
Then .�1/kC1
 is a chain map between .�k.X/; ı/ and .�2n�k.X/; d/, and the
symplectic Poisson homology is given by

HKk.M/ D H 2n�k
deRham.M/:
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Now let X D T �M n f0g be the cotangent bundle minus the zero section. Then
there is an RC action on X . Let „ be the Euler vector field on X D T �M n f0g
generated by the action of RC. The canonical one form onX is the form ˛ D i.„/!.
Let ".˛/ W �k.X/ ! �kC1.X/ be the exterior multiplication by ˛. The following
analogue of Cartan’s magic formula provides us with necessary contractions. (See
also [7].)

Lemma 7.3. Let LY denote the Lie derivative with respect to a vector field Y . The
following identity holds on k-forms �k:

ı".˛/C ".˛/ı D L„ C n � k:
In particular, if ˇ is a k-form which is homogeneous of degree l , then L„ˇ D lˇ

and therefore .ı".˛/C ".˛//ˇ D l Cn� k . The differential ı occurs in the spectral
sequence calculation below and Lemma 7.3 provides a contraction.

8. Spectral sequence for the cross-product

The action of the group � preserves the natural filtration on the complete symbol
algebra A.M/ and hence provides the crossproduct algebra B.M/ with a natural
filtration FiB.M/ D FiA.M/ Ì � . Let P be a positive elliptic operator invariant
under the � action. Let � be the symbol for P . The associated graded algebra then
can be identified as

Gr.B.M// ' L
l2Z

PC1.T �M n f0g/l Ì �

' L
l2Z

.C1.S�M/ Ì �/�l ' C1.S�M/ Ì � ˝CŒ�; ��1�:

(Here and elsewhere PC1.Z/ and P�k.Z/l represent homogeneous sections of degree
l on a principal RC bundle Z.) With this filtration the E1-term in the Hochschild
homology spectral sequence of B.M/ is

E1 D HH�.Gr.B.M/// ' HH�..C1.S�M/ Ì �/˝CŒ�; ��1�/; (6)

which, by Theorem 4.6, can be identified as E1 D L
h�i P��.T �M n f0g� /�� DL

h�iE1
� , where � runs over a set of representatives of conjugacy classes. The

theorem below describes the d1 differential under this identification.

Theorem 8.1. For every k � 0, we have the diagram

E1
k�
D HHk.Gr.B.M///�

�k ��

d1

		

P�k.T �M � n f0g/
ı

		
E1

k�1�
D HHk�1.Gr.B.M///�

�k�1 �� P�k�1.T �M � n f0g/,



730 S. Dave

where the differential ı is given by the equation (5) on T �M � .

Proof. Let fi 2 C1.T �M � n f0g/, 0 	 i 	 k, be homogeneous functions of degree
pi and �� invariant. Let p D p0 C p1 C � � � C pk . Also, let

� D f0df1df2 : : : dfk 2 P�k.T �M � n f0g/:
Then the k-form � is homogeneous of degree p, and since it is �� invariant by the
isomorphism (6), it gives a class in HHk.C

1.T �M n f0g//� represented by

Ek.�/ D
P

�2�k

�.�/ Qf0� ˝ Qf�.1/e ˝ Qf�.2/e � � � ˝ Qf�.k/e;

where Qfi is a symplectic extension of fi . Since �� actions on T �M nf0g are through
symplectomorphisms, the extensions Qfi are in fact invariant extensions of fi to the
whole of T �M n f0g. We only have to check that ı D 
 B d1 B E. To evaluate d1

on HH�.Gr.B.M///� , we must lift the form � to a tensor. We now choose operators
A0; A1; : : : Ak 2 Fpi

A.M/ D ‰pi .M/=‰�1.M/, which are�� invariant and such
that 	.Aj / D Qfj . (This can be done by averaging on a � equivariant splitting of 	 .)
Using the above choice of lifting,

	�1.Ek.�// D
P

�2�k

�.�/A0� ˝ A�.1/e ˝ A�.2/e � � � ˝ A�.k/e:

On applying b the Hochschild differential, there are three different kinds of expres-
sions for each � 2 �k . So the resultant expression can be broken up as the sum
of

A D P
�2�k

�.�/A0A�.1/� ˝ A�.2/e ˝ � � � ˝ A�.k/e;

B D P
�2�k

k�1P
iD1

.�1/�1�.�/A0� ˝ � � � ˝ A�.i/A�.iC1/e ˝ � � � ˝ A�.k/e;

C D P
�2�k

.�1/k�.�/A�.k/A0� ˝ A�.1/e ˝ � � � ˝ A�.k�1/e:

(Remember that Ai ’s have been chosen to be invariant under � .) By replacing � in
A by �� where � is a cyclic permutation, we can rewrite it as

A D P
�2�k

.�1/kC1�.�/A0A�.k/� ˝ A�.1/e ˝ � � � ˝ A�.k�1/e:

Thus

A C C D P
�2�k

.�1/kC1�.�/fA0; A�.k/g� ˝ A�.1/e ˝ � � � ˝ A�.k�1/e;
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or in HH�.Gr.B.M// it is represented byP
�2�k

.�1/kC1�.�/ff0; f�.k/g� ˝ f�.1/e ˝ � � � ˝ f�.k�1/e:

For any permutation � for which �.k/ D i is fixed, the image of the tensor

.�1/kC1�.�/ff0; f�.k/g� ˝ f�.1/e ˝ � � � ˝ f�.k�1/e

under 
 of Theorem 6 is the same, namely

1

k � 1Š.�1/
iff0; figdf1df2 : : : �dfi : : : dfk :

(Again remember that all the fj ’s are �� invariant.) There are .k � 1/Š permutations
such that �.k/ D i for fixed i , and therefore the parts corresponding to A and C in
d1 become P

1�i�k

.�1/i�1ff0; figdf1 ^ � � � ^ dfi � � � ^ dfk :

The summand B pairs each � with the transpositions �.i i C 1/,

B D 1

2

X
�2�k

k�1X
iD1

.�1/�1�.�/A0� ˝ � � � ˝ fA�.i/; A�.iC1/ge ˝ � � � ˝ A�.k/e;

and so 	.B/ D 1
2

P
�2�k

Pk�1
iD1 .�1/i�1�.�/f0� ˝ � � � ˝ ff�.i/; f�.iC1/ge ˝ � � � ˝

f�.k/e. All pairs .�; i/ such that the set f�.i/; �.i �1/g is the same as the set fm; ng;
m < n have the same image under 
, namely the form

.�1/mCn

k�1 f0dffm; fng ^ df1 ^ � � � ^ Odfm ^ � � � ^ Odfn ^ � � � ^ dfk :

As there are 2.k�1/Š such pairs for each fm; ng, the terms in B map to the remainder
of ı P

1�i<j �k

.�1/iCj �1f0dffi ; fj g ^ df1 ^ : : : Odfi ^ : : : Odfj ^ � � � ^ dfk :

As corollaries we obtain all our main results.

Corollary 8.2. We have

HH�.A.M/ Ì �/ DP
h�i
H 2k� ��.S�M � � S1/�� ;

where k� D dim.M � /.
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Proof. Since the �� action on T �M � n f0g is by symplectomorphisms, all � 2 �
commute with the symplectic 
 operator and therefore with the operator ı. Hence by
Theorem 4.6 and the previous proposition, E2

k�
' H 2k� ��.S�M � � S1/�� .

We now observe that the differential d2 for this spectral sequence vanishes. The
E1

� can be given a Z bigrading withE1
�;kl

beingk-forms of homogeneity l onT �.M �n
f0g/. Then the differential d1 D ı maps E1

�;kl
! E1

�;k�1l�1
. This is because the

Poisson bracket decreases the homogeneity by 1. But on E1
�;kl

, by 7.3, we have

ı".˛/C ".˛/ı D L„ C k� � k D l C k� � k:
Thus unless l D k � k� there is a contraction for ı on E1

�;kl
. Therefore the only

nonzero terms onE2
kl

correspond to l D k� �k. The differential d2 must thus either
start or end in a 0-term.

Since the Hochschild homology groups are finite dimensional, the Hochschild
cohomology groups are the dual of the Hochschild homology groups. Hence by
Poincaré duality the rank HH0.B.M// is the number of path components of S�M �

where � ranges over all conjugacy classes.
To compute the cyclic homology, we use Connes’ SBI exact sequence:

� � � B�! HHn.B.M//
I�! HCn.B.M//

S�! HCn�2.B.M//

B�! HHn�1.B.M//! � � � :
Here the connecting morphismB W Tot.B�.B.M///! H�.B.M//Œ�1� is the cyclic
boundary map B .

Proposition 8.3. The connecting morphism B in the SBI exact sequence for B.M/

vanishes and hence

HCk.B.M// D P
j �0

HHk�2j .B.M//:

Proof. Since B.M/ is unital, B is induced from a chain map

Tot.B�.B.M///! H�.B.M//Œ�1�
that respects the filtration on both the source and the range complex. Thus B induces
a map on the spectral sequence EC� of Tot.B�.B// into the spectral sequence EH� of
H�.B.M//Œ�1�. The induced map on EC1 ! EH1 when identified with the space
of differential forms is the de Rham differential d which vanishes on E2:

d W EC1
k;l D

L
j

�k�2j .S�M � � S1/
��

l
! EH1

k;l D �kC1.S�M � � S1/
��

l
:

For the EC-term to contribute to nonzero homology, l D 2k� � k, whereas for
the EH-term l D 2k� � k � 1.

The formula for HCk.B/ then follows from the SBI sequence.
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8.1. Modules of Fourier integral operators. In the case of the algebra A.M/ and a
diffeomorphism h on the manifoldM the module A.M/h as described in Lemma 4.1
is the module of Fourier integral operators corresponding to the canonical relation
being the conormal bundle N� graph.h/ with classical symbols. Thus in view of (3)
one immediately obtains

HH�.A.M/;A.M/h/ ' H 2kh��.S�M h � S1/:

One natural question is to consider more general modules of Fourier Integral operators
over A.M/ and investigate the corresponding Hochschild and cyclic homology. This
requires a slightly different approach than the one described here and is presently
work in progress. But for now we have already proved the following.

Proposition 8.4. Let h W M ! M be a diffeomorphism such that S�M h is a con-
nected smooth manifold. Then there exists (up to a constant) a unique twisted trace
�h W A.M/! C such that

�h.A � B/ D �h.B � h.A//:
The existence is already clear from (1) and uniqueness follows from the above

observation.
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